WorldWideScience

Sample records for spectroscopie infrarouge bases

  1. Spectroscopie de vibration infrarouge du silicium amorphe ...

    African Journals Online (AJOL)

    ... évaporé (a-Si:H) préparées dans un bâti ultra-vide (UHV). L'hydrogène atomique est obtenu à l'aide d'un plasma dans un tube à décharge dirigé vers le porte-substrat. Les fréquences de vibrations et la nature des liaisons Si-H ont été analysées à partir des mesures de spectroscopie infrarouge à transformée de Fourier.

  2. La structure de l'eau liquide: Une etude thermique par spectroscopie infrarouge

    Science.gov (United States)

    Larouche, Pascal

    Le probleme de la structure de l'eau liquide est important car l'eau est le liquide le plus present sur Terre, et complexe, la quete d'un modele precis pour decrire comment fonctionne ce liquide ayant debute des la fin du dix-neuvieme siecle. Cette etude aborde ce probleme en etudiant l'effet de l'augmentation de la temperature sur H2O et D 2O purs a l'aide de la spectroscopie infrarouge. L'intervalle de temperatures scrute est 29--93.1°C. Les spectres enregistres sont des spectres MIR-ATR entre 650 et 6000 cm-1 . L'analyse par facteurs de ces donnees permet de montrer que deux et seulement deux facteurs principaux sont necessaires pour decomposer tous les spectres experimentaux. Ces resultats sont confirmes grace a l'analyse par facteurs de spectres de la region FIR. Par la suite, la transformation en spectres de la partie reelle n et imaginaire k de l'indice de refraction permet de combiner les donnees des regions MIR et FIR. Une fois ce calcul termine, les spectres de transmission complets de H 2O et D2O entre 25 et 90°C sont connus. Ils sont ensuite utilises pour calculer par extrapolation le spectre des especes constituant l'eau liquide, puis leur abondance en fonction de la temperature. L'extrapolation de ces abondances montre que les especes correspondent a des temperatures limites de --18 et 122°C. Par la suite, la decomposition gaussienne des spectres d'especes met en evidence la riche structure de ces objets et permet de demontrer que l'apparent deplacement du massif d'absorption OH (OD) est produit par une variation de l'intensite des bandes et non pas de leur deplacement. L'examen attentif des spectres des especes prouve qu'il n'y a pas de OH libres crees par l'augmentation de la temperature: meme a 93.1°C, chaque molecule possede quatre liens-H. Ces conclusions sont de plus confirmees par une analyse thermodynamique du passage des molecules de la phase solide a la phase gazeuse. Pour diversifier la nature des resultats experimentaux utilises, des

  3. Détection par un diapason de quartz en spectroscopie d'absorption infra-rouge

    OpenAIRE

    Rincon Castillo, Boris Leonardo; Vacheret, Xavier; Spajer, Michel; Vairac, Pascal; Euphrasie, Sébastien; Jalocha, Alain; Moec, Samuel; Hirtz, Patricia; Marthouret, Nadège; Vernier, David

    2011-01-01

    International audience; Les diapasons horlogers de quartz se sont avérés des détecteurs efficaces en spectroscopie IR, couplés à une détection synchrone. Cette étude montre la cartographie de la sensibilité du résonateur, semblable à la répartition des déformations. Elle démontre la nature photo-thermo-élastique de l'interaction, la sensibilité étant améliorée d'un ordre de grandeur quand le diapason est ré-encapsulé sous vide.

  4. Spectroscopie infrarouge de la molécule 28 SiD 3 F autour de 888 ...

    African Journals Online (AJOL)

    Infrared spectroscopy of the 28SiD3F molecule around 888 cm-1. The n3 fundamental band (A1 888.898 cm-1) of 28SiD3F molecule have been studied by FTIR spectroscopy with a resolution of 2.4 x 10-3 cm-1. More than 2000 lines have been assigned and fitted with a standard deviation of 0.19 x 10-3 cm-1 and ten ...

  5. L'intérêt de la spectroscopie proche infrarouge en analyse de terre (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Genot, V.

    2014-01-01

    Full Text Available Use of near-infrared reflectance spectroscopy in soil analysis. A review. This paper presents a literature review on the development of near infrared reflectance spectroscopy for soil analysis and the contribution of this technique to the evaluation of soil fertility analysis. This technique is used to estimate the chemical composition of soil samples on the basis of their absorption properties. It is therefore an indirect method of measurement, which requires a calibration phase for the prediction of these properties. NIR spectroscopy offers many advantages compared to reference analysis: it is known to be a physical, non-destructive, rapid, reproducible and low cost method. Often employed in other analytical domains, such as agro-food, NIR spectroscopy has, however, seldom been used in soil characterization, due to the complexity of the soil matrix. Thanks to the development of chemometric methods, numerous studies have recently been conducted to evaluate the feasibility of the application of the technique in soil analysis. Most authors conclude that NIR spectroscopy is promising; however, to date, use of the technique has not spread to routine laboratories. The paper is organized as follows. Firstly, we provide an overview of the NIR spectroscopy technique and related chemometric methods. Secondly, we describe the soil characteristics that can be predicted using this technique. Finally, we detail examples of results that have been obtained through the use of the technique, mainly in the determination of clay and organic carbon content, and of cation exchange capacity.

  6. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications; Instruments de mesure multi-polluants par spectroscopie infrarouge bases sur des lasers fibres et par generation de difference de frequences: developpement et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, J

    2006-12-15

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of < 10{sup -8} cm{sup -1} Hz{sup -1/2} and allowed the quantification of chemical species such as CO{sub 2}, CO, C{sub 2}H{sub 2}, CH{sub 4} and the determination of the isotopic ratio {sup 13}CO{sub 2}/{sup 12}CO{sub 2} in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 {mu}m), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C{sub 2}H{sub 4}) and benzene (C{sub 6}H{sub 6}). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  7. Quantitative study of a gaseous atmosphere by Fourier transformation infrared spectroscopy (FTIR); Etude quantitative d atmosphere gazeuse par spectroscopie infrarouge a transformee de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, G.; Faivret, O.; Doncourt, A.; Dubard, V. [CEA, Is sur Tille, (France)

    2006-07-01

    The aim of this work is to implement an in situ quantitative analysis of gases present in a gaseous atmosphere by Fourier transformation infrared spectroscopy in order to determine the processes occurring during the uranium corrosion reactions. Indeed, during these reactions, the gaseous atmosphere initially present evolves during the reaction and leads to the formation of new gaseous species. The aim is then to in situ quantify the proportion of species present during all the reactional process. A preliminary study on pure gases has been carried out. The studied gases are: CH{sub 4}, CO{sub 2}, H{sub 2} and CO. The aim is to identify their spectral symbol in the infrared and to determine their behaviour (absorbance) in terms of their concentration. The study of different binary gases mixtures, as for instance CO{sub 2}/H{sub 2}, CH{sub 4}/H{sub 2}, CO/H{sub 2} or CH{sub 4}/CO{sub 2} has been carried out too. This study presents the results concerning the CO{sub 2}/H{sub 2} mixture and more particularly the evolution of the spectral sign of gases in terms of the partial concentrations of H{sub 2} and CO{sub 2}. The study of the spectra of this mixtures show that the presence of a gaseous specie has an influence on the characteristics of the peaks (intensity and area) of the spectra relative to other gaseous species present in the mixture according to a transfer function which has then been determined. The feasibility of the implementation of an in situ quantitative gaseous analysis by Fourier transformation infrared spectroscopy is then discussed from FTIR tables (intensity and area of peaks) obtained on gaseous mixtures. (O.M.)

  8. Synthese et caracterisation par spectroscopie infrarouge et ...

    African Journals Online (AJOL)

    ABSTRACT:- About six new Molybdato adducts of tin tetrahalide and tin(IV) organometallics have been synthesized and characterized. Their infrared and Mössbauer study allow us to suggest discrete structures with only one polydentate ligand or two types of ligands of different symmetries in the same adduct. KEYWORDS: ...

  9. Modélisation et Spectroscopie des Vitrocéramiques Fluorées dopés par des Ions de Terres Rares pour Applications en Amplification dans l'Infrarouge

    OpenAIRE

    El Jouad , Mohamed

    2010-01-01

    This thesis concerns the characterization of rare earth doped fluoride glasses and glass ceramics. The interest of such materials and systems to achieve ultra-transparent with low losses and also with low phonon frequency avoiding the normal processes that limit the performance of laser emission. The study is based on two aspects: modeling and experimental spectroscopy. The emission spectroscopy measurements with site selection have the potential to probe the environment around the luminescen...

  10. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase; Spectroscopie infrarouge resolue en temps pour l'etude de la dynamique femtoseconde du proton en phase liquide

    Energy Technology Data Exchange (ETDEWEB)

    Amir, W

    2003-12-15

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D{sub 2}O for reasons of experimental and theoretical suitability. However this is not water. Pure water H{sub 2}O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  11. Optimizing the application of infrared spectroscopy for the study of carbonaceous materials; Optimisation de l'application de la spectroscopie infrarouge pour l'etude des matieres carboniferes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Serrano, V.; Fernandez-Gonzalez, M.C.; Alexandre-Franco, M. [Universitad de Extremadura, Facultad de Ciencias, Dept. de Quimica Inorganica, Badajoz (Spain); Macias-Garcia, A. [Universidad de Extremadura, Escuela de Ingenierias Industriales, Area de Ciencia de Materiales e Ingenieria Metalurgica, Badajoz (Spain)

    2005-02-01

    The optimization of the application of the technique of FT-IR spectroscopy was investigated using four coals of different categories (or levels) and their respective carbonization and demineralization products. With such an aim, wafers were prepared by varying both the coal-to-KBr ratio and the mass. In general, the intensity of IR absorption increases when increasing the relative content of coal to KBr in the wafer and also the wafer mass. These trends provide one with valuable information about how to prepare the coal/KBr wafer to increase the sensitivity of the infrared method of coal analysis. The influence of the mass of the wafer on the intensity of IR absorption is greater than that of the proportion of coal in the wafer. Therefore, the control of the former variable should be improved when preparing coal wafers. The optimization study has shown that in the preparation of wafers, in most cases, the coal-to-KBr ratio in the wafer is lower and the wafer mass is higher for the original coals and the demineralized products than for the carbonized products, and also for lower rank coals than for higher rank ones. (author)

  12. Study of isobutyric acid reactivity by electron spin resonance and infrared spectroscopy of the sodium salt and of 1-vanado-11-molybdophosphoric acid; Etude de la reactivite de l`acide isobutyrique par spectroscopie infrarouge et resonance paramagnetique electronique du sel de sodium et de l`acide de l`ion 1-vanado-11-molybdophosphorique

    Energy Technology Data Exchange (ETDEWEB)

    Rabia, C.; Bettahar, M.M. [Universite des sciences et de technologies, Houari-Boumediene, Algiers (Algeria); Fournier, M. [Universite des Sciences et technologies de Lille, 59 - Villeneuve d`Ascq (France)

    1997-11-01

    The alkaline salt 1-vanado-11-molybdo-phosphore acid as been investigated in isobutyric absorption-desorption-re-oxidation cycles by IR and ESR spectroscopies in comparison to the bulk acid compound. The stability of the active phase in catalysis seems to be related to the formation of a cubic phase depending strongly on the presence of water vapor in the gas stream. This phase can be generated from an alkali precursor subject to a moderate thermal treatment leading to a dispersion of di-oxovanadium cation into the alkali-12-molybdophosphate lattice. (authors) 14 refs.

  13. Proprietes optiques dans l'infrarouge lointain et de transport electrique de systemes electroniques a basse dimensionalite

    Science.gov (United States)

    Lefebvre, Jacques

    Cette these presente une etude experimentale de deux systemes ayant des proprietes physiques particulieres decoulant de leur caractere anisotrope. Le premier systeme est un conducteur organique quasi-unidimensionnel, le sel de Bechgaard (TMTSF)sb2ClOsb4. Le second est un systeme mesoscopique base sur une heterostructure a base de GaAs/Alsb{x}Gasb{1-x}As pour lequel la dimensionalite peut etre variee continuement entre deux et un. En dimension un, ce systeme porte le nom de fil quantique. Pour le sel de Bechgaard (TMTSF)sb2ClOsb4, une mesure de la photoconductivite dans l'infrarouge lointain a permis d'identifier une resonance dans la phase onde de densite de spin sous champ magnetique (ou ODSIC). Cette resonance, visible dans la gamme de longueurs d'onde entre 410 et 599 mum, se deplace vers les forts champs magnetiques avec l'augmentation de l'energie du photon. Malgre qu'elle s'apparente a une resonance cyclotron, un calcul theorique du coefficient d'absorption a montre qu'elle est intimement liee a la phase ODSIC et que son energie est donnee par sqrt{4deltasbsp{N}{2}+omegasbsp{c}{2}} avec deltasb{N}, l'amplitude de la bande interdite ODSIC au niveau de Fermi et omegasb{c}, l'energie cyclotron. Le gaz d'electrons dans une heterostructure a base de GaAs/Alsb{x}Gasb{1-x}As a ete etudie dans les regimes dimensionnels entre deux et un (de 2D a quasi-1D en passant par quasi-2D). En combinant des mesures de transport electrique a des mesures de transmission optique dans l'infrarouge lointain obtenues quasi-simultanement sur un meme echantillon, plusieurs conclusions emergent. Entre autres, trois regimes de modulation sont identifies et a leurs frontieres, des signes distinctifs apparaissent autant dans les mesures de transport que dans les mesures de la transmission optique. Une analyse globale permet de degager une vue coherente des modes collectifs dans les differents regimes dimensionnels.

  14. Etude par diffraction des rayons X in situ des mécanismes d'oxydation de l'acier AISI 304 entre 800°C et 1000°C. Influence des dépôts sol-gel de lanthane et de cérium. Apport de la spectroscopie infrarouge à l'identification des oxydes mixtes

    OpenAIRE

    Karimi , Noureddine

    2007-01-01

    This work presents a study on the AISI 304 oxidation mechanism within the temperature range of 800 to 1000°C, in air. We have closely examined the effect of Lanthanum and Cerium sol-gel coating on the oxidation process. IR spectroscopy enables us to better identify the mixed oxides FeCr2O4 and Mn1,5Cr1,5O4 and the corundum type oxides Fe2O3 and Cr2O3. The combination of various analytical techniques such as: in situ XRD, IR spectroscopy, MEB, EDS and MET, lead us to propose a new oxidation me...

  15. Mesure directe de la distribution de température dans un cristal laser par thermographie infrarouge

    Science.gov (United States)

    Forget, S.; Chénais, S.; Druon, F.; Balembois, F.; Georges, P.

    2004-11-01

    La montée en puissance des lasers solides est fondamentalement limitée par des problèmes thermiques, qui découlent de la transformation d'une partie de l'énergie de pompe en chaleur. Nous présentons ici une méthode simple pour mesurer directement la température absolue à la surface d'un cristal, lorsqu'il est pompé longitudinalement par diode laser. La technique se base sur une caméra infrarouge sensible dans la bande 8-12 μm, et permet de cartographier de façon absolue la température avec une excellente résolution spatiale (de l'ordre de quelques dizaines de μm). Une étude systématique de l'influence du contact thermique sur la distribution de température est présentée, ainsi que la mesure des coefficients de transfert H pour quatre types de contacts thermiques largement utilisés.

  16. Electrical infrared in the baking of paints and the drying of coatings; L`infrarouge electrique dans la cuisson des peintures et le sechage des revetements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `industrial electro-thermal engineering` section of the French association of thermal engineers. This book of proceedings contains 11 papers entitled: `recalls about infrared emitters and furnaces technology`; `experimental study of transfer phenomena and of the thermophysical properties of paints during baking under infrared radiation`; `synthetic report of a theoretical and experimental study about drying and reticulation under infrared radiation of a aqueous-based epoxy-amine-type paint on metal support`; `short IR baking as viewed by the paint manufacturer`; `influence of texture and impurities on the radiative properties of materials`; `contribution of modeling to the dimensioning of IR furnaces`; `IR baking of paints`; `experimental studies and testing means of EdF`; `presentation of ABB Capponi Alesina company`; `presentation report of the Infrarouge System company`; `the choice of heat transfer technologies`. (J.S.)

  17. Guides d'ondes infrarouges pour applications en télécommunications, capteurs chimiques et biochimiques

    Science.gov (United States)

    Smektala, F.; Bureau, B.; Adam, J. L.; Lucas, J.

    2002-06-01

    Les énergies de phonons élevés des verres à base de silice limitent leurs applications dans l'infrarouge. Il devient donc incontournable de créer des verres à plus faible énergie de phonons pour développer une optique passive guidée opérationnelle dans l'IR moyen et pour réaliser de nouveaux guide d'ondes optiques activés par des lanthanides pouvant jouer le rôle soit d'amplificateurs optiques soit de fibres lasers. Les compositions de verres stables répondant à ces critères sont exceptionnelles et appartiennent aux familles chimiques des fluorures et des chalcogénures. Les verres de fluorures, convenablement dopés par des terres rares, ont permis la réalisation d'amplificateurs optiques opérant dans la fenêtre télecom de la silice (1.3 μm avec le praséodyme, 1.45 μm avec le thulium et 1.55 μm avec l'erbium. Les verres de chalcogénures permettent la réalisation de fibres opérationnelles jusqu'à 12 μm mais seulement pour des applications courtes distances telles que le transport d'énergie moyenne, la radiométrie à l'ambiante et la spectrométrie IR déportée par fibre optique de molécules chimiques ou de tissus biologiques.

  18. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  19. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  20. A data acquisition system based on Windows for Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Jin Ge; Wang Jian; Nie Jimin

    2000-01-01

    As a new operating system, Windows is becoming a leading operating system in PC world. The authors will describe a new data acquisition system based on Windows for Moessbauer spectroscopy. Compared with the old data acquisition system based on MS-DOS, new system is easier in the man-machine interaction, runs in multi-process way and uses more resources of Windows

  1. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  2. A microprocessor based multiscaling data acquisition system for moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bohm, C.; Ekdahl, T.

    1985-01-01

    A microprocessor based data acquisition system is described, which was developed for use in Moessbauer spectroscopy. It is designed to record two spectra simultaneously, one of which could be a calibration spectrum. It is autonomous, but uses a host computer for initialization and permanent storage of data. The host communication software is also described. (Author)

  3. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  4. 1H NMR spectroscopy-based interventional metabolic phenotyping

    DEFF Research Database (Denmark)

    Lauridsen, Michael B; Bliddal, Henning; Christensen, Robin

    2010-01-01

    -up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity.......0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P=0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited...

  5. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    The mid-infrared (IR) spectral region is of significant technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinct spectral fingerprints. To date, the limitations of mid-IR light sources, such as thermal emitters, low-powe...... cancer detection with mid-IR imaging spectroscopy.......-project.eu] DTU Fotonik has now demonstrated the first optical fiber based broadband so-called supercontinuum light souce, which covers 1.4-13.3 μm and thereby most of the molecular fingerprint region [1]. This ultra-fast light source is the basic component in the mid-IR camera developed in MINERVA for early...

  6. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    Science.gov (United States)

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  7. Accuracy of dynamical-decoupling-based spectroscopy of Gaussian noise

    Science.gov (United States)

    Szańkowski, Piotr; Cywiński, Łukasz

    2018-03-01

    The fundamental assumption of dynamical-decoupling-based noise spectroscopy is that the coherence decay rate of qubit (or qubits) driven with a sequence of many pulses, is well approximated by the environmental noise spectrum spanned on frequency comb defined by the sequence. Here we investigate the precise conditions under which this commonly used spectroscopic approach is quantitatively correct. To this end we focus on two representative examples of spectral densities: the long-tailed Lorentzian, and finite-ranged Gaussian—both expected to be encountered when using the qubit for nanoscale nuclear resonance imaging. We have found that, in contrast to Lorentz spectrum, for which the corrections to the standard spectroscopic formulas can easily be made negligible, the spectra with finite range are more challenging to reconstruct accurately. For Gaussian line shape of environmental spectral density, direct application of the standard dynamical-decoupling-based spectroscopy leads to erroneous attribution of long-tail behavior to the reconstructed spectrum. Fortunately, artifacts such as this, can be completely avoided with the simple extension to standard reconstruction method.

  8. Raman-spectroscopy-based biosensing for applications in ophthalmology

    Science.gov (United States)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Zito, Gianluigi; Del Prete, Antonio; Cennamo, Giovanni; Sasso, Antonio

    2013-05-01

    Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.

  9. Model-Based Material Parameter Estimation for Terahertz Reflection Spectroscopy

    Science.gov (United States)

    Kniffin, Gabriel Paul

    Many materials such as drugs and explosives have characteristic spectral signatures in the terahertz (THz) band. These unique signatures imply great promise for spectral detection and classification using THz radiation. While such spectral features are most easily observed in transmission, real-life imaging systems will need to identify materials of interest from reflection measurements, often in non-ideal geometries. One important, yet commonly overlooked source of signal corruption is the etalon effect -- interference phenomena caused by multiple reflections from dielectric layers of packaging and clothing likely to be concealing materials of interest in real-life scenarios. This thesis focuses on the development and implementation of a model-based material parameter estimation technique, primarily for use in reflection spectroscopy, that takes the influence of the etalon effect into account. The technique is adapted from techniques developed for transmission spectroscopy of thin samples and is demonstrated using measured data taken at the Northwest Electromagnetic Research Laboratory (NEAR-Lab) at Portland State University. Further tests are conducted, demonstrating the technique's robustness against measurement noise and common sources of error.

  10. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  11. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  12. Développement méthodologique pour estimer la température de surface terrestre à partir des données infrarouge thermique hyperspectrales

    OpenAIRE

    Zhong , Xinke

    2017-01-01

    Land surface temperature (LST) is an important parameter in climate systems. Hyperspectral thermal infrared (TIR) data, containing large information about the surface and the atmosphere, is an important source of information for retrieving LST by remote-sensing.; La température de surface terrestre (LST) est un paramètre important dans les systèmes climatiques. Les données infrarouge thermique (TIR) contiennent un nombre d'information de la surface terrestre et de l'atmosphère sont des source...

  13. Ultraviolet refractometry using field-based light scattering spectroscopy

    Science.gov (United States)

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  14. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  15. DNA-based species detection capabilities using laser transmission spectroscopy.

    Science.gov (United States)

    Mahon, A R; Barnes, M A; Li, F; Egan, S P; Tanner, C E; Ruggiero, S T; Feder, J L; Lodge, D M

    2013-01-06

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications.

  16. Spectres infrarouges de verres à haute temperature par inversion de l'émission thermique de couches anisothermes

    Science.gov (United States)

    Sakami, M.; Lallemand, M.

    1994-05-01

    The infrared absorption spectra of silicate glasses and boric anhydrid at high temperature are worked out by means of an inverse technique of optimization from the emission spectra. The sample's emission spectral intensities are measured by a Fourier Transform lnfra-Red spectrometer. Specimens are plane parallel slabs which are deposited on a crusible. Their lower face is in contact of the crusible and isothermal but the upper one exchanges heat with the atmosphere by natural convection. In such conditions the glass slabs are submitted to high thermal gradients and the optimization method used is a non-linear constainted iterative method. The resulting spectra are compared to absorption spectra obtained by transmission spectrometry. Les spectres d'absorption infrarouge de verres de silicate et d'anhydride borique portés à haute température sont obtenus par inversion des spectres d'émission au moyen d'une méthode d'optimisation. Les luminances spectrales émises par les échantillons sont mesurées à l'aide d'un spectromètre à transformée de Fourier. Les échantillons sont des lames planes parallèles déposées dans un creuset ; leur surface inférieure est maintenue vers 1 000 K, alors que leur surface supérieure échange sa chaleur à l'air libre par convection naturelle. Dans ces conditions les lames sont soumises à de forts gradients thermiques. En présence de ces gradients une méthode itérative d'optimisation non linéaire contrainte est mise en œuvre. On compare les résultats obtenus aux spectres d'absorption mesurés directement par spectrométrie de transmission.

  17. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    Science.gov (United States)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  18. The fast polarization modulation based dualfocus fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Štefl, Martin; Benda, Aleš; Gregor, I.; Hof, Martin

    2014-01-01

    Roč. 22, č. 1 (2014), s. 885-899 ISSN 1094-4087 R&D Projects: GA AV ČR KJB400400904; GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : spectroscopy * fluorescence and luminiscence * confocal microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.488, year: 2014

  19. Laser-based molecular spectroscopy for chemical analysis: laser fundamentals.

    NARCIS (Netherlands)

    Moore, D.S.; Vo-Dinh, T.; Velthorst, N.H.; Schrader, B.

    1996-01-01

    This report is 15th in a series on Spectrochemical Methods of Analysis issued by IUPAC Commission V.4. It is concerned with the fundamental properties of lasers as used in analytical molecular spectroscopy in the optical wavelength region. The present report has five main sections: Introduction to

  20. Raman spectroscopy of CNC-and CNF-based nanocomposites

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    In this chapter, applications of Raman spectroscopy to nanocelluloses and nanocellulose composites are reviewed, and it is shown how use of various techniques in Raman can provide unique information. Some of the most important uses consisted of identification of cellulose nanomaterials, estimation of cellulose crystallinity, study of dispersion of cellulose...

  1. Characterisation of InAs-based epilayers by FTIR spectroscopy

    CSIR Research Space (South Africa)

    Baisitse, TR

    2008-01-01

    Full Text Available In this paper, infrared reflectance spectroscopy was employed to extract information on the optical and electrical properties of metal organic vapour phase epitaxial (MOVPE) grown InAs and InAsSb epilayers. These epitaxial layers were grown on InAs...

  2. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  3. Tunneling spectroscopy in NbN based Josephson junctions

    International Nuclear Information System (INIS)

    Chicault, R.; Villegier, J.C.

    1984-08-01

    Tunneling spectroscopy in high quality NbN-oxide-Pb(In) diodes offers a direct observation of various NbN and Pb phonon frequences as other vibrating modes existing near the tunnel barrier. The large number of peaks attribuated to dips in the transverses and longitudinal acoustic branches of NbN dispersion curves are found to confirm the previous theory developing the contribution of these modes to the strong coupling and high Tc behavior of NbN

  4. Discrimination of genetically modified sugar beets based on terahertz spectroscopy.

    Science.gov (United States)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-15

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    International Nuclear Information System (INIS)

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R.A.

    2016-01-01

    Monoclinic antiferromagnetic NiWO 4 was studied by far-infrared (30-600 cm -1 ) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO 4 and ZnWO 4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO 4 and CoWO 4 below their Neel temperatures down to 5 K.

  6. Design of nuclear spectroscopy electronics based on the EUROsystem standard

    International Nuclear Information System (INIS)

    Pahor, J.

    1987-11-01

    The development of modular nuclear instruments in the EUROcard system has been continued by the design of a staircase generator; such an instrument is needed for accurate testing of spectroscopy amplifiers. The generator provides very precisely defined steps with the period between them varying from 8 to 50 microseconds, the output voltage continuously variable from 2 to 5 V, and attenuated ion steps between 1 and 100. Great care was taken that individual steps exhibit no overshot, thus providing a very clean signal to the input of a tested amplifier. The circuitry is kept simple, and it can be easily constructed in any electronics laboratory. Figs

  7. Infrared Spectroscopy Beamline Based on a Tabletop Storage Ring

    OpenAIRE

    Haque, Md. Monirul; Moon, Ahsa; Yamada, Hironari

    2012-01-01

    An optical beamline dedicated to the infrared (IR) spectroscopy has been constructed at MIRRORCLE, a tabletop storage ring. The beamline has been designed for the use of infrared synchrotron radiation (IRSR) emitted from a bending magnet of 156 mm bending radius with the acceptance angle of 355(H) × 138(V) mrad to obtain high flux. The IR emission is forced by an exactly circular optics, named photon storage ring (PhSR), placed around the electron orbit and is collected by a “magic mirror” as...

  8. Digital gamma-ray spectroscopy based on FPGA technology

    CERN Document Server

    Bolic, M

    2002-01-01

    A digital pulse processing system convenient for high rate gamma-ray spectroscopy with NaI(Tl) detectors has been designed. The new programmable logic device has been used for implementation of dedicated high-speed pulse processor, as the central part of the system. The processor is capable to operate at the speed of fast ADC, preserving maximum throughput of the system. Special care has been taken to reduce the distortion of energy spectrum caused by pile-up at high-count rates. The developed system is highly flexible, and the parameters of its operation can be changed in software. The performance of the system was tested for high counting rate of 400000 s sup - sup 1.

  9. Dynamical-Decoupling-Based Quantum Sensing: Floquet Spectroscopy

    Directory of Open Access Journals (Sweden)

    J. E. Lang

    2015-10-01

    Full Text Available Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is amplified by a periodic, multipulse decoupling sequence. However, it remains challenging to robustly infer underlying atomic-scale structure from decoherence traces in all but the simplest cases. We introduce Floquet spectroscopy as a versatile paradigm for analysis of these experiments and argue that it offers a number of general advantages. In particular, this technique generalizes to more complex situations, offering physical insight in regimes of many-body dynamics, strong coupling, and pulses of finite duration. As there is no requirement for resonant driving, the proposed spectroscopic approach permits physical interpretation of striking, but overlooked, coherence decay features in terms of the form of the avoided crossings of the underlying quasienergy eigenspectrum. This is exemplified by a set of “diamond-shaped” features arising for transverse-field scans in the case of single-spin sensing by nitrogen-vacancy centers in diamond. We also investigate applications for donors in silicon, showing that the resulting tunable interaction strengths offer highly promising future sensors.

  10. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  11. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Hu, Shui-Ming; Cheng, Cunfeng; Wang, Jin; Tan, Yan; Sun, Yu Robert; Liu, An-Wen; Zhang, Jin-Tao

    2014-06-01

    A Doppler broadening thermometry is implemented using a laser-locked cavity ring-down spectrometer [1,2] combined with a temperature-stabilized sample cell. The temperature fluctuation of the gas sample cell is kept below 1 mK for hours. The probing laser is frequency locked at a longitudinal mode of a Fabry-Pérot interferometer made of ultra-low-expansion glass, and the spectral scan is implemented by scanning the sideband produced by an electro-optic modulator. As a result, a kHz precision has been maintained during the measurement of the spectrum of 10 GHz wide. A ro-vibrational line of C_2H_2 is measured at sample pressures of a few Pa. Using a pair of mirrors with a reflectivity of 0.99997 at 787 nm, we are able to detect absorption line profiles with a signal-to-noise ratio of 10^5. Fitting of the recorded spectra allows us to determine the Doppler width with a statistical uncertainty of 10 ppm. Further improvements on the experimental reproducibility and investigations on the collision effects will probably lead to an optical determination of the Boltzmann constant with an uncertainty of a few ppm. H. Pan, C.-F. Cheng, Y. R. Sun, B. Gao, A.-W. Liu, S.-M. Hu, ``Laser-locked, continuously tunable high resolution cavity ring-down spectrometer," Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, S.-M. Hu, ``Application of cavity ring-down spectroscopy to the Boltzmann constant determination," Opt. Express, 19, 19993 (2011)

  12. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  13. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    Science.gov (United States)

    2015-07-09

    Perrella, P. S. Light, F. Benabid, and A. N. Luiten, "Towards a compact optical fibre clock," in Precision Electromagnetic Measurements (CPEM), 2010...AFRL-OSR-VA-TR-2015-0184 DIRECT SPECTROSCOPY IN HOLLOW OPTICAL WITH FIBER-BASED OPTICAL FREQUENCY COMBS Kristan Corwin KANSAS STATE UNIVERSITY Final...Performance 3.  DATES COVERED (From - To)      01-06-2011 to 31-05-2015 4.  TITLE AND SUBTITLE DIRECT SPECTROSCOPY IN HOLLOW OPTICAL WITH FIBER-BASED

  14. Infrared thermography; Thermographie infrarouge

    Energy Technology Data Exchange (ETDEWEB)

    Chrysochoos, A.; Wattrisse, B. [Montpellier-2 Univ., Lab. de Mecanique et Genie Civil, UMR 5508 CNRS (France); Feldheim, V.; Lybaert, P. [Faculte Polytechnique de Mons, Service de Thermique et Combustion, Mons (Belgium); Batsale, J.Ch.; Mourand, D. [Trefle, UMR 8508, Cellule Thermicar, UMR 8508, 33 - Talence (France)

    2005-07-01

    This session about infrared thermography gathers 3 articles dealing with: the use of thermo-mechanical measurement fields for the characterization of materials behaviour; the application of infrared thermography to the study of convective transfers; and some data processing methods for the characterization of fields of thermophysical properties of materials or for the infrared thermography analysis of thermal processes. (J.S.)

  15. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  16. Prototype system for the digital technique based nuclear spectroscopy

    International Nuclear Information System (INIS)

    Bhale, Devendra; Roy, Amitava

    2010-01-01

    A system consisting of FPGA based digital processing hardware and fast sampling by ADC is reported here. At the heart of the system is a Spartan 2 FPGA. The data is converted in digital domain by 4 MSPS ADC. It is interfaced to computer via CAMAC general purpose IO module. Trigger is accepted from external system for event marking. Input exponential pulse is processed by a CR-RC digital filter implemented in FPGA. Trigger dependant peak detection for radiation energy measurement is done on filtered data. Histogram is generated in the PC by using nuclear DAQ software developed in house. (author)

  17. ZnO-based semiconductors studied by Raman spectroscopy: semimagnetic alloying, doping, and nanostructures

    OpenAIRE

    Schumm, Marcel

    2009-01-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles).

  18. Microanalysis of clay-based pigments in painted artworks by the means of Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Košařová, V.; Hradil, David; Němec, I.; Bezdička, Petr; Kanický, V.

    2013-01-01

    Roč. 44, č. 11 (2013), s. 1570-1577 ISSN 0377-0486 Institutional support: RVO:61388980 Keywords : Raman spectroscopy * clay-based pigments * clay minerals * iron oxides * microanalysis of paintings Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.519, year: 2013

  19. Infrared and Raman Spectroscopy: A Discovery-Based Activity for the General Chemistry Curriculum

    Science.gov (United States)

    Borgsmiller, Karen L.; O'Connell, Dylan J.; Klauenberg, Kathryn M.; Wilson, Peter M.; Stromberg, Christopher J.

    2012-01-01

    A discovery-based method is described for incorporating the concepts of IR and Raman spectroscopy into the general chemistry curriculum. Students use three sets of springs to model the properties of single, double, and triple covalent bonds. Then, Gaussian 03W molecular modeling software is used to illustrate the relationship between bond…

  20. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  1. Raman spectroscopy-based detection of chemical contaminants in food powders

    Science.gov (United States)

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary sp...

  2. Mathematical model for biomolecular quantification using surface-enhanced Raman spectroscopy based signal intensity distributions

    DEFF Research Database (Denmark)

    Palla, Mirko; Bosco, Filippo Giacomo; Yang, Jaeyoung

    2015-01-01

    This paper presents the development of a novel statistical method for quantifying trace amounts of biomolecules by surface-enhanced Raman spectroscopy (SERS) using a rigorous, single molecule (SM) theory based mathematical derivation. Our quantification framework could be generalized for planar...

  3. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  4. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Singh, A.P.; Krieger, J.W.; Buchholz, J.; Charbon, E.; Langowski, J.; Wohland, T.

    2013-01-01

    Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in

  5. Residential radon daughter monitor based on alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nazaroff, W.W.

    1980-05-01

    The radioactive daughters of radon-222 pose a serious indoor air quality problem in some circumstances. A technique for measuring the concentrations of these radioisotopes in air is presented. The method involves drawing air through a filter; then, for two time intervals after sampling, counting the alpha decays from polonium-218 and polonium-214 on the filter. The time intervals are optimized to yield the maximum resolution between the individual daughter concentrations. For a total measurement time of 50 minutes, individual daughter concentrations of 1.0 nanocuries per cubic meter are measured with an uncertainty of 20%. A prototype of a field monitor based on this technique is described, as is a field test in which the prototype was used to measure radon daughter concentrations as a function of ventilation conditions in an energy-efficient house.

  6. Detection of explosives based on surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wackerbarth, Hainer; Salb, Christian; Gundrum, Lars; Niederkrüger, Matthias; Christou, Konstantin; Beushausen, Volker; Viöl, Wolfgang

    2010-08-10

    In this study we present a device based on surface-enhanced Raman scattering (SERS) for the detection of airborne explosives. The explosives are resublimated on a cooled nanostructured gold substrate. The explosives trinitrotoluene (TNT) and triacetone triperoxide (TATP) are used. The SERS spectrum of the explosives is analyzed. Thus, TNT is deposited from an acetonitrile solution on the gold substrate. In the case of TATP, first the bulk TATP Raman spectrum was recorded and compared with the SERS spectrum, generated by deposition out of the gas phase. The frequencies of the SERS spectrum are hardly shifted compared to the spectrum of bulk TATP. The influence of the nanostructured gold substrate temperature on the signals of TATP was studied. A decrease in temperature up to 200 K increased the intensities of the TATP bands in the SERS spectrum; below 200 K, the TATP fingerprint disappeared.

  7. Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy

    Science.gov (United States)

    Kumar, Deepak; Gautam, Surya; Kumar, Subodh; Gupta, Saurabh; Srivastava, Hari B.; Thakur, Surya N.; Sharma, Ramesh C.

    2017-04-01

    The paper focuses on development of ultra-sonic detection system based on laser photoacoustic spectroscopic technique and processing of signal for detection of very low quantity chemicals, explosive materials, and mixtures of these hazardous molecules. The detection system has been developed for the first time with specially designed one side open photo-acoustic cell having high quality factor. Explosive and Hazardous materials like RDX, DNT, PETN, Gun Powder, TATP (Tri acetone tri-peroxide) and their simulants like Acetone were detected in 7 to 9 μm wavelength band. Lock in amplifier electronic instrument was used for the detection of hazardous chemicals and mixture of explosives in very low quantity. Detection limit of the photoacoustic ultrasonic sensor was also carried out of powder, liquid and adsorbed on surfaces.

  8. Collision based spectroscopy of Na- and Mg-like argon

    International Nuclear Information System (INIS)

    Zou, Y.; Wang, M.; Heijkenskoeld, F.; Hutton, R.

    1997-01-01

    In this work, Ne-like Ar 8+ ions in metastable 2p 5 3s 3 P 0.2 levels from an ECR source were passed through a He gas target to populate core excited levels of Na-like Ar 7+ . The resulting spectra were measured and compared with those from Ar 9+ passing the same He target. The population mechanism for core excited 2p 5 3p 2 based on one electron capture by the metastable Ar 8+ levels is discussed. Our results indicate that the two electron-one photon transitions from 2p 5 3s4p is the main populating process. Also, by increasing the length of the gas target, enhancement of the intensity ratio between lines from long lived and short lived levels was observed. (orig.)

  9. Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy.

    Science.gov (United States)

    Stoica, Petre; Sandgren, Niclas; Selén, Yngve; Vanhamme, Leentje; Van Huffel, Sabine

    2003-11-01

    In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate, and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of numerical examples for both simulated and in vitro NMR data.

  10. Nanogap dielectric spectroscopy for aptamer-based protein detection.

    Science.gov (United States)

    Mannoor, Manu Sebastian; James, Teena; Ivanov, Dentcho V; Beadling, Les; Braunlin, William

    2010-02-17

    Among the various label-free methods for monitoring biomolecular interactions, capacitive sensors stand out due to their simple instrumentation and compatibility with multiplex formats. However, electrode polarization due to ion gradient formation and noise from solution conductance limited early dielectric spectroscopic measurements to high frequencies only, which in turn limited their sensitivity to biomolecular interactions, as the applied excitation signals were too fast for the charged macromolecules to respond. To minimize electrode polarization effects, capacitive sensors with 20 nm electrode separation were fabricated using silicon dioxide sacrificial layer techniques. The nanoscale separation of the capacitive electrodes in the sensor results in an enhanced overlapping of electrical double layers, and apparently a more ordered "ice-like" water structure. Such effects in turn reduce low frequency contributions from bulk sample resistance and from electrode polarization, and thus markedly enhance sensitivity toward biomolecular interactions. Using these nanogap capacitive sensors, highly sensitive, label-free aptamer-based detection of protein molecules is achieved. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Wavelength-stabilization-based photoacoustic spectroscopy for methane detection

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Ren, Wei

    2017-06-01

    A compact and portable photoacoustic gas sensor was developed for sensitive methane (CH4) detection at 1.6 µm using a software-based wavelength stabilization scheme. A transmission-type photoacoustic cell was connected in series with a reference gas cell to measure the photoacoustic signal and the reference gas absorption for wavelength stabilization simultaneously. The central wavelength of the diode laser was locked to the target CH4 line with a fluctuation of less than 10.6 MHz using a digital proportional-integral-derivative controller. The CH4 sensor was designed to be insensitive to the incoherent external acoustic noise by the cumulative average of the demodulated photoacoustic signal by a digital lock-in amplifier. With an incident laser power of 6 mW, our CH4 sensor achieved a minimum detection limit of 11.5 ppm at 10 s response time and an excellent linearity (R 2  =  0.9999) in the concentration range of 400-6300 ppm.

  12. Surface enhanced Raman spectroscopy platform based on graphene with one-year stability

    Energy Technology Data Exchange (ETDEWEB)

    Tite, Teddy [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Barnier, Vincent [Ecole Nationale Supérieure des Mines, CNRS, Laboratoire Georges Friedel UMR 5307, 158 cours Fauriel, F-42023 Saint-Etienne (France); Donnet, Christophe, E-mail: Christophe.Donnet@univ-st-etienne.fr [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Loir, Anne–Sophie; Reynaud, Stéphanie; Michalon, Jean–Yves; Vocanson, Francis; Garrelie, Florence [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France)

    2016-04-01

    We report the synthesis, characterization and use of a robust surface enhanced Raman spectroscopy platform with a stable detection for up to one year of Rhodamine R6G at a concentration of 10{sup −6} M. The detection of aminothiophenol and methyl parathion, as active molecules of commercial insecticides, is further demonstrated at concentrations down to 10{sup −5}–10{sup −6} M. This platform is based on large scale textured few-layer (fl) graphene obtained without any need of graphene transfer. The synthesis route is based on diamond-like carbon films grown by pulsed laser deposition, deposited onto silicon substrates covered by a Ni layer prior to diamond-like carbon deposition. The formation of fl-graphene film, confirmed by Raman spectroscopy and mapping, is obtained by thermal annealing inducing the diffusion of Ni atoms and the concomitant formation of nickel silicide compounds, as identified by Raman and Auger electron spectroscopies. The textured fl-graphene films were decorated with gold nanoparticles to optimize the efficiency of the SERS device to detect organic molecules at low concentrations. - Highlights: • Synthesis of graphene film from amorphous carbon by pulsed laser deposition with nickel catalyst • Large scale textured graphene with nanoscale roughness obtained through nickel silicide formation • Films used for surface enhanced Raman spectroscopy detection of organophosphate compounds • Stability of the SERS platforms over up to one year.

  13. Integration of screening and identifying ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yalin Tang, Qian Shang, Junfeng Xiang, Qianfan Yang, Qiuju Zhou, Lin Li, Hong Zhang, Qian Li, Hongxia Sun, Aijiao Guan, Wei Jiang & Wei Gai ### Abstract This protocol presents the screening of ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy. A detailed description of sample preparation and analysis process is provided. NMR spectroscopies described here are 1H NMR, diffusion-ordered spectroscopy (DOSY), relaxation-edited NMR, 1H–1...

  14. Capteurs à fibres optiques infrarouge dédiés à la détection in situ d'anomalies métaboliques

    Science.gov (United States)

    Keirsse, J.; Boussard-Pledel, C.; Bureau, B.; Sire, O.; Loreal, O.; Lucas, J.

    2002-06-01

    Le domaine du moyen infra-rouge contient l'essentiel des signatures spectrales des molécules biologiques. Le développement d'une nouvelle génération de fibres optiques travaillant dans ce domaine spectral, nous a pertuis de concevoir une instrumentation dédiée à la détection tissulaire d'anomalies métaboliques. La richesse des informations recueillies couplée à la possibilité de réaliser des analyses in-situ permet d'envisager son utilisation dans les contextes très variés du domaine de la santé. Nous cherchons à optimiser les performances du capteur IR en utilisant deux modèles distincts : le développement et la caractérisation d'un biofilm bactérien d'une part, les anomalies métaboliques associées aux pathologies hépatiques, d'autre part.

  15. [Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy].

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Wen-Jun

    2014-05-01

    The present paper puts forward multi-wavelength pulse oxygen saturation measurement based on dynamic spectroscopy to do the non-invasive determination of oxygen saturation. Compared to conventional ways, the new method makes full use of more wavelengths light and improves the measurement accuracy. During the experiment, the in-vivo measurements were carried out on 60 patients and their spectroscopic data were collected by the high sensitivity type fiber optic spectrometer. Singletrial estimation method was used to extract the dynamic spectroscopy at the wavelengths of 606. 44 approximately 987. 55 nm. Oxygen saturation obtained from arterial blood gas analysis is regarded as the true value. Synergy interval partial least square (siPLS) was used to establish the calibration model of subjects' oxygen saturation values against dynamic spectroscopy data. The relative error of prediction is +/-0. 017 6, but the relative error of the subjects in the same set measured by the patient monitor which was two-wavelength measure system is +/-0. 116 4. Measurement results show that the use of the high sensitivity type fiber optic spectrometer to collect multi-wavelength spectroscopic data and dynamic spectroscopy method to process data can do better in improving the accuracy of the oxygen saturation measurement.

  16. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    International Nuclear Information System (INIS)

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-01

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing

  17. Fast Measurement of Soluble Solid Content in Mango Based on Visible and Infrared Spectroscopy Technique

    Science.gov (United States)

    Yu, Jiajia; He, Yong

    Mango is a kind of popular tropical fruit, and the soluble solid content is an important in this study visible and short-wave near-infrared spectroscopy (VIS/SWNIR) technique was applied. For sake of investigating the feasibility of using VIS/SWNIR spectroscopy to measure the soluble solid content in mango, and validating the performance of selected sensitive bands, for the calibration set was formed by 135 mango samples, while the remaining 45 mango samples for the prediction set. The combination of partial least squares and backpropagation artificial neural networks (PLS-BP) was used to calculate the prediction model based on raw spectrum data. Based on PLS-BP, the determination coefficient for prediction (Rp) was 0.757 and root mean square and the process is simple and easy to operate. Compared with the Partial least squares (PLS) result, the performance of PLS-BP is better.

  18. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    OpenAIRE

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS)...

  19. Fourier-Transform Raman Spectroscopy of Polymers Caractérisation de polymères par spectroscopie Raman à transformée de Fourier

    Directory of Open Access Journals (Sweden)

    Siesler H. W.

    2006-11-01

    Full Text Available The recent extension of the Fourier-Transform (FT technique to the Raman effect has launched Raman spectroscopy into a new era of polymer chemical and physical applications. Thus, the increase in signal-to-noise ratio and the improvement in time resolution have largely enhanced the potential of FT-Raman spectroscopy for analytical applications, the characterization of time-dependent phenomena and the on-line combination with other techniques. Primarily the suppression of fluorescence by shifting the excitation line to the near-infrared (NIR region has contributed to the fast acceptance as an industrial routine tool. Furthermore, the application of fiber optics has opened up the areas of process-control and remote sensing. Les applications de la spectroscopie Raman dans le domaine des polymères sont entrées dans une ère nouvelle, grâce aux récents développements de la technique à transformée de Fourier avec excitation dans le proche infrarouge. L'augmentation du rapport signal sur bruit et l'amélioration de la résolution temporelle ont fortement renforcé les potentialités de la technique en ce qui concerne les applications analytiques, la caractérisation de phénomènes qui dépendent du temps et le couplage en ligne avec d'autres techniques. La suppression du phénomène de fluorescence par déplacement de la longueur d'onde de l'excitatrice dans le proche infrarouge a contribué à l'intégration rapide de l'outil en site industriel. L'emploi de fibres optiques a permis l'accroissement des applications dans le domaine du contrôle des procédés et d'analyser à distance.

  20. The Application of Moessbauer Emission Spectroscopy to Industrial Cobalt Based Fischer-Tropsch Catalysts

    International Nuclear Information System (INIS)

    Loosdrecht, J. van de; Berge, P. J. van; Craje, M. W. J.; Kraan, A. M. van der

    2002-01-01

    The application of Moessbauer emission spectroscopy to study cobalt based Fischer-Tropsch catalysts for the gas-to-liquids process was investigated. It was shown that Moessbauer emission spectroscopy could be used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer-Tropsch catalysts. Oxidation was observed under conditions that are in contradiction with the bulk cobalt phase thermodynamics. This can be explained by oxidation of small cobalt crystallites or by surface oxidation. The formation of re-reducible Co 3+ species was observed as well as the formation of irreducible Co 3+ and Co 2+ species that interact strongly with the alumina support. The formation of the different cobalt species depends on the oxidation conditions. Iron was used as a probe nuclide to investigate the cobalt catalyst preparation procedure. A high-pressure Moessbauer emission spectroscopy cell was designed and constructed, which creates the opportunity to study cobalt based Fischer-Tropsch catalysts under realistic synthesis conditions.

  1. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Science.gov (United States)

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761

  2. Development of experimental in-situ Pu monitoring system based on passive gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vinod, M.; Paulson, M.; Das, D.; Ananthakrishnan, T.S.; Pithawa, C.K.; Debdas, A.; Udagatti, S.V.; Singh, Pratap; Rajendra Kumar

    2013-01-01

    To meet the requirements of in-situ 239 Pu monitoring at various stages of fuel reprocessing for NRB, an indigenous Pu monitoring system is developed by Electronics Division, BARC. The system is based on passive gamma spectroscopy technique and utilizes an advanced scintillation detector along-with compact spectroscopy hardware. The system hardware and application software have been installed at Control Lab, PREFRE-2, Tarapur for testing and evaluation. Quantification accuracy of better than 10% is achieved during the initial phase of evaluation. The system is targeted for quantification of Pu in samples drawn from Pu purification cycles with operational frequency of 3-5 samples in Round-The-Clock shifts. The system will significantly minimize manual handling of Pu samples in comparison with the existing methods. (author)

  3. Accurate Determination of Geographical Origin of Tea Based on Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mingliang Li

    2017-02-01

    Full Text Available This paper proposes a structured model for the identification of green tea, as well as tracing its geographical origins. Considering that the features of different types of green tea are similar under THz time-domain spectroscopy, we designed a program to perform principal component analysis (PCA of the spectroscopic data of various green tea samples and to determine the data sequences of principal components. We then established a training set for the principal components to train a support vector machine (SVM model via a genetic algorithm (GA. We used this model to optimize the parameters and develop a GA-based SVM model with an identification rate of 96.25% for the tested samples. Taken together, our results confirm that THz time-domain spectroscopy combined with GA-SVM can be effectively applied to rapidly identify types of green tea with different geographical origins.

  4. Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm.

    Science.gov (United States)

    Kohlhaas, Robert B; Rehn, Arno; Nellen, Simon; Koch, Martin; Schell, Martin; Dietz, Roman J B; Balzer, Jan C

    2017-05-29

    We present a fiber-coupled terahertz quasi time-domain spectroscopy system driven by a laser with a central wavelength of 1550 nm. By using a commercially available multimode laser diode in combination with state-of-the-art continuous wave antennas, a bandwidth of more than 1.8 THz is achieved. The peak signal-to-noise ratio is around 60 dB. A simulation based on the optical spectrum of the laser diode and the transfer function of the THz path is in agreement with the experimental results. The system is used to extract the refractive index from two different samples and the results indicate that the performance is up to 1.8 THz comparable to a terahertz time-domain spectroscopy system.

  5. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... such as bioconjugation, material science or drug discovery. Additionally, as an attractive advantage of this technique, no significant background signal is expected during the measurements, since these signals reside in a Raman silent region of 2000–2300 cm−1, where virtually all biological molecules are transparent....

  6. Advances in Contactless Silicon Defect and Impurity Diagnostics Based on Lifetime Spectroscopy and Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Jan Schmidt

    2007-01-01

    Full Text Available This paper gives a review of some recent developments in the field of contactless silicon wafer characterization techniques based on lifetime spectroscopy and infrared imaging. In the first part of the contribution, we outline the status of different lifetime spectroscopy approaches suitable for the identification of impurities in silicon and discuss—in more detail—the technique of temperature- and injection-dependent lifetime spectroscopy. The second part of the paper focuses on the application of infrared cameras to analyze spatial inhomogeneities in silicon wafers. By measuring the infrared signal absorbed or emitted from light-generated free excess carriers, high-resolution recombination lifetime mappings can be generated within seconds to minutes. In addition, mappings of non-recombination-active trapping centers can be deduced from injection-dependent infrared lifetime images. The trap density has been demonstrated to be an important additional parameter in the characterization and assessment of solar-grade multicrystalline silicon wafers, as areas of increased trap density tend to deteriorate during solar cell processing.

  7. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  8. Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Yang, Ren-jie; Liu, Rong; Xu, Kexin

    2012-03-01

    The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.

  9. Tandem demodulation lock-in amplifier based on digital signal processor for dual-modulated spectroscopy.

    Science.gov (United States)

    Qin, Jianhuan; Huang, Zhiming; Ge, Yujian; Hou, Yun; Chu, Junhao

    2009-03-01

    Dual-modulated spectroscopy is one of the most powerful methods in the measurement of modulation spectroscopy. Here we develop a tandem lock-in amplifier (LIA) based on digital signal processor to implement a novel algorithm of tandem demodulation. The theoretical analysis of demodulation algorithm is presented, and the implementation of this tandem LIA is described in detail. Compared to the traditional demodulating way with two LIAs in cascade, this tandem LIA eliminates the extra quantization error of redundant analog-to-digital and digital-to-analog conversions and removes the limitation to the time constant in the commercial LIA, hence lowers the requirement of frequency ratio in dual-modulated spectroscopy. The applications are given as examples in the photoreflectance (PR) measurements of GaAs (100) thin film and GaSb bulk material, respectively, at the different optical energy regions. The experimental results indicate that this tandem is well capable of PR spectra measurement with good PR lineshapes and reasonable signal noise ratio. A brief comparison of GaAs PR results between tandem LIA and two LIAs is made to prove the efficiency and advantages of the tandem LIA.

  10. [Detection of Carbon Dioxide Concentration in Soil Profile Based on Nondispersive Infrared Spectroscopy Technique].

    Science.gov (United States)

    Tu, Zhi-hua; Zhao, Yang; Zheng, Li-wen; Jia, Guo-dong; Chen, Li-hua; Yu, Xin-xiao

    2015-04-01

    In order to explore the variation of CO2 concentration and soil respiration in soil profile, the nondispersive infrared (NDIR) spectroscopy technique was applied to continually estimate the soil CO2 concentration in different soil layers (the humus horizon, A-, B-, C-horizon) in situ. The main instrument used in this experiment was silicon-based nondispersive infrared sensor, which could work in severe environment. We collected the Measurement value by NDIR spectroscopy technique throughout 2013. The values of soil carbon flux in different soil layers were calculated based on the model of gradient method and calibrated by measuring with an automated soil CO2 efflux system (LI-8100). The results showed that: a vertical gradient for the carbon dioxide concentration in soil profile was found, and the concentration was highest in the deepest soil horizon. Moreover, A linear correlation between the soil CO2 effluxes was calculated based on model and measurement, and the model prediction correlation coefficient was 0.9069, 0.7185, 0.8382, and 0.9030 in the H-, A-, B-, and C-horizon, respectively. The roots of mean square error (RMSE) were 0.2067, 0.1041, 0.0156, and 0.0096 in the H-, A-, B-, and C-horizon, respectively. These results suggest that the gradient method based on the NDIR spectroscopy technique can be successfully used to measure soil CO2 efflux in different soil layers, which reveal that diffusion and convection transport CO2 between the soil layers. It is a promising sensor for detecting CO2 concentration in soil profile, providing the basic data for calculating the global carbon in soil profile.

  11. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  12. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  13. Laser-based secondary neutral mass spectroscopy: Useful yield and sensitivity

    International Nuclear Information System (INIS)

    Young, C.E.; Pellin, M.J.; Calaway, W.F.; Joergensen, B.; Schweitzer, E.L.; Gruen, D.M.

    1986-01-01

    A variety of problems exist in order to optimally apply resonance ionization spectroscopy (RIS) to the detection of sputtered neutral atoms, however. Several of these problems and their solutions are examined in this paper. First, the possible useful yields obtainable and the dependence of useful yield on various laser parameters for this type of sputtered neutral mass spectrometer (SNMS) are considered. Second, the choice of a mass spectrometer and its effect on the instrumental useful yield is explored in light of the unique ionization region for laser based SNMS. Finally a brief description of noise sources and their effect on the instrumental sensitivity is discussed. 33 refs., 12 figs

  14. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    OpenAIRE

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...

  15. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present

    Science.gov (United States)

    Arble, Chris; Jia, Meng; Newberg, John T.

    2018-05-01

    Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.

  16. Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy.

    Science.gov (United States)

    D'Amico, Francesco; Cammisuli, Francesca; Addobbati, Riccardo; Rizzardi, Clara; Gessini, Alessandro; Masciovecchio, Claudio; Rossi, Barbara; Pascolo, Lorella

    2015-03-07

    We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases.

  17. Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity.

    Science.gov (United States)

    Zhao, Jianhua; Zeng, Haishan; Kalia, Sunil; Lui, Harvey

    2016-02-07

    Real-time Raman spectroscopy can be used to assist in assessing skin lesions suspicious for cancer. Most of the diagnostic algorithms are based on full band of the Raman spectra, either in the fingerprint region or the high wavenumber region. In this paper we explored wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Wavenumber selection was implemented using windows of wavenumber and leave-one-out cross-validated stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic algorithms were then generated from the selected windows of wavenumber using multivariate statistical analyses, including principal component and general discriminate analysis (PC-GDA) and partial least squares (PLS). In total a combined cohort of 645 confirmed lesions from 573 patients encompassing skin cancers, precancers and benign skin lesions were included, which were divided into training cohort (n = 518) and testing cohort (n = 127) according to the measurement time. It was found that the area under the receiver operating characteristic curve (ROC) was improved from 0.861-0.891 to 0.891-0.911 and the diagnostic specificity for fixed sensitivity 0.99-0.90 was improved from 0.17-0.65 to 0.20-0.75 with wavenumber selection based analysis.

  18. Study of the acid-base properties of mineral soil horizons using pK spectroscopy

    Science.gov (United States)

    Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.

    2007-11-01

    The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.

  19. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kudelcik, Jozef, E-mail: kudelcik@fyzika.uniza.sk [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Bury, Peter; Drga, Jozef [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Kopcansky, Peter; Zavisova, Vlasta; Timko, Milan [Department of Magnetism, IEP SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2013-01-15

    The structural changes in transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature were studied by acoustic spectroscopy. The attenuation of acoustic wave was measured as a function of the magnetic field in the range of 0-300 mT and in the temperature range of 15-35 Degree-Sign C for various magnetic nanoparticles concentrations. The effect of anisotropy of the acoustic attenuation was determined, too. The both strong influence of the magnetic field on the acoustic attenuation and its hysteresis were observed. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs, leading to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids also has very important influence on the structural changes because of the mechanism of thermal motion that acts against the cluster creation. The observed influences of both magnetic field and temperature on the investigated magnetic fluid structure are discussed. - Highlights: Black-Right-Pointing-Pointer Structural changes in transformer oil-based magnetic fluids were investigated. Black-Right-Pointing-Pointer The acoustic spectroscopy as the method of investigation was used. Black-Right-Pointing-Pointer The influence of magnetic field on the structural was studied. Black-Right-Pointing-Pointer The influence of temperatures on the structures was investigated, too. Black-Right-Pointing-Pointer The influence of external conditions on the structure of MF is interpreted.

  20. Raman spectroscopy based identification of flame retardants in consumer products using an acquired reference spectral library.

    Science.gov (United States)

    Ghosal, Sutapa; Fang, Huiting

    2015-01-01

    Flame retardants (FRs), a class of commonly used chemical additives in consumer products such as polyurethane foams, are well known for their persistence in the environment, bioaccumulation and potential toxicity [1]. In order to address the potential health concerns and environmental impacts associated with the wide-spread use these chemicals, it is essential to identify them efficiently in the environment and consumer products. Raman spectroscopy (RS) offers an attractive option for the non-invasive, in-situ identification of flame retardants in a variety of sample formats [2-4]. RS based chemical identification relies on the availability of spectral libraries for identification through spectral matching with reference chemicals. Here we present the application of Raman spectroscopy for identifying FR additives in select consumer products using an acquired spectral library of commonly used FRs. The RS based method described here enables simultaneous identification of multiple components within a sample, which can offer important insights into the sources of FR contamination, in addition to identification of the FR component itself. The availability of Raman spectral library of commercially used FRs, such as the one presented here, will facilitate the identification of these chemicals in consumer products. Published by Elsevier B.V.

  1. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  2. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    Science.gov (United States)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  3. Protein-G-based human immunoglobulin G biosensing by electrochemical impedance spectroscopy

    Science.gov (United States)

    Tsugimura, Kaiki; Ohnuki, Hitoshi; Endo, Hideaki; Tsuya, Daijyu; Izumi, Mitsuru

    2016-02-01

    A highly sensitive biosensor based on electrochemical impedance spectroscopy (EIS) was developed for the determination of human immunoglobulin G (IgG). Protein G, which specifically binds to IgG, was employed as the molecular receptor. Protein G was covalently immobilized on interdigitated electrodes through a mixed self-assembled monolayer (SAM) composed of 11-mercaptoundecanoic acid (MUA) and 6-mercaptohexanol. It was found that the mixing ratio of the SAM markedly affected the sensor performance. The sample prepared on 25% MUA SAM exhibited a linear behavior in the concentration range of 0.01-10 ng/mL, which is a record low detection for EIS-based IgG sensors. On the other hand, the sample on 100% MUA SAM showed no IgG-sensing action. A possible mechanism of the mixing ratio that affects the sensing performance was proposed.

  4. Conductometric analysis in bio-applications: A universal impedance spectroscopy-based approach using modified electrodes

    DEFF Research Database (Denmark)

    Canali, Chiara; Larsen, Layla Bashir; Grøttem Martinsen, Ørjan

    2015-01-01

    We present a universal protocol for quick and reproducible conductivity determinations in bio-applications using electrochemical impedance spectroscopy (EIS), electrode modification and automate spectral analysis. Two-terminal EIS measurements may be acquired using any standard impedance analyser...... adjusting the applied sinusoidal potential and frequency range for spectral analysis. An implemented Matlab algorithm displays the acquired spectra, automatically identifies the frequency at which the phase angle (ϕ) is closest to 0◦and determines the impedance magnitude, i.e. the solution resistance (RS......). The corresponding conductivity value is immediately calculated as the ratio of the conductivity cell constant(K), determined based on calibration, and RS. This protocol eliminates the need for evaluating a specific equivalent circuit followed by non-linear regression based curve fitting that is generally required...

  5. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  6. Nondestructive Measurement of Hemoglobin in Blood Bags Based on Multi-Pathlength VIS-NIR Spectroscopy.

    Science.gov (United States)

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling

    2018-02-02

    Hemoglobin concentration is an indicator for assessing blood product quality. To measure hemoglobin concentration in blood products without damaging blood bags, we proposed a method based on visible-near infrared transmission spectroscopy. Complex optical properties of blood bag walls result in measurement irregularities. Analyses showed that the slope of the light intensity-pathlength curve was more robust to the influence of the blood bag wall. In this study, the transmission spectra of red blood cell suspensions at multiple optical pathlengths were obtained, and the slopes of logarithmic light intensity-pathlength curves were calculated through curve fitting. A nondestructive measurement of hemoglobin content was achieved by using a regression model correlating slope spectra and hemoglobin concentration. Sixty samples with hemoglobin concentrations ranging from 72 to 161 g/L were prepared. Among them, 40 samples were used as a calibration set, and the remaining 20 samples were used as a prediction set. The determination coefficient of the prediction set was 0.97, with a mean square error of 2.78 g/L. This result demonstrates that a non-destructive measurement of hemoglobin levels in blood bags can be achieved by multiple-pathlength transmission spectroscopy.

  7. Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

    Science.gov (United States)

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2016-09-02

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

  8. Comparison of MCNP and Experimental Measurements for an HPGe-based Spectroscopy Portal Monitor

    International Nuclear Information System (INIS)

    Keyser, Ronald M.; Hensley, Walter K.; Twomey, Timothy R.; UPP, Daniel L.

    2008-01-01

    The necessity to monitor international commercial transportation for illicit nuclear materials resulted in the installation of many nuclear radiation detection systems in Portal Monitors. These were mainly gross counters which alarmed at any indication of high radioactivity in the shipment, the vehicle or even the driver. The innocent alarm rate, due to legal shipments of sources and NORM, or medical isotopes in patients, caused interruptions and delays in commerce while the legality of the shipment was verified. To overcome this difficulty, Department of Homeland Security (DHS) supported the writing of the ANSI N42.38 standard (Performance Criteria for Spectroscopy-Based Portal Monitors used for Homeland Security) to define the performance of a Portal Monitor with nuclide identification capabilities, called a Spectroscopy Portal Monitor. This standard defines detection levels and response characteristics for the system for energies from 25 keV to 3 MeV. To accomplish the necessary performance, several different HPGe detector configurations were modeled using MCNP for the horizontal field of view (FOV) and vertical linearity of response over the detection zone of 5 meters by 4.5 meters for 661 keV as representative of the expected nuclides of interest. The configuration with the best result was built and tested. The results for the FOV as a function of energy and the linearity show good agreement with the model and performance exceeding the requirements of N42.38

  9. COHERENT HEMODYNAMICS SPECTROSCOPY BASED ON A PACED BREATHING PARADIGM — REVISITED

    Directory of Open Access Journals (Sweden)

    JANA M. KAINERSTORFER

    2014-01-01

    Full Text Available A novel hemodynamic model has been recently introduced, which provides analytical relationships between the changes in cerebral blood volume (CBV, cerebral blood flow (CBF, and cerebral metabolic rate of oxygen (CMRO2, and associated changes in the tissue concentrations of oxy- and deoxy-hemoglobin (ΔO and ΔD measured with near-infrared spectroscopy (NIRS [S. Fantini, Neuroimage85, 202–221 (2014]. This novel model can be applied to measurements of the amplitude and phase of induced hemodynamic oscillations as a function of the frequency of oscillation, realizing the novel technique of coherent hemodynamics spectroscopy (CHS [S. Fantini, Neuroimage85, 202–221 (2014; M. L. Pierro et al., Neuroimage85, 222–233 (2014]. In a previous work, we have demonstrated an in vivo application of CHS on human subjects during paced breathing [M. L. Pierro et al., Neuroimage85, 222–233 (2014]. In this work, we present a new analysis of the collected data during paced breathing based on a slightly revised formulation of the hemodynamic model and an efficient fitting procedure. While we have initially treated all 12 model parameters as independent, we have found that, in this new implementation of CHS, the number of independent parameters is eight. In this article, we identify the eight independent model parameters and we show that our previous results are consistent with the new formulation, once the individual parameters of the earlier analysis are combined into the new set of independent parameters.

  10. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  11. Soft X-ray synchrotron radiation spectroscopy study of molecule-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. S.; Kim, D. H.; Kang, J. S.; Kim, P. [The Catholic University of Korea, Bucheon (Korea, Republic of); Kim, K. H. [Korea University, Jochiwon (Korea, Republic of); Baik, J. Y.; Shin, H. J. [POSTECH, Pohang (Korea, Republic of)

    2014-11-15

    The electronic structures of molecule-based nanoparticles, such as biomineralized Helicobacter pylori ferritin (Hpf), Heme, and RbCo[Fe(CN){sub 6}]H{sub 2}O (RbCoFe) Prussian blue analogue, have been investigated by employing photoemission spectroscopy and soft X-ray absorption spectroscopy. Fe ions are found to be nearly trivalent in Hpf and Heme nanoparticles, which provides evidence that the amount of magnetite (Fe{sub 3}O{sub 4}) should be negligible in the Hpf core and that the biomineralization of Fe oxides in the high-Fe-bound-state Hpf core arises from a hematite-like formation. On the other hand, Fe ions are nearly divalent and Co ions are Co{sup 2+}-Co{sup 3+} mixed-valent in RbCoFe. Therefore this finding suggests that the mechanism of the photo-induced transition in RbCoFe Prussian blue analogue is not a simple spin-state transition of Fe{sup 2+}-Co{sup 3+} → Fe{sup 3+}-Co{sup 2+}. It is likely that Co{sup 2+} ions have the high-spin configuration while Fe{sup 2+} ions have the low-spin configuration.

  12. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments

    International Nuclear Information System (INIS)

    Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.

    2004-01-01

    A Monte Carlo code for the simulation of X-ray imaging and spectroscopy experiments in heterogeneous samples is presented. The energy spectrum, polarization and profile of the incident beam can be defined so that X-ray tube systems as well as synchrotron sources can be simulated. The sample is modeled as a 3D regular grid. The chemical composition and density is given at each point of the grid. Photoelectric absorption, fluorescent emission, elastic and inelastic scattering are included in the simulation. The core of the simulation is a fast routine for the calculation of the path lengths of the photon trajectory intersections with the grid voxels. The voxel representation is particularly useful for samples that cannot be well described by a small set of polyhedra. This is the case of most naturally occurring samples. In such cases, voxel-based simulations are much less expensive in terms of computational cost than simulations on a polygonal representation. The efficient scheme used for calculating the path lengths in the voxels and the use of variance reduction techniques make the code suitable for the detailed simulation of complex experiments on generic samples in a relatively short time. Examples of applications to X-ray imaging and spectroscopy experiments are discussed

  13. Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors

    Science.gov (United States)

    Shirmanova, M.; Lukina, M.; Orlova, A.; Studier, H.; Zagaynova, E.; Becker, W.; Shcheslavskiy, V.

    2017-07-01

    The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for the tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optical probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions, and in living mice. The luminescence spectroscopy data is substantiated with immunohistochemistry experiments. To the best of our knowledge, the measurements of both metabolic status and oxygenation of tumor in vivo by fluorescence/phosphorescence lifetime spectroscopy with a fiber-optic probe are done for the first time.

  14. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  15. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.

    2011-01-01

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm -1 ) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  16. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Du, Yingge; Chambers, Scott A.

    2014-01-01

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  17. A mirror based polar magneto-optical Kerr effect spectroscopy arrangement.

    Science.gov (United States)

    Arora, Ashish; Ghosh, Sandip; Sugunakar, Vasam

    2011-12-01

    An arrangement is described for performing magneto-optical Kerr effect (MOKE) spectroscopy in polar geometry with a conventional C-frame or H-frame type electromagnet. It uses an additional mirror which eliminates the need for an electromagnet pole piece with an axial hole and allows for easy switching between polar MOKE geometry and longitudinal or transverse MOKE geometries. A theoretical analysis of the photo-elastic modulation based detection scheme shows that the mirror causes a strong mixing of signals corresponding to Kerr rotation and ellipticity. The influence of the mirror is experimentally demonstrated and a procedure is given to correct for it. MOKE spectrum of nickel films obtained using this arrangement is shown to match with reports in the literature.

  18. Hyper sausage neuron: Recognition of transgenic sugar-beet based on terahertz spectroscopy

    Science.gov (United States)

    Liu, Jianjun; Li, Zhi; Hu, Fangrong; Chen, Tao; Du, Yong; Xin, Haitao

    2015-01-01

    This paper presents a novel approach for identification of terahertz (THz) spectral of genetically modified organisms (GMOs) based on Hyper Sausage Neuron (HSN), and THz transmittance spectra of some typical transgenic sugar-beet samples are investigated to demonstrate its feasibility. Principal component analysis (PCA) is applied to extract features of the spectrum data, and instead of the original spectrum data, the feature signals are fed into the HSN pattern recognition, a new multiple weights neural network (MWNN). The experimental result shows that the HSN model not only can correctly classify different types of transgenic sugar-beets, but also can reject identity non similar samples in the same type. The proposed approach provides a new effective method for detection and identification of GMOs by using THz spectroscopy.

  19. Identification of Transgenic Organisms Based on Terahertz Spectroscopy and Hyper Sausage Neuron

    Science.gov (United States)

    Liu, J.; Li, Zh.; Hu, F.; Chen, T.; Du, Y.; Xin, H.

    2015-03-01

    This paper presents a novel approach for identifi cation of terahertz (THz) spectra of genetically modifi ed organisms (GMOs) based on hyper sausage neuron (HSN), and THz transmittance spectra of some typical transgenic sugarbeet samples are investigated to demonstrate its feasibility. Principal component analysis (PCA) is applied to extract features of the spectrum data, and instead of the original spectrum data, the feature signals are fed into the HSN pattern recognition, a new multiple weights neural network (MWNN). The experimental result shows that the HSN model not only can correctly classify different types of transgenic sugar-beets, but also can reject nonsimilar samples of the same type. The proposed approach provides a new effective method for detection and identification of genetically modified organisms by using THz spectroscopy.

  20. Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions.

    Science.gov (United States)

    Brumfield, Brian; Wysocki, Gerard

    2012-12-31

    A low-power Faraday rotation spectroscopy system that uses permanent rare-earth magnets has been developed for detection of O₂ at 762 nm. The experimental signals are generated using laser wavelength modulation combined with a balanced detection scheme that permits quantum shot noise limited performance. A noise equivalent polarization rotation angle of 8 × 10⁻⁸ rad/Hz¹/² is estimated from the experimental noise, and this agrees well with a theoretical model based on Jones calculus. A bandwidth normalized minimum detection limit to oxygen of 6 ppmv/Hz¹/² with an ultimate minimum of 1.3 ppmv at integration times of ~1 minute has been demonstrated.

  1. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  2. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    Science.gov (United States)

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  3. Calibration transfer based on maximum margin criterion for qualitative analysis using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Hu, Yong; Peng, Silong; Bi, Yiming; Tang, Liang

    2012-12-21

    A traditional multivariate calibration transfer method such as piecewise direct standardization (PDS) is usually applied to quantitative analysis. To make the method apply to qualitative analysis of Fourier Transform Infrared spectroscopy (FTIR), we propose an improved calibration transfer method based on the maximum margin criterion (CTMMC). The new method not only considers the spectral changes under different conditions, but also takes into account the geometric characteristics of spectra from different classes, so the transformed spectra from different classes will be separated as far as possible, and this will improve the performance of the follow-up qualitative analysis. A comparative study is provided between the proposed method CTMMC and other traditional calibration transfer methods on two data sets. Experimental results show that the proposed method can achieve better performance than previous methods.

  4. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy

    Science.gov (United States)

    Ângelo, Joana; Magalhães, Pedro; Andrade, Luísa; Mendes, Adélio

    2016-11-01

    The photocatalytic activity of a commercial titanium dioxide (P25) and of an in-house prepared P25/graphene composite is assessed according to standard ISO 22197-1:2007. The photoactivity performances of bare and composite TiO2-based materials were further studied by electrochemical impedance spectroscopy (EIS) technique to better understand the function of the graphene in the composite. EIS experiments were performed using a three-electrode configuration, which allows obtaining more detailed information about the complex charge transfer phenomena at the semiconductor/electrolyte interface. The Randles equivalent circuit was selected as the most suitable for modelling the present photocatalysts. The use of the graphene composite allows a more effective charge separation with lower charge transfer resistance and less e-/h+ recombination on the composite photocatalyst, reflected in the higher values of NO conversion.

  5. Mineral inversion for element capture spectroscopy logging based on optimization theory

    Science.gov (United States)

    Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning

    2017-12-01

    Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.

  6. Laser frequency-offset locking based on the frequency modulation spectroscopy with higher harmonic detection

    Science.gov (United States)

    Wang, Anqi; Meng, Zhixin; Feng, Yanying

    2017-10-01

    We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.

  7. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    Science.gov (United States)

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  8. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    Science.gov (United States)

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  9. Raman spectroscopy study of metal-containing boron carbide-based ceramics

    Science.gov (United States)

    Radev, Dimitar D.; Mihailova, Boriana; Konstantinov, Ludmil

    2002-01-01

    Dense boron carbide-based materials, B 4C-Me xB y (Me = V, W), are obtained by pressureless sintering in the presence of metal carbides. The sintered B 4CVB 2 and B 4CW 2B 5 ceramics, with various contents of the metal borides, are investigated by powder X-ray diffraction and Raman spectroscopy. The results obtained show that the non-homogeneity of the ceramic samples increases with increasing the content of metal and, additionally, metal cations replace a part of boron atoms in icosahedra positions in the B 4C network, thus stiffening the B 4C lattice and improving the micro-hardness and the wear resistance of the boron carbide ceramics.

  10. Qualitative application based on IR spectroscopy for bone sample quality control in radiocarbon dating

    Science.gov (United States)

    Gianfrate, G.; D'Elia, M.; Quarta, G.; Giotta, L.; Valli, L.; Calcagnile, L.

    2007-06-01

    Bone samples suffer from contamination and deterioration, depending on their conservation state and previous restoration and consolidation processes. The sample preparation laboratory of the CEDAD (Center for Dating and Diagnostics) of the University of Lecce is developing a quality control protocol for bone samples based on Fourier transform infrared (FTIR) spectroscopy to identify the presence of collagen in bone samples and to assess its quality. FTIR measurements were carried out on collagen extracted from many ancient samples dated at CEDAD. Efforts to shift the FTIR quality control test from the filtration step to a check-in treatment are proceeding to optimize the time for preparation and to reduce the overall turnaround time. A standard fast demineralization treatment was set up and applied to a variety of ancient samples of different origin and age.

  11. Development of electrochemical impedance spectroscopy based sensing system for DEHP detection

    KAUST Repository

    Zia, Asif I.

    2011-11-01

    This research work presents a real time and non invasive technique to detect Di(2-ethylhexyl) phthalate (DEHP)content in purified water and quantify its concentration by Electrochemical Impedance Spectroscopy(E.I.S.). Planar Inter-digital capacitive sensor is employed to evaluate conductivity, permeability and dielectric properties of material under test. This sensor, consisting of inter-digitated microelectrodes, is fabricated on silicon substrate using thin-film Microelectromechanical system (MEMS) based semiconductor device fabrication technology. Impedance spectrums are obtained with various concentrations of DEHP in purified water by using an electric circuit in order to extract sample conductance. Relationship of sample conductance with DEHP concentration is studied in this research work which enables us to show the ability of E.I.S. to detect DEHP concentration in water and hence can be applied in water treatment process for contamination quantification. © 2011 IEEE.

  12. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    Science.gov (United States)

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  13. Iodine flow rate measurement for COIL with the chemical iodine generator based on absorption spectroscopy

    Science.gov (United States)

    Zhao, Weili; Zhang, Yuelong; Zhang, Peng; Xu, Mingxiu; Jin, Yuqi; Sang, Fengting

    2015-02-01

    A dual-components absorption method based on absorption spectroscopy was described in the paper. It can easily eliminate the influence of the serious contamination and aerosol scattering on IFR measurement by utilizing the absorptions of iodine vapor and chlorine on two different wavelengths respectively. According to the character that there is no other gaseous product in the reaction besides iodine vapor, IFR in real time can be obtained by the connections of the pressure and the flow rate among chlorine remainder, iodine vapor, and the buffer gas. We used this method to measure IFR for the first time at the exit of a chemical iodine generator. The average of IFR is coincident with that calculated by chemical weighting mass.

  14. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-01-01

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries. (topical review)

  15. Raman Spectroscopy of InAs Based Nanowires & Electronic Characterization of Heterostructure InAs/GaInAs Nanowires

    DEFF Research Database (Denmark)

    Tanta, Rawa

    The work presented in this thesis represents two main topics. The first one, which covers a bigger volume of the thesis, is mainly about Raman spectroscopy on individual InAs based nanowires. The second part presents electronic characterization of heterostructure InAs/GaInAs nanowires. Raman...... modes. In the last chapter of this thesis we present a study on electrical characterization of InAs/GaInAs heterostructure nanowires. First, we performed selective etching experiments in order to locate the barriers. Second, the barriers were probed electrically by performing thermally activated...... spectroscopy measurements on InAs based nanowires include several topics. Firstly, we use polarized Raman spectroscopy for determining the crystal orientation of the nanowires based on conventional Raman selection rules. We studied the effect of the high power laser irradiation on the nanowire, and its...

  16. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    Science.gov (United States)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  17. Développement d'un appareil permettant de prédire la maturité du raisin par spectroscopie proche infra-rouge(PIR)

    OpenAIRE

    Geraudie, V.; Roger, J.M.; Ojeda, H.

    2010-01-01

    / La qualité optimale des vendanges dépend étroitement du choix de la date des vendanges. Différents critères de qualité du raisin sont donc suivis au cours de sa maturation. La spectroscopie visible proche infrarouge (Vis-NIR) permet d'analyser rapidement la composition des produits de manière non-destructive. Cet article présente le développement d'un capteur basé sur l'utilisation de la spectroscopie Vis-NIR destiné au suivi de maturité, le Spectron. Il permet de connaître le taux de sucre...

  18. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  19. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    Science.gov (United States)

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  20. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  1. Periodic array-based substrates for surface-enhanced infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Mayerhöfer Thomas G.

    2018-01-01

    Full Text Available At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS, SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.

  2. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    Science.gov (United States)

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology.

  3. [Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].

    Science.gov (United States)

    Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an

    2016-03-01

    A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV.

  4. [Early warning for various internal faults of GIS based on ultraviolet spectroscopy].

    Science.gov (United States)

    Zhao, Yu; Wang, Xian-pei; Hu, Hong-hong; Dai, Dang-dang; Long, Jia-chuan; Tian, Meng; Zhu, Guo-wei; Huang, Yun-guang

    2015-02-01

    As the basis of accurate diagnosis, fault early-warning of gas insulation switchgear (GIS) focuses on the time-effectiveness and the applicability. It would be significant to research the method of unified early-warning for partial discharge (PD) and overheated faults in GIS. In the present paper, SO2 is proposed as the common and typical by-product. The unified monitoring could be achieved through ultraviolet spectroscopy (UV) detection of SO2. The derivative method and Savitzky-Golay filtering are employed for baseline correction and smoothing. The wavelength range of 290-310 nm is selected for quantitative detection of SO2. Through UV method, the spectral interference of SF6 and other complex by-products, e.g., SOF2 and SOF2, can be avoided and the features of trace SO2 in GIS can be extracted. The detection system is featured by compacted structure, low maintenance and satisfactory suitability in filed surveillance. By conducting SF6 decomposition experiments, including two types of PD faults and the overheated faults between 200-400 degrees C, the feasibility of proposed UV method has been verified. Fourier transform infrared spectroscopy and gas chromatography methods can be used for subsequent fault diagnosis. The different decomposition features in two kinds of faults are confirmed and the diagnosis strategy has been briefly analyzed. The main by-products under PD are SOF2 and SO2F2. The generated SO2 is significantly less than SOF2. More carbonous by-products will be generated when PD involves epoxy. By contrast, when the material of heater is stainless steel, SF6 decomposes at about 300 "C and the main by-products in overheated faults are SO2 and SO2F2. When heated over 350 degrees C, SO2 is generated much faster. SOz content stably increases when the GIS fault lasts. The faults types could be preliminarily identified based on the generation features of SO2.

  5. A nanomechanical Raman spectroscopy based assessment of stress distribution in irradiated and corroded SiC

    Science.gov (United States)

    Mohanty, Debapriya Pinaki; Wang, Hao; Okuniewski, Maria; Tomar, Vikas

    2017-12-01

    Silicon carbide (SiC) composites are under consideration for cladding and structural materials in various types of reactors. The effects of ion irradiation and corrosion on stress distribution due to mechanical loading on chemical vapor deposited (CVD) SiC were investigated in this paper by using nanomechanical Raman spectroscopy (NMRS). The stress distribution was analyzed as a function of the oxide formation on a corroded specimen and as a function of ion-induced irradiation damage in an irradiated specimen. A finite element method (FEM) based model was developed based on local mechanical properties measured using nanoindentation to predict the NMRS measured stress distribution. The stress distribution was also predicted theoretically by using a stress concentration factor, which is a function of sample geometry and boundary conditions. The maximum stress obtained theoretically was in good agreement with the FEM model and NMRS based measurements. FEM results captured the stress variation trends and maximum stress value in the analyzed samples. NMRS measurements predicted that corrosion had a greater influence on increasing the maximum value of stress in comparison to ion irradiation. The increase in stress attributed to corrosion in comparison to ion irradiated samples was approximately 10%-20%.

  6. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Beatrix Barth

    2016-12-01

    Full Text Available Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function.

  7. Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology

    Science.gov (United States)

    Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.

    2005-04-01

    Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.

  8. Rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted respiratory distress syndrome with high sensitivity

    DEFF Research Database (Denmark)

    Verder, Henrik; Heiring, Christian; Clark, Howard

    2017-01-01

    : An L/S algorithm was developed based on 89 aspirates. Subsequently, gastric aspirates were sampled in 136 infants of 24-31 weeks of gestation and 61 (45%) developed RDS. The cut-off value of L/S was 2.2, sensitivity was 92%, and specificity was 73%. In 59 cases, the oropharyngeal secretions had less...... aspirates were analysed with mid-infrared spectroscopy. Subsequently, L/S was measured in gastric aspirates and oropharyngeal secretions from another group of premature infants using spectroscopy and the results were compared with RDS development. The 10-minute analysis required 10 μL of aspirate. RESULTS...... valid L/S than gastric aspirate results. CONCLUSION: Our rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted RDS with high sensitivity....

  9. Conception, fabrication et caractérisation de lentilles planaires nano-structurées dédiées aux capteurs d’images CMOS dans le proche-infrarouge

    OpenAIRE

    Lopez, Thomas

    2016-01-01

    Ce travail porte sur la conception, la fabrication et la caractérisation de lentilles planaires nano-structurées dédiées aux capteurs d’images CMOS dans le proche-infrarouge. L’étude des applications et des systèmes d’imagerie optronique mis en jeu ont mis en évidence l’intérêt de l’utilisation des capteurs d’images CMOS dans la bande 800-1100 nm. Les inconvénients liés au silicium et à la structure du pixel justifient l’intégration de lentilles planaires nano-structurées compatibles avec le ...

  10. étude du passage de l'état colloïdal à l'état ionique de solutions de silicates sodiques par spectrométries RMN 29Si et infrarouge

    Science.gov (United States)

    Couty, R.

    1998-02-01

    Silica sodic solutions with molar ratio Rms [ SiO2] /[ Na2O] of 4.56 to 1 were obtained by depolymerisation of amorphous silical gel in sodium hydroxide. Solutions have been characterized by Qn distribution and infrared spectra. The decrease in degree of polymerization of the silicate anions shifts the (1000 1100 cm-1) Si-O-Si frequencies to lower frequency. The solution colloid- ionic evolution occuring at Rms=2.27 is characterized by Q4 and 1075 cm-1 infrared band disappearance. Des solutions de silicate de sodium, dont les teneurs en silice étaient identiques mais dont les rapports (Rms) des concentrations molaires de SiO2 et de Na2O en solution étaient compris entre 4,56 et 1, ont été réalisées par dépolymérisation d'un gel de silice dans des solutions d'hydroxyde de sodium. Ces solutions ont été caractérisées par leurs distributions d'oligomères Qn et leurs spectres infrarouges. La dépolymérisation entraine une décroissance des fréquences de vibration des groupements (Si-O-Si) situées à (1000 1100 cm-1). Le passage de la solution de l'état colloïdal à l'état ionique, qui se fait pour un rapport Rms de 2,27 est caractérisé par la décroissance des Q3, la disparition des Q4 et de la composante infrarouge à 1075 cm-1.

  11. Automated acid and base number determination of mineral-based lubricants by fourier transform infrared spectroscopy: commercial laboratory evaluation.

    Science.gov (United States)

    Winterfield, Craig; van de Voort, F R

    2014-12-01

    The Fluid Life Corporation assessed and implemented Fourier transform infrared spectroscopy (FTIR)-based methods using American Society for Testing and Materials (ASTM)-like stoichiometric reactions for determination of acid and base number for in-service mineral-based oils. The basic protocols, quality control procedures, calibration, validation, and performance of these new quantitative methods are assessed. ASTM correspondence is attained using a mixed-mode calibration, using primary reference standards to anchor the calibration, supplemented by representative sample lubricants analyzed by ASTM procedures. A partial least squares calibration is devised by combining primary acid/base reference standards and representative samples, focusing on the main spectral stoichiometric response with chemometrics assisting in accounting for matrix variability. FTIR(AN/BN) methodology is precise, accurate, and free of most interference that affects ASTM D664 and D4739 results. Extensive side-by-side operational runs produced normally distributed differences with mean differences close to zero and standard deviations of 0.18 and 0.26 mg KOH/g, respectively. Statistically, the FTIR methods are a direct match to the ASTM methods, with superior performance in terms of analytical throughput, preparation time, and solvent use. FTIR(AN/BN) analysis is a viable, significant advance for in-service lubricant analysis, providing an economic means of trending samples instead of tedious and expensive conventional ASTM(AN/BN) procedures. © 2014 Society for Laboratory Automation and Screening.

  12. Near-Infrared Spectroscopy versus Transcranial Doppler-Based Monitoring in Carotid Endarterectomy

    Directory of Open Access Journals (Sweden)

    Jun Woo Cho

    2017-12-01

    Full Text Available Background: Proper monitoring of cerebral perfusion during carotid artery surgery is crucial for determining if a shunt is needed. We compared the safety and reliability of near-infrared spectroscopy (NIRS with trans-cranial Doppler (TCD for cerebral monitoring. Methods: This single-center, retrospective review was con-ducted on patients who underwent carotid endarterectomy (CEA using selective shunt-based TCD or NIRS at Daegu Catholic University Medical Center from November 2009 to June 2016. Postoperative complications were the primary outcome, and the distribution of risk factors between the 2 groups was compared. Results: The medical records of 74 patients (45 TCD, 29 NIRS were reviewed. The demographic characteristics were similar between the 2 groups. One TCD patient died within the 30-day postoperative period. Postoperative stroke (n=4, p=0.15 and neurologic complications (n=10, p=0.005 were only reported in the TCD group. Shunt usage was 44.4% and 10.3% in the TCD and NIRS groups, respectively (p=0.002. Conclusion: NIRS-based selective shunting during CEA seems to be safe and reliable for monitoring cerebral perfusion in terms of postoperative stroke and neurologic symptoms. It also reduces unnecessary shunt usage.

  13. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy

    Science.gov (United States)

    Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.

    2018-02-01

    X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.

  14. Raman spectroscopy based investigation of molecular changes associated with an early stage of dengue virus infection

    Science.gov (United States)

    Bilal, Maria; Bilal, Muhammad; Saleem, Muhammad; Khurram, Muhammad; Khan, Saranjam; Ullah, Rahat; Ali, Hina; Ahmed, Mushtaq; Shahzada, Shaista; Ullah Khan, Ehsan

    2017-04-01

    Raman spectroscopy based investigations of the molecular changes associated with an early stage of dengue virus infection (DENV) using a partial least squares (PLS) regression model is presented. This study is based on non-structural protein 1 (NS1) which appears after three days of DENV infection. In total, 39 blood sera samples were collected and divided into two groups. The control group contained samples which were the negative for NS1 and antibodies and the positive group contained those samples in which NS1 is positive and antibodies were negative. Out of 39 samples, 29 Raman spectra were used for the model development while the remaining 10 were kept hidden for blind testing of the model. PLS regression yielded a vector of regression coefficients as a function of Raman shift, which were analyzed. Cytokines in the region 775-875 cm-1, lectins at 1003, 1238, 1340, 1449 and 1672 cm-1, DNA in the region 1040-1140 cm-1 and alpha and beta structures of proteins in the region 933-967 cm-1 have been identified in the regression vector for their role in an early stage of DENV infection. Validity of the model was established by its R-square value of 0.891. Sensitivity, specificity and accuracy were 100% each and the area under the receiver operator characteristic curve was found to be 1.

  15. Design and Development of Embedded Based System for the Measurement of Dielectric Constant Spectroscopy for Liquids

    Directory of Open Access Journals (Sweden)

    V. V. Ramana C. H.

    2010-09-01

    Full Text Available An embedded based system for the measurement of dielectric constant spectroscopy (for frequencies 1 kHz, 10 kHz, 100 kHz, 1 MHz and 10 MHz for liquids has been designed and developed. It is based on the principle that the change in frequency of an MAX 038 function generator, when the liquid forms the dielectric medium of the dielectric cell, is measured with a microcontroller. Atmel’s AT89LP6440 microcontroller is used in the present study. Further, an LCD module is interfaced with the microcontroller in 4-bit mode, which reduces the hardware complexity. Software is developed in C using Keil’s C-cross compiler. The instrument system covers a wide range of dielectric constants for various liquids at various frequencies and at different temperatures. The system is quite successful in the measurement of dielectric constant in liquids with an accuracy of ± 0.01 %. The dielectric constant is very dependent on the frequency of their measurement. No one-measurement technique is available, however, that will give the frequency range needed to characterize the liquid sample. The paper deals with the hardware and software details.

  16. Dynamic time warping-based averaging framework for functional near-infrared spectroscopy brain imaging studies

    Science.gov (United States)

    Zhu, Li; Najafizadeh, Laleh

    2017-06-01

    We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.

  17. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  18. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  19. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  20. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    Science.gov (United States)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  1. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  2. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  3. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  4. Application of laser-based photoacoustic spectroscopy and colorimetry for quantification of anthocyanin in hard boiled candy

    NARCIS (Netherlands)

    Kovács, Mihály; Dóka, Ottó; Bicanic, Dane; Ajtony, Zsolt

    2017-01-01

    The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (LPAS) and colorimetric method for quantification of anthocyanin (E163) in commercially available hard boiled candies are compared to that of the spectrophotometry (SP). Both LPAS and colorimetry are direct

  5. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.|info:eu-repo/dai/nl/31406592X; Soulimani, F.|info:eu-repo/dai/nl/313889449; Ruiz Martinez, J.|info:eu-repo/dai/nl/341386405; van der Bij, H.E.|info:eu-repo/dai/nl/328201294; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  6. Skin carotenoids as biomarker for vegetable and fruit intake: Validation of the reflection-spectroscopy based “Veggie Meter”

    Science.gov (United States)

    Skin is a relatively stable storage medium for carotenoids; non-invasive optical measurements of carotenoids in this tissue via Resonance Raman spectroscopy (RRS) serve as a non-invasive biomarker for fruit and vegetable (F/V) intake. The RRS method has been validated with HPLC-based measurements of...

  7. Appariement par transformée de Fourier-Mellin d'images visibles et proche infrarouge acquises par drone

    OpenAIRE

    Rabatel, G.; Labbe, S.

    2016-01-01

    International audience; The combination of aerial images acquired in the visible and near infrared spectral ranges is particularly relevant for agricultural and environmental survey. In unmanned aerial vehicle (UAV) imagery, such a combination can be achieved using a set of several embedded cameras mounted close to each other, followed by an image registration step. However, due to the different nature of source images, usualregistration techniques based on feature point matching are limited ...

  8. Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing.

    Science.gov (United States)

    Hu, Li-Xin; Ying, Guang-Guo; Chen, Xiao-Wen; Huang, Guo-Yong; Liu, You-Sheng; Jiang, Yu-Xia; Pan, Chang-Gui; Tian, Fei; Martin, Francis L

    2017-02-01

    Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC. © 2016 SETAC.

  9. Toward a functional near-infrared spectroscopy-based monitoring of pain assessment for nonverbal patients

    Science.gov (United States)

    Fernandez Rojas, Raul; Huang, Xu; Ou, Keng-Liang

    2017-10-01

    Pain diagnosis for nonverbal patients represents a challenge in clinical settings. Neuroimaging methods, such as functional magnetic resonance imaging and functional near-infrared spectroscopy (fNIRS), have shown promising results to assess neuronal function in response to nociception and pain. Recent studies suggest that neuroimaging in conjunction with machine learning models can be used to predict different cognitive tasks. The aim of this study is to expand previous studies by exploring the classification of fNIRS signals (oxyhaemoglobin) according to temperature level (cold and hot) and corresponding pain intensity (low and high) using machine learning models. Toward this aim, we used the quantitative sensory testing to determine pain threshold and pain tolerance to cold and heat in 18 healthy subjects (three females), mean age±standard deviation (31.9±5.5). The classification model is based on the bag-of-words approach, a histogram representation used in document classification based on the frequencies of extracted words and adapted for time series; two learning algorithms were used separately, K-nearest neighbor (K-NN) and support vector machines (SVM). A comparison between two sets of fNIRS channels was also made in the classification task, all 24 channels and 8 channels from the somatosensory region defined as our region of interest (RoI). The results showed that K-NN obtained slightly better results (92.08%) than SVM (91.25%) using the 24 channels; however, the performance slightly dropped using only channels from the RoI with K-NN (91.53%) and SVM (90.83%). These results indicate potential applications of fNIRS in the development of a physiologically based diagnosis of human pain that would benefit vulnerable patients who cannot self-report pain.

  10. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  11. Partial wave spectroscopy based nanoscale structural disorder analysis for cancer diagnosis and treatment

    Science.gov (United States)

    Almabadi, Huda; Sahay, Peeyush; Nagesh, Prashanth K. B.; Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.; Pradhan, Prabhakar

    Mesoscopic physics based partial wave spectroscopy (PWS) was recently introduced to quantify nanoscale structural disorder in weakly disordered optical media such as biological cells. The degree of structural disorder (Ld) , defined as Ld = 〈 dn2 〉 ×lc is quantified in terms of strength of refractive index fluctuation (〈 dn2 〉) in the system and its correlation length (lc) .With nanoscale sensitivity,Ldhas been shown to have potential to be used in cancer diagnostics. In this work, we analyze the hierarchy of different stages of prostate cancer cells by quantifying their intracellular refractive index fluctuations in terms of Ld parameter. We observe that the increase in tumorigenicity levels inside these prostate cancer cells results in proportionally higherLdvalues. For a weakly disordered optical media like biological cells, this result suggests that the progression of carcinogenesis or the increase in the tumorigenicity level is associated with increased 〈 dn2 〉 and/or lcvalues for the samples. Furthermore, we also examined the applicability of Ld parameter in analyzing the effect of drug on these prostate cancer cells. In accordance with the hypothesis that the cancer cells which survives the drug, becomes more aggressive, we found increased Ldvalues for all the drug resistant prostate cells studied.

  12. An intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy

    Directory of Open Access Journals (Sweden)

    Saman Abdanan Mehdizadeh

    2014-12-01

    Full Text Available The potential of the visible infrared (Vis–IR (400–1100 nm transmittance method to assess the internal quality (freshness of intact chicken egg during storage at a temperature of 30 ± 7 °C and 25 ± 4% relative humidity was investigated. Two hundred chicken egg samples were used for measuring freshness and spectra collection during egg storage (up to 25 days. Two correlation models, firstly between Haugh unit (HU and storage time, and secondly between the yolk coefficient (YC and storage time, were developed and yielded correlation coefficients (R2 of 0.86 and 0.96, respectively. These models spanned the period for which egg quality decreased dramatically and are statistically significant (P < 0.05. In addition, to reduce the dimensionality of the spectra and extract effective wavelengths, two methods were developed based on principal component analysis (PCA and a genetic algorithm (GA. The output of PCA and GA were also used comparatively to design an egg quality intelligent system. The result of the analyses indicated that identification ratio of GA with fast Fourier transform (FFT preprocessing was superior to other methods, and that the quality classification rates of this method for one-day-old eggs are 100%. This study shows that identification of an egg’s freshness using NIR spectroscopy with GA and artificial neural network (ANN is reliable.

  13. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  14. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    M. O. Wenig

    2012-05-01

    Full Text Available In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2 using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74. Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84 when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30–14:30 LT – local time.

  15. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  16. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  17. Development of a portable heavy-water leak sensor based on laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Lee, Lim; Park, Hyunmin; Kim, Taek-Soo; Kim, Minho; Jeong, Do-Young

    2016-01-01

    Highlights: • We developed a compact and portable laser sensor for a detection of heavy water leakage. • The sensor is wearable and also easy to use to search for the leak point. • It is sensitive enough to find invisible very tiny leaks. - Abstract: A compact and portable leak sensor based on cavity enhanced absorption spectroscopy has been newly developed for a detection of heavy water leakage which may happen in the facilities using heavy water such as pressurized heavy water reactor (PHWR). The developed portable sensor is suitable as an individual instrument for the measuring leak rate and finding the leak location because it is sufficiently compact in size and weight and operated by using an internal battery. In the performance test, the minimum detectable leak rate was estimated as 0.05 g/day from the calibration curve. This new sensor is expected to be a reliable and promising device for the detection of heavy water leakage since it has advantages on real-time monitoring and early detection for nuclear safety.

  18. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  19. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er

    2012-12-01

    Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.

  20. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    International Nuclear Information System (INIS)

    Klein, P B; Binari, S C

    2003-01-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal-semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal-organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy. (topical review)

  1. Development of a portable spectroscopy-based device to detect nutrient status of apple tree

    Science.gov (United States)

    Zhang, Yao; Zheng, Lihua; Li, Minzan; Deng, Xiaolei; An, Xiaofei

    2012-11-01

    In order to detect apple tree growth status fast and accurately, four sensitive wavebands (364nm, 652nm, 766nm, 810nm) were obtained by analyzing the correlation between the apple leaves spectra and their nitrogen contents plus adopting the segment reduced precise sampling methods. A rapid determination model of apple leaf nitrogen content suitable for portable detector was built. Then a portable spectroscopy-based device was developed. It consists of an optical unit and a control unit. The optical channel was consisted of convex lens, optical filter, photoelectric detector and airtight mechanical exine. The optical unit was used to capture, transit, transform and submit the optical signal. The controller was consisted of operation, input, display, data storage and power control unit adopting JN5139 as main control unit. Controller was the coordinator in building the wireless network. And it was also responsible for receiving the measured data from sensor, calculating vegetation index, and displaying and storing the calculated results. The experiments showed that the correlation coefficient between the measured nitrogen content and the predicted nitrogen content reached to 0.857. It illustrated that the apple tree nitrogen detector was practical and could be used to detect leaf nitrogen content in apple orchard.

  2. Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells.

    Science.gov (United States)

    Hedde, Per Niklas; Dörlich, René M; Blomley, Rosmarie; Gradl, Dietmar; Oppong, Emmanuel; Cato, Andrew C B; Nienhaus, G Ulrich

    2013-01-01

    Raster image correlation spectroscopy is a powerful tool to study fast molecular dynamics such as protein diffusion or receptor-ligand interactions inside living cells and tissues. By analysing spatio-temporal correlations of fluorescence intensity fluctuations from raster-scanned microscopy images, molecular motions can be revealed in a spatially resolved manner. Because of the diffraction-limited optical resolution, however, conventional raster image correlation spectroscopy can only distinguish larger regions of interest and requires low fluorophore concentrations in the nanomolar range. Here, to overcome these limitations, we combine raster image correlation spectroscopy with stimulated emission depletion microscopy. With imaging experiments on model membranes and live cells, we show that stimulated emission depletion-raster image correlation spectroscopy offers an enhanced multiplexing capability because of the enhanced spatial resolution as well as access to 10-100 times higher fluorophore concentrations.

  3. Multi-excitation Raman difference spectroscopy based on modified multi-energy constrained iterative deconvolution algorithm

    Science.gov (United States)

    Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong

    2013-12-01

    Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.

  4. Photochemistry of Bisphenol-A Based Polycarbonate: Early Detection of Photoproducts by Fluorescence Spectroscopy

    Science.gov (United States)

    1993-07-13

    Reactor with 300 nm lamps. Figure 15b Expanded view of Figure 15a. Figure 16 UV - Visible spectra of salicylic acid (OD = 0.2 at 310 nm) in DCM for 0, 5...Mississippi, Hattiesburg, Mississippi 39406-0076. ABSTRACT The utility of fluorescence spectroscopy in detection of salicylic acid and 2,Z- biphenol type...1). In the ensuing discussion, we will describe a procedure which allows for detection via fluorescence spectroscopy of salicylic acid as well as

  5. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    Science.gov (United States)

    Zia, Asif I.; Mohd Syaifudin, A. R.; Mukhopadhyay, S. C.; Yu, P. L.; Al-Bahadly, I. H.; Gooneratne, Chinthaka P.; Kosel, Jǘrgen; Liao, Tai-Shan

    2013-06-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  6. Simultaneous estimation of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy

    Science.gov (United States)

    Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki

    2018-02-01

    We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.

  7. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    Science.gov (United States)

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  8. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  9. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    International Nuclear Information System (INIS)

    Zia, Asif I; Syaifudin, A R Mohd; Mukhopadhyay, S C; Yu, P L; Al-Bahadly, I H; Gooneratne, Chinthaka P; Kosel, Juergen; Liao, Tai-Shan

    2013-01-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  10. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    Science.gov (United States)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  11. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    International Nuclear Information System (INIS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-01-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  12. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    KAUST Repository

    Zia, Asif I

    2013-06-10

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates\\' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle\\'s equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  13. Using an Interactive Web-Based Learning NMR Spectroscopy as a Means to Improve Problem Solving Skills for Undergraduates

    International Nuclear Information System (INIS)

    Supasorn, Saksri; Vibuljun, Sunantha; Panijpan, Bhinyo; Rajviroongit, Shuleewan

    2005-10-01

    An Interactive Web-Based Learning NMR Spectroscopy course is developed to improve and facilitate student ' s learning as well as achievement of learning objectives in the concepts of multiplicity, chemical shift, and problem solving. This web-based learning course is emphasized on NMR problem solving, therefore, the concepts of multiplicity and chemical shift, basic concepts for practice problem solving, are also emphasized. Most of animations and pictures in this web-based learning are new created and simplified to explain processes and principles in NMR spectroscopy. With meaningful animations and pictures, simplified English language used, step-by-step problem solving, and interactive test, it can be self-learning web site and best on the student ' s convenience

  14. Electrical conductivity and transport properties of cement-based materials measured by impedance spectroscopy

    Science.gov (United States)

    Shane, John David

    The use of Impedance Spectroscopy (IS) as a tool to evaluate the electrical and transport properties of cement-based materials was critically evaluated. Emphasis was placed on determining the efficacy of IS by applying it as a tool to investigate several families of cement-based materials. Also, the functional aspects of electroding and null corrections were also addressed. The technique was found to be advantageous for these analyses, especially as a non-destructive, in-situ, rapid test. Moreover, key insights were gained into several cement-based systems (e.g., cement mortars and oil-well grouts) as well as the effect that certain testing techniques can have on materials (e.g., the rapid chloride permeability test). However, some limitations of IS were identified. For instance, improper electroding of samples can lead to erroneous results and incorrect interpretations for both two-point and multi-point measurements. This is an area of great importance, but it has received very little attention in the literature. Although the analysis of cement/electrode techniques is in its infancy, much progress was made in gaining a full understand of how to properly and reliably connect electrodes to cement-based materials. Through the application of IS to materials such as oil-well grouts, cement mortars and concretes, a great deal of valuable information about the effectiveness of IS has been gained. Oil-well cementing is somewhat limited by the inability to make measurements in the well-bore. By applying IS to oil-well grouts in a laboratory environment, it was demonstrated that IS is a viable technique with which to test the electrical and transport properties of these materials in-situ. Also, IS was shown to have the ability to measure the electrical conductivity of cement mortars with such accuracy, that very subtle changes in properties can be monitored and quantified. Through the use of IS and theoretical models, the complex interplay between the interfacial transition

  15. [Estimation and mapping of soil organic matter based on Vis-NIR reflectance spectroscopy].

    Science.gov (United States)

    Guo, Yan; Ji, Wen-Jun; Wu, Hong-Hai; Shi, Zhou

    2013-04-01

    Visible-near infrared (Vis-NIR) reflectance spectroscopy, which is rapid, cost-effective, in-situ, nondestructive and without hazardous chemicals, is increasingly being used for prediction and digital soil mapping of soil organic matter (SOM). This method is the inevitable demand for precision agriculture and soil remote sensing mapping. In the present study, the Vis-NIR (350-2 500 nm) diffuse reflectance spectral collected by ASD FieldSpec Pro FR spectrometer was truncated by removing the noisy edge values below 400 nm and above 2 450 nm and then was transformed into apparent absorbance spectral using log(1/ R). Based on the relationship analysis between absorbance spectral, spectral indices and SOM, partial least squares regression (PLSR) model was applied to predict SOM, and finally the spatial variability of SOM was characterized by geostatistics method. The results indicated that good model was modeling from the characteristic bands (CB, R2 = 0.91, RPD = 3.28) of correlation coefficient more than 0. 5, the spectral index (SI) of normalized difference index (NDI, R2 0.90, RPD = 3.08), CB integrating SI with which a correlation coefficient was more than 0.5 (R2 = 0.87, RPD = 2.67), and total bands (TA, 400-2 450 nm, R2 = 0.95, RPD = 4.36). While the digital mapping of SOM produced by kriging and cokriging interpolation methods implied a better prediction result, showing similar spatial distribution with the measured SOM, indicating that it is feasible and reliable to use these spectral indices to predict and map the spatial variability.

  16. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    Science.gov (United States)

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  17. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy.

    Science.gov (United States)

    Krebs, C R; Li, Ling; Wolberg, Alisa S; Oldenburg, Amy L

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young's modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring.

  18. [Identification of varieties of cashmere by Vis/NIR spectroscopy technology based on PCA-SVM].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2009-06-01

    One mixed algorithm was presented to discriminate cashmere varieties with principal component analysis (PCA) and support vector machine (SVM). Cashmere fiber has such characteristics as threadlike, softness, glossiness and high tensile strength. The quality characters and economic value of each breed of cashmere are very different. In order to safeguard the consumer's rights and guarantee the quality of cashmere product, quickly, efficiently and correctly identifying cashmere has significant meaning to the production and transaction of cashmere material. The present research adopts Vis/NIRS spectroscopy diffuse techniques to collect the spectral data of cashmere. The near infrared fingerprint of cashmere was acquired by principal component analysis (PCA), and support vector machine (SVM) methods were used to further identify the cashmere material. The result of PCA indicated that the score map made by the scores of PC1, PC2 and PC3 was used, and 10 principal components (PCs) were selected as the input of support vector machine (SVM) based on the reliabilities of PCs of 99.99%. One hundred cashmere samples were used for calibration and the remaining 75 cashmere samples were used for validation. A one-against-all multi-class SVM model was built, the capabilities of SVM with different kernel function were comparatively analyzed, and the result showed that SVM possessing with the Gaussian kernel function has the best identification capabilities with the accuracy of 100%. This research indicated that the data mining method of PCA-SVM has a good identification effect, and can work as a new method for rapid identification of cashmere material varieties.

  19. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    Science.gov (United States)

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  20. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  1. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  2. Thrombolytic therapeutic effect monitoring based on functional near-infrared spectroscopy

    Science.gov (United States)

    Pan, Boan; Wang, Pengbo; Li, Yaoxian; Gao, Yuan; Li, Ting

    2017-02-01

    Deep vein thrombosis (DVT) is of serious mortality and morbidity, which often happens in inpatients and especially with the postoperative population [1]. The golden standard to diagnose DVT is venography, which relies on complicated imaging modalities requiring to be injected in a vein below the clot invasively and ionizing procedures that employing xray imaging to show where and how the DVT blocks. The near-infrared spectroscopy (NIRS) is recently found to be an intriguing and potential method detecting DVT in clinics. It has been reported recently that employing NIRS to diagnose DVT. Arteriosclerosis obliterans (ASO), local extremities manifestations of systemic atherosclerosis, usually cause thrombosis and the reduction of distal blood flow. Thrombolytic therapy is to use exogenous activator to activate the dissolution system, which can dissolve intracoronary thrombus. Here we attempt to monitor the DVT and ASO patients during the whole procedure of thrombolytic treatment, then compare the data with those DVT and ASO patients did not take treatments and normal population. 8 DVT and 9 ASO patients and 12 normal subjects were recruited to take the measurements of concentration variation of oxy- and deoxy-hemoglobins (Δ[HbO2] and Δ[Hb]) by NIRS-based thrombosis monitor. Thereinto, 5 DVT and 6 ASO patients has taken the thrombolytic treatment, and the data for the periods before treatment, during treatment, and after treatment were extracted for analysis. We found that Δ[HbO2] fluctuates and even decreases in DVT and ASO patients. After the thrombolytic therapy, Δ[HbO2] increases about 45% and converge to the curves of normal subjects. And the Δ[Hb] emerges the similar trends, except for the rising trend in the beginning and the downtrend after thrombolytic therapy. The findings indicated NIRS has big potential in clinical monitoring of DVT and ASO patients and offering reliable and quantitative evaluation of thrombolytic therapy outcomes.

  3. Monitoring breast cancer treatment using a Fourier transform infrared spectroscopy-based computational model.

    Science.gov (United States)

    Depciuch, J; Kaznowska, E; Golowski, S; Koziorowska, A; Zawlik, I; Cholewa, M; Szmuc, K; Cebulski, J

    2017-09-05

    Breast cancer affects one in four women, therefore, the search for new diagnostic technologies and therapeutic approaches is of critical importance. This involves the development of diagnostic tools to facilitate the detection of cancer cells, which is useful for assessing the efficacy of cancer therapies. One of the major challenges for chemotherapy is the lack of tools to monitor efficacy during the course of treatment. Vibrational spectroscopy appears to be a promising tool for such a purpose, as it yields Fourier transformation infrared (FTIR) spectra which can be used to provide information on the chemical composition of the tissue. Previous research by our group has demonstrated significant differences between the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Furthermore, the results obtained for three extreme patient cases revealed that the infrared spectra of post-chemotherapy breast tissue closely resembles that of healthy breast tissue when chemotherapy is effective (i.e., a good therapeutic response is achieved), or that of cancerous breast tissue when chemotherapy is ineffective. In the current study, we compared the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Characteristic parameters were designated for the obtained spectra, spreading the function of absorbance using the Kramers-Kronig transformation and the best fit procedure to obtain Lorentz functions, which represent components of the bands. The Lorentz function parameters were used to develop a physics-based computational model to verify the efficacy of a given chemotherapy protocol in a given case. The results obtained using this model reflected the actual patient data retrieved from medical records (health improvement or no improvement). Therefore, we propose this model as a useful tool for monitoring the efficacy of chemotherapy in patients with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy: progress assessment

    Science.gov (United States)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2012-02-01

    The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.

  5. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  6. Computerized detection of breast cancer using resonance-frequency-based electrical impedance spectroscopy

    Science.gov (United States)

    Gao, Wei; Fan, Ming; Zhao, Weijie; Zheng, Bin; Li, Lihua

    2017-03-01

    This study developed and tested a multi-probe resonance-frequency-based electrical impedance spectroscopy (REIS) system aimed at detection of breast cancer. The REIS system consists of specially designed mechanical supporting device that can be easily lifted to fit women of different height, a seven probe sensor cup, and a computer providing software for system control and management. The sensor cup includes one central probe for direct contact with the nipple, and other six probes uniformly distributed at a distance of 35mm away from the center probe to enable contact with breast skin surface. It takes about 18 seconds for this system to complete a data acquisition process. We utilized this system for examination of breast cancer, collecting a dataset of 289 cases including biopsy verified 74 malignant and 215 benign tumors. After that, 23 REIS based features, including seven frequency, fifteen magnitude features were extracted, and an age feature. To reduce redundancy we selected 6 features using the evolutionary algorithm for classification. The area under a receiver operating characteristic curve (AUC) was computed to assess classifier performance. A multivariable logistic regression method was performed for detection of the tumors. The results of our study showed for the 23 REIS features AUC and ACC, Sensitivity and Specificity of 0.796, 0.727, 0.731 and 0.726, respectively. The AUC and ACC, Sensitivity and Specificity for the 6 REIS features of 0.840, 0.80, 0.703 and 0.833, respectively, and AUC of 0.662 and 0.619 for the frequency and magnitude based REIS features, respectively. The performance of the classifiers using all the 6 features was significantly better than solely using magnitude features (p=3.29e-08) and frequency features (5.61e-07). Smote algorithm was used to expand small samples to balance the dataset, the AUC after data balance of 0.846 increased than the original data classification performance. The results indicated that the REIS system is

  7. [Research progress on standardization study of NIR spectroscopy based method for quality control of traditional Chinese medicine].

    Science.gov (United States)

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In recent years, the near infrared (NIR) spectroscopy has gained wide acceptance within the quantitative analysis of traditional Chinese medicine (TCM). However, the lack of technical standards is the bottleneck problem in this process. To address this issue, standardization study of the NIR spectroscopy based method for the quantitative analysis of TCM is needed, in which the specific characteristics of TCM should be given full considerations. The main research contents include:the scope definition for the application of NIR spectroscopy in the TCM quantitative analysis field, the selection criteria for the sample pretreatment and spectral acquisition conditions, the rules for the model optimization and evaluation, and the regulations for the model update and transfer. In this paper, some foreign studies in the agricultural areas are reviewed for reference. Different chemometrics methods reported in the literature are investigated and compared systematically. This research is important actual significance to the theoretical development of NIR spectroscopy analytical techniques, and will effectively promote the application of the technology in the TCM industry. Furthermore, it is beneficial to improve the technical level of TCM quality control, and can also be used as references to achieve similar purposes for other natural products. Copyright© by the Chinese Pharmaceutical Association.

  8. Background and state of the art of near infrared spectroscopy in the forest sector base

    International Nuclear Information System (INIS)

    Muñiz, G.I.B. de; Magalhães, W.L.E.; Carneiro, M.E.; Viana, L.C.

    2012-01-01

    The knowledge of wood properties is the fundamental importance for the indication of the potential and use of this material. In the search for new alternatives for a fast, simple and reliable characterization, there are the non-destructive evaluations of wood. The near infrared spectroscopy (NIRS) has been used as a non-destructive method that allows qualitative and quantitative information of the constituents of biomass through the interaction of electromagnetic waves with near-infrared next to the sample. This work aims to provide a review of the technique of near infrared spectroscopy and its application in forestry. The technique is used in virtually all areas due to the level of development that this technology has reached in recent years. NIR spectroscopy has proved a quick and efficient replacement of several tests that determine the quality of the wood. This is a literature review and state of the art on the theme [pt

  9. Race Differentiation Based on Raman Spectroscopy of Semen Traces for Forensic Purposes.

    Science.gov (United States)

    Muro, Claire K; Lednev, Igor K

    2017-04-18

    Several novel methods to determine externally visible characteristics of body fluid donors have been developed in recent years. These tests can help forensic investigators make predictions about the appearance of a suspect or victim, such as their sex, race, hair color, or age. While their potential benefit is undeniable, these methods destroy the physical evidence in the process. Raman spectroscopy has recently been used as a nondestructive technique to test for many of these characteristics. Here, we present the results from a study to determine the race of semen donors. Using Raman spectroscopy and multivariate data analysis, we were able to build a statistical model that accurately identified the race of all 18 semen donors in the calibration data set, as well as seven additional external validation donors. These results demonstrate Raman spectroscopy's potential to differentiate Caucasian and Black semen donors using chemometrics.

  10. Research of biological liquid albumin based on terahertz time domain spectroscopy

    Science.gov (United States)

    Yang, Shuai; Liu, Shang-jian; Zuo, Jian; Zhang, Cun-lin

    2016-11-01

    There is no corresponding fingerprint characteristic spectrum detecting complex ensemble biological samples in liquid, in the paper, such urine of kidney disease patients as samples of the research, using terahertz time-domain spectroscopy emphatically explores response characteristics of the urine albumin in the terahertz spectrum characteristics, and combined with stoichiometric method, we find a certain kind of relationship between terahertz spectrum data and the content of urine albumin, which offsets the defects of other spectroscopy in measuring liquid protein, and in accordance with hospital clinical data. This study established a semi-qualitative method of using terahertz spectroscopy in detecting non-purification of biological liquid sample, which provides a simple, nondestructive, cheap and fast reference method in identifying the early nephropathy for medical test.

  11. Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Zeng, Haishan; Kalia, Sunil; Lui, Harvey

    2017-02-01

    Background: Raman spectroscopy is a non-invasive optical technique which can measure molecular vibrational modes within tissue. A large-scale clinical study (n = 518) has demonstrated that real-time Raman spectroscopy could distinguish malignant from benign skin lesions with good diagnostic accuracy; this was validated by a follow-up independent study (n = 127). Objective: Most of the previous diagnostic algorithms have typically been based on analyzing the full band of the Raman spectra, either in the fingerprint or high wavenumber regions. Our objective in this presentation is to explore wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Methods: A wavenumber selection algorithm was implemented using variably-sized wavenumber windows, which were determined by the correlation coefficient between wavenumbers. Wavenumber windows were chosen based on accumulated frequency from leave-one-out cross-validated stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic algorithms were then generated from the selected wavenumber windows using multivariate statistical analyses, including principal component and general discriminant analysis (PC-GDA) and partial least squares (PLS). A total cohort of 645 confirmed lesions from 573 patients encompassing skin cancers, precancers and benign skin lesions were included. Lesion measurements were divided into training cohort (n = 518) and testing cohort (n = 127) according to the measurement time. Result: The area under the receiver operating characteristic curve (ROC) improved from 0.861-0.891 to 0.891-0.911 and the diagnostic specificity for sensitivity levels of 0.99-0.90 increased respectively from 0.17-0.65 to 0.20-0.75 by selecting specific wavenumber windows for analysis. Conclusion: Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels.

  12. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward.

    Science.gov (United States)

    Cotte, Marine; Susini, Jean; Dik, Joris; Janssens, Koen

    2010-06-15

    A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the object's history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered

  13. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  14. Assessing the impact of lyophilization process in production of implants based on the bacterial cellulose using Raman spectroscopy method

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Pisareva, E. V.; Vlasov, M. Yu; Revin, V. V.; Klenova, N. A.; Asadova, A. A.

    2017-01-01

    In this article we present the research results of lyophilization process influence on the composition of hybrid materials based on the bacterial cellulose (BC) using Raman spectroscopy method. As an object of research was used BC, as well as hybrids based on it, comprising the various combinations of hydroxyapatite (HAP) and collagen. Our studies showed that during the lyophilization process changes the ratio of the individual components. It was found that for samples hybrid based on BC with addition of HAP occurs increase of PO4 3- peak intensity in the region 956 cm-1 with decreasing width, which indicates a change in the degree of HAP crystallinity.

  15. Assessing the impact of lyophilization process in production of implants based on the bacterial cellulose using Raman spectroscopy method

    International Nuclear Information System (INIS)

    Timchenko, E V; Timchenko, P E; Pisareva, E V; Vlasov, M Yu; Revin, V V; Klenova, N A; Asadova, A A

    2017-01-01

    In this article we present the research results of lyophilization process influence on the composition of hybrid materials based on the bacterial cellulose (BC) using Raman spectroscopy method. As an object of research was used BC, as well as hybrids based on it, comprising the various combinations of hydroxyapatite (HAP) and collagen. Our studies showed that during the lyophilization process changes the ratio of the individual components. It was found that for samples hybrid based on BC with addition of HAP occurs increase of PO 4 3- peak intensity in the region 956 cm -1 with decreasing width, which indicates a change in the degree of HAP crystallinity. (paper)

  16. Utilisation de dépôts d'argile sur lame de verre pour leur étude en spectroscopie infrarougeThe use of glass slide clay-deposit for IR spectroscopy

    Science.gov (United States)

    Petit, Sabine; Decarreau, Alain; Righi, Dominique

    2003-09-01

    IR spectra of clay samples can be collected in transmission through oriented deposits onto glass slide and are similar to the IR spectra of the same samples obtained by traditional way (KBr pellets). As examples, it is shown that it is possible to differentiate dickite from kaolinite and smectites of various chemistries, as easily by both ways. It is thus possible to use oriented clay deposits onto glass slide for both XRD and IR studies and to easily take benefit of the complementarity of both techniques. To cite this article: S. Petit et al., C. R. Geoscience 335 (2003).

  17. Ultrabroadband time-resolved THz spectroscopy of polymer-based solar cells

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2011-01-01

    We have developed ultrabroadband THz spectroscopy in reflection mode for characterization of conductivity dynamics in conductive polymer samples used in organic solar cells. The spectrometer is designed to have a time resolution limited only by the duration of the optical pump pulse, thus enabling...... the investigation of charge generation processes on the sub-100-fs time scale....

  18. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements

    Czech Academy of Sciences Publication Activity Database

    Votava, Ondřej; Mašát, Milan; Parker, A. E.; Jain, Ch.; Fittschen, Ch.

    2012-01-01

    Roč. 83, č. 4 (2012), 043110 ISSN 0034-6748 R&D Projects: GA ČR GA203/09/0422 Institutional support: RVO:61388955 Keywords : CW-DIODE-LASER * DOWN SPECTROSCOPY * KINETICS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2012

  19. A novel calibration strategy based on background correction for quantitative circular dichroism spectroscopy.

    Science.gov (United States)

    Zuo, Qi; Xiong, Shun; Chen, Zeng-Ping; Chen, Yao; Yu, Ru-Qin

    2017-11-01

    When using circular dichroism (CD) spectroscopy for quantitative analysis, the samples to be analyzed must be free of light-absorbing interferences. However, in real-world samples, the presence of background absorbers is practically unavoidable. The difference in the matrices between the real-world samples to be analyzed and the standard samples (on which either univariate or multivariate calibration model was built) would result in systematic errors in the quantification results of CD spectroscopy. In this contribution, a novel calibration strategy for quantitative CD spectroscopic analysis was proposed. The main idea of the proposed calibration strategy is to project the CD spectra of both the standard samples and the real-world sample to be analyzed onto a projection space orthogonal to the space spanned by the background CD spectrum of the real-world sample and then build a multivariate calibration model on the transformed CD spectra of the standard samples. The performance of the proposed calibration strategy was tested and compared with conventional univariate and multivariate calibration methods in the quantification of Pb 2+ in cosmetic samples using CD spectroscopy in combination with a G-quadruplex DNAzyme (e.g. PS2.M). Experiments results revealed that the proposed calibration strategy could mitigate the influence of the difference in the matrices between the standard samples and cosmetic samples and realized quantitative analysis of Pb 2+ in cosmetic samples, with precision and accuracy comparable to atomic absorption spectroscopy. The proposed calibration strategy has the features of simplicity and effectiveness, its combination with CD spectroscopic probes can realize accurate and precise quantification of analytes in complex samples using CD spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Impedance spectroscopy evolution upon sintering of Al-rich anodising sludge-based extruded bodies

    Directory of Open Access Journals (Sweden)

    Ribeiro, M. J.

    2006-08-01

    Full Text Available Alumina based ceramic materials, containing Al-rich sludge as the major component, were processed by extrusion. The sludge derived from the wastewater treatment of aluminium anodising industrial process. Long rods were produced using a vacuum screw extruder, by a careful control of all relevant processing parameters. Then, thick discs were obtained by cutting dried selected rods, to be tested as probes for sintering-dependent electrical properties. The sintering process was followed by performing common dilatometric/thermal analyses but the evolution of electrical conductivity, estimated by impedance spectroscopy (IS, was also used for this purpose. Results show that sintering-dependent morphological evolution up to 1300ºC strongly affects the electrical behaviour of samples, and as a consequence IS seems to be a useful technique to follow the firing process.

    Los materiales cerámicos basados en alúmina, conteniendo barros ricos en Al como componente mayoritario fueron procesados por extrusión. Los barros empleados provienen de tratamientos de lavado de residuos de un proceso industrial de anodizado de aluminio. Se produjeron varillas empleando un extrusor de tornillo en vacío con control de todos los parámetros relevantes del proceso. A partir de varillas seleccionadas, se obtuvieron por corte en seco discos cerámicos para evaluar la dependencia de la sinterización y las propiedades eléctricas. El proceso de sinterización se siguió mediante ensayos dilatométricos y análisis térmicos, junto con la evolución de la conductividad eléctrica mediante espectroscopia de impedancia. Los resultados mostraron la evolución de la sinterización y la dependencia morfológica hasta 1300ºC, que afecta fuertemente a la respuesta eléctrica y como consecuencia la espectroscopia de impedancia parece ser una técnica útil en el seguimiento de los procesos de cocción.

  1. Detection and correction of laser induced breakdown spectroscopy spectral background based on spline interpolation method

    Science.gov (United States)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz

  2. Raman spectroscopy based toolkit for mapping bacterial social interactions relevant to human and plant health

    Science.gov (United States)

    Couvillion, Sheha Polisetti

    Bacteria interact and co-exist with other microbes and with higher organisms like plants and humans, playing a major role in their health and well being. These ubiquitous single celled organisms are so successful, because they can form organized communities, called biofilms, that protect them from environmental stressors and enable communication and cooperation among members of the community. The work described in this thesis develops a toolkit of analytical techniques centered around Raman microspectroscopy and imaging representing a powerful approach to non-invasively investigate bacterial communities, yielding molecular information at the sub-micrometer length scale. Bacterial cellular components of non-pigmented and pigmented rhizosphere strains are characterized, and regiospecific SERS is used for cases where resonantly enhanced background signals obscure the spectra. Silver nanoparticle colloids were synthesized in situ, in the presence of the cells to form a proximal coating and principal component analysis (PCA) revealed features attributed to flavins. SERS enabled in situ acquisition of Raman spectra and chemical images in highly autofluorescent P.aeruginosa biofilms. In combination with PCA, this allowed for non-invasive spatial mapping of bacterial communities and revealed differences between strains and nutrients in the secretion of virulence factor pyocyanin. The rich potential of using Raman microspectroscopy to study plant-microbe interactions is demonstrated. Effect of exposure to oxidative stress, on both the wild type Pantoea sp. YR343 and carotenoid mutant Delta crtB, was assessed by following the intensity of the 1520 cm -1 and 1126 cm-1 Raman bands, respectively, after treatment with various concentrations of H2O2. Significant changes were observed in these marker bands even at concentrations (1 mM) below the point at which the traditional plate-based viability assay shows an effect (5-10 mM), thus establishing the value of Raman

  3. Raman spectroscopy of metal/organic/inorganic heterostructures and pentacene-based OFETs

    Energy Technology Data Exchange (ETDEWEB)

    Paez-Sierra, Beynor Antonio

    2007-12-20

    In the framework of this thesis the interaction of In and Mg as top electrodes on two perylene derivates, 3,4,9,10-perylene tetracarbonic acid dianhydride (PTCDA) and dimethyl-3,4,9,10-perylene tetracarbonic acid diimide (DiMe-PTCDI) was studied. The metal-organic layers wer fabricated on S-passivated GaAs(100)2 x 1 substrates. As main characterization method the Raman spectroscopy was applied. The PTCDA/Mg form themselves by two stages of the metal growth, the first belongs to a new molecular structure for a Mg layer thinner than 2.8 nm, whereby the PTCA molecule loses the oxygen atom from the dianhydride group. The second belongs to the surface-amplified Raman spectrum of the preceding structure. In the case of the Mg/DiMe-PTCDI heterostructures the molecule is well conserved, whereby the Raman shift on the diimide group is not modified. Also this structure shows a coupling between discrete molecule eigenvibrations of 221 cm{sup -1}, 1291 cm{sup -1}, and 1606 cm{sup -1} of the organic material and the electronic continuum states of the Mg metal contact. The studies on the preceding heterostructures helped to analyze experimentally the channel formation of pentacene-based organic field-effect transistors. [German] Im Rahmen dieser Arbeit wurden die Wechselwirkung von In und Mg als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsaure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10- Perylentetracarbonsaure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2 x 1-Substraten hergestellt. Als Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt. Die PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehoert zu einer neuen molekularen Struktur fuer eine Mg Schicht duenner als 2.8 nm, wobei das PTCA-Molekuel das Sauerstoffatom von der Dianhydridgruppe verliert. Die zweite gehoert zu dem oberflaechenverstaerkten Ramanspektrum von der vorherigen Struktur. Im

  4. Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter

    Science.gov (United States)

    Yun-Long, Li; Bing-Chu, Yang; Xue-Mei, Xu

    2016-02-01

    Sensitive detection of acetylene (C2H2) is performed by absorption spectroscopy and wavelength modulation spectroscopy (WMS) based on Fiber Fabry-Perot tunable filter (FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating (FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv-400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C2H2 detection can be applied in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).

  5. Rapid determination of the fat, moisture, and protein contents in homogenized chicken eggs based on near-infrared reflectance spectroscopy.

    Science.gov (United States)

    Zhao, Qingna; Lv, Xueze; Jia, Yaxiong; Chen, Yu; Xu, Guiyun; Qu, Lujiang

    2018-03-19

    Current analytical methods used for composition analysis of egg products are time consuming and laborious. We developed a near-infrared reflectance spectroscopy (NIRS)-based method to determine the fat, moisture, and protein contents in homogenized egg yolk and the moisture and protein contents in homogenized egg albumen to substitute for conventional methods. The coefficients of determination in the external validation set (R2P) were over 0.8 for all chemical compositions. The ratios of performance to standard deviation (RPD) were 4.38, 2.25, 2.28, 2.31, and 3.03 for fat, moisture, protein and moisture in the egg yolk, and protein in the egg albumen, respectively. Thus, NIR spectroscopy could be an efficient tool for quantitative analysis of the nutrients in chicken eggs.

  6. Application of Principal Component Analysis to Classify Textile Fibers Based on UV-Vis Diffuse Reflectance Spectroscopy

    Science.gov (United States)

    Wang, C.; Chen, Q.; Hussain, M.; Wu, S.; Chen, J.; Tang, Z.

    2017-07-01

    This study provides a new approach to the classification of textile fibers by using principal component analysis (PCA), based on UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). Different natural and synthetic fibers such as cotton, wool, silk, linen, viscose, and polyester were used. The spectrum of each kind of fiber was scanned by a spectrometer equipped with an integrating sphere. The characteristics of their UV-Vis diffuse reflectance spectra were analyzed. PCA revealed that the first three components represented 99.17% of the total variability in the ultraviolet region. Principal component score scatter plot (PC1 × PC2) of each fiber indicated the accuracy of this classification for these six varieties of fibers. Therefore, it was demonstrated that UV diffuse reflectance spectroscopy can be used as a novel approach to rapid, real-time, fiber identification.

  7. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  8. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    Science.gov (United States)

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  9. Windowing of THz time-domain spectroscopy signals: A study based on lactose

    Science.gov (United States)

    Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo

    2016-05-01

    Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.

  10. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  11. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Science.gov (United States)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Science.gov (United States)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  13. Classification of Aroma Styles and Geographic Origins of Chinese Liquors Using Chemometrics Based on Fluorescence Spectroscopy

    Science.gov (United States)

    Ma, Y.; Huo, D.-Q.; Qin, H.; Shen, C.-H.; Yang, P.; Hou, C.-J.

    2017-05-01

    The purpose of this paper is to study the feasibility of fluorescence spectroscopy as a reliable method for discrimination of Chinese liquor according to different aroma styles and geographic origins. The 84 Chinese liquors were analyzed by fluorescence spectroscopy and chemometrics. The results showed that Chinese liquors exhibit characteristic fluorescence spectra recorded at special excitation wavelengths that may be considered as fingerprints. Both principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were carried out on the emission spectra (330-435 nm) recorded at excitation wavelength 300 nm to classify different aroma styles of Chinese liquors. The first two principal components explained 98.87% of the total variance, and the SLDA classified correctly 100%. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out on the emission spectra (325-420 nm) recorded at excitation wavelength 300 nm to identify different geographic origins of Chinese liquors. HCA accurately identified all the samples and the first three PCA explained 98.25% of the total variance. This study indicates that fluorescence spectroscopy coupled with chemometrics offers a promising approach for identifying Chinese liquors according to different flavor types and geographic origins.

  14. BACKGROUND AND STATE OF THEE ART OF NEAR INFRARED SPECTROSCOPY IN THE FOREST SECTOR BASE

    Directory of Open Access Journals (Sweden)

    Graciela Inês Bolzon de Muñiz

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987567The knowledge of wood properties is the fundamental importance for the indication of the potential and use of this material. In the search for new alternatives for a fast, simple and reliable characterization, there are the non-destructive evaluations of wood. The near infrared spectroscopy (NIRS has been used as a non-destructive method that allows qualitative and quantitative information of the constituents of biomass through the interaction of electromagnetic waves with near-infrared next to the sample. This work aims to provide a review of the technique of near infrared spectroscopy and its application in forestry. The technique is used in virtually all areas due to the level of development that this technology has reached in recent years. NIR spectroscopy has proved a quick and efficient replacement of several tests that determine the quality of the wood. This is a literature review and state of the art on the theme.

  15. Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

    Science.gov (United States)

    Shao, Yongni; He, Yong; Mao, Jingyuan

    2007-09-01

    Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters, such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction (RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.

  16. A Non-destructive Terahertz Spectroscopy-Based Method for Transgenic Rice Seed Discrimination via Sparse Representation

    Science.gov (United States)

    Hu, Xiaohua; Lang, Wenhui; Liu, Wei; Xu, Xue; Yang, Jianbo; Zheng, Lei

    2017-08-01

    Terahertz (THz) spectroscopy technique has been researched and developed for rapid and non-destructive detection of food safety and quality due to its low-energy and non-ionizing characteristics. The objective of this study was to develop a flexible identification model to discriminate transgenic and non-transgenic rice seeds based on terahertz (THz) spectroscopy. To extract THz spectral features and reduce the feature dimension, sparse representation (SR) is employed in this work. A sufficient sparsity level is selected to train the sparse coding of the THz data, and the random forest (RF) method is then applied to obtain a discrimination model. The results show that there exist differences between transgenic and non-transgenic rice seeds in THz spectral band and, comparing with Least squares support vector machines (LS-SVM) method, SR-RF is a better model for discrimination (accuracy is 95% in prediction set, 100% in calibration set, respectively). The conclusion is that SR may be more useful in the application of THz spectroscopy to reduce dimension and the SR-RF provides a new, effective, and flexible method for detection and identification of transgenic and non-transgenic rice seeds with THz spectral system.

  17. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  18. [In-situ monitoring algorithm of gases poisonous elements concentration with ultraviolet optical absorption spectroscopy based on recursion iterative method].

    Science.gov (United States)

    Wang, Hui-feng; Jiang, Xu-qian

    2012-01-01

    The key and challenge problem of in-situ monitoring poisonous elements of gases is how to separate the various gases absorption signal from mixed gases absorption spectroscopy and compute it's accuracy concentration? Here we present a new algorithms in return recursion iteration based on Lambert-Beer principle. In the algorithms, recurred by the character of absorption peak of various gases in the band of 190-290 nm UV rays continuous spectroscopy and the character of twin element fold for absorbance are used. Firstly, the authors suppose that there is no absorption for others gases in the character absorption band for a certain gas, the authors can inference the initial concentration of the gas. Then the authors switch to another character spectroscopy, and put the photons that gases absorption out of the total number of absorbed photons that are measured. So we could get the initial concentration of another gas. By analogy the authros can get the initial concentration of all kinds of other poisonous elements. Then come back to the character spectroscopy of the first gas, the authors can get a new concentration of the first gas from the difference between the total number of absorbed photons and the photons that other gases absorption. By analogy the authors can get the iterative concentration of other gases, by irterating this process repeatly for some times until the measurement error of the adjacent gas concentration is smaller than a certain numerical value. Finally the authors can get the real and accurate concentration of all kinds of gases. Experiment shows that the authors can get the accurate concentration of all kinds of gases with the algorithm. The accuracy can be within 2%, and at the same time, it is easy enough to satisfy the necessity of real-time requirement. In addition it could be used to measure the concentration of many kinds of gas at a time. It is robust and suitable to be taken into practice.

  19. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  20. Investigation of Υ Dor - δ Sct hybrid stars based on high precission space photometry and complementary ground based spectroscopy

    International Nuclear Information System (INIS)

    Hareter, M.

    2013-01-01

    Stellar pulsation carries information on the physical condition within the star. While pressure modes (p modes) probe the outer layers of a star, gravity modes (g modes) penetrate deep into the radiative zone and thus carry valuable information on the physical conditions there. gamma Dor stars are stars that pulsate in such modes, apart from white dwarfs and slowly pulsating B (SPB) stars. Therefore, these stars are important test benches for stellar evolution and pulsation theory. delta Sct - gamma Dor hybrids are stars that pulsate like gamma Dor stars with g modes but also with p modes as the delta Sct stars do. This makes them even more suited for asteroseismology. The CoRoT long runs offer a great opportunity to analyse a large sample of stars observed homogeneously, uninterrupted and long time base of about 150 days, which is practically unachievable with ground based observation. Since space missions avoid the scintillation caused by the Earth's atmosphere, they allow to detect stellar oscillations on a sub-millimagnitude level even for stars as faint as 15th magnitude. The photometric data is supplemented by AAOmega classification spectroscopy, allowing to determine effective tem- peratures and surface gravity. With these data a statistical approach was adopted to describe the pulsation behaviour gamma Dor and delta Sct - gamma Dor hybrid stars. A temperature - period relation was found for gamma Dor and delta Sct stars, but none for delta Sct - gamma Dor hybrid stars, when considering their strongest g mode or p mode, respectively. The instability domain of hybrid stars is equal to that of delta Sct stars and is not con- fined to the overlapping region of the delta Sct and gamma Dor IS in the Hertzsprung- Russell diagram. Hybrid stars behave differently in the g mode regime than gamma Dor stars, which poses a serious question on how to define properly a delta Sct - gamma Dor hybrid. The convective flux blocking mechanism is supposed to work for stars

  1. Process Analytical Techniques Based on In-Line Vibrational Spectroscopy and their Industrial Applications

    Directory of Open Access Journals (Sweden)

    Jednačak, T.

    2013-03-01

    Full Text Available Process analytical techniques (PAT involve the monitoring and control of physical and chemical processes as well as the identification of important process parameters in order to obtain the products with desired properties. PAT have been applied in various industrial process phases to ensure better process understanding, quality by optimal design and determination of process disturbances in time. In-line vibrational spectroscopic techniques are one of the major process analytical techniques used today. The most frequently used in-line vibrational spectroscopic techniques are near infrared spectroscopy (NIR, attenuated total reflectance middle infrared spectroscopy (ATR-MIR and Raman spectroscopy (Table 1, Figs. 1 and 2. They provide in situ real-time monitoring of the production processes by using different types of in-line probes (Figs. 3–5 which reduce exposure to hazardous materials and contamination, sample degradation or equilibrium perturbations in the reaction system. Due to the aforementioned advantages, in-line vibrational spectroscopic techniques have been successfully applied for different industrial pur- poses. The analysis of characteristic vibrational bands in in-line infrared and Raman spectra enable the monitoring of different processes such as crystallization, dissolution, polimorphic transitions and chemical reactions (Scheme 1, Figs. 6 and 7. The obtained data are, due to their complexity, very often further processed by multivariate data analysis methods (Fig. 9, such as principal components analysis (PCA and partial least squares (PLS. The basic principles of PCA and PLS are shown in Fig. 8. A number of different in-line vibrational spectroscopic techniques as well as multivariate data analysis methods have been developed recently, but in this article only the most important and most frequently used techniques are described.   KUI – 7/2013 Received April 10, 2012 Accepted July 18, 2012

  2. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  3. Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Shao Yongni; He Yong; Mao Jingyuan

    2007-01-01

    Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique

  4. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries.

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  5. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  6. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  7. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Týčová, Anna; Přikryl, Jan; Foret, František

    2017-01-01

    Roč. 38, č. 16 (2017), s. 1977-1987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Grant - others:AV ČR(CZ) MSM200311601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:68081715 Keywords : microfluidics * nanoparticles * separation * Surface-enhanced Raman spectroscopy Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  8. Far-infrared spectroscopy of lanthanide-based molecular magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Sabrina

    2015-05-13

    This thesis demonstrates the applicability of far-infrared spectroscopy for the study of the crystal-field splitting of lanthanides in single-molecular magnetic materials. The far-infrared studies of three different kinds of single-molecular-magnetic materials, a single-ion magnet, a single-chain magnet and an exchange-coupled cluster, yielded a deeper understanding of the crystal-field splitting of the lanthanides in these materials. In addition, our results offered the opportunity to gain a deeper insight into the relaxation processes of these materials.

  9. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  10. Absolute frequency atlas from 915 nm to 985 nm based on laser absorption spectroscopy of iodine

    Science.gov (United States)

    Nölleke, Christian; Raab, Christoph; Neuhaus, Rudolf; Falke, Stephan

    2018-04-01

    This article reports on laser absorption spectroscopy of iodine gas between 915 nm and 985 nm. This wavelength range is scanned utilizing a narrow linewidth and mode-hop-free tunable diode-laser whose frequency is actively controlled using a calibrated wavelength meter. This allows us to provide an iodine atlas that contains almost 10,000 experimentally observed reference lines with an uncertainty of 50 MHz. For common lines, good agreement is found with a publication by Gerstenkorn and Luc (1978). The new rich dataset allows existing models of the iodine molecule to be refined and can serve as a reference for laser frequency calibration and stabilization.

  11. [Exploration of rapidly determining quality of traditional Chinese medicines by (NIR) spectroscopy based on internet sharing mode].

    Science.gov (United States)

    Ni, Li-Jun; Luan, Shao-Rong; Zhang, Li-Guo

    2016-10-01

    Because of the numerous varieties of herbal species and active ingredients in the traditional Chinese medicine(TCM),the traditional methods employed could hardly satisfy the current determination requirements of TCM.The present work proposed an idea to realize rapid determination of the quality of TCM based on near infrared(NIR)spectroscopy and internet sharing mode. Low cost and portable multi-source composite spectrometer was invented by our group for in-site fast measurement of spectra of TCM samples. The database could be set up by sharing spectra and quality detection data of TCM samples among TCM enterprises based on the internet platform.A novel method called as keeping same relationship between X and Y space based on K nearest neighbors(KNN-KSR for short)was applied to predict the contents of effective compounds of the samples. In addition,a comparative study between KNN-KSR and partial least squares(PLS)was conducted. Two datasets were applied to validate above idea:one was about 58 Ginkgo Folium samples samples measured with four near-infrared spectroscopy instruments and two multi-source composite spectrometers,another one was about 80 corn samples available online measured with three NIR instruments. The results show that the KNN-KSR method could obtain more reliable outcomes without correcting spectrum.However transforming the PLS models to other instruments could hardly acquire better predictive results until spectral calibration is performed. Meanwhile,the similar analysis results of total flavonoids and total lactones of Ginkgo Folium samples are achieved on the multi-source composite spectrometers and near-infrared spectroscopy instruments,and the prediction results of KNN-KSR are better than PLS. The idea proposed in present study is in urgent need of more samples spectra, and then to be verified by more case studies. Copyright© by the Chinese Pharmaceutical Association.

  12. Studies of films and heterostructures on Pbsub(1-x)Snsub(x)Te base by Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gas' kov, A.M.; Alenberg, V.B.; Lisina, N.G.; Drozd, I.A.; Zlomanov, V.P.; Novoselova, A.V. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-01-01

    The Auger electron spectroscopy method has been used to determine the composition of films and heterostructures on the base of Pbsub(1-x)Snsub(x)Te grown by the molecular-radiation epitaxy method on BaF/sub 2/ substrates. The excess tin concentration in a near-surface layer is revealed, the fact which is associated with oxidation of the film surface in the process of conservation. The transitional layer in PbTe-Pbsub(0.8)Snsub(0.2)Te heterostructures constitutes 300 A and it is characterized by excess tellurium concentration, which is connected with high dislocation density on the interface.

  13. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  14. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  15. Optimization of a pharmaceutical tablet formulation based on a design space approach and using vibrational spectroscopy as PAT tool.

    Science.gov (United States)

    Chavez, Pierre-François; Lebrun, Pierre; Sacré, Pierre-Yves; De Bleye, Charlotte; Netchacovitch, Lauranne; Cuypers, Serge; Mantanus, Jérôme; Motte, Henri; Schubert, Martin; Evrard, Brigitte; Hubert, Philippe; Ziemons, Eric

    2015-01-01

    The aim of the present study was to optimize a tablet formulation using a quality by design approach. The selected methodology was based on the variation of the filler grade, taking into account the particle size distribution (PSD) of active pharmaceutical ingredient (API) in order to improve five critical quality attributes (CQAs). Thus, a mixture design of experiments (DoE) was performed at pilot scale. The blending step was monitored using near infrared (NIR) spectroscopy as process analytical technology tool enabling real-time qualitative process monitoring. Furthermore, some tablets were analyzed by Raman imaging to evaluate the API distribution within the samples. Based on the DoE results, design spaces were computed using a risk-based Bayesian predictive approach to provide for each point of the experimental domain the expected probability to get the five CQAs jointly within the specifications in the future. Finally, the optimal conditions of the identified design space were successfully validated. In conclusion, a design space approach supported by NIR and Raman spectroscopy was able to define a blend that complies with the target product profile with a quantified guarantee or risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives.

    Science.gov (United States)

    Podevin, Michael; Fotidis, Ioannis A; Angelidaki, Irini

    2017-11-27

    Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO 2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity - the capability of monitoring several analytes simultaneously - in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on "big data". The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.

  17. Discriminant analysis of milk adulteration based on near-infrared spectroscopy and pattern recognition

    Science.gov (United States)

    Liu, Rong; Lv, Guorong; He, Bin; Xu, Kexin

    2011-03-01

    Since the beginning of the 21st century, the issue of food safety is becoming a global concern. It is very important to develop a rapid, cost-effective, and widely available method for food adulteration detection. In this paper, near-infrared spectroscopy techniques and pattern recognition were applied to study the qualitative discriminant analysis method. The samples were prepared and adulterated with one of the three adulterants, urea, glucose and melamine with different concentrations. First, the spectral characteristics of milk and adulterant samples were analyzed. Then, pattern recognition methods were used for qualitative discriminant analysis of milk adulteration. Soft independent modeling of class analogy and partial least squares discriminant analysis (PLSDA) were used to construct discriminant models, respectively. Furthermore, the optimization method of the model was studied. The best spectral pretreatment methods and the optimal band were determined. In the optimal conditions, PLSDA models were constructed respectively for each type of adulterated sample sets (urea, melamine and glucose) and all the three types of adulterated sample sets. Results showed that, the discrimination accuracy of model achieved 93.2% in the classification of different adulterated and unadulterated milk samples. Thus, it can be concluded that near-infrared spectroscopy and PLSDA can be used to identify whether the milk has been adulterated or not and the type of adulterant used.

  18. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    Science.gov (United States)

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.

  19. Quasi-optimum gamma and X spectroscopy based on real-time digital techniques

    CERN Document Server

    Pullia, Antonio; Ripamonti, G

    2000-01-01

    An adaptive, self-calibrated instrument for gamma- and X-ray digital spectroscopy is proposed and demonstrated. Most of the typical processing features (pole-zero cancellation, baseline restoration, and shaping) are digitally implemented and optimized. Initialization is performed through a software procedure, which makes the system particularly flexible and allows periodical adaptivity. It is shown that spectroscopy performances are achieved even while using low-cost, low-frequency (5 Ms/s), and relatively low-resolution (12-bit) AD converters. The ADC differential nonlinearity (DNL), for example, is improved of two orders of magnitude, as estimated over the Compton shoulder of a sup 6 sup 0 Co spectrum, owing to an equivalent built-in sliding-scale effect. Using the system with an high-purity germanium (HPGe) detector a resolution of 1.9 keV FWHM (1.6 per mille) is obtained on the 1.17 MeV spectral line of a sup 6 sup 0 Co source. An Integral Nonlinearity (INL) of 0.3 per mille is measured in the range from ...

  20. [Near infrared spectroscopy based process trajectory technology and its application in monitoring and controlling of traditional Chinese medicine manufacturing process].

    Science.gov (United States)

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.

  1. Characterization of poly(L-lactide/Propylene glycol) based polyurethane films using ATR-FTIR spectroscopy

    Science.gov (United States)

    Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan

    2016-11-01

    A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.

  2. Diagnosis of Lithium-Ion Batteries State-of-Health based on Electrochemical Impedance Spectroscopy Technique

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2014-01-01

    Lithium-ion batteries have developed into a popular energy storage choice for a wide range of applications because of their superior characteristics in comparison to other energy storage technologies. Besides modelling the performance behavior of Lithium-ion batteries, it has become of huge...... interest to accurately diagnose their state-of-health (SOH). At present, Lithium-ion batteries are diagnosed by performing capacity or resistance (current pulse) measurements; however, in the majority of the cases, these measurements are time consuming and result in changing the state of the battery...... as well. This paper investigates the use of the electrochemical impedance spectroscopy (EIS) technique for SOH diagnosis of Lithium-ion battery cells, instead of using the aforementioned techniques, since this new method allows for online and direct measurement of the battery cell response in any working...

  3. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    Science.gov (United States)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  4. Identification of Imitation Cheese and Imitation Ice Cream Based on Vegetable Fat Using NMR Spectroscopy and Chemometrics

    Directory of Open Access Journals (Sweden)

    Yulia B. Monakhova

    2013-01-01

    Full Text Available Vegetable oils and fats may be used as cheap substitutes for milk fat to manufacture imitation cheese or imitation ice cream. In this study, 400 MHz nuclear magnetic resonance (NMR spectroscopy of the fat fraction of the products was used in the context of food surveillance to validate the labeling of milk-based products. For sample preparation, the fat was extracted using an automated Weibull-Stoldt methodology. Using principal component analysis (PCA, imitation products can be easily detected. In both cheese and ice cream, a differentiation according to the type of raw material (milk fat and vegetable fat was possible. The loadings plot shows that imitation products were distinguishable by differences in their fatty acid ratios. Furthermore, a differentiation of several types of cheese (Edamer, Gouda, Emmentaler, and Feta was possible. Quantitative data regarding the composition of the investigated products can also be predicted from the same spectra using partial least squares (PLS regression. The models obtained for 13 compounds in cheese (R2 0.75–0.95 and 17 compounds in ice cream (R2 0.83–0.99 (e.g., fatty acids and esters were suitable for a screening analysis. NMR spectroscopy was judged as suitable for the routine analysis of dairy products based on milk or on vegetable fat substitutes.

  5. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    Science.gov (United States)

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-07

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.

  6. Identification of Imitation Cheese and Imitation Ice Cream Based on Vegetable Fat Using NMR Spectroscopy and Chemometrics

    Science.gov (United States)

    Monakhova, Yulia B.; Godelmann, Rolf; Andlauer, Claudia; Kuballa, Thomas; Lachenmeier, Dirk W.

    2013-01-01

    Vegetable oils and fats may be used as cheap substitutes for milk fat to manufacture imitation cheese or imitation ice cream. In this study, 400 MHz nuclear magnetic resonance (NMR) spectroscopy of the fat fraction of the products was used in the context of food surveillance to validate the labeling of milk-based products. For sample preparation, the fat was extracted using an automated Weibull-Stoldt methodology. Using principal component analysis (PCA), imitation products can be easily detected. In both cheese and ice cream, a differentiation according to the type of raw material (milk fat and vegetable fat) was possible. The loadings plot shows that imitation products were distinguishable by differences in their fatty acid ratios. Furthermore, a differentiation of several types of cheese (Edamer, Gouda, Emmentaler, and Feta) was possible. Quantitative data regarding the composition of the investigated products can also be predicted from the same spectra using partial least squares (PLS) regression. The models obtained for 13 compounds in cheese (R 2 0.75–0.95) and 17 compounds in ice cream (R 2 0.83–0.99) (e.g., fatty acids and esters) were suitable for a screening analysis. NMR spectroscopy was judged as suitable for the routine analysis of dairy products based on milk or on vegetable fat substitutes. PMID:26904597

  7. Exhaust gas monitoring based on absorption spectroscopy in the process industry

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Shu, Xiao-wen; Kan, Rui-feng; Cui, Yi-ben; He, Ying; Xu, Zhen-yu; Geng, Hui; Liu, Jian-guo

    2009-07-01

    This non-invasive gas monitor for exhaust gas monitoring must has high reliability and requires little maintenance. Monitor for in-situ measurements using tunable diode laser absorption spectroscopy (TDLAS) in the near infrared, can meet these requirements. TDLAS has evolved over the past decade from a laboratory especially to an accepted, robust and reliable technology for trace gas sensing. With the features of tunability and narrow linewidth of the distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to measure gas concentration with high sensitivity. Typical applications for monitoring of H2S, NH3, HC1 and HF are described here together by wavelength modulation spectroscopy with second-harmonic(WMS-2F) detection. This paper will illustrate the problems related to on-line applications, in particular, the overfall effects, automatic light intensity correction, temperature correction, which impacted on absorption coefficient and give details of how effect of automatic correction is necessary. The system mainly includes optics and electronics, optical system mainly composed of fiber, fiber coupler and beam expander, the electron part has been placed in safe analysis room not together with the optical part. Laser merely passes through one-meter-long pipes by the fiber coupling technology, so the system itself has anti-explosion. The results of the system are also presented in the end, the system's response time is only 0.5s, and can be achieved below 1×10-5 the detection limit at the volume fraction, it can entirely replace the traditional methods of detection exhaust gas in the process industry.

  8. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.

    Science.gov (United States)

    Terauchi, M

    2006-07-01

    Electronic structures of boron-nitride (BN) nanotubes and a BN cone-structure material were studied by using a high energy-resolution electron energy-loss spectroscopy (EELS) microscope. A trial of the whole electronic structure study of hexagonal BN (h-BN), which consists of flat BN honeycomb layers, was conducted by a combination of EELS and X-ray emission spectroscopy (XES) based on transmission electron microscopy (TEM) (TEM-EELS/XES). The pi and pi+sigma plasmon energies of BN nanotubes (BNT) were smaller than those of h-BN. The pi+sigma energy was explained by the surface plasmon excitation. The spectrum of a two-wall BNT of 2.7 nm in diameter showed a new spectral onset at 4 eV. The valence electron excitation spectra obtained from the tip region of the BN cone with an apex angle of 20 degrees showed similar intensity distribution with those of BNTs. The B K-shell electron excitation spectra obtained from the bottom edge region of the BN cone showed additional peak intensity when compared with those of h-BN and BNT. The B K-shell electron excitation spectra and B K-emission spectra of h-BN were compared with a result of a LDA band calculation. It showed that high symmetry points in the band diagram appear as peak and/or shoulder structures in the EELS and XES spectra. Interband transitions appeared in the imaginary part of the dielectric function of h-BN experimentally obtained were assigned in the band diagram. The analysis also presented that the LDA calculation estimated the bandgap energy smaller than the real material by an amount of 2 eV. Those results of TEM-EELS/XES analysis presented that high energy-resolution spectroscopy methods combined with TEM is a promising method to analyze whole electronic structures of nanometer scale materials. Copyright (c) 2006 Wiley-Liss, Inc.

  9. Soil profile organic carbon prediction with Visible Near Infrared Reflec-tance spectroscopy based on a national database

    DEFF Research Database (Denmark)

    Deng, Fan; Knadel, Maria; Peng, Yi

    This study focuses on the application of the Danish national soil Visible Near Infrared Re-flectance spectroscopy (NIRs) database for predicting SOC in a field. The Conditioned Latin hypercube sam-pling (cLHS) method was used for the selection of 120 soil profiles based on DualEM21s and DEM data...... (ele-vation, slope, profile curvature). All the soil profile cores were taken by a 1 m long hydraulic auger with plastic liners inside. A Labspec 5100 equipped with a contact probe was used to acquire spectra at (350-2500 nm) in each 5 cm depth interval. The results show that after the removal...... of moisture effect using an external parameter orthogonalisation algorithm, most of the spectra collected at field moisture content can be projected in the National spectra library. Moreover, the prediction of SOC improved compared to the model based on absorbance spectra....

  10. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    Science.gov (United States)

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  11. Universal sensor based on the spectroscopy of glow discharge for the detection of traces of atoms or molecules in air

    Science.gov (United States)

    Atutov, S. N.; Galeyev, A. E.; Plekhanov, A. I.; Yakovlev, A. V.

    2018-03-01

    A sensitive and versatile sensor for the detection of traces of atoms or molecules in air based on the emission spectroscopy of glow discharge in air has been developed and studied. The advantages of this sensor compared to other well-known methods are that it renders the use of ultrahigh vacuum or cryogenic temperatures superfluous. The sensor is insensitive to the presence of water vapor (for example, in exhaled air) because of the absence of strong water lines in the visible spectral range. It has a high spectral selectivity limited only by Doppler broadening of the emission lines. The high selectivity of the sensor combined with a wide spectral range allows the detection of many toxic impurities, which can be present in air. Moreover, the spectral range used covers almost all biomarkers in exhaled air, making the proposed sensor extremely interesting for medical applications. To our knowledge, the proposed method is the first based on a glow discharge in air.

  12. Free-volume structure of fluoropolymer-based radiation-grafted electrolyte membranes investigated by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sawada, S; Maekawa, Y; Kawasuso, A; Maekawa, M; Yabuuchi, A

    2010-01-01

    In the field of polymer-electrolyte-membrane (PEM) fuel cell technology, the structures of free-volume holes in the PEMs are very important because they are correlated to the supplied-gas crossover phenomenon, which sometimes deteriorates the cell performance. In this study, we investigated the size and location of free-volume holes in the crosslinked-polytetrafluoroethylene (cPTFE) based radiation-grafted PEMs by positron annihilation lifetime (PAL) spectroscopy. For comparison, the base cPTFE and polystyrene grafted films were also measured. From the analysis of PAL spectra, it was found that there were free-volume holes with different radius of 0.28-0.30 nm and 0.44-0.45 nm. The smaller holes should be located in both PTFE crystallites and poly(styrene sulfonic acid) grafts, while the larger holes are considered to exist in amorphous PTFE phases.

  13. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    Science.gov (United States)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  14. Setting behaviour of waste-based cements estimated by impedance spectroscopy and temperature measurements

    Directory of Open Access Journals (Sweden)

    Raupp-Pereira, F.

    2007-04-01

    Full Text Available This work describes the study of phase development during the setting of various clinker formulations prepared with industrial wastes or by-products, namely sludges (generated in the Al-anodising and surface coating industrial processes, in potable water filtration/cleaning operations and in the cutting process of natural marble and foundry sand. For comparison, similar formulations were also prepared with commercial high purity grade raw materials and processed in identical conditions. To circumvent the experimental restrictions imposed by the use of Vicat’s needle (i.e. large amount of material, electrical resistivity measurements were conducted by alternate current (a.c. impedance spectroscopy to follow the hydration process and setting behaviour. During setting, the temperature evolution of the water/cement pastes was also recorded. Impedande spectroscopy (IS studies were found to be a reliable method and, in some systems, can be a more sensitive technique to detect on-going hydration reactions.

    Este trabajo describe el estudio del desarrollo de fases durante el fraguado de diferentes formulaciones de clinker preparados con residuos industriales o subproductos, denominados barros (generados en los procesos de recubrimientos industriales por anodizado de Al, en procesos de filtración/depuración de agua potable y en procesos de corte de mármol y arenas de fundición. Con el objeto de comparar, se prepararon formulaciones similares a partir de materias primas comerciales de alta pureza y procesadas en idénticas condiciones. Para sortear las restricciones experimentales de inherentes a la aguja de Vicat (esto es, grandes cantidades de material, se realizaron medidas de resistividad eléctrica en corriente alterna (a.c. de espectroscopía de impedancia para seguir el proceso de hidratación y fraguado. Durante el fraguado, la evolución de la temperatura de las pastas de agua/cemento se registró. Los estudios de espectroscopía de

  15. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  16. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paghaleh, Soodeh Jamali [Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher [Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Rahimi, Mojtaba, E-mail: m_rahimi@vru.ac.ir [Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Bahrampour, Ali Reza [Physics Department of Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2015-05-15

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications.

  17. Comparative analysis of different transformed Saccharomyces cerevisiae strains based on high-throughput Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sampaio, Pedro N Sousa; Calado, Cecília R Cruz

    2017-10-20

    This study shows the application of the Fourier transform mid-infrared spectroscopy (FT-MIR) associated with high-throughput technology to study the biochemical fingerprints of different Saccharomyces cerevisiae strains transformed with the same expression system along the similar cultivation in bioreactor. The phenotype, as well as the cellular metabolism and recombinant cyprosin biosynthesis, were determined. The differences observed were confirmed by conventional cyprosin activity protocol, and the metabolic evolution was analyzed using high-performance liquid chromatography technique. The spectral analysis based on chemometrics tools, such as the principal component analysis, is a useful methodology for the phenotypes characterization as well as the specific metabolic states along the cultivations according to the clusters created. The ratio bands of spectra also represented a useful tool to evaluate the metabolic and biochemical differences between both expression systems, allowing to have an additional parameter to the biomolecular comparison. Therefore, high-throughput FT-MIR spectroscopy associated with multivariate data analysis represent a valuable strategy for extracting significant specific biomolecular information along the cultivation, providing a complete bioprocess analysis, once it detects slight molecular changes which it will be useful for screening and optimization process in the biotechnological or pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Equilibrium Measurements of the NH3-CO2-H2O System: Speciation Based on Raman Spectroscopy and Multivariate Modeling

    Directory of Open Access Journals (Sweden)

    Maths Halstensen

    2017-01-01

    Full Text Available Liquid speciation is important for reliable process design and optimization of gas-liquid absorption process. Liquid-phase speciation methods are currently available, although they involve tedious and time-consuming laboratory work. Raman spectroscopy is well suited for in situ monitoring of aqueous chemical reactions. Here, we report on the development of a method for speciation of the CO2-NH3-H2O equilibrium using Raman spectroscopy and PLS-R modeling. The quantification methodology presented here offers a novel approach to provide rapid and reliable predictions of the carbon distribution of the CO2-NH3-H2O system, which may be used for process control and optimization. Validation of the reported speciation method which is based on independent, known, NH3-CO2-H2O solutions shows estimated prediction uncertainties for carbonate, bicarbonate, and carbamate of 6.45 mmol/kg H2O, 34.39 mmol/kg H2O, and 100.9 mmol/kg H2O, respectively.

  19. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Paghaleh, Soodeh Jamali; Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher; Rahimi, Mojtaba; Bahrampour, Ali Reza

    2015-01-01

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications

  20. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan

    2009-06-30

    Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.

  1. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    Science.gov (United States)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  2. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  3. Event based neutron activation spectroscopy and analysis algorithm using MLE and meta-heuristics

    International Nuclear Information System (INIS)

    Wallace, B.

    2014-01-01

    Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes involved was used to create a statistical model. Maximum likelihood estimation was combined with meta-heuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT) and quasi-particle (QP). The approach used seems to be able to translate well into other fields of research. (author)

  4. Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors.

    Science.gov (United States)

    Koziej, Dorota; Hübner, Michael; Barsan, Nicolae; Weimar, Udo; Sikora, Marcin; Grunwaldt, Jan-Dierk

    2009-10-14

    SnO2 gas sensors with palladium as additive in the range of 0.2 wt% and 3 wt% were studied by in situ X-ray absorption spectroscopy under idealized and real operating conditions. Simultaneously to the structural studies, measurements of the sensing properties were undertaken allowing for the determination of structure-function relationships. For this purpose a new in situ spectroscopic cell was designed which permitted on the one hand sensing on conventional screen printed 50 microm thick sensing layers and on the other hand structural analysis with X-rays provided by an insertion device at a 3rd generation synchrotron facility in fluorescence mode. Pd K-edge XANES and EXAFS results on gas sensors showed that palladium, present in an oxidized state, is finely dispersed if it is added in small quantities (0.2 wt%) while it forms clusters at higher concentrations (3 wt%). This is also reflected by the much easier reduction of palladium in the latter, higher concentrated ones. Under realistic sensing conditions (30-200 ppm H2; 10-50 ppm CO in dry and humid air at 200 and 300 degrees C) for the low additive concentration samples, no change in oxidation state was observed, i.e. palladium remained in its oxidized state. This has important consequences on the understanding and modeling of the gas sensing mechanism.

  5. Scanning tunneling spectroscopy of the surface states of Dirac fermions in thermoelectrics based on bismuth telluride

    Science.gov (United States)

    Lukyanova, L. N.; Makarenko, I. V.; Usov, O. A.; Dementev, P. A.

    2018-05-01

    The morphology of the interlayer van der Waals surface and differential tunneling conductance in p-Bi2‑xSbxTe3‑ySey solid solutions were studied by scanning tunneling microscopy and spectroscopy in dependence on compositions. The topological characteristics of the Dirac fermion surface states were determined. It was shown that the thermoelectric power factor and the material parameter enhance with the shift of the Dirac point to the top of the valence band with the increasing of atomic substitution in these thermoelectrics. A correlation between topological characteristics, power factor and material parameters was found. A growth contribution of the surface states is determined by an increase of the Fermi velocity for large atomic substitutions of Bi at x > 1.5 and small substitutions in the Te sublattice (y = 0.06). In compositions with smaller substitutions at x = (1–1.3) and y = (0.06–0.09), similar effect of the surface states is determined by raising the surface concentration of charge carriers.

  6. Surface-enhanced Raman spectroscopy study of radix astragali based on soxhlet extractor

    Science.gov (United States)

    Lu, Peng; Lin, Juqiang; Liu, Nengrong; Shao, Yonghong; Wang, Jing; Shi, Wei; Lin, Jinyong; Chen, Rong

    2012-12-01

    Due to its high sensitivity, flexibility, and "fingerprints" sensing capability, Surface-enhanced Raman Spectroscopy (SERS) is a very powerful method for characterization of substances. In this paper, two kinds of Radix Astragali with different quality were firstly extracted through continuous circumfluence extraction method and then mixed with silver nanoparticles for SERS detection. Most Raman bands obtained in Radix Astragali extraction solution are found at 300-7000cm-1 and 900-1390 cm-1. Although, major peak positions at 470, 556, 949, 1178 and 1286 cm-1 found in these two kinds of Radix Astragali appear nearly the same, Raman bands of 556 and 1178 cm-1 are different in intensity, thus may be used as a characteristic marker of Radix Astragali quality. In detail, we can make full use of the different intensity of two different kinds but the same state at 556 cm-1 to describe the quality standard of Radix Astragali. Our preliminary results show that SERS combining with continuous circumfluence extraction method may provide a direct, accurate and rapid detection method of Radix Astragali.

  7. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    Science.gov (United States)

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  8. Event based neutron activation spectroscopy and analysis algorithm using MLE and metaheuristics

    Science.gov (United States)

    Wallace, Barton

    2014-03-01

    Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods [1] given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis [2] was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes [3] involved was used to create a statistical model. Maximum likelihood estimation was combined with metaheuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT) and quasi-particle (QP). The approach used seems to be able to translate well into other fields of research.

  9. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    Science.gov (United States)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of 30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  10. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Geng Ping; Zhang Xinai; Meng Weiwei; Wang Qingjiang; Zhang Wen; Jin Litong; Feng Zhen; Wu Zirong

    2008-01-01

    An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN) 6 3- /Fe(CN) 6 4- as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 x 10 3 to 3.0 x 10 7 cfu mL -1 with the detection limit of 1.0 x 10 3 cfu mL -1 . With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples

  11. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari (Italy); Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Dell' Aglio, M. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Gaudiuso, R., E-mail: rosalba.gaudiuso@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Santagata, A. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Potenza, Via S. Loja, Zona Ind., 85050 Tito Scalo (PZ) (Italy); Senesi, G.S. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Rossi, M.; Ghiara, M.R. [Department of Earth Sciences, University of Naples ' Federico II' , Via Mezzocannone 8, 80134 Naples (Italy); Capitelli, F. [Institute of Crystallography - CNR, Via Salaria Km 29.300, 00015 Monterotondo (Roma) (Italy); De Pascale, O. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy)

    2012-04-04

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: Black-Right-Pointing-Pointer Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. Black-Right-Pointing-Pointer LIBS enables elemental analysis with self-calibrated LTE-based methods. Black-Right-Pointing-Pointer Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  12. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    International Nuclear Information System (INIS)

    De Giacomo, A.; Dell’Aglio, M.; Gaudiuso, R.; Santagata, A.; Senesi, G.S.; Rossi, M.; Ghiara, M.R.; Capitelli, F.; De Pascale, O.

    2012-01-01

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: ► Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. ► LIBS enables elemental analysis with self-calibrated LTE-based methods. ► Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  13. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  14. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  15. [Study on the genuineness and producing area of Panax notoginseng based on infrared spectroscopy combined with discriminant analysis].

    Science.gov (United States)

    Liu, Fei; Wang, Yuan-zhong; Yang, Chun-yan; Jin, Hang

    2015-01-01

    The genuineness and producing area of Panax notoginseng were studied based on infrared spectroscopy combined with discriminant analysis. The infrared spectra of 136 taproots of P. notoginseng from 13 planting point in 11 counties were collected and the second derivate spectra were calculated by Omnic 8. 0 software. The infrared spectra and their second derivate spectra in the range 1 800 - 700 cm-1 were used to build model by stepwise discriminant analysis, which was in order to distinguish study on the genuineness of P. notoginseng. The model built based on the second derivate spectra showed the better recognition effect for the genuineness of P. notoginseng. The correct rate of returned classification reached to 100%, and the prediction accuracy was 93. 4%. The stability of model was tested by cross validation and the method was performed extrapolation validation. The second derivate spectra combined with the same discriminant analysis method were used to distinguish the producing area of P. notoginseng. The recognition effect of models built based on different range of spectrum and different numbers of samples were compared and found that when the model was built by collecting 8 samples from each planting point as training sample and the spectrum in the range 1 500 - 1 200 cm-1 , the recognition effect was better, with the correct rate of returned classification reached to 99. 0%, and the prediction accuracy was 76. 5%. The results indicated that infrared spectroscopy combined with discriminant analysis showed good recognition effect for the genuineness of P. notoginseng. The method might be a hopeful new method for identification of genuineness of P. notoginseng in practice. The method could recognize the producing area of P. notoginseng to some extent and could be a new thought for identification of the producing area of P. natoginseng.

  16. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  17. Identification of spilled oils by NIR spectroscopy technology based on KPCA and LSSVM

    Science.gov (United States)

    Tan, Ailing; Bi, Weihong

    2011-08-01

    Oil spills on the sea surface are seen relatively often with the development of the petroleum exploitation and transportation of the sea. Oil spills are great threat to the marine environment and the ecosystem, thus the oil pollution in the ocean becomes an urgent topic in the environmental protection. To develop the oil spill accident treatment program and track the source of the spilled oils, a novel qualitative identification method combined Kernel Principal Component Analysis (KPCA) and Least Square Support Vector Machine (LSSVM) was proposed. The proposed method adapt Fourier transform NIR spectrophotometer to collect the NIR spectral data of simulated gasoline, diesel fuel and kerosene oil spills samples and do some pretreatments to the original spectrum. We use the KPCA algorithm which is an extension of Principal Component Analysis (PCA) using techniques of kernel methods to extract nonlinear features of the preprocessed spectrum. Support Vector Machines (SVM) is a powerful methodology for solving spectral classification tasks in chemometrics. LSSVM are reformulations to the standard SVMs which lead to solving a system of linear equations. So a LSSVM multiclass classification model was designed which using Error Correcting Output Code (ECOC) method borrowing the idea of error correcting codes used for correcting bit errors in transmission channels. The most common and reliable approach to parameter selection is to decide on parameter ranges, and to then do a grid search over the parameter space to find the optimal model parameters. To test the proposed method, 375 spilled oil samples of unknown type were selected to study. The optimal model has the best identification capabilities with the accuracy of 97.8%. Experimental results show that the proposed KPCA plus LSSVM qualitative analysis method of near infrared spectroscopy has good recognition result, which could work as a new method for rapid identification of spilled oils.

  18. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  19. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    Science.gov (United States)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  20. [Study on the Influence of Mineralizer on the Preparation of Calcium Aluminates Based on Infrared Spectroscopy].

    Science.gov (United States)

    Fan, Wei; Wang, Liang; Zheng, Huai-li; Chen, Wei; Tang, Xiao-min; Shang, Juan-fang; Qian, Li

    2015-05-01

    In this study, effect of mineralizer on the structure and spectraproperties of calcium aluminates formation was extensively studied. Medium or low-grade bauxite and calcium carbonate were used as raw material and mineralizer CaF2 as additive. Calcium aluminates can be obtained after mixing fully, calcination and grinding. The prepared calcium aluminates can be directly used for the production of polyaluminiumchloride (PAC), polymeric aluminum sulfate, sodium aluminate and some other water treatment agents. The calcium aluminates preparation technology was optimized by investigating the mass ratio of raw materials (bauxiteand calcium carbonate) and mineralizer CaF2 dosage. The structure and spectra properties of bauxite and calcium aluminates were characterized by Fourier transform infrared(FTIR) spectroscopy analysis and the mineralization mechanism of the mineralizer was studied. FTIR spectra indicated that the addition of mineralizer promoted the decomposition and transformation of the diaspore, gibbsite and kaolinite, the decomposition of calcium carbonate, and more adequately reaction between bauxite and calcium carbonate. In addition, not only Ca in calcium carbonate and Si in bauxite were more readily reacted, but also Si-O, Si-O-Al and Al-Si bonds in the bauxite were more fractured which contributed to the release of Al in bauxite, and therefore, the dissolution rate of Al2O3 could be improved. The dissolution rate of Al2O3 can be promoted effectively when the mineralizer CaF2 was added in a mass ratio amount of 3%. And the mineralizer CaF2 cannot be fully functioned, when its dosage was in a mass percent of 1. 5%. Low-grade bauxite was easier to sinter for the preparation of calcium aluminates comparing with the highgrade one. The optimum material ratio for the preparation of calcium aluminates calcium at 1 250 °C was the mass ratio between bauxite and calcium carbonate of 1 : 0. 6 and mineralizer CaF2 mass ratio percent of 3%.

  1. X-ray photoemission spectroscopy analysis of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells

    Science.gov (United States)

    Niwa, Hideharu; Kobayashi, Masaki; Horiba, Koji; Harada, Yoshihisa; Oshima, Masaharu; Terakura, Kiyoyuki; Ikeda, Takashi; Koshigoe, Yuka; Ozaki, Jun-ichi; Miyata, Seizo; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke

    We report on the electronic structure of three different types of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells observed by hard X-ray photoemission spectroscopy. Prepared samples are derived from: (1) melamine and poly(furfuryl alcohol), (2) nitrogen-doped carbon black and (3) cobalt phthalocyanine and phenolic resin. C 1 s spectra show the importance of sp 2 carbon network formation for the oxygen reduction reaction (ORR) activity. N 1 s spectra of the carbon-based cathode catalysts are decomposed into four components identified as pyridine-like, pyrrole- or cyanide-like, graphite-like, and oxide nitrogen. Samples having high oxygen reduction reaction activity in terms of oxygen reduction potential contain high concentration of graphite-like nitrogen. O 1 s spectra are similar among carbon-based cathode catalysts of different oxygen reduction reaction activity. There is no correlation between the ORR activity and oxygen content. Based on a quantitative analysis of our results, the oxygen reduction reaction activity of the carbon-based cathode catalysts will be improved by increasing concentration of graphite-like nitrogen in a developed sp 2 carbon network.

  2. Acid-base equilibrium dynamics in methanol and dimethyl sulfoxide probed by two-dimensional infrared spectroscopy.

    Science.gov (United States)

    Lee, Chiho; Son, Hyewon; Park, Sungnam

    2015-07-21

    Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.

  3. Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold

    Science.gov (United States)

    Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M.; Sibilia, C.

    2018-04-01

    We report on the extrinsic chirality behavior of GaAs-based NWs asymmetrically hybridized with Au. The samples are fabricated by a recently developed, lithography-free self-organized GaAs growth, with the addition of AlGaAs shell and GaAs supershell. The angled Au flux is then used to cover three-out-of-six sidewalls with a thin layer of Au. Oblique incidence and proper sample orientation can lead to circular dichroism. We characterize this chiral behavior at 532 {nm} and 980 {nm} by means of photo-acoustic spectroscopy, which directly measures the difference in absorption for the circularly polarized light of the opposite headedness. For the first time to our knowledge, circular dichroism is observed in both the amplitude and the phase of the photo-acoustic signal. We strongly believe that such samples can be used for chiral applications, spanning from circularly polarized light emission, to the enantioselectivity applications.

  4. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    Science.gov (United States)

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  5. DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples.

    Science.gov (United States)

    Liao, Zhiyu; Sinjab, Faris; Gibson, Graham; Padgett, Miles; Notingher, Ioan

    2016-06-13

    Spectral depth-profiling of optically turbid samples is of high interest to a broad range of applications. We present a method for measuring spatially-offset Raman spectroscopy (SORS) over a range of length scales by incorporating a digital micro-mirror device (DMD) into a sample-conjugate plane in the detection optical path. The DMD can be arbitrarily programmed to collect/reject light at spatial positions in the 2D sample-conjugate plane, allowing spatially offset Raman measurements. We demonstrate several detection geometries, including annular and simultaneous multi-offset modalities, for both macro- and micro-SORS measurements, all on the same instrument. Compared to other SORS modalities, DMD-based SORS provides more flexibility with only minimal additional experimental complexity for subsurface Raman collection.

  6. CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics.

    Science.gov (United States)

    Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro

    2014-01-27

    We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.

  7. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak.

  8. Nuclear Magnetic Resonance Spectroscopy Investigations of Naphthalene-Based 1,2,3-Triazole Systems for Anion Sensing

    Directory of Open Access Journals (Sweden)

    Karelle Aiken

    2018-02-01

    Full Text Available Detailed Nuclear Magnetic Resonance (NMR spectroscopy investigations on a novel naphthalene-substituted 1,2,3-triazole-based fluorescence sensor provided evidence for the “turn-on” detection of anions. The one-step, facile synthesis of the sensors was implemented using the “Click chemistry” approach in good yield. When investigated for selectivity and sensitivity against a series of anions (F−, Cl−, Br−, I−, H2PO4−, ClO4−, OAc−, and BF4−, the sensor displayed the strongest fluorometric response for the fluoride anion. NMR and fluorescence spectroscopic studies validate a 1:1 binding stoichiometry between the sensor and the fluoride anion. Single crystal X-ray diffraction evidence revealed the structure of the sensor in the solid state.

  9. Multivariate control charts based on net analyte signal (NAS) and Raman spectroscopy for quality control of carbamazepine

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Werickson Fortunato de Carvalho [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); National Institute of Metrology, Standardization and Industrial Quality, Inmetro, Dimci/Dquim - Directorate of Metrology, Science and Industry/Division of Chemical Metrology, Av. Nossa Senhora das Gracas 50, Building 6, 25250-020, Xerem, Duque de Caxias, RJ (Brazil); Poppi, Ronei Jesus, E-mail: ronei@iqm.unicamp.br [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); National Institute of Science and Technology (INCT) for Bioanalytics, 13083-970 Campinas, SP (Brazil)

    2011-10-31

    Raman spectroscopy and control charts based on the net analyte signal (NAS) were applied to polymorphic characterization of carbamazepine. Carbamazepine presents four polymorphic forms: I-IV (dihydrate). X-ray powder diffraction was used as a reference technique. The control charts were built generating three charts: the NAS chart that corresponds to the analyte of interest (form III in this case), the interference chart that corresponds to the contribution of other compounds in the sample and the residual chart that corresponds to nonsystematic variations. For each chart, statistical limits were developed using samples within the quality specifications. It was possible to identify the different polymorphic forms of carbamazepine present in pharmaceutical formulations. Thus, an alternative method for the quality monitoring of the carbamazepine polymorphic forms after the crystallization process is presented.

  10. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser.

    Science.gov (United States)

    Yin, Xukun; Dong, Lei; Zheng, Huadan; Liu, Xiaoli; Wu, Hongpeng; Yang, Yanfang; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2016-01-27

    A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can be improved by three orders of magnitude. The experimentally determined normalized detection sensitivity for CO in humid gas is 1.556 × 10(-8) W ⋅ cm (-1)/Hz(1/2).

  11. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique].

    Science.gov (United States)

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-03-01

    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.

  12. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  13. Valence and conduction band edges of selenide and sulfide-based kesterites—a study by x-ray based spectroscopy and ab initio theory

    Science.gov (United States)

    Olar, Tetiana; Manoharan, Archana; Draxl, Claudia; Calvet, Wolfram; Ümsur, Bünyamin; Parvan, Vladimir; Chacko, Binoy; Xie, Haibing; Saucedo, Edgardo; Valle-Rios, Laura Elisa; Neldner, Kai; Schorr, Susan; Lux-Steiner, Martha Ch; Lauermann, Iver

    2017-10-01

    Thin film solar cells based on the kesterite material with the general composition Cu2ZnSn(Se,S)4 can be a substitute for the more common chalcopyrites (Cu(In,Ga)(Se,S)2) with a similar band gap range. When replacing the anion sulfide with selenide, the optical band gap of kesterite changes from 1.5 to 1 eV. Here we report on a study of the valence band maximum and conduction band minimum energies of kesterites with either S or Se as the anion. Knowing these positions is crucial for the design of solar cells in order to match the bands of the absorber material with those of the subsequent functional layers like buffer or window layer. Their relative positions were studied using photoelectron spectroscopy of the valence band edge and x-ray absorption spectroscopy of the cations Cu, Zn, and Sn, respectively. The experimental results are interpreted and confirmed in terms of calculations based on density-functional theory and the GW approach of the many-body theory.

  14. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  15. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Chen, Y. X.; Chen, M. W.; Lin, J. Y.; Lai, W. Q.; Huang, W.; Chen, H. Y.; Weng, G. X.

    2016-11-01

    This study is intended to explore the potential of silver (Ag) nanoparticle-based plasma surface-enhanced Raman spectroscopy (SERS) for providing a rapid and simple "Yes/No" assessment to detect acute myocardial infarction (AMI). A simple, rapid, and accurate method of diagnosing AMI is critical to reduce mortality and improve prognosis. Techniques such as electrocardiography examination and use of cardiac troponins have not yet met the current clinical need. Therefore, alternative approaches need to be developed. Plasma samples from 32 patients with AMI and 32 healthy control (Clt) subjects were assessed. Multivariate statistical techniques, including principal component (PC) analysis and linear discriminant analysis (PCA-LDA), were employed to develop a diagnostic algorithm for differentiating between patients with AMI and Clt subjects. Furthermore, the receiver operating characteristic was tested to evaluate the performance of the PCA-LDA algorithm for AMI detection. Each plasma sample was mixed with an equal volume of Ag colloidal solution, and the SERS measurement of each plasma sample was performed. The plasma SERS spectrum showed much stronger and sharper peaks compared with the normal Raman spectrum. Tentative assignments of Raman spectroscopy bands showed specific biomolecular (e.g., proteins, adenosine, adenine, and uric acid) changes. PC analysis and LDA were employed to discriminate patients with AMI from Clt subjects, yielding a sensitivity of 87.5% and a specificity of 93.8%. The findings of this study suggest that plasma SERS has a great potential for improving AMI in the future, and this will certainly reduce the difficulty, time to draw blood, and patients' pain to a great extent.

  16. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  17. A high-speed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method

    International Nuclear Information System (INIS)

    Li, Nan; Xu, Hui; Zhou, Zhou; Wang, Wei; Qiao, Guofeng; Li, David D-U

    2013-01-01

    A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz–10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications. (paper)

  18. A high-speed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method

    Science.gov (United States)

    Li, Nan; Xu, Hui; Wang, Wei; Zhou, Zhou; Qiao, Guofeng; D-U Li, David

    2013-06-01

    A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz-10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications.

  19. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy

    Science.gov (United States)

    Rajaram, Narasimhan; Tunnell, James W.

    2012-01-01

    Abstract. Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively. PMID:22612140

  20. Evaluation of different classification methods for the diagnosis of schizophrenia based on functional near-infrared spectroscopy.

    Science.gov (United States)

    Li, Zhaohua; Wang, Yuduo; Quan, Wenxiang; Wu, Tongning; Lv, Bin

    2015-02-15

    Based on near-infrared spectroscopy (NIRS), recent converging evidence has been observed that patients with schizophrenia exhibit abnormal functional activities in the prefrontal cortex during a verbal fluency task (VFT). Therefore, some studies have attempted to employ NIRS measurements to differentiate schizophrenia patients from healthy controls with different classification methods. However, no systematic evaluation was conducted to compare their respective classification performances on the same study population. In this study, we evaluated the classification performance of four classification methods (including linear discriminant analysis, k-nearest neighbors, Gaussian process classifier, and support vector machines) on an NIRS-aided schizophrenia diagnosis. We recruited a large sample of 120 schizophrenia patients and 120 healthy controls and measured the hemoglobin response in the prefrontal cortex during the VFT using a multichannel NIRS system. Features for classification were extracted from three types of NIRS data in each channel. We subsequently performed a principal component analysis (PCA) for feature selection prior to comparison of the different classification methods. We achieved a maximum accuracy of 85.83% and an overall mean accuracy of 83.37% using a PCA-based feature selection on oxygenated hemoglobin signals and support vector machine classifier. This is the first comprehensive evaluation of different classification methods for the diagnosis of schizophrenia based on different types of NIRS signals. Our results suggested that, using the appropriate classification method, NIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Research on the Combined Effects of Ionization and Displacement Defects in NPN Transistors Based on Deep Level Transient Spectroscopy

    Science.gov (United States)

    Li, Xingji; Liu, Chaoming; Yang, Jianqun; Ma, Guoliang

    2015-04-01

    The properties of the combined effect between ionization and displacement defects have been researched on the base-collector junctions of 3DG110 silicon NPN bipolar junction transistors (BJTs) irradiated by 6 MeV carbon (C) ions with different fluence. The Gummel curve is used to characterize the degradation of the current gain at a given fluence. Nonlinear relationship, induced by 6 MeV C ions with lower fluence, between irradiation fluence and BJT radiation response can be observed, which is attributed to the combined effect. Evolution of deep level centers is characterized by the deep level transient spectroscopy (DLTS) with various biases. An unusual discovery is that the deep level centers decrease in the amplitude of DLTS peaks with increasing the biases. Based on the results of DLTS measurement, interface traps caused by 6 MeV C ions produce apparent enhanced effect to displacement defects in the base-collector junction of NPN BJT. Meanwhile, two factors, including bias used in DLTS measurement and irradiation fluence, can influence characteristics of DLTS signals caused by oxide-trapped charge. With increasing the bias or the irradiation fluence, both the height and the temperature of the defect peaks induced by the oxide charge in DLTS spectra will increase, illustrating concentration and energy level of the defects are enhanced.

  2. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    Science.gov (United States)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  3. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    Science.gov (United States)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  4. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NARCIS (Netherlands)

    Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.

  5. CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Science.gov (United States)

    EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...

  6. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts

    NARCIS (Netherlands)

    van Oversteeg, Christina H M|info:eu-repo/dai/nl/413490483; Doan, Hoang Q; de Groot, Frank M F|info:eu-repo/dai/nl/08747610X; Cuk, Tanja

    2016-01-01

    X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state,

  7. A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy

    NARCIS (Netherlands)

    Capiau, S.; Wilk, L.S.; Aalders, M.C.G.; Stove, C.P.

    2016-01-01

    Dried blood spot (DBS) sampling is recognized as a valuable alternative sampling strategy both in research and in clinical routine. Although many advantages are associated with DBS sampling, its more widespread use is hampered by several issues, of which the hematocrit effect on DBS-based

  8. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  9. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  10. Oxygen A-band Spectroscopy: An Overlooked Resource for Ground-Based Inference of Physical and Radiative Properties of Clouds

    Science.gov (United States)

    Davis, A. B.; Min, Q.; Barker, H. W.

    2011-12-01

    It is less risky to infer climatically-relevant properties of clouds by remote sensing using modalities that exploit climatically-important wavelengths. For instance, to study the energy budget a retrieval of cloud optical depth performed in the solar spectrum is more credible than one that uses microwaves, largely because it is sensitive to the 2nd moment of the particle size distribution (PSD) that determines scattering properties---hence cloud reflectivity and transmitivity. On the other hand, estimates of cloud and precipitable water paths based on passive microwave radiometry are more appropriate for hydrological cycle studies, largely because they are primarily sensitive to the key 3rd-order moment of the PSD. Although highly attractive due to superior spatial resolution, mm-wave cloud radar delivers the 6th moment of the PSD, which is not of any immediate use. This active measurement can be processed into information about the desired lower-order PSD moments, but at the cost of making assumptions about the cloud microphysics that may sometimes be questionable. From this risk management standpoint, we will argue that the O2 A-band spectroscopy (759--771~nm) is an under-exploited resource in cloud remote sensing that can constrain retrievals of cloud optical depth or pressure thickness from ground stations such as the US DOE's ARM facilities. In other words, it should work well as a cloud remote sensing asset in synergy with more common ground-based instrumentation, including multi-spectral shortwave radiometers, hyper-spectral thermal IR spectrometers, multi-channel microwave radiometers, and mm-wave radars. But O2 A-band can bring to the table more unique information about clouds. At high enough spectral resolution, A-band spectra have been shown to respond strongly to deviations from the single/unbroken cloud layer scenario, i.e., fully 3D clouds. In particular, A-band has the surprising capability (for a passive sensor) of detecting the presence of more

  11. Synthesis, X-ray crystallography, spectroscopy, electrochemistry, thermal and kinetic study of uranyl Schiff base complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Golzard, F.; Eigner, Václav; Dušek, Michal

    2013-01-01

    Roč. 66, č. 20 (2013), s. 3629-3646 ISSN 0095-8972 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : X-ray crystallography * uranyl Schiff base complex * kinetics of thermal decomposition * cyclic voltammetry * kinetics and mechanism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.224, year: 2013

  12. Development of smartphone-based spectroscopy instruments for diagnostic test analysis

    Science.gov (United States)

    Ch'ng, Benjamin JinSeong

    The latest generation of smartphones are more powerful than the first computer that sent the man to the moon. These smartphones are increasingly seen as handheld computers due to the capabilities that can be done with smartphones. Therefore, in this thesis, we will demonstrate the utilization of a smartphone-based spectrometer using the CMOS CCD chip of the camera. The characterization and integration between the smartphone and spectrometer is done to ensure robust and reliable results. The smartphone-based spectrometer is able to measure accurately and made to be comparable to industrial spectrometers. This research was done in order to attempt to improve and advance mobile health in this modern age. Many have already profited from the usages of different mobile health technologies and there will be many more in the future. The smartphone-based spectrometer is capable of measuring different biomarkers and observe the change in refractive index and wavelengths. Taking everything into consideration, the spectrometer was made to be compact and hopefully would impact the mobile health technologies in the near future.

  13. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiu-Fang; Chen, Zeng-Ping, E-mail: zpchen2002@hotmail.com; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-05-19

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM{sub GRP}) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM{sub GRP} has been tested on the quantitative determination of free Ca{sup 2+} in both simulated and real turbid media using a Ca{sup 2+} sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM{sub GRP} could realize precise and accurate quantification of free Ca{sup 2+} in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca{sup 2+} bound Rhod-2. The average relative predictive error value of QFM{sub GRP} for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca{sup 2+} bound Rhod-2 and eosin B. The recovery rates of QFM{sub GRP} for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength

  14. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    Science.gov (United States)

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  15. UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles.

    Science.gov (United States)

    Baldock, Brandi L; Hutchison, James E

    2016-12-20

    DNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents. We report a UV-visible-based method to conveniently and inexpensively determine the number of DNA strands attached to AuNPs of different core sizes. When this method is used in tandem with a fluorescence dye assay, it is possible to determine the ratio of two unlabeled sequences of different lengths bound to AuNPs. Two sizes of citrate-stabilized AuNPs (5 and 12 nm) were functionalized with mixtures of short (5 base) and long (32 base) disulfide-terminated DNA sequences, and the ratios of sequences bound to the AuNPs were determined using the new method. The long DNA sequence was present as a lower proportion of the ligand shell than in the ligand exchange mixture, suggesting it had a lower propensity to bind the AuNPs than the short DNA sequence. The ratio of DNA sequences bound to the AuNPs was not the same for the large and small AuNPs, which suggests that the radius of curvature had a significant influence on the assembly of DNA strands onto the AuNPs.

  16. Fast near infra-red ferroelectric liquid crystal based Mueller matrix system for imaging and spectroscopy

    Directory of Open Access Journals (Sweden)

    Lindgren M.

    2010-06-01

    Full Text Available The science and optical engineering of imaging Mueller Matrix Ellipsometry (MME and Spectroscopic MME is currently being revitalized based on an efficient optimal design method, and through the use of the so-called Eig envalue Calibration Technique (ECT. Through the ECT one may efficiently measure the details of the polarization state generator (PSG matrix, and the polarization state analyzer (PSA matrix, and hence avoid modeling of any unknown polarizing components in the system, and in particular the exact response of complex polarizing elements such as liquid crystal retarders. We here start up with presenting a detailed an alysis of the dynamic response of a near infrared Ferroelectric Liquid Crystal based Mueller matrix ellipsometer (NIR FLC- MME [1] . A time dependent simulation model, using the measured time response of the individual FLCs, is used to describe the measured temporal response. Furthermore, the impulse response of the detector and the pre-amplifier is characterized and in cluded in the simulation model. The measured time dependent intensity response of the MME is well explained by simulations. A FLC based NIRMME system is here shown to be able to operate accurately at the maximum speed of approximately 16 ms per Mueller matrix measurement (steady state response. We demonstrate here time dependent Mueller Matrix measurements of a dynamically changing sample, with even down to 8 ms sampling time of each complete Mueller Matrix (with some loss of accuracy. We secondly briefly present the NIR-FLC- MME imaging system, and show applications to strain imaging of a crystal subjected to an external pressure. Furthermore, we present near-infra-red Mueller matrix images and corresponding polar decomposition images of thin slices of bio-tissue [2].

  17. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  18. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  19. Chemical spectroscopy

    International Nuclear Information System (INIS)

    Eckert, J.; Brun, T.O.; Dianoux, A.J.; Howard, J.; Rush, J.J.; White, J.W.

    1984-01-01

    The purpose of chemical spectroscopy with neutrons is to utilize the dependence of neutron scattering cross-sections on isotope and on momentum transfer (which probes the spatial extent of the excitation) to understand fundamental and applied aspects of the dynamics of molecules and fluids. Chemical spectroscopy is divided into three energy ranges: vibrational spectroscopy, 25-500 MeV, for which much of the work is done on Be-filter analyzer instruments; low energy spectroscopy, less than 25 MeV; and high resolution spectroscopy, less than 1 MeV, which typically is performed on backscattering spectrometers. Representative examples of measurements of the Q-depenence of vibrational spectra, higher energy resolution as well as extension of the Q-range to lower values at high energy transfers, and provisions of higher sensitivities in vibrational spectroscopy are discussed. High resolution, high sensitivity, and polarization analysis studies in low energy spectroscopy are discussed. Applications of very high resolution spectroscopy are also discussed

  20. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    Science.gov (United States)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  1. MOTION ARTIFACT REDUCTION IN FUNCTIONAL NEAR INFRARED SPECTROSCOPY SIGNALS BY AUTOREGRESSIVE MOVING AVERAGE MODELING BASED KALMAN FILTERING

    Directory of Open Access Journals (Sweden)

    MEHDI AMIAN

    2013-10-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a technique that is used for noninvasive measurement of the oxyhemoglobin (HbO2 and deoxyhemoglobin (HHb concentrations in the brain tissue. Since the ratio of the concentration of these two agents is correlated with the neuronal activity, fNIRS can be used for the monitoring and quantifying the cortical activity. The portability of fNIRS makes it a good candidate for studies involving subject's movement. The fNIRS measurements, however, are sensitive to artifacts generated by subject's head motion. This makes fNIRS signals less effective in such applications. In this paper, the autoregressive moving average (ARMA modeling of the fNIRS signal is proposed for state-space representation of the signal which is then fed to the Kalman filter for estimating the motionless signal from motion corrupted signal. Results are compared to the autoregressive model (AR based approach, which has been done previously, and show that the ARMA models outperform AR models. We attribute it to the richer structure, containing more terms indeed, of ARMA than AR. We show that the signal to noise ratio (SNR is about 2 dB higher for ARMA based method.

  2. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    Science.gov (United States)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  3. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Claudia Conesa

    2015-09-01

    Full Text Available Electrochemical Impedance Spectroscopy (EIS has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%. These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  4. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy

    Science.gov (United States)

    Yang, Renjie; Dong, Guimei; Sun, Xueshan; Yang, Yanrong; Yu, Yaping; Liu, Haixue; Zhang, Weiyu

    2018-02-01

    A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50 μg L- 1 and root mean square error of prediction (RMSEP) of 4.42 μg L- 1 for anthracene and of 3.61 μg L- 1 and 4.29 μg L- 1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97 μg L- 1 and 4.63 μg L- 1 for anthracene, 4.46 μg L- 1 and 4.52 μg L- 1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.

  5. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  6. CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

    Science.gov (United States)

    Dong, Ming; Zhong, Guo-qiang; Miao, Shu-zhuo; Zheng, Chuan-tao; Wang, Yi-ding

    2018-03-01

    A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.

  7. Analysis of urinary metabolomic profiling for unstable angina pectoris disease based on nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Li, Zhongfeng; Liu, Xinfeng; Wang, Juan; Gao, Jian; Guo, Shuzhen; Gao, Kuo; Man, Hongxue; Wang, Yingfeng; Chen, Jianxin; Wang, Wei

    2015-12-01

    (1)H NMR-based urinary metabolic profiling is used for investigating the unstable angina pectoris (UAP) metabolic signatures, in order to find out candidate biomarkers to facilitate medical diagnosis. In this work, 27 urine samples from UAP patients and 20 healthy controls were used. The metabolic profiles of the samples were analyzed by multivariate statistics analysis, including PCA, PLS-DA and OPLS-DA. The PCA analysis exhibited slight separation with R(2)X of 0.681 and Q2 of 0.251, while the PLS-DA (R(2)X = 0.121, R(2)Y = 0.931, and Q(2) = 0.661) and the OPLS-DA (R(2)X = 0.121, R(2)Y = 0.931, Q(2) = 0.653) demonstrated that the model showed good performance. By OPLS-DA, 20 metabolites were identified. A diagnostic model was further constructed using the receiver-operator characteristic (ROC) curves (AUC = 0.953), which exhibited a satisfying sensitivity of 92.6%, specificity of 90% and accuracy of 89.1%. The results demonstrated that the NMR-based metabolomics approach showed good performance in identifying diagnostic urinary biomarkers, providing new insights into the metabolic process related to UAP.

  8. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel

    2015-01-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase...

  9. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  10. Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames

    Science.gov (United States)

    Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh

    2017-10-01

    Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic

  11. Contactless, probeless and non-titrimetric determination of acid-base reactions using broadband acoustic resonance dissolution spectroscopy (BARDS).

    Science.gov (United States)

    Ahmed, M Rizwan; McSweeney, Sean; Krüse, Jacob; Vos, Bastiaan; Fitzpatrick, Dara

    2018-02-12

    pH determination is a routine measurement in scientific laboratories worldwide. Most major advances in pH measurement were made in the 19th and early 20th century. pH measurements are critical for the determination of acid base reactions. This study demonstrates how an acid-base reaction can be monitored without the use of a pH probe, indicator and titres of reagent. The stoichiometric reaction between carbonate and HCl acid yields specific quantities of CO 2 , which causes reproducible changes to the compressibility of the solvent. This in turn slows down the speed of sound in solution which is induced by a magnetic follower gently tapping the inner wall of the vessel. As a consequence the frequencies of the acoustic resonances in the vessel are reduced. This approach is called Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) which harnesses this phenomenon for many applications. The acid-carbonate experiments have also been validated using H 2 SO 4 acid and using both potassium and sodium counterions for the carbonate. This method can be used to interrogate strong acid-base reactions in a rapid and non-invasive manner using carbonate as the base. The data demonstrate the first example of a reactant also acting as an indicator. The applicability of the method to weak acids has yet to be determined. A novel conclusion from the study is that a person with a well-trained ear is capable of determining the concentration and pH of a strong acid just by listening. This brings pH measurement into the realm of human perception.

  12. Raman Spectroscopy for Understanding of Lithium Intercalation into Graphite in Propylene Carbonated-Based Solutions

    Directory of Open Access Journals (Sweden)

    Yang-Soo Kim

    2015-01-01

    Full Text Available Electrochemical lithium intercalation within graphite was investigated in propylene carbonate (PC containing different concentrations, 0.4, 0.9, 1.2, 2.2, 2.8, 3.8, and 4.7 mol dm−3, of lithium perchlorate, LiClO4. Lithium ion was reversibly intercalated into and deintercalated from graphite in 3.8 and 4.7 mol dm−3 solutions despite the use of pure PC as the solvent. However, ceaseless solvent decomposition and intense exfoliation of the graphene layers occurred in other solutions. The results of the Raman spectroscopic analysis indicated that contact ion pairs are present in 3.8 and 4.7 mol dm−3 solutions, which suggested that the presence of contact ion pairs is an important factor that determines the solid electrolyte interphase- (SEI- forming ability in PC-based electrolytes.

  13. Diode laser based resonance ionization mass spectrometry for spectroscopy and trace analysis of uranium isotopes

    International Nuclear Information System (INIS)

    Hakimi, Amin

    2013-01-01

    In this doctoral thesis, the upgrade and optimization of a diode laser system for high-resolution resonance ionization mass spectrometry is described. A frequency-control system, based on a double-interferometric approach, allowing for absolute stabilization down to 1 MHz as well as frequency detunings of several GHz within a second for up to three lasers in parallel was optimized. This laser system was used for spectroscopic studies on uranium isotopes, yielding precise and unambiguous level energies, total angular momenta, hyperfine constants and isotope shifts. Furthermore, an efficient excitation scheme which can be operated with commercial diode lasers was developed. The performance of the complete laser mass spectrometer was optimized and characterized for the ultra-trace analysis of the uranium isotope 236 U, which serves as a neutron flux dosimeter and tracer for radioactive anthropogenic contaminations in the environment. Using synthetic samples, an isotope selectivity of ( 236 U)/( 238 U) = 4.5(1.5) . 10 -9 was demonstrated.

  14. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  15. Analysis of angular dependent Auger spectroscopy (ADAS) based on a quasiatomic model

    International Nuclear Information System (INIS)

    Davis, H.L.

    1977-01-01

    Calculated results are presented which are in good agreement with published M 2 , 3 VV Cu (100) ADAS data. The calculations are based on a quasiatomic model where each individual Auger emission is a partial wave of definite (l,m) character, but (l,m) may differ from emission to emission. The (l,m) emission weights have been estimated by fitting the data with a linear combination of calculated intensities for (l,m) up to l = 5. It is found that surprisingly few (l,m) values are necessary to obtain reasonable fits to the data, and the best fits occur for combinations of (l,m) intensities in which the l = 3 waves were most heavily weighted

  16. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells

    Science.gov (United States)

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  17. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts.

    Science.gov (United States)

    van Oversteeg, Christina H M; Doan, Hoang Q; de Groot, Frank M F; Cuk, Tanja

    2017-01-03

    X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state, metal-oxygen bond distance, metal-metal distance, and degree of disorder of the catalysts. These properties guide the coordination environment of the transition metal oxide radical that localizes surface holes and is required to oxidize water. The catalysts are investigated both as-prepared, in their native state, and under reaction conditions, while transition metal oxide radicals are generated. The findings of many experiments are summarized in tables. The advantages of future X-ray experiments on water oxidation catalysts, which include the limited data available of the oxygen K-edge, metal L-edge, and resonant inelastic X-ray scattering, are discussed.

  18. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light

    Science.gov (United States)

    Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.

    2017-05-01

    A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.

  19. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    Science.gov (United States)

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  20. Influence of bismuth loading in polystyrene-based plastic scintillators for low energy gamma spectroscopy

    International Nuclear Information System (INIS)

    Bertrand, G.H.V.; Sguerra, F.; Dehe-Pittance, C.; Carrel, F.; Coulon, R.; Normand, S.; Barat, E.; Dautremer, T.; Montagu, T.; Hamel, M.

    2014-01-01

    This article presents the synthesis and the blend of bismuth complexes in polystyrene based plastic scintillators. A specific design has enabled the fabrication of a scintillator loaded with up to 17 wt% of bismuth. Tri-carboxylate and tri-aryl bismuth compounds were used to explore and understand the influence of bismuth loading on the two main criteria of plastic scintillation: light yield and detection efficiency of γ-rays. For gamma radiation with an energy ≤200 keV, bismuth loaded scintillators demonstrate the ability to produce a photoelectric peak (total absorption peak) in pulse height spectra. The increase of interactions due to bismuth doping was quantified and fitted with standard models. Finally the performance of our bismuth loaded scintillators was evaluated to be better than that of a commercial lead loaded counterpart. (authors)

  1. Rapid culture-based detection of living mycobacteria using microchannel electrical impedance spectroscopy (m-EIS

    Directory of Open Access Journals (Sweden)

    Roli Kargupta

    Full Text Available Abstract Background: Multiple techniques exist for detecting Mycobacteria, each having its own advantages and drawbacks. Among them, automated culture-based systems like the BACTEC-MGIT™ are popular because they are inexpensive, reliable and highly accurate. However, they have a relatively long "time-to-detection” (TTD. Hence, a method that retains the reliability and low-cost of the MGIT system, while reducing TTD would be highly desirable. Methods: Living bacterial cells possess a membrane potential, on account of which they store charge when subjected to an AC-field. This charge storage (bulk capacitance can be estimated using impedance measurements at multiple frequencies. An increase in the number of living cells during culture is reflected in an increase in bulk capacitance, and this forms the basis of our detection. M. bovis BCG and M. smegmatis suspensions with differing initial loads are cultured in MGIT media supplemented with OADC and Middlebrook 7H9 media respectively, electrical "scans” taken at regular intervals and the bulk capacitance estimated from the scans. Bulk capacitance estimates at later time-points are statistically compared to the suspension's baseline value. A statistically significant increase is assumed to indicate the presence of proliferating mycobacteria. Results: Our TTDs were 60 and 36 h for M. bovis BCG and 20 and 9 h for M. smegmatis with initial loads of 1000 CFU/ml and 100,000 CFU/ml respectively. The corresponding TTDs for the commercial BACTEC MGIT 960 system were 131 and 84.6 h for M. bovis BCG and 41.7 and 12 h for M smegmatis, respectively. Conclusion: Our culture-based detection method using multi-frequency impedance measurements is capable of detecting mycobacteria faster than current commercial systems.

  2. Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis

    Directory of Open Access Journals (Sweden)

    Xiao J

    2016-08-01

    Full Text Available Jianqi Xiao,1,* Jie Zhang,2,* Dan Sun,3,* Lin Wang,4,* Lijun Yu,5 Hongjing Wu,5 Dan Wang,5 Xuerong Qiu5 1Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, 2Department of Internal Medicine, Central Hospital of Jiamusi City, Jiamusi, 3Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing, 4Department of Nursing, 5Department of Neurology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Poststroke depression (PSD, the most common psychiatric disease that stroke survivors face, is estimated to affect ~30% of poststroke patients. However, there are still no objective methods to diagnose PSD. In this study, to explore the differential metabolites in the urine of PSD subjects and to identify a potential biomarker panel for PSD diagnosis, the nuclear magnetic resonance-based metabonomic method was applied. Ten differential metabolites responsible for discriminating PSD subjects from healthy control (HC and stroke subjects were found, and five of these metabolites were identified as potential biomarkers (lactate, α-hydroxybutyrate, phenylalanine, formate, and arabinitol. The panel consisting of these five metabolites provided excellent performance in discriminating PSD subjects from HC and stroke subjects, achieving an area under the receiver operating characteristic curve of 0.946 in the training set (43 HC, 45 stroke, and 62 PSD subjects. Moreover, this panel could classify the blinded samples from the test set (31 HC, 33 stroke, and 32 PSD subjects with an area under the curve of 0.946. These results laid a foundation for the future development of urine-based objective methods for PSD diagnosis and investigation of PSD pathogenesis. Keywords: poststroke depression, PSD, stroke, nuclear magnetic resonance, NMR, metabonomic

  3. HST and ground-based spectroscopy of quasar outflows: from mini-BALs to BALs

    Science.gov (United States)

    Moravec, E. A.; Hamann, F.; Capellupo, D. M.; McGraw, S. M.; Shields, J. C.; Rodríguez Hidalgo, P.

    2017-07-01

    Quasar outflows have been posited as a mechanism to couple supermassive black holes to evolution in their host galaxies. We use multi-epoch spectra from the Hubble Space Telescope (HST) and ground-based observatories to study the outflows in seven quasars that have C IV outflow lines ranging from a classic broad absorption line (BAL) to weaker/narrower 'mini-BALs' across rest wavelengths of at least 850-1650 Å. The C IV outflow lines all varied within a time frame of ≤1.9 yr (rest). This includes equal occurrences of strengthening and weakening plus the emergence of a new BAL system at -38 800 km s-1 accompanied by dramatic strengthening in a mini-BAL at -22 800 km s-1. We infer from ˜1:1 doublet ratios in P v and other lines that the BAL system is highly saturated with line-of-sight covering fractions ranging from 0.27 to 0.80 in the highest to lowest column density regions, respectively. Three of the mini-BALs also provide evidence for saturation and partial covering based on ˜1:1 doublet ratios. We speculate that the BALs and mini-BALs form in similar clumpy/filamentary outflows, with mini-BALs identifying smaller or fewer clumps along our lines of sight. If we attribute the line variabilities to clumps crossing our lines of sight at roughly Keplerian speeds, then a typical variability time in our study, ˜1.1 yr, corresponds to a distance ˜2 pc from the central black hole. Combining this with the speed and minimum total column density inferred from the P v BAL, NH ≳ 2.5 × 1022 cm-2, suggests that the BAL outflow kinetic energy is in the range believed to be sufficient for feedback to galaxy evolution.

  4. Quantification of Multiple Components of Complex Aluminum-Based Adjuvant Mixtures by Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Modeling.

    Science.gov (United States)

    Dowling, Quinton M; Kramer, Ryan M

    2017-01-01

    Fourier transform infrared (FTIR) spectroscopy is widely used in the pharmaceutical industry for process monitoring, compositional quantification, and characterization of critical quality attributes in complex mixtures. Advantages over other spectroscopic measurements include ease of sample preparation, quantification of multiple components from a single measurement, and the ability to quantify optically opaque samples. This method describes the use of a multivariate model for quantifying a TLR4 agonist (GLA) adsorbed onto aluminum oxyhydroxide (Alhydrogel ® ) using FTIR spectroscopy that may be adapted to quantify other complex aluminum based adjuvant mixtures.

  5. Etudes des verres du pseudo-ternaire La 2S 3Bi 2S 3Ga 2S 3, en relation avec le diagramme de phases et la spectroscopie infra-rouge

    Science.gov (United States)

    Ecrepont, C.; Guittard, M.; Barnier, S.; Loireau-Lozac'h, A. M.; Palazzi, M.; Julien, C.; Massot, M.

    1992-04-01

    The phase diagram of the La 2S 3Ga 2S 3Bi 2S 3 ternary system is described. DTA measurements have been carried out on a large variety of glass, and the glass formation domain has been defined with the investigation of Tg, Tc, and the endothermic peaks. Infrared absorption spectra have been studied. The vibrational assignment is discussed in relation to the composition of the glass.

  6. Synthesis, Spectroscopy, Thermal Analysis, Magnetic Properties and Biological Activity Studies of Cu(II and Co(II Complexes with Schiff Base Dye Ligands

    Directory of Open Access Journals (Sweden)

    Saeid Amani

    2012-05-01

    Full Text Available Three azo group-containing Schiff base ligands, namely 1-{3-[(3-hydroxy-propyliminomethyl]-4-hydroxyphenylazo}-4-nitrobenzene (2a, 1-{3-[(3-hydroxypropyl-iminomethyl]-4-hydroxyphenylazo}-2-chloro-4-nitrobenzene (2b and 1-{3-[(3-hydroxy-propyliminomethyl]-4-hydroxyphenylazo}-4-chloro-3-nitrobenzene (2c were prepared. The ligands were characterized by elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, 13C- and 1H-NMR spectroscopy and thermogravimetric analysis. Next the corresponding copper(II and cobalt(II metal complexes were synthesized and characterized by the physicochemical and spectroscopic methods of elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, magnetic moment measurements, and thermogravimetric analysis (TGA and (DSC. The room temperature effective magnetic moments of complexes are 1.45, 1.56, 1.62, 2.16, 2.26 and 2.80 B.M. for complexes 3a, 3b, 3c, 4a 4b, and 4c, respectively, indicating that the complexes are paramagnetic with considerable electronic communication between the two metal centers.

  7. Raman spectroscopy-based screening of hepatitis C and associated molecular changes

    Science.gov (United States)

    Bilal, Maria; Bilal, M.; Saleem, M.; Khan, Saranjam; Ullah, Rahat; Fatima, Kiran; Ahmed, M.; Hayat, Abbas; Shahzada, Shaista; Ullah Khan, Ehsan

    2017-09-01

    This study presents the optical screening of hepatitis C and its associated molecular changes in human blood sera using a partial least-squares regression model based on their Raman spectra. In total, 152 samples were tested through enzyme-linked immunosorbent assay for confirmation. This model utilizes minor spectral variations in the Raman spectra of the positive and control groups. Regression coefficients of this model were analyzed with reference to the variations in concentration of associated molecules in these two groups. It was found that trehalose, chitin, ammonia, and cytokines are positively correlated while lipids, beta structures of proteins, and carbohydrate-binding proteins are negatively correlated with hepatitis C. The regression vector yielded by this model is utilized to predict hepatitis C in unknown samples. This model has been evaluated by a cross-validation method, which yielded a correlation coefficient of 0.91. Moreover, 30 unknown samples were screened for hepatitis C infection using this model to test its performance. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve from these predictions were found to be 93.3%, 100%, 96.7%, and 1, respectively.

  8. Raman spectroscopy based screening of IgG positive and negative sera for dengue virus infection

    Science.gov (United States)

    Bilal, M.; Saleem, M.; Bial, Maria; Khan, Saranjam; Ullah, Rahat; Ali, Hina; Ahmed, M.; Ikram, Masroor

    2017-11-01

    A quantitative analysis for the screening of immunoglobulin-G (IgG) positive human sera samples is presented for the dengue virus infection. The regression model was developed using 79 samples while 20 samples were used to test the performance of the model. The R-square (r 2) value of 0.91 was found through a leave-one-sample-out cross validation method, which shows the validity of this model. This model incorporates the molecular changes associated with IgG. Molecular analysis based on regression coefficients revealed that myristic acid, coenzyme-A, alanine, arabinose, arginine, vitamin C, carotene, fumarate, galactosamine, glutamate, lactic acid, stearic acid, tryptophan and vaccenic acid are positively correlated with IgG; while amide III, collagen, proteins, fatty acids, phospholipids and fucose are negatively correlated. For blindly tested samples, an excellent agreement has been found between the model predicted, and the clinical values of IgG. The parameters, which include sensitivity, specificity, accuracy and the area under the receiver operator characteristic curve, are found to be 100%, 83.3%, 95% and 0.99, respectively, which confirms the high quality of the model.

  9. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    Science.gov (United States)

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  10. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    Science.gov (United States)

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  11. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    Science.gov (United States)

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  12. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  13. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-03-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy (A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  14. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  15. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  16. Hadron Spectroscopy

    International Nuclear Information System (INIS)

    Binon, F.; Frere, J.M.; Peigneux, J.P.

    1989-01-01

    HADRON 89 is the third of a series of biennial conferences on hadron spectroscopy which are now replacing the former separate meson and baryon spectroscopy conferences. The first one, HADRON 85, was held at the University of Maryland. The second one, HADRON 87, has taken place at KEK in Tsukuba in Japan. This conference is divided into 7 sessions bearing on: - session 1 Light mesons and exotics (19 conferences) - session 2 Light mesons and exotics-theory-phonomenology (15 conferences) - session 3 Theoretical problems (14 conferences) - session 4 New detectors factories (9 conferences) - session 5 Baryons (7 conferences) - session 6 Heavy flavor spectroscopy (7 conferences) - session 7 Concluding hadron 89 (3 conferences)

  17. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy.

    Science.gov (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.

  18. Identification of cow and buffalo milk based on Beta carotene and vitamin-A concentration using fluorescence spectroscopy.

    Directory of Open Access Journals (Sweden)

    Rahat Ullah

    Full Text Available The current study presents the application of fluorescence spectroscopy for the identification of cow and buffalo milk based on β-carotene and vitamin-A which is of prime importance from the nutritional point of view. All samples were collected from healthy animals of different breeds at the time of lactation in the vicinity of Islamabad, Pakistan. Cow and buffalo milk shows differences at fluorescence emission appeared at band position 382 nm, 440 nm, 505 nm and 525 nm both in classical geometry (right angle setup as well as front face fluorescence setup. In front face fluorescence geometry, synchronous fluorescence emission shows clear differences at 410 nm and 440 nm between the milk samples of both these species. These fluorescence emissions correspond to fats, vitamin-A and β-carotene. Principal Component Analysis (PCA further highlighted these differences by showing clear separation between the two data sets on the basis of features obtained from their fluorescence emission spectra. These results indicate that classical geometry (fixed excitation wavelength as well as front face (synchronous fluorescence emission of cow and buffalo milk nutrients could be used as fingerprint from identification point of view. This same approach can effectively be used for the determination of adulterants in the milk and other dairy products.

  19. Identification of cow and buffalo milk based on Beta carotene and vitamin-A concentration using fluorescence spectroscopy.

    Science.gov (United States)

    Ullah, Rahat; Khan, Saranjam; Ali, Hina; Bilal, Muhammad; Saleem, Muhammad

    2017-01-01

    The current study presents the application of fluorescence spectroscopy for the identification of cow and buffalo milk based on β-carotene and vitamin-A which is of prime importance from the nutritional point of view. All samples were collected from healthy animals of different breeds at the time of lactation in the vicinity of Islamabad, Pakistan. Cow and buffalo milk shows differences at fluorescence emission appeared at band position 382 nm, 440 nm, 505 nm and 525 nm both in classical geometry (right angle) setup as well as front face fluorescence setup. In front face fluorescence geometry, synchronous fluorescence emission shows clear differences at 410 nm and 440 nm between the milk samples of both these species. These fluorescence emissions correspond to fats, vitamin-A and β-carotene. Principal Component Analysis (PCA) further highlighted these differences by showing clear separation between the two data sets on the basis of features obtained from their fluorescence emission spectra. These results indicate that classical geometry (fixed excitation wavelength) as well as front face (synchronous fluorescence emission) of cow and buffalo milk nutrients could be used as fingerprint from identification point of view. This same approach can effectively be used for the determination of adulterants in the milk and other dairy products.

  20. A DAQ-device-based continuous wave near-infrared spectroscopy system for measuring human functional brain activity.

    Science.gov (United States)

    Xu, Gang; Li, Xiaoli; Li, Duan; Liu, Xiaomin

    2014-01-01

    In the last two decades, functional near-infrared spectroscopy (fNIRS) is getting more and more popular as a neuroimaging technique. The fNIRS instrument can be used to measure local hemodynamic response, which indirectly reflects the functional neural activities in human brain. In this study, an easily implemented way to establish DAQ-device-based fNIRS system was proposed. Basic instrumentation components (light sources driving, signal conditioning, sensors, and optical fiber) of the fNIRS system were described. The digital in-phase and quadrature demodulation method was applied in LabVIEW software to distinguish light sources from different emitters. The effectiveness of the custom-made system was verified by simultaneous measurement with a commercial instrument ETG-4000 during Valsalva maneuver experiment. The light intensity data acquired from two systems were highly correlated for lower wavelength (Pearson's correlation coefficient r = 0.92, P < 0.01) and higher wavelength (r = 0.84, P < 0.01). Further, another mental arithmetic experiment was implemented to detect neural activation in the prefrontal cortex. For 9 participants, significant cerebral activation was detected in 6 subjects (P < 0.05) for oxyhemoglobin and in 8 subjects (P < 0.01) for deoxyhemoglobin.

  1. Raman spectroscopy-based screening of IgM positive and negative sera for dengue virus infection

    Science.gov (United States)

    Bilal, M.; Saleem, M.; Bilal, Maria; Ijaz, T.; Khan, Saranjam; Ullah, Rahat; Raza, A.; Khurram, M.; Akram, W.; Ahmed, M.

    2016-11-01

    A statistical method based on Raman spectroscopy for the screening of immunoglobulin M (IgM) in dengue virus (DENV) infected human sera is presented. In total, 108 sera samples were collected and their antibody indexes (AI) for IgM were determined through enzyme-linked immunosorbent assay (ELISA). Raman spectra of these samples were acquired using a 785 nm wavelength excitation laser. Seventy-eight Raman spectra were selected randomly and unbiasedly for the development of a statistical model using partial least square (PLS) regression, while the remaining 30 were used for testing the developed model. An R-square (r 2) value of 0.929 was determined using the leave-one-sample-out (LOO) cross validation method, showing the validity of this model. It considers all molecular changes related to IgM concentration, and describes their role in infection. A graphical user interface (GUI) platform has been developed to run a developed multivariate model for the prediction of AI of IgM for blindly tested samples, and an excellent agreement has been found between model predicted and clinically determined values. Parameters like sensitivity, specificity, accuracy, and area under receiver operator characteristic (ROC) curve for these tested samples are also reported to visualize model performance.

  2. Fundamental aspects of Am and Cm in zirconia-based materials. Investigations using X-ray diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Raison, P.E.; Haire, R.G.; Assefa, Z.

    2002-01-01

    We have investigated incorporation of americium and curium in selected zirconia-based materials. Fundamental aspects were explored via X-ray diffraction and Raman spectroscopy. First explored was the pseudo ternary system, AmO 2 -ZrO 2 -Y 2 O 3 . It was found that stable, cubic solid solutions (Am x Zr 1-x Y y )O 2-2/y can be obtained for selected compositions. The cell parameters of the cubic phases were established as being linear with the AmO 2 content. For the Cm 2 O 3 -ZrO 2 system, it was determined that diphasic materials are produced, except for two compositions: 25 mol% and 50 mol% of CmO 1.5 . For these compositions a single-phase cubic fluorite type solid solution (a=5.21A±0.01) and a pyrochlore oxide Cm 2 Zr 2 O 7 (a=10.63A±0.02) are formed, respectively. The stability of pyrochlore oxides is also being investigated as a function of self-irradiation, using shorter-lived isotopes, one being the californium pyrochlore 249 Cf 2 Zr 2 O 7 . We obtained evidence that after six months of storage the pyrochlore oxide is undergoing structural change. Additional studies are in progress. (author)

  3. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Wan, Xiong; Wang, Peng

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd ; YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore.

  4. A DAQ-Device-Based Continuous Wave Near-Infrared Spectroscopy System for Measuring Human Functional Brain Activity

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2014-01-01

    Full Text Available In the last two decades, functional near-infrared spectroscopy (fNIRS is getting more and more popular as a neuroimaging technique. The fNIRS instrument can be used to measure local hemodynamic response, which indirectly reflects the functional neural activities in human brain. In this study, an easily implemented way to establish DAQ-device-based fNIRS system was proposed. Basic instrumentation components (light sources driving, signal conditioning, sensors, and optical fiber of the fNIRS system were described. The digital in-phase and quadrature demodulation method was applied in LabVIEW software to distinguish light sources from different emitters. The effectiveness of the custom-made system was verified by simultaneous measurement with a commercial instrument ETG-4000 during Valsalva maneuver experiment. The light intensity data acquired from two systems were highly correlated for lower wavelength (Pearson’s correlation coefficient r = 0.92, P < 0.01 and higher wavelength (r = 0.84, P < 0.01. Further, another mental arithmetic experiment was implemented to detect neural activation in the prefrontal cortex. For 9 participants, significant cerebral activation was detected in 6 subjects (P < 0.05 for oxyhemoglobin and in 8 subjects (P < 0.01 for deoxyhemoglobin.

  5. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2018-02-01

    Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.

  6. TOPICAL REVIEW: Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    Science.gov (United States)

    Klein, P. B.; Binari, S. C.

    2003-11-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy.

  7. Detection of pollution transport events southeast of Mexico City using ground-based visible spectroscopy measurements of nitrogen dioxide

    Directory of Open Access Journals (Sweden)

    M. Grutter

    2009-07-01

    Full Text Available This work presents ground based differential optical absorption spectroscopy (DOAS measurements of nitrogen dioxide (NO2 during the MILAGRO field campaign in March 2006 at the Tenango del Aire research site located to the southeast of Mexico City. The DOAS NO2 column density measurements are used in conjunction with ceilometer, meteorological and surface nitric oxide (NO, nitrogen oxides (NOx and total reactive nitrogen (NOy measurements to analyze pollution transport events to the southeast of Mexico City during the MILARGO field campaign. The study divides the data set into three case study pollution transport events that occurred at the Tenango del Aire research site. The unique data set is then used to provide an in depth analysis of example days of each of the pollution transport events. An in depth analysis of 13 March 2006, a Case One day, shows the transport of several air pollution plumes during the morning through the Tenango del Aire research site when southerly winds are present and demonstrates how DOAS tropospheric NO2 vertical column densities (VCD, surface NO2 mixing ratios and ceilometer data are used to determine the vertical homogeneity of the pollution layer. The analysis of 18 March 2006, a Case Two day, shows that when northerly winds are present for the entire day, the air at the Tenango del Aire research site is relatively clean and no major pollution plumes are detected. Case 3 days are characterized by relatively clean air throughout the morning with large DOAS NO2 enhancements detected in the afternoon. The analysis of 28 March 2006 show the DOAS NO2 enhancements are likely due to lightning activity and demonstrate how suitable ground-based DOAS measruements are for monitoring anthropogenic and natural pollution sources that reside above the mixing layer.

  8. Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    Bethany Melville

    2018-02-01

    Full Text Available This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.

  9. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zhang, Lei; Gong, Yao; Li, Yufang; Wang, Xin; Fan, Juanjuan; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    It is vitally important for a power plant to determine the coal property rapidly to optimize the combustion process. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) based coal quality analyzer comprising a LIBS apparatus, a sampling equipment, and a control module, has been designed for possible application to power plants for offering rapid and precise coal quality analysis results. A closed-loop feedback pulsed laser energy stabilization technology is proposed to stabilize the Nd: YAG laser output energy to a preset interval by using the detected laser energy signal so as to enhance the measurement stability and applied in a month-long monitoring experiment. The results show that the laser energy stability has been greatly reduced from ± 5.2% to ± 1.3%. In order to indicate the complex relationship between the concentrations of the analyte of interest and the corresponding plasma spectra, the support vector regression (SVR) is employed as a non-linear regression method. It is shown that this SVR method combined with principal component analysis (PCA) enables a significant improvement in cross-validation accuracy by using the calibration set of coal samples. The root mean square error for prediction of ash content, volatile matter content, and calorific value decreases from 2.74% to 1.82%, 1.69% to 1.22%, and 1.23 MJ/kg to 0.85 MJ/kg, respectively. Meanwhile, the corresponding average relative error of the predicted samples is reduced from 8.3% to 5.48%, 5.83% to 4.42%, and 5.4% to 3.68%, respectively. The enhanced levels of accuracy obtained with the SVR combined with PCA based calibration models open up avenues for prospective prediction in coal properties.

  10. Electronic spectroscopies

    OpenAIRE

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is directly chemical since the outer shell electrons of the TMI are probed and provide information about the oxidation state and coordination environment of TMI on surfaces. Furthermore, the DRS technique ca...

  11. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  12. Recent Research and Progress in Food, Feed and Nutrition with Advanced Synchrotron-based SR-IMS and DRIFT Molecular Spectroscopy.

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2016-01-01

    Ultraspatially resolved synchrotron radiation based infrared microspectroscopy is able to detect the structure features of a food or feed tissue at cellular and molecular levels. However, to date, this advanced synchrotron-based technique is almost unknown to food and feed scientists. The objective of this article was to introduce this novel analytical technology, ultra-spatially resolved synchrotron radiation based infrared microspectroscopy (SR-IMS) to food, feed, conventional nutrition, and molecular nutrition scientists. The emphasis of this review focused on the following areas: (1) Principles of molecular spectroscopy for food and feed structure research, such as protein molecular structure, carbohydrate conformation, heating induced protein structure changes, and effect of gene-transformation on food and feed structure; (2) Molecular spectral analysis methodology; (3) Biological applications of synchrotron SR-IMS and DRIFT spectroscopy; and (4) Recent progress in food, feed and nutrition research program. The information described in this article gives better insight in food structure research progress and update.

  13. [Rapid determination of COD in aquaculture water based on LS-SVM with ultraviolet/visible spectroscopy].

    Science.gov (United States)

    Liu, Xue-Mei; Zhang, Hai-Liang

    2014-10-01

    Ultraviolet/visible (UV/Vis) spectroscopy was studied for the rapid determination of chemical oxygen demand (COD), which was an indicator to measure the concentration of organic matter in aquaculture water. In order to reduce the influence of the absolute noises of the spectra, the extracted 135 absorbance spectra were preprocessed by Savitzky-Golay smoothing (SG), EMD, and wavelet transform (WT) methods. The preprocessed spectra were then used to select latent variables (LVs) by partial least squares (PLS) methods. Partial least squares (PLS) was used to build models with the full spectra, and back- propagation neural network (BPNN) and least square support vector machine (LS-SVM) were applied to build models with the selected LVs. The overall results showed that BPNN and LS-SVM models performed better than PLS models, and the LS-SVM models with LVs based on WT preprocessed spectra obtained the best results with the determination coefficient (r2) and RMSE being 0. 83 and 14. 78 mg · L(-1) for calibration set, and 0.82 and 14.82 mg · L(-1) for the prediction set respectively. The method showed the best performance in LS-SVM model. The results indicated that it was feasible to use UV/Vis with LVs which were obtained by PLS method, combined with LS-SVM calibration could be applied to the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  14. Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types

    Directory of Open Access Journals (Sweden)

    G. Schaepman-Strub

    2009-02-01

    Full Text Available Peatlands accumulated large carbon (C stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in C sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (PFTs; Sphagnum mosses, graminoids, and ericoid shrubs in peatlands, using field spectroscopy reflectance measurements (400–2400 nm on 25 plots differing in PFT cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnumcovered by vascular plants (shrubs and graminoids is feasible with an R2 of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids revealed lower correlations of R2 of 0.54 and 0.57, respectively. This study was based on a dataset where the reflectance of all main PFTs and their pure components within the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.

  15. Design and implementation of a laser-based absorption spectroscopy sensor for in situ monitoring of biomass gasification

    Science.gov (United States)

    Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.

    2017-12-01

    Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.

  16. Development of a detector based on Silicon Drift Detectors for gamma-ray spectroscopy and imaging applications

    Science.gov (United States)

    Busca, P.; Butt, A. D.; Fiorini, C.; Marone, A.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Bombelli, L.; Giacomini, G.; Piemonte, C.; Camera, F.; Giaz, A.; Million, B.; Nelms, N.; Shortt, B.

    2014-05-01

    This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) within the Gamma project. The SDDs, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories, are designed as monolithic arrays of 3 × 3 units, each one of an active area of 8 mm × 8 mm (overall area of 26 mm × 26 mm). The readout electronics and the architecture of the camera are briefly described and then first experimental results coupling the SDD array with a 1'' × 1'' LaBr3:Ce scintillator are reported. An energy resolution of 3% FWHM at 662 keV has been measured at -20°C, better than coupling the same scintillator with a photomultiplier tube. The same scintillator is also used to evaluate position sensitivity with a 1 mm collimated Cs-137 source. The main difficulty in determining the position of the gamma-ray interaction in the crystal is associated to the high thickness/diameter ratio of the crystal (1:1) and the use of reflectors on all lateral and top sides the crystal. This last choice enhances energy resolution but makes imaging capability more challenging because light is spread over all photodetectors. Preliminary results show that the camera is able to detect shifts in the measured signals, when the source is moved with steps of 5 mm. A modified version of the centroid method is finally implemented to evaluate the imaging capability of the system.

  17. Deep level transient spectroscopy on light-emitting diodes based on (In,Ga)N/GaN nanowire ensembles

    Science.gov (United States)

    Musolino, M.; Meneghini, M.; Scarparo, L.; De Santi, C.; Tahraoui, A.; Geelhaar, L.; Zanoni, E.; Riechert, H.

    2015-03-01

    III-N nanowires (NWs) are an attractive alternative to conventional planar layers as the basis for light-emitting diodes (LEDs). In fact, the NW geometry enables the growth of (In,Ga)N/GaN heterostructures with high indium content and without extended defects regardless of the substrate. Despite these conceptual advantages, the NW-LEDs so far reported often exhibit higher leakage currents and higher turn-on voltages than the planar LEDs. In this work, we investigate the mechanisms responsible for the unusually high leakage currents in (In,Ga)N/GaN LEDs based on self-induced NW ensembles grown by molecular beam epitaxy on Si substrates. The temperature-dependent current-voltage (I-V) characteristics, acquired between 83 and 403 K, reveal that temperatures higher than 240 K may activate a further conduction process, which is not present in the low temperature range. Deep level transient spectroscopy (DLTS) measurements show the presence of electron traps, which are activated in the same temperature interval. A detailed analysis of the DLTS signal reveals the presence of two distinct deep levels with apparent activation energies close to Ec-570 meV and Ec-840 meV, and capture cross sections of about 1.0x10-15 cm2 and 2x10-14 cm2, respectively. These results suggest that the leakage process might be related to trap-assisted tunneling, possibly produced by point defects located in the core and/or on the sidewalls of the NWs.

  18. Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Ge Shuzhi S

    2010-12-01

    Full Text Available Abstract Background Near-infrared spectroscopy (NIRS is a non-invasive neuroimaging technique that recently has been developed to measure the changes of cerebral blood oxygenation associated with brain activities. To date, for functional brain mapping applications, there is no standard on-line method for analysing NIRS data. Methods In this paper, a novel on-line NIRS data analysis framework taking advantages of both the general linear model (GLM and the Kalman estimator is devised. The Kalman estimator is used to update the GLM coefficients recursively, and one critical coefficient regarding brain activities is then passed to a t-statistical test. The t-statistical test result is used to update a topographic brain activation map. Meanwhile, a set of high-pass filters is plugged into the GLM to prevent very low-frequency noises, and an autoregressive (AR model is used to prevent the temporal correlation caused by physiological noises in NIRS time series. A set of data recorded in finger tapping experiments is studied using the proposed framework. Results The obtained results suggest that the method can effectively track the task related brain activation areas, and prevent the noise distortion in the estimation while the experiment is running. Thereby, the potential of the proposed method for real-time NIRS-based brain imaging was demonstrated. Conclusions This paper presents a novel on-line approach for analysing NIRS data for functional brain mapping applications. This approach demonstrates the potential of a real-time-updating topographic brain activation map.

  19. A flexible fluorescence correlation spectroscopy based method for quantification of the DNA double labeling efficiency with precision control

    International Nuclear Information System (INIS)

    Hou, Sen; Tabaka, Marcin; Sun, Lili; Trochimczyk, Piotr; Kaminski, Tomasz S; Kalwarczyk, Tomasz; Zhang, Xuzhu; Holyst, Robert

    2014-01-01

    We developed a laser-based method to quantify the double labeling efficiency of double-stranded DNA (dsDNA) in a fluorescent dsDNA pool with fluorescence correlation spectroscopy (FCS). Though, for quantitative biochemistry, accurate measurement of this parameter is of critical importance, before our work it was almost impossible to quantify what percentage of DNA is doubly labeled with the same dye. The dsDNA is produced by annealing complementary single-stranded DNA (ssDNA) labeled with the same dye at 5′ end. Due to imperfect ssDNA labeling, the resulting dsDNA is a mixture of doubly labeled dsDNA, singly labeled dsDNA and unlabeled dsDNA. Our method allows the percentage of doubly labeled dsDNA in the total fluorescent dsDNA pool to be measured. In this method, we excite the imperfectly labeled dsDNA sample in a focal volume of <1 fL with a laser beam and correlate the fluctuations of the fluorescence signal to get the FCS autocorrelation curves; we express the amplitudes of the autocorrelation function as a function of the DNA labeling efficiency; we perform a comparative analysis of a dsDNA sample and a reference dsDNA sample, which is prepared by increasing the total dsDNA concentration c (c > 1) times by adding unlabeled ssDNA during the annealing process. The method is flexible in that it allows for the selection of the reference sample and the c value can be adjusted as needed for a specific study. We express the precision of the method as a function of the ssDNA labeling efficiency or the dsDNA double labeling efficiency. The measurement precision can be controlled by changing the c value. (letter)

  20. Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task

    Directory of Open Access Journals (Sweden)

    Rodolphe J. Gentili

    2013-07-01

    Full Text Available This study investigated changes in brain hemodynamics, as measured by functional near infrared spectroscopy (fNIR, during performance of a cognitive-motor adaptation task. The adaptation task involved the learning of a novel visuo-motor transformation (a 60 degree counterclockwise screen-cursor rotation, which required inhibition of a pre-potent visuo-motor response. A control group experienced a familiar transformation and thus, did not face any executive challenge. Analysis of the experimental group hemodynamic responses revealed that the performance enhancement was associated with a monotonic reduction in the oxygenation level in the prefrontal cortex. This finding confirms and extends functional magnetic resonance imaging (fMRI and electroencephalography (EEG studies of visuo-motor adaptation and learning. The changes in prefrontal brain activation suggest an initial recruitment of frontal executive functioning to inhibit pre-potent visuo-motor mappings followed by a progressive de-recruitment of the same prefrontal regions. The prefrontal hemodynamic changes observed in the experimental group translated into enhanced motor performance revealed by a reduction in movement time, movement extent, root mean square error and the directional error. These kinematic adaptations are consistent with the acquisition of an internal model of the novel visuo-motor transformation. No comparable change was observed in the control group for either the hemodynamics or for the kinematics. This study 1 extends our understanding of the frontal executive processes from the cognitive to the cognitive-motor domain and 2 suggests that optical brain imaging can be employed to provide hemodynamic based-biomarkers to assess and monitor the level of adaptive cognitive-motor performance.

  1. Study of Radiation Induced Radicals in HAP and β-TCP Based Bone Graft Materials by ERP Spectroscopy

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Matkovic, I.

    2013-01-01

    Calcium phosphates such as beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) are frequently used as dental implants due to proven excellent biocompatibility. Because of their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, literature provides little information about effects of γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this study EPR (electron paramagnetic resonance) spectroscopy was used to investigate HAP and β-TCP based dental implants present on the market. Eight dental graft materials present on the market were investigated: Bioresorb R Macropore, Poresorb R -TCP, Easy-Graft T M and Cerasorb R synthetic β-tricalcium phosphates, Easy-Graft T M crystal and Ossceram R two phase synthetic CaP consisting of 60 % HAP and 40 % β-TCP, and Dexabone R and Bio-Oss R bone graft material of bovine origin. EPR study shows that this is the only technique for characterization of free radicals that can simultaneously determine not only the presence and content, but also the position and the structure of free radicals formed by γ-sterilization in the investigated materials, as well as the paramagnetic substitutions incorporated in the materials during the synthesis (such as Mn 2+ , Fe 3+ or Cr 2+ ). Additionally, EPR provides information on stability of irradiation-induced radicals (CO 2 - , trapped H-atoms, NO 3 2 etc.) and processes for reducing them. Results show that EPR should be considered as a valuable technique in improving the quality of bone graft materials, which must be sterile, and to offer the high quality, efficacy and reliable materials to the patients.(author)

  2. Study of the Imidazolium-Based Ionic Liquid - ag Electrified Interface on the CO_{2} Electroreduction by Sum Frequency Spectroscopy.

    Science.gov (United States)

    Garcia Rey, Natalia; Dlott, Dana

    2017-06-01

    Imidazolium based ionic liquids (ILs) have been used as a promising system to improve the CO_{2} electroreduction at lower overpotential than other organic or aqueous electrolytes^{1}. Although the detailed mechanism of the CO_{2} electroreduction on Ag has not been elucidated yet, we have developed a methodology to study the electrified interface during the CO_{2} electroreduction using sum frequency generation (SFG) spectroscopy in combination with cyclic voltammetry^{2}. In this work, we tuned the composition of imidazolium-based ILs by exchanging the anion or the functional groups of the imidazolium. We use the nonresonant SFG (NR-SFG) to study the IL-Ag interface and resonant SFG (RES-SFG) to identify the CO adsorbed on the electrode and monitor the Stark shift as a function of cell potential. In previous studies on CO_{2} electroreduction in the IL: 1-ethyl-3-methylimidazolium tetrafluorborate (EMIM-BF_{4}) on Ag, we showed three events occurred at the same potential (-1.33 V vs. Ag/AgCl): the current associated with CO_{2} electroreduction increased, the Stark shift of the adsorbed atop CO doubled in magnitude and the EMIM-BF_{4} underwent a structural transition^{3}. In addition, we also observed how the structural transition of the EMIM-BF_{4} electrolyte shift to lower potentials when the IL is mixed with water. It is known that water enhances the CO_{2} electroreduction producing more CO^{4}. Moreover, the CO is adsorbed in multi-bonded and in atop sites when more water is present in the electrolyte. ^{1}Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J., New Insights into the Role of Imidazolium-Based Promoters for the Electroreduction of CO_{2} on a Silver Electrode. J. Am. Chem. Soc. 2016, 138, 7820-7823. ^{2}Garcia Rey, N.; Dlott, D. D., Studies of Electrochemical Interfaces by Broadband Sum Frequency Generation. J. Electroanal. Chem. 2016. DOI:10.1016/j.jelechem.2016.12.023. ^{3}Garcia Rey, N.; Dlott, D. D

  3. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  4. Large scale prediction of soil properties in the West African yam belt based on mid-infrared soil spectroscopy

    Science.gov (United States)

    Baumann, Philipp; Lee, Juhwan; Paule Schönholzer, Laurie; Six, Johan; Frossard, Emmanuel

    2016-04-01

    Yam (Dioscorea sp.) is an important staple food in West Africa. Fertilizer applications have variable effects on yam tuber yields, and a management option solely based on application of mineral NPK fertilizers may bear the risk of increased organic matter mineralization. Therefore, innovative and sustainable nutrient management strategies need to be developed and evaluated for yam cultivation. The goal of this study was to establish a mid-infrared soil spectroscopic library and models to predict soil properties relevant to yam growth. Soils from yam fields at four different locations in Côte d'Ivoire and Burkina Faso that were representative of the West African yam belt were sampled. The project locations ranged from the humid forest zone (5.88 degrees N) to the northern Guinean savannah (11.07 degrees N). At each location, soils of 20 yam fields were sampled (0-30 cm). For the location in the humid forest zone additional 14 topsoil samples from positions that had been analyzed in the Land Degradation Surveillance Framework developed by ICRAF were included. In total, 94 soil samples were analyzed using established reference analysis protocols. Besides soils were milled and then scanned by fourier transform mid-infrared spectroscopy in the range between 400 and 4000 reciprocal cm. Using partial least squares (PLS) regression, PLS1 calibration models that included soils from the four locations were built using two thirds of the samples selected by Kennard-Stones sampling algorithm in the spectral principal component space. Models were independently validated with the remaining data set. Spectral models for total carbon, total nitrogen, total iron, total aluminum, total potassium, exchangeable calcium, and effective cation exchange capacity performed very well, which was indicated by R-squared values between 0.8 and 1.0 on both calibration and validation. For these soil properties, spectral models can be used for cost-effective, rapid, and accurate predictions

  5. Near-Infrared Spectroscopy-Based Frontal Lobe Neurofeedback Integrated in Virtual Reality Modulates Brain and Behavior in Highly Impulsive Adults

    OpenAIRE

    Hudak, Justin; Blume, Friederike; Dresler, Thomas; Haeussinger, Florian B.; Renner, Tobias J.; Fallgatter, Andreas J.; Gawrilow, Caterina; Ehlis, Ann-Christine

    2017-01-01

    Based on neurofeedback (NF) training as a neurocognitive treatment in attention-deficit/hyperactivity disorder (ADHD), we designed a randomized, controlled functional near-infrared spectroscopy (fNIRS) NF intervention embedded in an immersive virtual reality classroom in which participants learned to control overhead lighting with their dorsolateral prefrontal brain activation. We tested the efficacy of the intervention on healthy adults displaying high impulsivity as a sub-clinical populatio...

  6. Examining the Influence of Seasonality, Condition, and Species Composition on Mangrove Leaf Pigment Contents and Laboratory Based Spectroscopy Data

    Directory of Open Access Journals (Sweden)

    Francisco Flores-de-Santiago

    2016-03-01

    Full Text Available The purpose of this investigation was to determine the seasonal relationships (dry vs. rainy between reflectance (400–1000 nm and leaf pigment contents (chlorophyll-a (chl-a, chlorophyll-b (chl-b, total carotenoids (tcar, chlorophyll a/b ratio in three mangrove species (Avicennia germinans (A. germinans, Laguncularia racemosa (L. racemosa, and Rhizophora mangle (R. mangle according to their condition (stressed vs. healthy. Based on a sample of 360 leaves taken from a semi-arid forest of the Mexican Pacific, it was determined that during the dry season, the stressed A. germinans and R. mangle show the highest maximum correlations at the green (550 nm and red-edge (710 nm wavelengths (r = 0.8 and 0.9, respectively for both chl-a and chl-b and that much lower values (r = 0.7 and 0.8, respectively were recorded during the rainy season. Moreover, it was found that the tcar correlation pattern across the electromagnetic spectrum was quite different from that of the chl-a, the chl-b, and chl a/b ratio but that their maximum correlations were also located at the same two wavelength ranges for both seasons. The stressed L. racemosa was the only sample to exhibit minimal correlation with chl-a and chl-b for either season. In addition, the healthy A. germinans and R. mangle depicted similar patterns of chl-a and chl-b, but the tcar varied depending on the species. The healthy L. racemosa recorded higher correlations with chl-b and tcar at the green and red-edge wavelengths during the dry season, and higher correlation with chl-a during the rainy season. Finally, the vegetation index Red Edge Inflection Point Index (REIP was found to be the optimal index for chl-a estimation for both stressed and healthy classes. For chl-b, both the REIP and the Vogelmann Red Edge Index (Vog1 index were found to be best at prediction. Based on the results of this investigation, it is suggested that caution be taken as mangrove leaf pigment contents from spectroscopy data

  7. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  8. Emission spectroscopy

    International Nuclear Information System (INIS)

    Barnes, R.M.

    1978-01-01

    This 16th article in the series of biennial reviews of emission spectroscopy surveys with emphasis the emission spectrochemical literature appearing in referred publications during 1976 and 1977. Books and general reviews of emission spectroscopy and closely related subjects are considered in the first section, whereas specific reviews and texts are included in each of the five tropical sections. Spectral descriptions and classifications are examined in the second section. An abbreviated instrumentation section follows, and standards, samples, calibrations, and calculations are evaluated in the fourth section. The emphasis on excitation sources reflects the size of section five. In the sixth section, important applications are explored

  9. Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets.

    Science.gov (United States)

    Neuberger, Sabine; Neusüß, Christian

    2015-08-10

    In the last decade, counterfeit pharmaceutical products have become a widespread issue for public health. Raman spectroscopy which is easy, non-destructive and information-rich is particularly suitable as screening method for fast characterization of chemicals and pharmaceuticals. Combined with chemometric techniques, it provides a powerful tool for the analysis and determination of counterfeit medicines. Here, for the first time, a systematic study of the benefits and limitations of Raman spectroscopy for the analysis of pharmaceutical samples on a large set of model tablets, varying with respect to chemical and physical properties, was performed. To discriminate between the different mixtures, a combination of dispersive Raman spectroscopy performing in backscattering mode and principal component analysis was used. The discrimination between samples with different coatings, a varying amount of active pharmaceutical ingredients and a diversity of excipients were possible. However, it was not possible to distinguish between variations of the press power, mixing quality and granulation. As a showcase, the change in Raman signals of commercial acetylsalicylic acid effervescent tablets due to five different storage conditions was monitored. It was possible to detect early small chemical changes caused by inappropriate storage conditions. These results demonstrate that Raman spectroscopy combined with multivariate data analysis provides a powerful methodology for the fast and easy characterization of genuine and counterfeit medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors - comparison with lead-based relaxors

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Nuzhnyy, Dmitry; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Kamba, Stanislav; Hlinka, Jiří

    2015-01-01

    Roč. 88, č. 3 (2015), 320-332 ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : relaxor ferroelectrics * polar phonons * polar nanoregions * dielectric spectroscopy * off-centred ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.858, year: 2015

  11. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy

    NARCIS (Netherlands)

    Chen, T.; Changa, Q.; Clevers, J.G.P.W.; Kooistra, L.

    2015-01-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool.

  12. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  13. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  14. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    Science.gov (United States)

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  15. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.

  16. Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV-Vis Spectroscopy.

    Science.gov (United States)

    Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron

    2018-03-20

    Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

  17. [Application of infrared spectroscopy technique to protein content fast measurement in milk powder based on support vector machines].

    Science.gov (United States)

    Wu, Di; Cao, Fang; Feng, Shui-Juan; He, Yong

    2008-05-01

    spectral analysis. Moreover, the study compared the prediction results based on near infrared spectral data and mid-infrared spectral data. The results showed that the performance of the model with mid-infrared spectral data was better than the one with near infrared spectra data. It was concluded that infrared spectroscopy technique can do the quantification of protein content in milk powder fast and non-destructively and the process was simple and easy to operate. The results of this study can be used for the design of a simple and non-destructive spectra sensor for the quantitative of protein content in milk powder.

  18. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated TESS Planets Compared to Select Discoveries from Space-Based and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Deming, Drake; Albert, Loic; Bouma, Luke; Bean, Jacob; Lopez-Morales, Mercedes

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission of most of the celestial sky, discovering over a thousand super-Earth and sub-Neptune-sized exoplanets potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). Bouma et al. (2017) and Sullivan et al. (2015) used Monte Carlo simulations to predict the properties of the planetary systems that TESS is likely to detect, basing their simulations upon Kepler-derived planet occurrence rates and photometric performance models for the TESS cameras. We employed a JWST Near InfraRed Imager and Slitless Spectrograph (NIRISS) simulation tool to estimate the signal-to-noise (S/N) that JWST/NIRISS will attain in transmission spectroscopy of these anticipated TESS discoveries, and we then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that only a few anticipated TESS discoveries in the terrestrial planet regime will result in better JWST/NIRISS S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, or LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact systems (e.g. TRAPPIST-1) were not included in predicting the anticipated TESS planet yield. Furthermore, our results show that several hundred anticipated TESS discoveries in the super-Earth and sub-Neptune regime will produce S/N higher than currently known exoplanets such as K2-3b or K2-3c. We apply our results to estimate the scope of a JWST follow-up observation program devoted to mapping the transition region between high molecular weight and primordial planetary atmospheres.

  19. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals.

    Science.gov (United States)

    Naressi, A; Couturier, C; Castang, I; de Beer, R; Graveron-Demilly, D

    2001-07-01

    This article describes a Java-based graphical user interface for the magnetic resonance user interface (MRUI) quantitation package. This package allows MR spectroscopists to easily perform time-domain analysis of in vivo/medical MR spectroscopy data. We have found that the Java programming language is very well suited for developing highly interactive graphical software applications such as the MRUI system. We also have established that MR quantitation algorithms, programmed in the past in other languages, can easily be embedded into the Java-based MRUI by using the Java native interface (JNI).

  20. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  1. Noise spectroscopy measurement of 2.3μm CW GaSb based laser diodes

    Czech Academy of Sciences Publication Activity Database

    Chobola, Z.; Juránková, V.; Vaněk, J.; Hulicius, Eduard; Šimeček, Tomislav; Alibert, C.; Rouillard, Y.; Werner, R.

    2005-01-01

    Roč. 1, - (2005), s. 70-73 ISSN 0033-2089 R&D Projects: GA MŠk(CZ) LC510; GA AV ČR(CZ) KSK1010104 Grant - others:EC Project GLADIS(XE) IST-2001-35178 Institutional research plan: CEZ:AV0Z1010914 Keywords : noise spectroscopy * GaSb * laser diode * 1/f noise Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. GaSb based lasers operating near 2.3 .mu.m for high resolution absorption spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Horká-Zelenková, Veronika; Šimeček, Tomislav; Hulicius, Eduard; Pangrác, Jiří; Oswald, Jiří; Petříček, Otto; Rouillard, C.; Alibert, C.; Werner, R.

    2005-01-01

    Roč. 61, - (2005), s. 3066-3069 ISSN 1386-1425 R&D Projects: GA AV ČR KSK1010104; GA AV ČR IAA4040104; GA MŠk OC 715.50 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z1010914 Keywords : laser diode * absorption spectroscopy * gas detection * methane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.290, year: 2005

  3. Near-Infrared Spectroscopy – Electroencephalography-Based Brain-State-Dependent Electrotherapy: A Computational Approach Based on Excitation–Inhibition Balance Hypothesis

    Science.gov (United States)

    Dagar, Snigdha; Chowdhury, Shubhajit Roy; Bapi, Raju Surampudi; Dutta, Anirban; Roy, Dipanjan

    2016-01-01

    Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation–inhibition (E–I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS–EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E–I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual “forward models” to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E–I-based brain models. Furthermore, E–I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E–I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E–I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of

  4. Near-infrared spectroscopy (NIRS - electroencephalography (EEG based brain-state dependent electrotherapy (BSDE: A computational approach based on excitation-inhibition balance hypothesis

    Directory of Open Access Journals (Sweden)

    Snigdha Dagar

    2016-08-01

    Full Text Available Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The post stroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG and functional-near-infrared spectroscopy (fNIRS can be leveraged for Brain State Dependent Electrotherapy (BSDE. In this hypothesis and theory article, we propose a computational approach based on excitation-inhibition (E-I balance hypothesis to objectively quantify the post stroke individual brain state using online fNIRS-EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local excitation-inhibition (that is the ratio of Glutamate/GABA which may be targeted with NIBS using a computational pipeline that includes individual forward models to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons which can be captured with excitation-inhibition based brain models. Furthermore, E-I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing which can then be implicated in changes in function. We first review evidence that shows how this local imbalance between excitation-inhibition leading to functional dysfunction can be restored in targeted sites with NIBS (Motor Cortex, Somatosensory Cortex resulting in large scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Secondly, we show evidence how BSDE based on inhibition–excitation balance hypothesis may target a specific brain site or network as an adjuvant treatment

  5. Flexoelectric spectroscopy.

    Science.gov (United States)

    Scott, J F

    2013-08-21

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals.

  6. Flexoelectric spectroscopy

    International Nuclear Information System (INIS)

    Scott, J F

    2013-01-01

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals. (viewpoint)

  7. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Directory of Open Access Journals (Sweden)

    Miguel R. Carro-Temboury Martin Kühnel

    2018-02-01

    Full Text Available Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  8. Two-dimensional NMR spectroscopy: correlated, homonuclear-correlated, and nuclear Overhauser spectroscopy. January 1975-December 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-December 1988

    International Nuclear Information System (INIS)

    1988-12-01

    This bibliography contains citations concerning the enhanced analytical techniques of two-dimensional nuclear magnetic resonance (2-D NMR). Applications to specific molecules, biomolecules, and compounds as well as comparisons of three 2-D NMR techniques: correlated spectroscopy (COSY), nuclear Overhauser (NOSEY), and homonuclear-correlated spectroscopy (HOMCOR). (Contains 190 citations fully indexed and including a title list.)

  9. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Science.gov (United States)

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  10. Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy

    Directory of Open Access Journals (Sweden)

    J. P. Carvalho

    2009-01-01

    Full Text Available In this work we described an optical fibre sensing system for detecting low levels of methane. The properties of hollow-core photonic crystal fibres are explored to have a sensing head with favourable characteristics for gas sensing, particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the sensing structure. The sensor interrogation was performed applying the Wavelength Modulation Spectroscopy technique, and a portable measurement unit was developed with performance suitable for remote detection of low levels of methane. This portable system has the capacity to simultaneously interrogate four remote photonic crystal fibre sensing heads.

  11. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  12. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  13. Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics

    Science.gov (United States)

    Duarte, Janaína; Pacheco, Marcos T. T.; Villaverde, Antonio Balbin; Machado, Rosangela Z.; Zângaro, Renato A.; Silveira, Landulfo

    2010-07-01

    Toxoplasmosis is an important zoonosis in public health because domestic cats are the main agents responsible for the transmission of this disease in Brazil. We investigate a method for diagnosing toxoplasmosis based on Raman spectroscopy. Dispersive near-infrared Raman spectra are used to quantify anti-Toxoplasma gondii (IgG) antibodies in blood sera from domestic cats. An 830-nm laser is used for sample excitation, and a dispersive spectrometer is used to detect the Raman scattering. A serological test is performed in all serum samples by the enzyme-linked immunosorbent assay (ELISA) for validation. Raman spectra are taken from 59 blood serum samples and a quantification model is implemented based on partial least squares (PLS) to quantify the sample's serology by Raman spectra compared to the results provided by the ELISA test. Based on the serological values provided by the Raman/PLS model, diagnostic parameters such as sensitivity, specificity, accuracy, positive prediction values, and negative prediction values are calculated to discriminate negative from positive samples, obtaining 100, 80, 90, 83.3, and 100%, respectively. Raman spectroscopy, associated with the PLS, is promising as a serological assay for toxoplasmosis, enabling fast and sensitive diagnosis.

  14. Ex-vivo evaluation of an early caries detector based on integrated OCT and polarized Raman spectroscopy (Conference Presentation)

    Science.gov (United States)

    Lamouche, Guy; Padioleau, Christian; Hewko, Mark; Smith, Michael S. D.; Schattka, Bernie J.; Fulton, Crystal; Gauthier, Bruno; Beauchesne, André; Ko, Alex C.; Choo-Smith, Lin-P'ing; Sowa, Michael G.

    2017-02-01

    Early detection of incipient caries would allow dentists to provide more effective measures to delay or to reverse caries' progression at earlier stage. Such earlier intervention could lead to improved oral health for the patients and reduced burden to the health system. Previously, we have demonstrated that the combination of morphological and biochemical information furnished by optical coherence tomography (OCT) and polarized Raman spectroscopy (PRS), respectively, provided a unique tool for dental caries management. In this study we will report the first pre-clinical caries detection system that includes a hand-held probe with a size slightly larger than a tooth brush. This probe presents a novel platform combining both OCT and PRS optics in a very tight space ideal for clinical practice. OCT cross-sectional images of near-surface enamel morphology are obtained with miniaturized MEMS scanning device and are processed in real-time to identify culprit regions. These regions are sequentially analyzed with polarized Raman spectroscopy for further confirmation. PRS is performed using 830nm laser line and four detection channels in order to obtain polarized Raman spectroscopic data, i.e. depolarization ratio of the hydroxyapatite Raman band at 960 cm-1. A detailed description of this hand-held caries detector and ex-vivo/in-vivo test results will be presented.

  15. Precision Meson Spectroscopy: Diffractive Production at COMPASS and Development of a GEM-based TPC for PANDA

    CERN Document Server

    Weitzel, Q

    Meson spectroscopy is a unique way to access Quantum Chromo Dynamics (QCD) and learn about its properties. Due to the non-Abelian structure, QCD predicts new states of matter with gluonic degrees of freedom. In particular q ¯ qg hybrids, which can have spin-exotic quantum numbers forbidden for conventional q ¯ q mesons, are expected to exist. Such states were searched for in the past, mostly in the light-quark sector. However, the experimental situation is still ambiguous and needs to be clarified. Further insights will certainly also come from the heavy-quark spectroscopy. Several new charmonium-like resonances were for example discovered during the last years, which have to be studied in more detail by future experiments to reveal their nature. Diffractive dissociation reactions at COMPASS provide clean access to meson resonances with masses below 2.5 GeV/c2. During a pilot run in 2004 using pion beams on lead targets, a competitive number of −−+ final state events were recorded within a few days of d...

  16. [Prediction of chlorophyll content of leaves of oil camelliae after being infected with anthracnose based on Vis/NIR spectroscopy].

    Science.gov (United States)

    Wu, Nan; Liu, Jun-ang; Zhou, Guo-ying; Yan, Rui-kun; Zhang, Lei

    2012-05-01

    The prediction model of chlorophyll content of leaves in canopies of oil camelliae under disease was explored and built by analyzing the Vis/NIR spectroscopy characteristics of oil camelliae canopies after being injected with anthracnose. Through field survey of disease index (DI), chlorophyll content and spectral data of leaves in canopies surviving different severity of disease were acquired. The first order differential of spectral data combined with moving average filter was pretreated. The prediction model of BP neural network of chlorophyll content was built by extracting sensitive wave band from spectral resample data. The results showed that with the disease being aggravated, reflection peaks and valleys of spectra of oil camelliae canopies in visible-light region vanished gradually, steep red edges from red light to near infrared leveled little by little, and reflectivity of healthy oil camelliae was far larger than that of ill ones. The sensitive wave band of absorption and reflection of chlorophyll lay in the region of 84-512, 533-565, 586-606 and 672-724 nm. The correlation coefficient r and RMSE between predictive values calculated from BP neural network using sensitive wave band as input variables and observed values was 0.9921 and 0.0458 respectively. It was therefore feasible to utilize Vis/NIR spectroscopy technology to forecast the chlorophyll content of oil camelliae after being infected with anthracnose.

  17. [Application of wavelength selection algorithm to measure the effective component of Chinese medicine based on near-infrared spectroscopy].

    Science.gov (United States)

    Gu, Xiao-Yu; Xu, Ke-Xin; Wang, Yan

    2006-09-01

    Near infrared (NIR) spectroscopy has raised a lot of interest in the pharmaceutical industry because it is a rapid and cost-effective analytical type of spectroscopy with no need for extensive sample preparation, and with the easy-realizable ability of on-line application. The NIR technology can increase the quality control standard of the Chinese medicine and accelerate the entry into the international market. In the present paper, two methods for wavelength selection are applied to the measurement of borneol, one of which is the multiple-chain stepwise, which tends to select many variables in the same area containing valuable information, and the other is the mixture genetic algorithm, which incorporates simulated annealing so as to improve the local searching ability while maintaining the global searching ability. The results present that the number of wavelength is reduced to 16% compared with the original number of wavelength, and the prediction accuracy has increased 47.6%. Therefore, the method of wavelength selection is a good way to enhance the prediction accuracy and simplify the model in NIR region.

  18. Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements.

    Science.gov (United States)

    Bai, Wenming; Yoshimura, Norio; Takayanagi, Masao; Che, Jingai; Horiuchi, Naomi; Ogiwara, Isao

    2016-06-28

    Nondestructive prediction of ingredient contents of farm products is useful to ship and sell the products with guaranteed qualities. Here, near-infrared spectroscopy is used to predict nondestructively total sugar, total organic acid, and total anthocyanin content in each blueberry. The technique is expected to enable the selection of only delicious blueberries from all harvested ones. The near-infrared absorption spectra of blueberries are measured with the diffuse reflectance mode at the positions not on the calyx. The ingredient contents of a blueberry determined by high-performance liquid chromatography are used to construct models to predict the ingredient contents from observed spectra. Partial least squares regression is used for the construction of the models. It is necessary to properly select the pretreatments for the observed spectra and the wavelength regions of the spectra used for analyses. Validations are necessary for the constructed models to confirm that the ingredient contents are predicted with practical accuracies. Here we present a protocol to construct and validate the models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy.

  19. A NIR spectroscopy-based efficient approach to detect fraudulent additions within mixtures of dried porcini mushrooms.

    Science.gov (United States)

    Casale, Monica; Bagnasco, Lucia; Zotti, Mirca; Di Piazza, Simone; Sitta, Nicola; Oliveri, Paolo

    2016-11-01

    Boletus edulis and allied species (BEAS), known as "porcini mushrooms", represent almost the totality of wild mushrooms placed on the Italian market, both fresh and dehydrated. Furthermore, considerable amounts of these dried fungi are imported from China. The presence of Tylopilus spp. and other extraneous species (i.e., species edible but not belonging to BEAS) within dried porcini mushrooms - mainly from those imported from China and sold in Italy - may represent an evaluable problem from a commercial point of view. The purpose of the present study is to evaluate near-infrared spectroscopy (NIRS) as a rapid and effective alternative to classical methods for identifying extraneous species within dried porcini batches and detecting related commercial frauds. To this goal, 80 dried fungi including BEAS, Tylopilus spp., and Boletus violaceofuscus were analysed by NIRS. For each sample, 3 different parts of the pileus (pileipellis, flesh and hymenium) were analysed and a low-level strategy for data fusion, consisting of combining the signals obtained by the different parts before data processing, was applied. Then, NIR spectra were used to develop reliable and efficient class-models using a novel method, partial least squares density modelling (PLS-DM), and the two most commonly used class-modelling techniques, UNEQ and SIMCA. The results showed that NIR spectroscopy coupled with chemometric class-modelling technique can be suggested as an effective analytical strategy to check the authenticity of dried BEAS mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Development and validation of an infrared spectroscopy-based method for the analysis of moisture content in 5-fluorouracil.

    Science.gov (United States)

    Singh, Parul; Jangir, Deepak K; Mehrotra, Ranjana; Bakhshi, A K

    2009-06-01

    The determination of moisture content in pharmaceuticals is very important as moisture is mainly responsible for the degradation of drugs. Degraded drugs have reduced efficacy and could be hazardous. The objective of the present work is to replace the Karl Fischer (KF) titration method used for moisture analysis with a method that is rapid, involves no toxic materials and is more effective. Diffuse reflectance infrared (IR) spectroscopy, which is explored as a potential alternative to various approaches, is investigated for moisture analysis in 5-fluorouracil, an anticancer drug. A total of 150 samples with varying moisture content were prepared in laboratory by exposing the drug at different relative humidities, for different time intervals. Infrared spectra of these samples were collected with a Fourier transform infrared (FTIR) spectrophotometer using a diffuse reflectance accessory. Reference moisture values were obtained using the Karl Fischer titration method. A number of calibration models were developed using the partial least squares (PLS) regression method. A good correlation was obtained between predicted IR values and reference values in the calibration and validation set. The derived calibration curve was used to predict moisture content in unknown samples. The results show that IR spectroscopy can be used successfully for the determination of moisture content in the pharmaceutical industry. Copyright 2009 John Wiley & Sons, Ltd.

  1. Optimization design of the tuning method for FBG spectroscopy based on the numerical analysis of all-fiber Raman temperature lidar

    Science.gov (United States)

    Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin

    2018-01-01

    All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.

  2. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular ...

  3. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  4. A potential method for non-invasive acute myocardial infarction detection based on saliva Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Cao, Gang; Chen, Maowen; Chen, Yuanxiang; Huang, Zufang; Lin, Jinyong; Lin, Jia; Xu, Zhihong; Wu, Shanshan; Huang, Wei; Weng, Guoxing; Chen, Guannan

    2015-12-01

    Raman spectroscopy (RS) was employed for human saliva biochemical analysis with the aim to develop a rapidly non-invasive test for acute myocardial infarction (AMI) detection. High-quality Raman spectra were obtained from human saliva samples of 46 AMI patients and 43 healthy controls. Significant differences in Raman intensities of prominent bands were observed between AMI and normal saliva. The tentative assignment of the observed Raman bands indicated constituent and conformational differences between the two groups. Furthermore, principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and classify the Raman spectra acquired from AMI and healthy saliva, yielding a diagnostic sensitivity of 80.4% and specificity of 81.4%. The results from this exploratory study demonstrated the feasibility and potential for developing RS analysis of human saliva into a clinical tool for rapid AMI detection and screening.

  5. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance.

    Science.gov (United States)

    Cheng, Xin R; Hau, Ben Y H; Endo, Tatsuro; Kerman, Kagan

    2014-03-15

    Electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) were performed on the same Au nanoparticle (AuNP)-modified indium tin oxide (ITO) coated glass surfaces. Cyclic voltammetry was applied to electrodeposit AuNPs on ITO surface directly. The surface plasmon band characterization of AuNPs was initially studied by controlling the electrodeposition conditions. It was found that the size of AuNP clusters was significantly affected by the applied potential and KCl concentration in solution. The dual-detection platform was applied to detect DNA hybridization related to a specific point mutation in apolipoprotein E gene (ApoE), which was related to the progression of Alzheimer's disease. The preliminary results facilitate the development of a versatile biosensor that can be easily miniaturized and integrated into a high-throughput diagnostic device. © 2013 Elsevier B.V. All rights reserved.

  6. Poor agreement between transcranial Doppler and near-infrared spectroscopy-based estimates of cerebral blood flow changes in sepsis

    DEFF Research Database (Denmark)

    Toksvang, Linea N; Plovsing, Ronni R; Petersen, Marie W

    2014-01-01

    BACKGROUND: Continuous monitoring of cerebral blood flow (CBF) may be valuable in critically ill patients with sepsis. In this study, we compared spatially resolved near-infrared spectroscopy (NIRS) to transcranial Doppler ultrasound (TCD)-derived estimates of noradrenaline-associated changes...... in CBF in such patients. METHODS: Mean arterial blood pressure (MAP) was elevated by increasing the noradrenaline infusion rate in eight mechanically ventilated, critically ill patients diagnosed with severe sepsis or septic shock. The associated changes in CBF were assessed by simultaneous ipsilateral......-derived estimates with a relative bias of 14% and limits of agreement of -18% to 45% change in CBF. CONCLUSION: Our findings stress that TCD and NIRS cannot be used interchangeably for monitoring changes in cerebral haemodynamics in critically ill patients with sepsis receiving vasopressor treatment...

  7. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    Science.gov (United States)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  8. 5-Chlorouracil and 5-bromouracil acid-base equilibrium study in water and DMSO by NMR spectroscopy

    Science.gov (United States)

    Abdrakhimova, G. S.; Ovchinnikov, M. Yu; Lobov, A. N.; Spirikhin, L. V.; Khursan, S. L.; Ivanov, S. P.

    2018-04-01

    Mechanism of 5-chloro- and 5-bromouracil deprotonation in water and dimethyl sulfoxide (DMSO) has been studied by the 13C and 1H NMR spectroscopy. NMR spectra were interpreted using DFT quantum chemical calculations at the CSGT-PCM-TPSSTPSS/6-311+G(d, p) level of theory. It was found that 5-chloro- (5ClU) and 5-bromouracil (5BrU) are present as a mixture of two anionic forms where the deprotonation is realized at the first (N1) and the third (N3) positions of the pyrimidine ring. N1 form is major for water-alkaline [xAN1/xAN3 (5ClU) = 0.65/0.35 and xAN1/xAN3 (5BrU) = 0.72/0.28, x - molar fraction] and the only one for DMSO solution.

  9. Classification and quantitation of milk powder by near-infrared spectroscopy and mutual information-based variable selection and partial least squares

    Science.gov (United States)

    Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong

    2018-01-01

    Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.

  10. A Rapid Identification Method for Calamine Using Near-Infrared Spectroscopy Based on Multi-Reference Correlation Coefficient Method and Back Propagation Artificial Neural Network.

    Science.gov (United States)

    Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli

    2017-07-01

    As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.

  11. Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure.

    Science.gov (United States)

    Chen, Baozhong; Kano, Hidenori; Kuzuya, Mikio

    2008-02-01

    A quantitative analysis of trace lead in tin-base lead-free solder was carried out with laser-induced plasma spectroscopy (LIPS). In order to evaluate the applicability of the technique for rapid in situ analytical purposes, measurements were performed in air at atmospheric pressure, and the emission characteristics of the plasma produced by a Q-switched Nd:YAG laser over a laser energy range of 10 - 90 mJ were investigated using time-resolved spectroscopy. The experimental results showed that the emission intensity of the analysis line (Pb I 405.78 nm) was maximized at a laser energy of around 30 mJ, and a time-resolved measurement of a spectrum with a delay time of 0.4 micros after the laser pulse was effective for reducing the background continuum. Based on the results, lead-free solder certified reference materials were analyzed for trace lead (concentration 174 - 1940 ppm), and a linear calibration curve was obtained with a detection limit of several tens ppm.

  12. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, 57Fe Moessbauer spectroscopy and thermal studies

    International Nuclear Information System (INIS)

    Travnicek, Zdenek; Herchel, Radovan; Mikulik, Jiri; Zboril, Radek

    2010-01-01

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN) 5 NO].H 2 O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN) 5 NO].2H 2 O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9 ]octadecane and [Cu(nme) 2 Fe(CN) 5 NO].H 2 O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, 57 Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, 57 Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe 2 O 4 and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN) 5 NO].xH 2 O, where L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9 ]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and 57 Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.

  13. The relationship between dorsolateral prefrontal activation and speech performance-based social anxiety using functional near infrared spectroscopy.

    Science.gov (United States)

    Glassman, Lisa H; Kuster, Anootnara T; Shaw, Jena A; Forman, Evan M; Izzetoglu, Meltem; Matteucci, Alyssa; Herbert, James D

    2017-06-01

    Functional near-infrared (fNIR) spectroscopy is a promising new technology that has demonstrated utility in the study of normal human cognition. We utilized fNIR spectroscopy to examine the effect of social anxiety and performance on hemodynamic activity in the dorsolateral prefrontal cortex (DLPFC). Socially phobic participants and non-clinical participants with varying levels of social anxiety completed a public speaking task in front of a small virtual audience while the DLPFC was being monitored by the fNIR device. The relationship between anxiety and both blood volume (BV) and deoxygenated hemoglobin (Hb) varied significantly as a function of speech performance, such that individuals with low social anxiety who performed well showed an increase in DLPFC activation relative to those who did not perform well. This result suggests that effortful thinking and/or efficient top-down inhibitory control may have been required to complete an impromptu speech task with good performance. In contrast, good performers who were highly socially anxious showed lower DLPFC activation relative to good performers who were low in social anxiety, suggesting autopilot thinking or less-effortful thinking. In poor performers, slight increases in DLPFC activation were observed from low to highly anxious individuals, which may reflect a shift from effortless thinking to heightened self-focused attention. Heightened self-focused attention, poor inhibitory control resulting in excessive fear or anxiety, or low motivation may lower performance. These results suggest that there can be different underlying mechanisms in the brain that affect the level of speech performance in individuals with varying degrees of social anxiety. This study highlights the utility of the fNIR device in the assessment of changes in DLPFC in response to exposure to realistic phobic stimuli, and further supports the potential utility of this technology in the study of the neurophysiology of anxiety disorders.

  14. Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips

    International Nuclear Information System (INIS)

    Linhart, V; Lacasta, C; Llosa, G; Stankova, V; Burdette, D; Chessi, E; Cochran, E; Honscheid, K; Kagan, H; Weilhammer, P; Cindro, V; Grosicar, B; Mikuz, M; Studen, A; Zontar, D; Clinthorne, N H

    2011-01-01

    Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.

  15. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  16. Industrial applications of Raman spectroscopy

    Science.gov (United States)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  17. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  18. Precision meson spectroscopy. Diffractive production at COMPASS and development of a GEM-based TPC for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Quirin

    2008-09-24

    Meson spectroscopy is a unique way to access Quantum Chromo Dynamics (QCD) and learn about its properties. Due to the non-Abelian structure, QCD predicts new states of matter with gluonic degrees of freedom. In particular q anti qg hybrids, which can have spin-exotic quantum numbers forbidden for conventional q anti q mesons, are expected to exist. Such states were searched for in the past, mostly in the light-quark sector. However, the experimental situation is still ambiguous and needs to be clarified. Further insights will certainly also come from the heavy-quark spectroscopy. Several new charmonium-like resonances were for example discovered during the last years, which have to be studied in more detail by future experiments to reveal their nature. Diffractive dissociation reactions at COMPASS provide clean access to meson resonances with masses below 2.5 GeV/c{sup 2}. During a pilot run in 2004 using pion beams on lead targets, a competitive number of {pi}{sup -}{pi}{sup -}{pi}{sup +} final state events were recorded within a few days of data taking. A full partial wave analysis (PWA) of these data has been performed for this dissertation, concentrating on the kinematic domain of large momentum transfer (t' element of [0.1, 1.0] GeV{sup 2}/c{sup 2}). While well-known mesons are resolved with high quality, also a strong signal consistent with the much disputed hybrid candidate {pi}{sub 1}(1600) is observed in the spin-exotic J{sup PC} = 1{sup -+} partial wave. A Breit-Wigner parameterization yields a mass and width of 1.660{sup +0.010}{sub -0.074} and 0.269{sup +0.063}{sub -0.085} GeV/c{sup 2}, respectively. In addition, a first PWA of events with small momentum transfer (t' element of [10{sup -3},10{sup -2}] GeV{sup 2}/c{sup 2}) has been carried out, yielding several high-mass radial-excitation states. In the future, the PANDA experiment at the FAIR facility will perform highprecision spectroscopy in the charm-sector employing anti pp annihilations

  19. Precision meson spectroscopy. Diffractive production at COMPASS and development of a GEM-based TPC for PANDA

    International Nuclear Information System (INIS)

    Weitzel, Quirin

    2008-01-01

    Meson spectroscopy is a unique way to access Quantum Chromo Dynamics (QCD) and learn about its properties. Due to the non-Abelian structure, QCD predicts new states of matter with gluonic degrees of freedom. In particular q anti qg hybrids, which can have spin-exotic quantum numbers forbidden for conventional q anti q mesons, are expected to exist. Such states were searched for in the past, mostly in the light-quark sector. However, the experimental situation is still ambiguous and needs to be clarified. Further insights will certainly also come from the heavy-quark spectroscopy. Several new charmonium-like resonances were for example discovered during the last years, which have to be studied in more detail by future experiments to reveal their nature. Diffractive dissociation reactions at COMPASS provide clean access to meson resonances with masses below 2.5 GeV/c 2 . During a pilot run in 2004 using pion beams on lead targets, a competitive number of π - π - π + final state events were recorded within a few days of data taking. A full partial wave analysis (PWA) of these data has been performed for this dissertation, concentrating on the kinematic domain of large momentum transfer (t' element of [0.1, 1.0] GeV 2 /c 2 ). While well-known mesons are resolved with high quality, also a strong signal consistent with the much disputed hybrid candidate π 1 (1600) is observed in the spin-exotic J PC = 1 -+ partial wave. A Breit-Wigner parameterization yields a mass and width of 1.660 +0.010 -0.074 and 0.269 +0.063 -0.085 GeV/c 2 , respectively. In addition, a first PWA of events with small momentum transfer (t' element of [10 -3 ,10 -2 ] GeV 2 /c 2 ) has been carried out, yielding several high-mass radial-excitation states. In the future, the PANDA experiment at the FAIR facility will perform highprecision spectroscopy in the charm-sector employing anti pp annihilations. Due to its excellent tracking capabilities for charged particles, a time projection chamber (TPC

  20. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms.

    Science.gov (United States)

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir; Howell, Kate; Dunshea, Frank R

    2018-01-01

    Beer quality is mainly defined by its colour, foamability and foam stability, which are influenced by the chemical composition of the product such as proteins, carbohydrates, pH and alcohol. Traditional methods to assess specific chemical compounds are usually time-consuming and costly. This study used rapid methods to evaluate 15 foam and colour-related parameters using a robotic pourer (RoboBEER) and chemical fingerprinting using near infrared spectroscopy (NIR) from six replicates of 21 beers from three types of fermentation. Results from NIR were used to create partial least squares regression (PLS) and artificial neural networks (ANN) models to predict four chemometrics such as pH, alcohol, Brix and maximum volume of foam. The ANN method was able to create more accurate models (R 2  = 0.95) compared to PLS. Principal components analysis using RoboBEER parameters and NIR overtones related to protein explained 67% of total data variability. Additionally, a sub-space discriminant model using the absorbance values from NIR wavelengths resulted in the successful classification of 85% of beers according to fermentation type. The method proposed showed to be a rapid system based on NIR spectroscopy and RoboBEER outputs of foamability that can be used to infer the quality, production method and chemical parameters of beer with minimal laboratory equipment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Detection of plasma stability on DIII-D, using the experimentally extracted plasma transfer function based on 3D MHD spectroscopy

    Science.gov (United States)

    Wang, Zhirui; Logan, Nikolas; Park, Jongkyu; Menard, Jonathan; Nazikian, Raffi; Munaretto, Stefano; Liu, Yueqiang; Hanson, Jeremy

    2017-10-01

    Three-dimensional (3D) magnetohydrodynamic (MHD) spectroscopy is successfully applied to extract the plasma transfer function from DIII-D experiments. The method uses upper and lower internal coils to perform scans of frequency and poloidal mode spectrum, and measure the corresponding n =1 plasma response on 3D magnetic sensors. The transfer function is extracted, based on Padé approximation, by fitting the measured signals on different sensors simultaneously. The experimental transfer function not only points out the multi-mode plasma response but also shows the number of dominant modes and the contribution of each mode to the plasma response. The extracted damping rate of the least stable mode can be a new index indicating plasma stability quantitatively. This method has the potential to optimize ELM suppression and monitor the plasma stability in future fusion reactors. Results and analysis of 3D MHD spectroscopy experiments will be presented. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-04ER54761.

  2. Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample.

    Science.gov (United States)

    Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu

    2013-09-14

    The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001] C poled Mn modified 0.27Pb(In 1/2 Nb 1/2 )O 3 -0.46Pb(Mg 1/3 Nb 2/3 )O 3 -0.27PbTiO 3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.

  3. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  4. Evolution of Active Sites in Pt-Based Nanoalloy Catalysts for the Oxidation of Carbonaceous Species by Combined in Situ Infrared Spectroscopy and Total X-ray Scattering.

    Science.gov (United States)

    Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena

    2018-03-23

    We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.

  5. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Bhartiya, S. [Laser Material Development and Device Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Mukherjee, C. [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2015-08-14

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.

  6. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2014-07-10

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.

  7. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K.; Bhartiya, S.; Mukherjee, C.

    2015-01-01

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure

  8. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.

    Science.gov (United States)

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2009-11-15

    Historic applications of arsenical pesticides to agricultural land have resulted in accumulation of residual arsenic (As) in such soils. In situ immobilization represents a cost-effective and least ecological disrupting treatment technology for soil As. Earlier work in our laboratory showed that drinking-water treatment residuals (WTRs), a low-cost, waste by-product of the drinking-water treatment process exhibit a high affinity for As. Wet chemical experiments (sorption kinetics and desorption) were coupled with X-ray absorption spectroscopy measurements to elucidate the bonding strength and type of As(V) and As(III) sorption by an aluminum-based WTR. A fast (1h), followed by a slower sorption stage resulted in As(V) and As(III) sorption capacities of 96% and 77%, respectively. Arsenic desorption with a 5mM oxalate from the WTR was minimal, being always absorption spectroscopy data showed inner-sphere complexation between As and surface hydroxyls. Reaction time (up to 48h) had no effect on the initial As oxidation state for sorbed As(V) and As(III). A combination of inner-sphere bonding types occurred between As and Al on the WTR surface because mixed surface geometries and interatomic distances were observed.

  9. A quick method based on SIMPLISMA-KPLS for simultaneously selecting outlier samples and informative samples for model standardization in near infrared spectroscopy

    Science.gov (United States)

    Li, Li-Na; Ma, Chang-Ming; Chang, Ming; Zhang, Ren-Cheng

    2017-12-01

    A novel method based on SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) and Kernel Partial Least Square (KPLS), named as SIMPLISMA-KPLS, is proposed in this paper for selection of outlier samples and informative samples simultaneously. It is a quick algorithm used to model standardization (or named as model transfer) in near infrared (NIR) spectroscopy. The NIR experiment data of the corn for analysis of the protein content is introduced to evaluate the proposed method. Piecewise direct standardization (PDS) is employed in model transfer. And the comparison of SIMPLISMA-PDS-KPLS and KS-PDS-KPLS is given in this research by discussion of the prediction accuracy of protein content and calculation speed of each algorithm. The conclusions include that SIMPLISMA-KPLS can be utilized as an alternative sample selection method for model transfer. Although it has similar accuracy to Kennard-Stone (KS), it is different from KS as it employs concentration information in selection program. This means that it ensures analyte information is involved in analysis, and the spectra (X) of the selected samples is interrelated with concentration (y). And it can be used for outlier sample elimination simultaneously by validation of calibration. According to the statistical data results of running time, it is clear that the sample selection process is more rapid when using KPLS. The quick algorithm of SIMPLISMA-KPLS is beneficial to improve the speed of online measurement using NIR spectroscopy.

  10. A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; de Luca, Anna Chiara

    2016-04-01

    Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach.

  11. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling

    Science.gov (United States)

    Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng

    2018-03-01

    The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality.

  12. Laser-induced-breakdown-spectroscopy-based detection of metal particles released into the air during combustion of solid propellants.

    Science.gov (United States)

    O'Neil, Morgan; Niemiec, Nicholas A; Demko, Andrew R; Petersen, Eric L; Kulatilaka, Waruna D

    2018-03-10

    Numerous metals and metal compounds are often added to propellants and explosives to tailor their properties such as heat release rate and specific impulse. When these materials combust, these metals can be released into the air, causing adverse health effects such as pulmonary and cardiovascular disease, particulate-matter-induced allergies, and cancer. Hence, robust, field-deployable methods are needed to detect and quantify these suspended metallic particles in air, identify their sources, and develop mitigation strategies. Laser-induced breakdown spectroscopy (LIBS) is a technique for elemental detection, commonly used on solids and liquids. In this study, we explored nanosecond-duration LIBS for detecting airborne metals during reactions of solid propellant strands, resulting from additives of aluminum (Al), copper, lead, lead stearate, and mercury chloride. Using the second harmonic of a 10-ns-duration 10-Hz, Nd:YAG laser, plasma was generated in the gas-phase exhaust plume of burning propellant strands containing the target metals. Under the current experimental conditions, the ns-LIBS scheme was capable of detecting Al at concentrations of 5%, 10%, and 16% by weight in the propellant strand. As the weight percentage increased, the LIBS signal was detected by more laser shots, up to a point where the system transition from being nonhomogeneous to a more-uniform distribution of particles. Further measurements and increased understanding of the reacting flow field are necessary to quantify the effects of other metal additives besides Al.

  13. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  14. Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Moncayo, S; Rosales, J D; Izquierdo-Hornillos, R; Anzano, J; Caceres, J O

    2016-09-01

    This work reports on a simple and fast classification procedure for the quality control of red wines with protected designation of origin (PDO) by means of Laser Induced Breakdown Spectroscopy (LIBS) technique combined with Neural Networks (NN) in order to increase the quality assurance and authenticity issues. A total of thirty-eight red wine samples from different PDO were analyzed to detect fake wines and to avoid unfair competition in the market. LIBS is well known for not requiring sample preparation, however, in order to increase its analytical performance a new sample preparation treatment by previous liquid-to-solid transformation of the wine using a dry collagen gel has been developed. The use of collagen pellets allowed achieving successful classification results, avoiding the limitations and difficulties of working with aqueous samples. The performance of the NN model was assessed by three validation procedures taking into account their sensitivity (internal validation), generalization ability and robustness (independent external validation). The results of the use of a spectroscopic technique coupled with a chemometric analysis (LIBS-NN) are discussed in terms of its potential use in the food industry, providing a methodology able to perform the quality control of alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The pathogenesis of Randall's plaque: a papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy.

    Science.gov (United States)

    Carpentier, Xavier; Bazin, Dominique; Jungers, Paul; Reguer, Solenn; Thiaudière, Dominique; Daudon, Michel

    2010-05-01

    At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type-2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs. Through X-ray absorption spectroscopy performed at the Ca K-absorption edge, a technique specific to synchrotron radiation, the presence and crystallinity of the Ca phosphate phases present in RP were determined ex vivo. The sensitivity of the technique was used as well as the fact that the measurements can be performed directly on the papilla. The sample was stored in formol. Moreover, a first mapping of the chemical phase from the top of the papilla to the deep medulla is obtained. Direct structural evidence of the presence of ACCP as a major constituent is given for the first time. This set of data, coherent with previous studies, shows that this chemical phase can be considered as one precursor in the genesis of RP.

  16. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Noman Naseer

    2016-01-01

    Full Text Available We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest using functional near-infrared spectroscopy (fNIRS signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA, quadratic discriminant analysis (QDA, k-nearest neighbour (kNN, the Naïve Bayes approach, support vector machine (SVM, and artificial neural networks (ANN, were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that the p values were statistically significant relative to all of the other classifiers (p < 0.005 using HbO signals.

  17. Frequency-comb based collinear laser spectroscopy of Be for nuclear structure investigations and many-body QED tests

    CERN Document Server

    Krieger, A; Geppert, Ch; Blaum, K; Bissell, M L; Frömmgen, N; Hammen, M; Kreim, K; Kowalska, M; Krämer, J; Neugart, R; Neyens, G; Sánchez, R; Tiedemann, D; Yordanov, D T; Zakova, M

    2016-01-01

    Absolute transition frequencies of the $2s\\,^2{\\rm{S}}_{1/2}$ $\\rightarrow$ $2p\\,^2{\\rm{P}}_{1/2,3/2}$ transitions in Be$^+$ were measured with a frequency comb in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine structure splittings were obtained from the absolute transition frequencies with accuracies better than 1\\,MHz and led to a precise determination of the nuclear charge radii of $^{7,10-12}$Be relative to the stable isotope $^9$Be. Moreover, an accurate determination of the $2p$ fine structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic un...

  18. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling.

    Science.gov (United States)

    Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng

    2018-03-05

    The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Research on rapid determination of organic matter concentration in aquaculture water based on ultraviolet/visible spectroscopy].

    Science.gov (United States)

    Cao, Hong; Qu, Wen-Tai; Yang, Xiang-Long; Jia, Sheng-Yao; Wang, Chun-Long; Lu, Chen

    2014-11-01

    Ultraviolet/visible (UV/Vis) spectroscopy was investigated for the rapid determination of chemical oxygen demand (COD) which was an indicator to measure the concentration of organic matter in aquaculture water. A total number of 135 collected turtle breeding water samples were scanned for UV/Vis spectrum, uninformative variable elimination (UVE) and successive projections algorithm (SPA) were combined as a mixed variable selection method to perform characteristic wavelength selection from the full wavelength spectrum, 7 characteristic wavelengths were selected from full 201 UV/Vis spectral variables, which were just 3.48% number of the full range spectrum, and the calibration time and complexity of the modeling were greatly reduced. The predicted results which were obtained by using least squares-support vector machine (LS-SVM) calibration showed that the characteristic wavelengths achieved better results (0.89 for correlation coefficient (r), 15.46 mg x L(-1) for root mean square error of prediction (RMSEP)) than full wavelengths did (0.88 for r and 15.71 mg x L(-1) for RMSEP). The comprehensive results revealed that the UV/Vis characteristic wavelengths which were obtained by UVE-SPA variable selection method, combined with LS-SVM calibration could apply to the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  20. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.

    Science.gov (United States)

    Chen, Tao; Chang, Qingrui; Clevers, J G P W; Kooistra, L

    2015-11-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: a new model based on zeta potential and spectroscopy measurements.

    Science.gov (United States)

    Mobasherat Jajroud, Sheida Yousefi; Falahati, Mojtaba; Attar, Farnoosh; Khavari-Nejad, Ramazan Ali

    2017-09-18

    The nanoparticle (NP)-induced conformational changes of protein and NP agglomeration have gained a remarkable interest in medical and biotechnological fields. Herein, the effect of human hemoglobin (Hb) on the colloidal stability of cerium oxide NP (CNP) was investigated by dynamic light scattering (DLS), zeta potential, and TEM analysis. In addition, the effect of CNP on the heme degradation and structural changes of Hb was studied using fluorescence, circular dichroism (CD), and UV-visible (UV-vis) spectroscopic methods. DLS and TEM analysis showed that the presence of Hb can increase the mean diameter of CNP. Zeta potential measurements revealed that CNP demonstrated a higher charge distribution relative to CNP/Hb complex. Besides, fluorescence studies indicated that two fluorescent heme degradation products are revealed during the interaction of CNP with Hb. Near UV-CD spectroscopy also showed that the microenvironmental changes of heme groups occur after interaction of Hb with CNP. The result of thermal behavior of Hb confirmed the structural changes of protein, which referred to decrease in the Hb stability in the presence of CNP. Indeed, the finding related to structural and functional changes of Hb induced by CNP may be crucial to obtain information regarding the side effects of NPs. Finally, this data reveal much insight into the effects of the interaction on protein structural changes and NP agglomeration, and can correlate the zeta potential of NP-protein complexes with the nature of the principle NP-protein interaction.

  2. SIMP spectroscopy

    International Nuclear Information System (INIS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2016-01-01

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  3. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  4. Amateur spectroscopy

    Science.gov (United States)

    Gavin, M. V.

    1998-06-01

    (The 1997 Presidential Address to the British Astronomical Association.) Auguste Comte is remembered for an unfortunate remark. In 1825 he said the chemical composition of stars would never be revealed. Within a decade or so the heart of the atom was being explored in remote stars through the science of spectroscopy. In simplistic terms one can regard the atom as a miniature solar system, but with the novel option that electrons (representing planets) having the ability to 'jump' from one orbit to another. In 'falling' to a lower orbit a photon of light of precise wavelength is released to travel outwards. When the electron 'jumps' to a higher orbit a photon of light is absorbed. This is taking place on a vast scale which we observe as lines in the spectrum - their position and prominence relates to the particular atomic element, temperature and pressure within the stellar atmosphere. It is beyond the scope of this Address to discuss the various processes that affect spectra, or to provide a mathematical explanation which can be found elsewhere. In any case the lack of a deep understanding does not preclude enjoyable or useful observations. Methods and results from amateurs conducting such observations are discussed in this paper.

  5. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  6. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies

    International Nuclear Information System (INIS)

    Sun, Fusheng; Polizzotto, Matthew L.; Guan, Dongxing; Wu, Jun; Shen, Qirong; Ran, Wei; Wang, Boren; Yu, Guanghui

    2017-01-01

    Highlights: • The interactions and binding between Cd and functional groups are essential for their fates. • Two-dimensional correlation spectroscopy can identify Cd binding to functional groups in soils. • Synchrotron radiation based spectromicroscopy shows the micro-scale distribution of Cd in soils. • Soil functional groups controlling Cd binding can be modified by fertilization treatments. - Abstract: Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (p < 0.05) reduced the Cd concentration in wheat grain. The 2D COS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.

  7. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fusheng [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Polizzotto, Matthew L. [Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Guan, Dongxing [Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210026 (China); Wu, Jun [College of Environment, Zhejiang University of Technology, Hangzhou 310014 (China); Shen, Qirong; Ran, Wei [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Boren [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Yu, Guanghui, E-mail: yuguanghui@njau.edu.cn [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2017-03-15

    Highlights: • The interactions and binding between Cd and functional groups are essential for their fates. • Two-dimensional correlation spectroscopy can identify Cd binding to functional groups in soils. • Synchrotron radiation based spectromicroscopy shows the micro-scale distribution of Cd in soils. • Soil functional groups controlling Cd binding can be modified by fertilization treatments. - Abstract: Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (p < 0.05) reduced the Cd concentration in wheat grain. The 2D COS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.

  8. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy.

    Science.gov (United States)

    Derrien, Morgane; Kim, Min-Seob; Ock, Giyoung; Hong, Seongjin; Cho, Jinwoo; Shin, Kyung-Hoon; Hur, Jin

    2018-03-15

    The two popular source tracing tools of stable isotope ratios (δ 13 C and δ 15 N) and fluorescence spectroscopy were used to estimate the relative source contributions to sediment organic matter (SeOM) at five different river sites in an agricultural-forested watershed (Soyang Lake watershed), and their capabilities for the source assignment were compared. Bulk sediments were used for the stable isotopes, while alkaline extractable organic matter (AEOM) from sediments was used to obtain fluorescent indices for SeOM. Several source discrimination indices were fully compiled for a range of the SeOM sources distributed in the catchments of the watershed, which included soils, forest leaves, crop (C3 and C4) and riparian plants, periphyton, and organic fertilizers. The relative source contributions to the river sediment samples were estimated via end member mixing analysis (EMMA) based on several selected discrimination indices. The EMMA based on the isotopes demonstrated that all sediments were characterized by a medium to a high contribution of periphyton ranging from ~30% to 70% except for one site heavily affected by forest and agricultural fields with relatively high contributions of terrestrial materials. The EMMA based on fluorescence parameters, however, did not show similar results with low contributions from forest leaf and periphyton. The characteristics of the studied watershed were more consistent with the source contributions determined by the isotope ratios. The discrepancy in the EMMA capability for source assignments between the two analytical tools can be explained by the limited analytical window of fluorescence spectroscopy for non-fluorescent dissolved organic matter (FDOM) and the inability of AEOM to represent original bulk particulate organic matter (POM). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis and purification of some alkyl phenanthrenes and presentation of their infrared, ultraviolet, nuclear magnetic resonance and mass spectra; Synthese et purification de quelques alcoylphenanthrenes et presentation ds leurs spectres d'absorption infrarouge, ultraviolette, de resonance magnetique nucleaire et de masse

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, K. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-01-01

    We have carried out the synthesis of: - phenanthrene - its five monomethyl derivatives - three dimethyl derivatives - two trimethyl derivatives. We have then purified these products as well as a certain number of others obtained from various sources. We have been able to obtain in the majority of cases, a purity of 99.5 per cent or over, these figures being obtained by low voltage mass spectrometry. Finally we have recorded the infrared, ultraviolet, nuclear magnetic resonance and mass spectra of these products for which an atlas has been drawn up. (author) [French] Nous avons realise la synthese: - du phenanthrene - de ses cinq derives monomethyles - de trois de ses derives dimethyles - de deux de ses derives trimethyles. Nous avons ensuite purifie ces produits ainsi qu'un certain nombre d'autres que nous avons obtenus de sources differentes. Nous avons pu atteindre, dans la plupart des cas, une purete egale ou superieure a 99,5 pour cent, chiffres determines par la spectrometrie de masse a basse tension. Enfin, nous avons enregistre les spectres infrarouges, ultraviolets, de resonance magnetique nucleaire et de masse de ces produits dont nous avons fait un atlas. (auteur)

  10. Proceedings of the DAE-BRNS theme meeting on recent trends in spectroscopy: book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The meeting aimed at providing the latest developments in various spectroscopic techniques to the research students and practicing scientists. The proceedings of the symposium covered a wide range of topics of infrared and Raman spectroscopy, time resolved spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, rotational and vibrational spectroscopy, fluorescence spectroscopy, cavity ring down spectroscopy, laser based spectroscopic techniques and electrochemical spectroscopy. Papers relevant to INIS are indexed separately

  11. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  12. Basic Principles of Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  13. PAT-Based Control of Fluid Bed Coating Process Using NIR Spectroscopy to Monitor the Cellulose Coating on Pharmaceutical Pellets.

    Science.gov (United States)

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Deoghare, Piyush; Singh, Dharamvir; Wakte, Pravin S

    2017-08-01

    Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm -1 , 7515.24 to 7108.33 cm -1 , and 5257.00 to 5098.87 cm -1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm -1 was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.

  14. Discrimination of wild Paris based on near infrared spectroscopy and high performance liquid chromatography combined with multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Different geographical origins and species of Paris obtained from southwestern China were discriminated by near infrared (NIR spectroscopy and high performance liquid chromatography (HPLC combined with multivariate analysis. The NIR parameter settings were scanning (64 times, resolution (4 cm(-1, scanning range (10,000 cm(-1∼4000 cm(-1 and parallel collection (3 times. NIR spectrum was optimized by TQ 8.6 software, and the ranges 7455∼6852 cm(-1 and 5973∼4007 cm(-1 were selected according to the spectrum standard deviation. The contents of polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII and total steroid saponins were detected by HPLC. The contents of chemical components data matrix and spectrum data matrix were integrated and analyzed by partial least squares discriminant analysis (PLS-DA. From the PLS-DA model of NIR spectrum, Paris samples were separated into three groups according to the different geographical origins. The R(2X and Q(2Y described accumulative contribution rates were 99.50% and 94.03% of the total variance, respectively. The PLS-DA model according to 12 species of Paris described 99.62% of the variation in X and predicted 95.23% in Y. The results of the contents of chemical components described differences among collections quantitatively. A multivariate statistical model of PLS-DA showed geographical origins of Paris had a much greater influence on Paris compared with species. NIR and HPLC combined with multivariate analysis could discriminate different geographical origins and different species. The quality of Paris showed regional dependence.

  15. An efficient near infrared spectroscopy based on aquaphotomics technique for rapid determining the level of Cadmium in aqueous solution

    Science.gov (United States)

    Putra, Alfian; Vassileva, Maria; Santo, Ryoko; Tsenkova, Roumina

    2017-06-01

    Cadmium (Cd) is a common industrial pollutant with long biological half-life, which makes it as a cumulative toxicant. Near-infrared spectroscopy has been successfully used for quick and accurate assessment of Cd content in agricultural materials, but the development of a quick detection method for ground and drinking water samples is equal importance for pollution monitoring. Metals have no absorbance in the NIR spectral range, thus the methods developed so far have focused on detection of metal-organic complexes (move to intro). This study focuses on the use of Aquaphotomics technique to measure Cd in aqueous solutions by analyzing the changes in water spectra that occur due to water-metal interaction. Measurements were performed with Cd (II) in 0.1 M HNO3, in the 680-1090 nm (water second and third overtones) and 1110-1800 nm (water first overtone) spectral regions, and were subjected to partial least-square regression analysis. It was found/determined that A concentration of Cd from 1 mg L-1 to 10 mg L-1 could be predicted by this model with average prediction correlation coefficient of 0.897. The model was tested by perturbations with temperature and other metal presence in the solution. The regression coefficient showed consistent peaks at 728, 752, 770, 780, 1362, 1430,1444, 1472/1474 and 1484 nm under various perturbations, indicating that metal to influence the water spectra. The residual predictive deviation values (RPD) were greater than 2, indicating that the model is appropriate for practical use. The result suggested that this newly proposed approach is capable of detecting metal ion in a much simpler, rapid and reliable way.

  16. An instrument for measurements of BrO with LED-based Cavity-Enhanced Differential Optical Absorption Spectroscopy

    Science.gov (United States)

    Hoch, D. J.; Buxmann, J.; Sihler, H.; Pöhler, D.; Zetzsch, C.; Platt, U.

    2014-01-01

    The chemistry of the troposphere and specifically the global tropospheric ozone budget is affected by reactive halogen species such as bromine monoxide (BrO) or chlorine monoxide (ClO). Especially BrO plays an important role in the processes of ozone destruction, disturbance of NOx and HOx chemistry, oxidation of dimethyl sulfide (DMS), and the deposition of elementary mercury. In the troposphere BrO has been detected in polar regions, at salt lakes, in volcanic plumes, and in the marine boundary layer. For a better understanding of these processes, field measurements as well as reaction chamber studies are performed. In both cases instruments with high spatial resolution and high sensitivity are necessary. A Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) instrument with an open path measurement cell was designed and applied. For the first time, a CE-DOAS instrument is presented using an UV LED in the 325-365 nm wavelength range. In laboratory studies, BrO as well as HONO, HCHO, O3, and O4 could be reliably determined at detection limits of 20 ppt for BrO, 9.1 ppb for HCHO, 970 ppt for HONO, and 91 ppb for O3, for five minutes integration time. The best detection limits were achieved for BrO (11 ppt), HCHO (5.1 ppb), HONO (490 ppt), and O3 (59 ppb) for integration times of 81 minutes or less. Comparison with established White system (WS) DOAS and O3 monitor measurements demonstrate the reliability of the instrument.

  17. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  18. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer.

    Science.gov (United States)

    Banerjee, Satarupa; Pal, Mousumi; Chakrabarty, Jitamanyu; Petibois, Cyril; Paul, Ranjan Rashmi; Giri, Amita; Chatterjee, Jyotirmoy

    2015-10-01

    In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.

  19. Quantitative and Label-Free Detection of Protein Kinase A Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars.

    Science.gov (United States)

    He, Shuai; Kyaw, Yi Mon Ei; Tan, Eddie Khay Ming; Bekale, Laurent; Kang, Malvin Wei Cherng; Kim, Susana Soo-Yeon; Tan, Ivan; Lam, Kong-Peng; Kah, James Chen Yong

    2018-04-26

    The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm -1 , whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.

  20. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO2 Based CdS Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Atif

    2015-01-01

    Full Text Available Cadmium sulphide (CdS quantum dot sensitized solar cells (QDSSCs based on screen-printed TiO2 were assembled using a screen-printing technique. The CdS quantum dots (QDs were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO electrode into TiO2.