WorldWideScience

Sample records for spectroscopic factors

  1. Shell model and spectroscopic factors

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  2. Analysis of transfer reactions: determination of spectroscopic factors

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  3. Spectroscopic factor of the 7He ground state

    Beck, F.; Frekers, D.; Neumann-Cosel, P. von; Richter, A.; Ryezayeva, N.; Thompson, I.J.

    2007-01-01

    The neutron spectroscopic factor S n of the 7 He ground state is extracted from an R-matrix analysis of a recent measurement of the 7 Li(d, 2 He) 7 He reaction with good energy resolution. The width extracted from a deconvolution of the spectrum is Γ=183(22) keV (full width at half maximum, FWHM). The result S n =0.64(9) is slightly larger than predictions of recent 'ab initio' Green's function Monte Carlo and fermionic molecular dynamics calculations

  4. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  5. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling

    Kamnev, Alexander A.

    2008-01-01

    Modern spectroscopic techniques are highly useful in studying diverse processes in microbial cells related to or incited by environmental factors. Spectroscopic data for whole cells, supramolecular structures or isolated cellular constituents can reflect structural and/or compositional changes occurring in the course of cellular metabolic responses to the effects of pollutants, environmental conditions (stress factors); nutrients, signalling molecules (communication factors), etc. This inform...

  6. On spectroscopic factors of magic and semimagic nuclei

    Saperstein, E. E.; Gnezdilov, N. V.; Tolokonnikov, S. V.

    2014-01-01

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator Σ is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic 208 Pb nucleus and semimagic lead isotopes are presented

  7. Spectroscopic factors of the alpha decay of isoscalar giant resonances

    Smirnov, Yu.F.; Chuvil'skij, Yu.M.

    1983-01-01

    A system which enables to connect Ssub(α) spectroscopic factors (SF) for α-decay of the isoscalar giant resonance (GR) states E0 and E2 with SF values for ground and low lying nucleus states has been developed. This method permits to consider initial nucleus GR decay with a transition to the residual nucleus-GR. It is necessary to know only SF for GR decay to the daughter nucleus ground state with the emission of an excited cluster in the common case. The above method is based on properties of infinitesimal operators of Sp(2, R), Sp(6, R) groups and uses SU(3)-symmetry of wave functions of initial nucleus, cluster and residual nucleus, Values of ratios of α-particle SF are presented for 8 Be, HH2C, 16 O, 20 Ne, 24 Mg, 28 Si, 40 Ca, 44 Ti nuclei and Ssub(α) transitions to GR states of residual nucleus for 16 O, 20 Ne and 40 Ca nuclei. Noticeable Ssub(α) values for virtual α-decay of an initial nucleus ground state to residual nucleus GR poins out that α-particle knock out processes may be also accompanied by the final nucleus GR excitation

  8. New Insight into the Observation of Spectroscopic Strength Reduction in Atomic Nuclei: Implication for the Physical Meaning of Spectroscopic Factors

    Timofeyuk, N. K.

    2009-01-01

    Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

  9. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-01-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z 0 = 82 and neutrons number around the closed shells Z 0 = 82 and Z 0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (N p ) and neutron (N n ) numbers. These linear dependencies are correlated with the closed shells core (Z 0 ,N 0 ). The same individual linear behaviors are obtained as a function of the multiplication of N p N n and the isospin asymmetry parameter, N p N n I. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function N p N n /(Z 0 +N 0 ).

  10. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Devi, Y.D.; Kota, V.K.B.

    1991-01-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU sdg (3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0 + states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author)

  11. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Devi, Y.D.; Kota, V.K.B. (Physical Research Lab., Ahmedabad (India))

    1991-11-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU{sub sdg}(3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0{sup +} states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author).

  12. Test of the combined method for extracting spectroscopic factors in N =50 nuclei

    Walter, David; Cizewski, J. A.; Baugher, T.; Ratkiewicz, A.; Pain, S. D.; Nunes, F. M.; Ahn, S.; Cerizza, G.; Jones, K. L.; Manning, B.; Thornsberry, C.

    2017-09-01

    The single-particle properties of nuclei near shell closures and r-process waiting points can be observed using single-nucleon transfer reactions with beams of rare isotopes. However, approximations have to be made about the final bound state to extract spectroscopic information. An approach to constrain the bound state potential has been proposed by Mukhamedzhanov and Nunes. At peripheral reaction energies ( 5 MeV/u), the ANC for the nucleus can be extracted, and is combined with the same reaction at higher energies ( 40 MeV/u). These combined measurements can constrain the shape of the bound state potential, and the spectroscopic factor can be reliably extracted. To test this method, the 86Kr(d , p) reaction was performed in inverse kinematics with a 35 MeV/u beam at the National Superconducting Cyclotron Laboratory (NSCL) with the ORRUBA and SIDAR arrays of silicon strip detectors coupled to the S800 spectrometer. Successful results supported the measurement of a radioactive ion beam of 84Se at 45 MeV/u at the NSCL to be measured at the end of 2017. Results from the 86Kr(d , p) measurement will be presented as well as preparations for the upcoming 84Se(d , p) measurement. This work is supported in part by the National Science Foundation and U.S. D.O.E.

  13. Spectroscopic factors with coupled-cluster connecting ab initio nuclear structure to reactions

    Jensen, Oeyvind

    2011-02-01

    This thesis has two parts. Tools and theory are presented in the first part, and papers with specific applications to nuclear physics are collected in the second part. A synopsis of theoretical foundations and basic techniques for many body quantum physics is presented in the context of a computer implementation of Wick's theorem for the symbolic algebra system SymPy. A pedagogical introduction to the implemented Python module is presented, and non-trivial aspects of the implemented simplification algorithms are discussed. Computer aided manipulations of second quantization expressions relieves practitioners of laborious and error-prone hand calculations necessary for the derivation of programmable equations. Theoretical developments of the Coupled-Cluster method (CCM) at Singles- and-Doubles level (CCSD) for the calculation of spectroscopic factors (SF) and radial overlap functions are presented. Algebraic expressions are derived from novel diagram techniques. CCM is one of the most successful methods for accurate numerical quantum mechanical simulations of medium sized many-body systems studied within Chemistry and Nuclear Physics. The recently developed spherical formulation of CCM is presented and alternative coupling schemes of quantum mechanical angular momentum are discussed in the context of a computer implementation for Racah algebra with SymPy. A pedagogical introduction to this functionality is given and it is used to derive angular momentum coupled expressions for efficient calculation of the spectroscopic factor diagrams. The first research paper presents a calculation of spectroscopic factors with CCSD. Details of the calculation is presented and convergence properties, as well as the dependence on various model parameters are discussed. Interactions with different cut-offs are employed and the dependence of the SF on the interactions are studied. In the second paper we employ the angular momentum coupled SF expressions and the spherical formulation

  14. Spectroscopic Factors from the Single Neutron Pickup Reaction ^64Zn(d,t)

    Leach, Kyle; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2009-10-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections^[1]. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed &+circ; decay of ^62Ga will be discussed.^[1] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

  15. Spectroscopic Factors from the Single Neutron Pickup ^64Zn(d,t)

    Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Towner, I. S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2010-11-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed ° decay of ^62Ga will be discussed.

  16. Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu

    F. Wang

    2017-07-01

    Full Text Available The quenching of the experimental spectroscopic factor for proton emission from the short-lived d3/2 isomeric state in 151mLu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The proton-decay energy and half-life of this isomer were measured to be 1295(5 keV and 15.4(8 μs, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probability indicates no significant hindrance for the proton decay of 151mLu.

  17. Experimental 64Zn(d⃗,t)63Zn spectroscopic factors: Guidance for isospin-symmetry-breaking calculations

    Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2013-06-01

    With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.

  18. Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication

    Pishva, Davar

    This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.

  19. Systematic errors in the determination of the spectroscopic g-factor in broadband ferromagnetic resonance spectroscopy: A proposed solution

    Gonzalez-Fuentes, C.; Dumas, R. K.; García, C.

    2018-01-01

    A theoretical and experimental study of the influence of small offsets of the magnetic field (δH) on the measurement accuracy of the spectroscopic g-factor (g) and saturation magnetization (Ms) obtained by broadband ferromagnetic resonance (FMR) measurements is presented. The random nature of δH generates systematic and opposite sign deviations of the values of g and Ms with respect to their true values. A δH on the order of a few Oe leads to a ˜10% error of g and Ms for a typical range of frequencies employed in broadband FMR experiments. We propose a simple experimental methodology to significantly minimize the effect of δH on the fitted values of g and Ms, eliminating their apparent dependence in the range of frequencies employed. Our method was successfully tested using broadband FMR measurements on a 5 nm thick Ni80Fe20 film for frequencies ranging between 3 and 17 GHz.

  20. Spectroscopic Factors from the Single Neutron Transfer Reaction 111Cd(d,p)112Cd

    Jamieson, D. S.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Svensson, C. E.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2013-03-01

    The cadmium isotopes have been cited as excellent examples of vibrational nuclei for decades, with multi-phonon quadrupole, quadrupole-octupole, and mixed-symmetry states proposed. From a variety of experimental studies, a large amount of spectroscopic data has been obtained, recently focused on γ-ray studies. In the present work, the single-particle structure of 112Cd has been investigated using the 111Cd(ěcd, p)112Cd reaction. The investigation was carried out using a 22 MeV beam of polarized deuterons obtained from the Maier-Leibnitz Laboratory at Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 115 levels have been identified up to 4.2 MeV of excitation energy. Spin-parity has been assigned to each analyzed level, and angular distributions for the reaction cross sections and analyzing powers were obtained. Many additional levels have been observed compared with the previous (d,p) study performed with 8 MeV deuterons,1 including strongly populated 5- and 6- states. The former was previously assigned as a member of the quadrupole-octupole quintuplet, based on a strongly enhanced B(E2) value to the 3- state, but is now re-assigned as being predominately s1/2 ⊗ h11/2 configuration.

  1. Level spectra, electromagnetic moments and transition rates and spectroscopic factors for odd rhodium isotopes in the Coriolis coupling model

    Bredbacka, A.; Brenner, M.; Malik, F.B.; Aabo Akademi, Turku

    1989-01-01

    Properties of low-lying positive- and negative-parity states of 97,99,101,103,105,107,109 Rh at low excitation energies have been analyzed in terms of a Coriolis coupling model. The model can account for the general trend of the level schemes for states of both parties. In particular, the 9/2, 7/2, and 5/2 triplet near the ground state, the occurrence of multiple 13/2 and at least one 15/2 and 19/2 state of positive parity are reasonably reproduced by the model. Similarly, 1/2 ground-state spin followed by a (3/2, 5/2) doublet, and one or more 13/2 and 17/2 states of negative parity are adequately understood in terms of the model. The calculated electromagnetic dipole and quadrupole moments and magnetic dipole and electric quadrupole transition rates are in broad agreement with the observed ones. This is achieved without the use of any effective charge. The general trend of observed spectroscopic factors for pick-up reactions is in agreement with the calculated ones. The results are presented as a function of deformation. Because of the sparsity of data on many of these isotopes, no attempt has been made to find the best fit for each isotope individually. Since the model can reasonably reproduce the general trend of level schemes, electromagnetic properties and spectroscopic factors, one may conclude that the Coriolis coupling model provides a good description of the nuclear properties of these isotopes. (orig.)

  2. Spectroscopic factors measurement of the five first energy levels of lead 208 nucleus using the 208Pb(e,e'p207Tl* huge pulse transfer reaction

    Medaglia, R.

    1999-08-01

    In this work, the spectral functions and the spectroscopic factors of the first five energy levels of the lead 208 nucleus have been measured using the 208 Pb(e,e'p) 207 Tl * reaction. The aim is to characterize the effect of the nuclear environment on pulse and energy distributions of protons. In order to minimize the ejected proton-residual nucleus interactions in the final state, the measurement has been performed at 750 and 570 MeV/c pulse transfers, and thus for proton kinetic energies of 263 MeV and 161 MeV, contrarily to a previous measurement performed at 100 MeV. A kinematics with a transverse electromagnetic coupling, instead of a longitudinal one, has been used because of the important coupling dependence observed for medium nuclei. The experiment has been carried out at the NIKHEF electron accelerator and smoothing ring. The pulse distributions of the first five energy levels for a proton pulse range of 0 to 300 MeV/c have been extracted from the (e,e'p) cross sections. An integration of model-dependent distributions gives the spectroscopic factors which indicate the number of protons of each level. These data rae compared to models that include both the proton interactions in the final state and the coulomb distortions. The Pavie model reproduces well the observed distributions and the transfer dependence, while the Ohio model does not. The spectroscopic factors obtained with the Pavie model are the same for both transfers and are 20% higher as an average than the previous experiment performed at 450 MeV/c. However, they are 30% below the shell model. The uncertain estimation of the reaction mechanisms does not allow to consider this reduction as being due exclusively to nuclear structure effects. (J.S.)

  3. The NASA Ames PAH IR Spectroscopic Database: Computational Version 3.00 with Updated Content and the Introduction of Multiple Scaling Factors

    Bauschlicher, Charles W., Jr.; Ricca, A.; Boersma, C.; Allamandola, L. J.

    2018-02-01

    Version 3.00 of the library of computed spectra in the NASA Ames PAH IR Spectroscopic Database (PAHdb) is described. Version 3.00 introduces the use of multiple scale factors, instead of the single scaling factor used previously, to align the theoretical harmonic frequencies with the experimental fundamentals. The use of multiple scale factors permits the use of a variety of basis sets; this allows new PAH species to be included in the database, such as those containing oxygen, and yields an improved treatment of strained species and those containing nitrogen. In addition, the computed spectra of 2439 new PAH species have been added. The impact of these changes on the analysis of an astronomical spectrum through database-fitting is considered and compared with a fit using Version 2.00 of the library of computed spectra. Finally, astronomical constraints are defined for the PAH spectral libraries in PAHdb.

  4. Spectroscopic data

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  5. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(overrightarrow {{d}} ,p)112Cd

    Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wirth, H.-F.

    2014-03-01

    Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(overrightarrow {{d}} ,p)112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p) study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  6. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd

    Jamieson D.S.

    2014-03-01

    Full Text Available Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  7. Spectroscopic factors measurements in the s,d and f,p shells below and above the Coulomb barrier by (3He,d) reactions

    Baghdadi, Ahmed.

    1974-01-01

    The overlap of t and d or 3 He and d wave functions may be measured by one neutron transfer in (d,t) or one proton transfer in ( 3 He,d). The measurement of the resulting normalization constant has been performed in subcoulombic conditions in the case of 58 Ni( 3 He,d) 59 Cu and 60 Ni( 3 He,d) 61 Cu leading to the first 3/2 - and 1/2 - states with a position sensitive detector in a Buechner spectrograph. The result: D 2 =2.7+-0.2 10 4 MeV 2 fm 3 is in agreement with the D 2 measurement for (t,d) reactions [3.1+-0.2 10 4 MeV 2 fm 3 ] and with the theoretical value proposed by L.J.B. Goldfarg and coworkers. This result was used for a determination of the spectroscopic factors of the 1.379MeV 3/2 - state, the 1.507MeV 1/2 - state and the 1.758MeV 3/2 - state in 57 Co. The subcoulombic approximation is also shown to be valid even in the case of (d,p) reactions, by the measurement of angular distributions and excitation curves of 60 Ni(d,p) reactions leading to the excited states at 4.760MeV (l=2) and 4.907MeV (l=0). In the second part, some spectroscopic factors in the s-d shell were measured by ( 3 He,d) reactions at MP Tandem energies. In the case of 27 Al( 3 He,d) 28 Si (states at 4.62, 6.88, 6.89, 9.32 and 0.38MeV) the normalization constant D 0 2 (deduced from the subcoulombic D 2 value) together with the first order finite range approximation leads to spectroscopic factors in good agreement with Wildenthal theoretical results. For 28 Si( 3 He,d) 29 p however, the values are too high compared to 29 Si. The conclusion is that it is better to use the DWBA treatment at subcoulombic energies everytime the experimental conditions may be fulfilled [fr

  8. Spectroscopic study

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  9. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  10. Determination of Lande gJ - factors of La I levels using laser spectroscopic methods: Complementary investigations

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.

  11. A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis

    Tway, P.C.; Love, L.J.C.; Woodruff, H.B.

    1980-01-01

    Target transformation factor analysis is applied to typical data from gas chromatography-mass spectrometry and solid-probe mass spectrometry to determine rapidly the number of components in unresolved or partially resolved peaks. This technique allows the detection of hidden impurities which often make interpretation or quantification impossible. The error theory of Malinowski is used to assess the reliability of the results. The totally automated system uses a commercially available g.c.-m.s. data system interfaced to the large computer, and the number of components under a peak can be determined routinely and rapidly. (Auth.)

  12. Some considerations on the restoration of Galilei invariance in the nuclear many-body problem. Pt. I. Mathematical tools, spectral functions and spectroscopic factors of simple bound states

    Schmid, K.W.

    2001-01-01

    The mathematical tools to restore Galilei invariance in the nuclear many-body problem with the help of projection techniques are presented. For simple oscillator configurations recursion relations for the various elementary contractions are derived. The method is then applied to simple configurations for the ground states of 4 He, 16 O and 40 Ca as well as to the corresponding one-hole and one-particle states. As a first application the spectral functions and spectroscopic factors for the above-mentioned doubly even nuclei are investigated. It turns out that the conventional picture of an uncorrelated system underestimates the single-particle strengths of the hole states from the last occupied shell while that of the higher excited hole states is overestimated considerably. These results are in complete agreement with those derived by Dieperink and de Forest using different methods. Similar effects are seen for the particle states which have not been studied before. All the calculations presented here are performed analytically and thus can be checked explicitly by the interested reader. (orig.)

  13. Spectroscopic classification of transients

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  14. Multi-pass spectroscopic ellipsometry

    Stehle, Jean-Louis; Samartzis, Peter C.; Stamataki, Katerina; Piel, Jean-Philippe; Katsoprinakis, George E.; Papadakis, Vassilis; Schimowski, Xavier; Rakitzis, T. Peter; Loppinet, Benoit

    2014-01-01

    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films

  15. Spectroscopic surveys of LAMOST

    Zhao Yongheng

    2015-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a new type of reflecting Schmidt telescope, has been designed and produced in China. It marks a breakthrough for large scale spectroscopic survey observation in that both large aperture and wide field of view have been achieved. LAMOST has the highest spectrum acquisition rate, and from October 2011 to June 2014 it has obtained 4.13 million spectra of celestial objects, of which 3.78 million are spectra of stars, with the stellar parameters of 2.20 million stars included. (author)

  16. Highlights of the Brazilian Solar Spectroscope

    Sawant, H. S.; Cecatto, J.R.; Mészárosová, Hana; Faria, C.; Fernandes, F. C. R.; Karlický, Marian; de Andrade, M. C.

    2009-01-01

    Roč. 44, č. 1 (2009), s. 54-57 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun istrumentation * spectroscope * corona * radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.079, year: 2009

  17. Study of the /sup 58/Ni, /sup 90/Zr and /sup 208/Pb(p,d) reactions at 121 MeV. [DWBA, angular distributions, spectroscopic factors, finite range calculations

    Anderson, R E; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Indiana Univ., Bloomington (USA). Dept. of Physics

    1978-01-01

    The (p,d) reaction has been studied on /sup 58/Ni, /sup 90/Zr and /sup 208/Pb at 121 MeV in order to test the applicability of the usual DWBA methods to higher energy data. The calculations describe the angular distribution for the strongly excited low-lying states reasonably well when adiabatic-deuteron optical potentials are used. Some discrepancies in shape persist, however, and some values of the spectroscopic factors differ from lower energy data in spite of many variations in the calculations. By use of exact finite-range calculations a value of D/sup 2//sub 0/ = 1.23 x 10/sup 4/ MeV/sup 2/.fm/sup 3/ was found for use at 121 MeV. Deuteron D-state contributions were negligible at forward angles and two-step contributions do not appear more significant than for data at lower energy.

  18. Model independent spectroscopic information from an analysis of peripheral direct radiative capture reaction and its application for an extrapolation of an astrophysical S-factor to stellar energies

    Igamov, S.B.; Tursunmuratov, T.M.; Yarmukhamedov, R.

    2003-01-01

    In this work, within the framework of the cluster potential approach we develop a method which can be used an independent source of getting information on the value of the nuclear vertex constant (NVC) (or respective asymptotical normalization coefficient (ANC)) from the analysis of the direct radiative capture cross section σ(E)(or the astrophysical S-factor S(E)) at extremely low energies by a model independent way as possible. The main idea of the proposed method is that at stellar energies peripheral direct radiative capture reaction of astrophysical interest proceeds mainly through the tail of the overlap integral, which is completely determined by the binding energy and the respective ANC (or NVC). The main advantage of the proposed method is that it allows us to determine both the absolute value of NVC (or ANC) and the astrophysical S-factor S(E) at solar energies (0-50 keV) by means of the analysis of the same experimental astrophysical S-factor S exp (E) in a correct self consistent way using the same potential both for the bound state and for scattering state. The method has been applied for an investigation of the direct radiative capture t(α, γ) 7 Li and 3 He(α, γ) 7 Be reactions at extremely low energies. At first, this method was used for analysis of the S exp (E) to determine values of the modulus squared of the NVC's (or the respective ANC's). The values of NVC's are presented. Then, the obtained NVC's are used by us for extrapolation of the S(E) of the reactions considered to stellar energies (E=0-50 keV) for the 3 He(α, γ) 7 Be reaction and for the t(α, γ) 7 Li reaction. The obtained results are compared with those other authors

  19. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  20. A subspace approach to high-resolution spectroscopic imaging.

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  1. Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses

    Costa-Neto, Claudio M.; Parreiras-e-Silva, Lucas T.; Ruller, Roberto; Oliveira, Eduardo B.; Miranda, Antonio; Oliveira, Laerte; Ward, Richard J.

    2006-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance

  2. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  3. Spectroscopic study of low-lying 16N levels

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  4. Spectroscopic analysis of optoelectronic semiconductors

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  5. Universal relation between spectroscopic constants

    (3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.

  6. The VANDELS ESO spectroscopic survey

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  7. Single nanoparticle tracking spectroscopic microscope

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  8. Mid-infrared spectroscopic investigation

    Walter, L.; Vergo, N.; Salisbury, J.W.

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed

  9. Spectroscopic amplifier for pin diode

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  10. Mossbauer spectroscopic studies in ferroboron

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  11. Spectroscopic Needs for Imaging Dark Energy Experiments

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Coupon, Jean; Cunha, Carlos E.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Matthews, Daniel J.; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Rhodes, Jason; Ricol, Jean-Stepane; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; Von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-01-01

    .e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. - rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<∼0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 30-60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <∼0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ∼100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary

  12. Determination of the asymptotic normalization coefficients for 14C + n <--> 15C, the 14C(n, gamma)15C reaction rate, and evaluation of a new method to determine spectroscopic factors

    McCleskey, M; Mukhamedzhanov, A M; Trache, L; Tribble, R E; Banu, A; Eremenko, V; Goldberg, V Z; Lui, Y W; McCleskey, E; Roeder, B T; Spiridon, A; Carstoiu, F; Burjan, V; Hons, Z; Thompson, I J

    2014-04-17

    The 14C + n <--> 15C system has been used as a test case in the evaluation of a new method to determine spectroscopic factors that uses the asymptotic normalization coefficient (ANC). The method proved to be unsuccessful for this case. As part of this experimental program, the ANCs for the 15C ground state and first excited state were determined using a heavy-ion neutron transfer reaction as well as the inverse kinematics (d,p) reaction, measured at the Texas A&M Cyclotron Institute. The ANCs were used to evaluate the astrophysical direct neutron capture rate on 14C, which was then compared with the most recent direct measurement and found to be in good agreement. A study of the 15C SF via its mirror nucleus 15F and a new insight into deuteron stripping theory are also presented.

  13. Raman Spectroscopic Studies of Methane Gas Hydrates

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  14. Spectroscopic observations of AG Dra

    Chang-Chun, H.

    1982-01-01

    During summer 1981, spectroscopic observations of AG Dra were performed at the Haute-Provence Observatory using the Marly spectrograph with a dispersion of 80 A mm -1 at the 120 cm telescope and using the Coude spectrograph of the 193 cm telescope with a dispersion of 40 A mm -1 . The actual outlook of the spectrum of AG Dra is very different from what it was in 1966 in the sense that only a few intense absorption lines remain, the heavy emission continuum masking the absorption spectrum, while on the 1966 plate, about 140 absorption lines have been measured. Numerous emission lines have been measured, most of them, present in 1981, could also be detected in 1966. They are due to H, HeI and HeII. (Auth.)

  15. Method of absorbance correction in a spectroscopic heating value sensor

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  16. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Schlegel, David J.; Bailey, Stephen; Anderson, Scott F.; Bhardwaj, Vaishali; Aubourg, Éric; Bautista, Julian E.; Barkhouser, Robert H.; Beifiori, Alessandra; Berlind, Andreas A.; Bizyaev, Dmitry; Brewington, Howard; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Borde, Arnaud; Bovy, Jo; Brandt, W. N.

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg 2 to measure BAO to redshifts z A to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D A (z) and H –1 (z) parameters to an accuracy of 1.9% at z ∼ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  17. Spectroscopic diagnostics of industrial plasmas

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  18. Spectroscopic studies of copper enzymes

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  19. Spectroscopic information from (3He, 7Be) reaction on 12C and 24Mg

    Rahman, Md.A.; Sen Gupta, H.M.

    1986-01-01

    The reaction ( 3 He, 7 Be) on 12 C and 24 Mg has been analysed using four discrete potential families for 7 Be channel and one discrete potential family for 3 He channel to extract alpha spectroscopic factors. It is shown that the relative spectroscopic factors are reliable if they are calculated staying within one potential family (S( 24 Mg/ 12 C) approx. 0.12). But, changing the potential family between 12 C and 24 Mg, one obtains the extreme cases, such as S( 24 Mg/ 12 C) = 0.025 and 0.51, i.e. 1:20

  20. Determination of the asymptotic normalization coefficients for C-14 + n - C-15,the C-14(n,gamma)C-15 reaction rate, and evaluation of a new method to determine spectroscopic factors

    McCleskey, M.; Mukhamedzhanov, A. M.; Trache, L.; Tribble, R. E.; Banu, A.; Eremenko, V.; Goldberg, V. Z.; Lui, Y. W.; McCleskey, E.; Roeder, B. T.; Spiridon, A.; Carstoiu, F.; Burjan, Václav; Hons, Zdeněk; Thompson, I. J.

    2014-01-01

    Roč. 89, č. 4 (2014), 044605 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LH11001 Institutional support: RVO:61389005 Keywords : capture reactions * cross-section * asymptotic normalization coefficient Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.733, year: 2014

  1. Spectroscopic effects in 1H and 13C NMR spectra of 4,4'-di-substituted 3,3'-diquinolines sulfides

    Pluta, K.

    1994-01-01

    The 1 H and 13 C NMR spectra of 4,4'-disubstituted sulfides of 3,3'-quinolines have been studied in CDCl 3 solutions. The observed spectroscopic effects have been interpreted in terms of molecule structure and configuration. The factors being responsible for the value of spectroscopic effects have been discussed

  2. sick: The Spectroscopic Inference Crank

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  3. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambdridge, CB3 0HA (United Kingdom)

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  4. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    Casey, Andrew R.

    2016-01-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  5. Development of a THz spectroscopic imaging system

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-01-01

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  6. Spectroscopic databases - A tool for structure elucidation

    Luksch, P [Fachinformationszentrum Karlsruhe, Gesellschaft fuer Wissenschaftlich-Technische Information mbH, Eggenstein-Leopoldshafen (Germany)

    1990-05-01

    Spectroscopic databases have developed to useful tools in the process of structure elucidation. Besides the conventional library searches, new intelligent programs have been added, that are able to predict structural features from measured spectra or to simulate for a given structure. The example of the C13NMR/IR database developed at BASF and available on STN is used to illustrate the present capabilities of online database. New developments in the field of spectrum simulation and methods for the prediction of complete structures from spectroscopic information are reviewed. (author). 10 refs, 5 figs.

  7. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  8. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J.; Bailey, Stephen [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, Scott F.; Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Aubourg, Eric; Bautista, Julian E. [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beifiori, Alessandra [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235 (United States); Bizyaev, Dmitry; Brewington, Howard [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Blake, Cullen H. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Borde, Arnaud [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Brandt, W. N., E-mail: kdawson@astro.utah.edu [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  9. Spectroscopic, thermal and biological studies of coordination

    Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal ... The thermal decomposition of the complexes as well as thermodynamic parameters ( *}, *, * and *) were estimated using Coats–Redfern and ...

  10. 8th Czechoslovak spectroscopic conference. Abstracts

    1988-01-01

    Volume 3 of the conference proceedings contains abstracts of 17 invited papers, 101 poster presentations and 7 papers of instrument manufacturers, devoted to special spectroscopic techniques including X-ray microanalysis, X-ray spectral analysis, Moessbauer spectrometry, mass spectrometry, instrumental activation analysis and other instrumental radioanalytical methods, electron spectrometry, and techniques of environmental analysis. Sixty abstracts were inputted in INIS. (A.K.)

  11. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  12. The VANDELS ESO public spectroscopic survey

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  13. The Gaia-ESO Public Spectroscopic Survey

    Gilmore, G.; Randich, S.; Asplund, M.

    2012-01-01

    The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous o...

  14. Study of single-nucleon spectroscopic characteristics in light nuclei

    Zhusupova, K.A.

    1998-01-01

    Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)

  15. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  16. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  17. The HITRAN2016 molecular spectroscopic database

    Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J. -M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M. -A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J. -M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. Vander; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J.

    2017-12-01

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 200 additional significant molecules have been added to the database.

  18. Spectroscopic follow up of Kepler planet candidates

    Latham..[], D. W.; Cochran, W. D.; Marcy, G.W.

    2010-01-01

    Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from...... spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars...... and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using...

  19. The HITRAN 2008 molecular spectroscopic database

    Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.Chris; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.-P.; Chance, K.; Coudert, L.H.; Dana, V.; Devi, V.M.; Fally, S.; Flaud, J.-M.

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e. spectra in which the individual lines are not resolved; individual line parameters and absorption cross-sections for bands in the ultraviolet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 42 molecules including many of their isotopologues.

  20. Spectroscopic Chemical Analysis Methods and Apparatus

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  1. Very large area multiwire spectroscopic proportional counters

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F.

    1981-01-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) succesfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm 2 with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results. (orig.)

  2. Very large area multiwire spectroscopic proportional counters

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F. (Istituto di Astrofisica Spaziale, Frascati (Italy))

    1981-07-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) successfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm/sup 2/ with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results.

  3. Spectroscopic diagnostics and measurements at Jet

    Giannella, R.

    1994-01-01

    A concise review is presented of activity in the field spectroscopic diagnostic at JET during the latest few years. Together with a description of instruments, examples are given of the measurements conducted with these systems and some experimental result obtained with such activity are outlined. Emphasis is also given to the upgrading of existing apparatuses and the construction of new diagnostics ahead of the next experimental phase. 48 refs., 5 figs

  4. Spectroscopic studies of the transplutonium elements

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables

  5. Spectroscopic methods for characterization of nuclear fuels

    Sastry, M.D.

    1999-01-01

    Spectroscopic techniques have contributed immensely in the characterisation and speciation of materials relevant to a variety of applications. These techniques have time tested credentials and continue to expand into newer areas. In the field of nuclear fuel fabrication, atomic spectroscopic methods are used for monitoring the trace metallic constituents in the starting materials and end product, and for monitoring process pick up. The current status of atomic spectroscopic methods for the determination of trace metallic constituents in nuclear fuel materials will be briefly reviewed and new approaches will be described with a special emphasis on inductively coupled plasma techniques and ETV-ICP-AES hyphenated techniques. Special emphasis will also be given in highlighting the importance of chemical separation procedures for the optimum utilization of potential of ICP. The presentation will also include newer techniques like Photo Acoustic Spectroscopy, and Electron Paramagnetic Resonance (EPR) Imaging. PAS results on uranium and plutonium oxides will be described with a reference to the determination of U 4+ /U 6+ concentration in U 3 O 8 . EPR imaging techniques for speciation and their spatial distribution in solids will be described and its potential use for Gd 3+ containing UO 2 pellets (used for flux flattening) will be highlighted. (author)

  6. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  7. The Nuclear Spectroscopic Telescope Array (NuSTAR)

    Harrison, Fiona A.; Boggs, Steve; Christensen, Finn Erland

    2010-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated...... in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried...... on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFC's High Energy Archive Research...

  8. Enhancing forensic science with spectroscopic imaging

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  9. Are your Spectroscopic Data Being Used?

    Gordon, Iouli E.; Rothman, Laurence S.; Wilzewski, Jonas

    2014-06-01

    Spectroscopy is an established and indispensable tool in science, industry, agriculture, medicine, surveillance, etc.. The potential user of spectral data, which is not available in HITRAN or other databases, searches the spectroscopy publications. After finding the desired publication, the user very often encounters the following problems: 1) They cannot find the data described in the paper. There can be many reasons for this: nothing is provided in the paper itself or supplementary material; the authors are not responding to any requests; the web links provided in the paper have long been broken; etc. 2) The data is presented in a reduced form, for instance through the fitted spectroscopic constants. While this is a long-standing practice among spectroscopists, there are numerous serious problems with this practice, such as users getting different energy and intensity values because of different representations of the solution to the Hamiltonian, or even just despairing of trying to generate usable line lists from the published constants. Properly providing the data benefits not only users but also the authors of the spectroscopic research. We will show that this increases citations to the spectroscopy papers and visibility of the research groups. We will also address the quite common issue when researchers obtain the data, but do not feel that they have time, interest or resources to write an article describing it. There are modern tools that would allow one to make these data available to potential users and still get credit for it. However, this is a worst case scenario recommendation, i.e., publishing the data in a peer-reviewed journal is still the preferred way. L. S. Rothman, I. E. Gordon, et al. "The HITRAN 2012 molecular spectroscopic database," JQSRT 113, 4-50 (2013).

  10. Vibrational spectroscopic study of fluticasone propionate

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  11. Nuclear data for geophysical spectroscopic logging

    Schweitzer, J.S.; Hertzog, R.C.; Soran, P.D.

    1987-01-01

    Nuclear geochemical analysis requires the quantitative measurement of elemental concentrations of trace elements, as well as major elements in widely varying concentrations. This requirement places extreme demands on the quality of the spectroscopic measurements, data rates, and relating observed γ-ray intensities to the original elemental concentration. The relationship between γ-ray intensities and elemental concentration is critically dependent on the specific reaction cross sections and their uncertainties. The elements of highest priority for subsurface geochemical analysis are considered with respect to the importance of competing reactions and the neutron energy regions that are most significant. (author)

  12. Laser spectroscopic analysis in atmospheric pollution research

    Forbes, PBC

    2008-01-01

    Full Text Available stream_source_info ForbesP_2008.pdf.txt stream_content_type text/plain stream_size 3174 Content-Encoding ISO-8859-1 stream_name ForbesP_2008.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Laser spectroscopic... Department and a CSIR National Laser Centre rental pool programme grant-holder, is involved in research into a novel method of monitoring atmospheric PAHs. The rental pool programme gives South African tertiary education institutions access to an array...

  13. Automated reliability assessment for spectroscopic redshift measurements

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  14. Optical properties of metals by spectroscopic ellipsometry

    Arakawa, E.T.; Inagaki, T.; Williams, M.W.

    1979-01-01

    The use of spectroscopic ellipsometry for the accurate determination of the optical properties of liquid and solid metals is discussed and illustrated with previously published data for Li and Na. New data on liquid Sn and Hg from 0.6 to 3.7 eV are presented. Liquid Sn is Drude-like. The optical properties of Hg deviate from the Drude expressions, but simultaneous measurements of reflectance and ellipsometric parameters yield consistent results with no evidence for vectorial surface effects

  15. Emission spectroscopic 15N analysis 1985

    Meier, G.

    1986-01-01

    The state of the art of emission spectroscopic 15 N analysis is demonstrated taking the NOI-6e 15 N analyzer as an example. The analyzer is equipped with a microcomputer to ensure a high operational comfort, computer control, and both data acquisition and data processing. In small amounts of nitrogen-containing substances (10 to 50 μg N 2 ) the 15 N abundance can be very quickly determined in standard discharge tubes or in aqueous ammonium salt solutions with a standard deviation less than 0.6 percent

  16. Infrared spectroscopic measurement of skin hydration and sebum levels and comparison to corneometer and sebumeter

    Ezerskaia, A.; Pereira, S.F.; Urbach, Paul; Varghese, Babu; Popp, Jürgen; Tuchin, Valery V.; Matthews, Dennis L.; Pavone, Francesco S.

    2016-01-01

    Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simulta...

  17. Development of laser atomic spectroscopic technology

    Lee, Jong Min; Ohr, Young Gie; Cha, Hyung Ki

    1990-06-01

    Some preliminary results on the resonant ionization spectroscopy for Na and Pb atoms are presents both in theory and in experiment. A single color multiphoton ionization process is theoretically analysed in detail, for the resonant and non-resonant cases, and several parameters determining the overall ionization rate are summarized. In particular, the AC stark shift, the line width and the non-linear coefficient of ionization rate are recalculated using the perturbation theory in resolvent approach. On the other hand, the fundamental equipments for spectroscopic experiments have been designed and manufactured, which include a Nd:YAG laser, a GIM-type dye laser, a vacuum system ionization cells, a heat pipe oven, and an ion current measuring system. The characteristics of the above equipments have also been examined. Using the spectroscopic data available, several ionization schemes are considered and the relative merits for ionization have been discussed. Moreover, the effects due to the buffer gas pressure, laser intensity, vapor density and electrode voltage have been investigated in detail. The experiments will be extended to multi-color processes with several resonances, and the ultimate goal is to develop a ultrasensitive analytical method for pollutive heavy metal atoms using the resonant ionization spectroscopy. (author)

  18. Infrared Spectroscopic Imaging: The Next Generation

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  19. EPSILON AURIGAE: AN IMPROVED SPECTROSCOPIC ORBITAL SOLUTION

    Stefanik, Robert P.; Torres, Guillermo; Lovegrove, Justin; Latham, David W.; Zajac, Joseph; Pera, Vivian E.; Mazeh, Tsevi

    2010-01-01

    A rare eclipse of the mysterious object ε Aurigae will occur in 2009-2011. We report an updated single-lined spectroscopic solution for the orbit of the primary star based on 20 years of monitoring at the CfA, combined with historical velocity observations dating back to 1897. There are 518 new CfA observations obtained between 1989 and 2009. Two solutions are presented. One uses the velocities outside the eclipse phases together with mid-times of previous eclipses, from photometry dating back to 1842, which provide the strongest constraint on the ephemeris. This yields a period of 9896.0 ± 1.6 days (27.0938 ± 0.0044 years) with a velocity semi-amplitude of 13.84 ± 0.23 km s -1 and an eccentricity of 0.227 ± 0.011. The middle of the current ongoing eclipse predicted by this combined fit is JD 2,455,413.8 ± 4.8, corresponding to 2010 August 5. If we use only the radial velocities, we find that the predicted middle of the current eclipse is nine months earlier. This would imply that the gravitating companion is not the same as the eclipsing object. Alternatively, the purely spectroscopic solution may be biased by perturbations in the velocities due to the short-period oscillations of the supergiant.

  20. Spectroscopic studies of pulsed-power plasmas

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  1. Spectroscopic enhancement in nanoparticles embedded glasses

    Sahar, M. R., E-mail: mrahim057@gmail.com; Ghoshal, S. K., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  2. The HITRAN 2004 molecular spectroscopic database

    Rothman, L.S. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138 (United States)]. E-mail: lrothman@cfa.harvard.edu; Jacquemart, D. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138 (United States); Barbe, A. [Universite de Reims-Champagne-Ardenne, Groupe de Spectrometrie Moleculaire et Atmospherique, 51062 Reims (France)] (and others)

    2005-12-01

    This paper describes the status of the 2004 edition of the HITRAN molecular spectroscopic database. The HITRAN compilation consists of several components that serve as input for radiative transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are unresolvable; individual line parameters and absorption cross-sections for bands in the ultra-violet; refractive indices of aerosols; tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 39 molecules including many of their isotopologues. The format of the section of the database on individual line parameters of HITRAN has undergone the most extensive enhancement in almost two decades. It now lists the Einstein A-coefficients, statistical weights of the upper and lower levels of the transitions, a better system for the representation of quantum identifications, and enhanced referencing and uncertainty codes. In addition, there is a provision for making corrections to the broadening of line transitions due to line mixing.

  3. The HITRAN 2004 molecular spectroscopic database

    Rothman, L.S.; Jacquemart, D.; Barbe, A.

    2005-01-01

    This paper describes the status of the 2004 edition of the HITRAN molecular spectroscopic database. The HITRAN compilation consists of several components that serve as input for radiative transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are unresolvable; individual line parameters and absorption cross-sections for bands in the ultra-violet; refractive indices of aerosols; tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 39 molecules including many of their isotopologues. The format of the section of the database on individual line parameters of HITRAN has undergone the most extensive enhancement in almost two decades. It now lists the Einstein A-coefficients, statistical weights of the upper and lower levels of the transitions, a better system for the representation of quantum identifications, and enhanced referencing and uncertainty codes. In addition, there is a provision for making corrections to the broadening of line transitions due to line mixing

  4. Spectroscopic characterization of the on-surface induced (cyclo) dehydrogenation of a N-heteroaromatic compound on noble metal surfaces

    Palacio, I.; Pinardi, A. L.; Martínez, J. I.; Preobrajenski, A.; Cossaro, A.; Jančařík, Andrej; Stará, Irena G.; Starý, Ivo; Méndez, J.; Martín-Gago, J.A.; López, M.F.

    2017-01-01

    Roč. 19, č. 33 (2017), s. 22454-22461 ISSN 1463-9076 Institutional support: RVO:61388963 Keywords : dibenzohelicene * on-surface (cyclo)dehydrogenation * spectroscopic characterization Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.123, year: 2016

  5. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  6. Iterative estimation of the background in noisy spectroscopic data

    Zhu, M.H.; Liu, L.G.; Cheng, Y.S.; Dong, T.K.; You, Z.; Xu, A.A.

    2009-01-01

    In this paper, we present an iterative filtering method to estimate the background of noisy spectroscopic data. The proposed method avoids the calculation of the average full width at half maximum (FWHM) of the whole spectrum and the peak regions, and it can estimate the background efficiently, especially for spectroscopic data with the Compton continuum.

  7. Optical constants of graphene measured by spectroscopic ellipsometry

    Weber, J.W.; Calado, V.E.; Van de Sanden, M.C.M.

    2010-01-01

    A mechanically exfoliated graphene flake ( ? 150×380??m2) on a silicon wafer with 98 nm silicon dioxide on top was scanned with a spectroscopic ellipsometer with a focused spot ( ? 100×55??m2) at an angle of 55°. The spectroscopic ellipsometric data were analyzed with an optical model in which the

  8. Optical constants of graphene measured by spectroscopic ellipsometry

    Weber, J.W.; Calado, V.E.; Sanden, van de M.C.M.

    2010-01-01

    A mechanically exfoliated graphene flake ( ~ 150×380 µm2) on a silicon wafer with 98 nm silicon dioxide on top was scanned with a spectroscopic ellipsometer with a focused spot ( ~ 100×55 µm2) at an angle of 55°. The spectroscopic ellipsometric data were analyzed with an optical model in which the

  9. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  10. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    Blondin, S.; Matheson, T.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-01-01

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II λ6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ∼0 to ∼400 km s −1 day −1 considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B – V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II λ6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at ∼4700 Å and Δm 15 (B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent

  11. Thirty New Low-mass Spectroscopic Binaries

    Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew

    2010-06-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada

  12. The BAT AGN Spectroscopic Survey (BASS)

    Koss, Michael

    2017-08-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at zpast studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics.

  13. Spectroscopic and chemometric exploration of food quality

    Pedersen, Dorthe Kjær

    2002-01-01

    and multi-way chemometrics demonstrated the potential for screening of environmental contamination in complex food samples. Significant prediction models were established with correlation coefficients in the range from r = 0.69 to r = 0.97 for dioxin. Further development of the fluorescence measurements......The desire to develop non-invasive rapid measurements of essential quality parameters in foods is the motivation of this thesis. Due to the speed and noninvasive properties of spectroscopic techniques, they have potential as on-line or atline methods and can be employed in the food industry...... in order to control the quality of the end product and to continuously monitor the production. In this thesis, the possibilities and limitations of the application of spectroscopy and chemometrics in rapid control of food quality are discussed and demonstrated by the examples in the eight included...

  14. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  15. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Turid Knutsen

    2010-06-01

    Full Text Available The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM is investigated. The alkaline oxygen evolution reaction (OER was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  16. Statistical investigation of spectroscopic binary stars

    Tutukov, A.V.; Yungelson, L.R.

    1980-01-01

    A catalog of physical parameters of about 1000 spectroscopic binary stars (SB), based on the Batten catalog, its extensions, and newly published data has been compiled. Masses of stars' components (M 1 and M 2 ), mass ratios of components (q=M 1 /M 2 ) and orbital angular momenta are computed, wherever possible. It is probable that the initial mass function of the primaries is non-monotonic and is described only approximately by a power-law. A number of assumed 'initial' distributions of M 1 , q and the semiaxes of orbits were transformed with the aim of obtaining 'observed' distributions taking into account the observational selection due to the luminosities of the components, their radial velocities, inclinations of the orbits, and the effects of matter exchange between the components. (Auth.)

  17. Micron scale spectroscopic analysis of materials

    James, David; Finlayson, Trevor; Prawer, Steven

    1991-01-01

    The goal of this proposal is the establishment of a facility which will enable complete micron scale spectroscopic analysis of any sample which can be imaged in the optical microscope. Current applications include studies of carbon fibres, diamond thin films, ceramics (zirconia and high T c superconductors), semiconductors, wood pulp, wool fibres, mineral inclusions, proteins, plant cells, polymers, fluoride glasses, and optical fibres. The range of interests crosses traditional discipline boundaries and augurs well for a truly interdisciplinary collaboration. Developments in instrumentation such as confocal imaging are planned to achieve sub-micron resolution, and advances in computer software and hardware will enable the aforementioned spectroscopies to be used to map molecular and crystalline phases on the surfaces of materials. Coupled with existing compositional microprobes (e.g. the proton microprobe) the possibilities for the development of new, powerful, hybrid imaging technologies appear to be excellent

  18. Spectroscopic investigation of oxidized solder surfaces

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  19. Spectroscopic diagnostics of high temperature plasmas

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q o and local poloidal field measurements using Zeeman polarimetry

  20. Raman spectroscopic biochemical mapping of tissues

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  1. Detection of the spectroscopic signatures of explosives and their degradation products

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  2. 2-d spectroscopic imaging of brain tumours

    Ferris, N.J.; Brotchie, P.R.

    2002-01-01

    Full text: This poster illustrates the use of two-dimensional spectroscopic imaging (2-D SI) in the characterisation of brain tumours, and the monitoring of subsequent treatment. After conventional contrast-enhanced MR imaging of patients with known or suspected brain tumours, 2-D SI is performed at a single axial level. The level is chosen to include the maximum volume of abnormal enhancement, or, in non-enhancing lesions. The most extensive T2 signal abnormality. Two different MR systems have been used (Marconi Edge and GE Signa LX); at each site, a PRESS localisation sequence is employed with TE 128-144 ms. Automated software is used to generate spectral arrays, metabolite maps, and metabolite ratio maps from the spectroscopic data. Colour overlays of the maps onto anatomical images are produced using manufacturer software or the Medex imaging data analysis package. High grade gliomas showed choline levels higher than those in apparently normal brain, with decreases in NAA and creatine. Some lesions showed spectral abnormality extending into otherwise normal appearing brain. This was also seen in a case of CNS lymphoma. Lowgrade lesions showed choline levels similar to normal brain, but with decreased NAA. Only a small number of metastases have been studied, but to date no metastasis has shown spectral abnormality beyond the margins suggested by conventional imaging. Follow-up studies generally show spectral heterogeneity. Regions with choline levels higher than those in normal-appearing brain are considered to represent recurrent high-grade tumour. Some regions show choline to be the dominant metabolite, but its level is not greater than that seen in normal brain. These regions are considered suspicious for residual / recurrent tumour when the choline / creatine ratio exceeds 2 (lower ratios may represent treatment effect). 2-D SI improves the initial assessment of brain tumours, and has potential for influencing the radiotherapy treatment strategy. 2-D SI also

  3. Spectroscopic Evidence for Nonuniform Starspot Properties on II Pegasi

    ONeal, Douglas; Saar, Steven H.; Neff, James E.

    1998-01-01

    We present spectroscopic evidence for Multiple Spot temperatures on the RS CVn star II Pegasi (HD 224085). We model the strengths of the 7055 and 8860 A TiO absorption bands in the spectrum of II Peg using weighted sums of inactive comparison spectra: a K star to represent the nonspotted photosphere and an M star to represent the spots. The best fit yields independent measurements of the starspot filling factor (f(sub s) and mean spot temperature (T(sub s)) averaged over the visible hemisphere of the star. During three-fourths of a rotation of II Peg in late 1996, we measure a constant f(sub s) approximately equals 55% +/- 5%. However, (T(sub s) varies from 3350 +/- 60 to 3550 +/- 70 K. We compute (T(sub s) for two simple models: (1) a star with two distinct spot temperatures, and (2) a star with different umbral/penumbral area ratios. The changing (T(sub s) correlates with emission strengths of H(alpha) and the Ca II infrared triplet in the sense that cooler (T(sub s) accompanies weaker emission. We explore possible implications of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  4. II Peg: Spectroscopic Evidence for Multiple Starspot Temperatures

    O'Neal, Douglas; Saar, Steven H.; Neff, James E. Neff

    We present spectroscopic evidence for multiple spot temperatures on the RS CVn star II Pegasi (HD 224085). We fit the strengths of the 7055 AAg and 8860 AAg TiO absorption bands in the spectrum of an active star using weighted sums of comparison spectra: the spectrum of an inactive K star to represent the non-spotted photosphere and the spectrum of an M star to represent the spots. We can thus independently measure starspot filling factor (fspot) and temperature (tspot). During 3/4 of a rotation of II Peg in Sept.-Oct. 1996, we measure fspot approximately constant at 55+/-5%. However, tspot varies from 3350 K to 3500 K. Since our method yields one derived tspot integrated over the visible hemisphere of the star, we present the results of simple models of a star with two distinct spot temperatures and compute the tspot we would derive in those cases. The changing tspot correlates with emission strengths of Hα and the Ca 2 infrared triplet, in the sense that cooler \\tspot accompanies weaker emission. We explore the consequences of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  5. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  6. Single hole spectroscopic strength in 98Ru through the 99Ru(d,t) reaction

    Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Barbosa, M.D.L.; Silva, G.B. da; Ukita, G.M.

    2002-01-01

    The 99 Ru(d,t) 98 Ru reaction was measured for the first time at 16 MeV incident energy with the Sao Paulo Pelletron-Enge-spectrograph facility employing the nuclear emulsion technique. In all, up to 3.5 MeV, 23 levels were detected, eight of them new; angular distributions are presented for all of them. Least squares fits of distorted wave Born approximation one-neutron pickup predictions to the rather well structured experimental angular distributions enabled the determination of l transfers and of the corresponding spectroscopic factors for 19 of these states, some being tentative attributions. Only transfers of l=0, 2, and 4 were observed. Several states were populated through single l transfers. A pure l=2 transfer is associated with the 2 1 + level and with several other states which are considered collective, as well as with the (4 + ) state at 2.277 MeV, which presents the highest spectroscopic strength. Considering five valence neutrons above the N=50 core, only 41% of the spectroscopic strength expected for 99 Ru was detected

  7. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    Andreev, GN

    2003-12-16

    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  8. Spectroscopic investigation of Indium Bromide for lighting purposes

    Mulders, H.C.J.; Kroesen, G.M.W.; Haverlag, M.; Haverlag, M.; Kroesen, G.M.W.; Tagushi, T.

    2010-01-01

    Laser Induced Fluorescence was used to study the radiative properties of InBr for lighting purposes. Results include the temperature dependence of the fluorescence decay time, spectroscopic constants and rotational temperature determination from a LIF spectrum.

  9. Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...

    L1) identifies its molecular structure and reveals π-π stacking. The synthetic mechanisms for L2, L3 were studied by density functional theory calculations. And a comprehensive study of spectroscopic properties involving experimental data and ...

  10. ITER perspective on fusion reactor diagnostics - A spectroscopic view

    De Bock, M. F. M.; Barnsley, R.; Bassan, M.

    2016-01-01

    challenges to the development of spectroscopic (but also other) diagnostics. This contribution presents an overview of recent achievements in 4 topical areas: First mirror protection and cleaning, Nuclear confinement, Radiation mitigation strategy for optical and electronic components and Calibration...

  11. Development and validation of a spectroscopic method for the ...

    Development and validation of a spectroscopic method for the simultaneous analysis of ... advanced analytical methods such as high pressure liquid ..... equipment. DECLARATIONS ... high-performance liquid chromatography. J Chromatogr.

  12. TOWARD A SPECTROSCOPIC CENSUS OF WHITE DWARFS WITHIN 40 pc OF THE SUN

    Limoges, M.-M.; Bergeron, P.; Lépine, S.

    2013-01-01

    We present the preliminary results of a survey aimed at significantly increasing the range and completeness of the local census of spectroscopically confirmed white dwarfs. The current census of nearby white dwarfs is reasonably complete only to about 20 pc of the Sun, a volume that includes around 130 white dwarfs, a sample too small for detailed statistical analyses. This census is largely based on follow-up investigations of stars with very large proper motions. We describe here the basis of a method that will lead to a catalog of white dwarfs within 40 pc of the Sun and north of the celestial equator, thus increasing by a factor of eight the extent of the northern sky census. White dwarf candidates are identified from the SUPERBLINK proper motion database, allowing us to investigate stars down to a proper motion limit μ > 40 mas yr –1 , while minimizing the kinematic bias for nearby objects. The selection criteria and distance estimates are based on a combination of color-magnitude and reduced proper motion diagrams. Our follow-up spectroscopic observation campaign has so far uncovered 193 new white dwarfs, among which we identify 127 DA (including 9 DA+dM and 4 magnetic), 1 DB, 56 DC, 3 DQ, and 6 DZ stars. We perform a spectroscopic analysis on a subsample of 84 DAs, and provide their atmospheric parameters. In particular, we identify 11 new white dwarfs with spectroscopic distances within 25 pc of the Sun, including five candidates to the D < 20 pc subset.

  13. The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field

    Hasinger, G.; Capak, P.; Salvato, M.; Barger, A. J.; Cowie, L. L.; Faisst, A.; Hemmati, S.; Kakazu, Y.; Kartaltepe, J.; Masters, D.; Mobasher, B.; Nayyeri, H.; Sanders, D.; Scoville, N. Z.; Suh, H.; Steinhardt, C.; Yang, Fengwei

    2018-05-01

    We present a catalog of 10,718 objects in the COSMOS field, observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ∼5500–9800 Å. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects, we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I AB ∼ 23 and K AB ∼ 21, with a secondary peak at K AB ∼ 24. We sample a broad redshift distribution in the range 0 0.65 with chance probabilities 10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Lyα background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. [Spectroscopic characteristics of novel Psidium meroterpenoids isolated from guava leaves].

    Ouyang, Wen; Zhu, Xiao-ai; Liu, Xiao-juan; Yie, Shu-min; Zhao, Litchao; Su, Lei; Cao, Yong

    2015-07-01

    Recently, novel Psidium meroterpenoids were reported in the guava leaves. According to careful analysis of the spectral data of literatures, the spectroscopic characteristics and biosynthetic pathway of Psidium meroterpenoids were summarized in this paper. The results showed that Psidium meroterpenoids had distinct spectroscopic features and reasonable biosynthetic routines, however the number order of carbon atoms was not consistent in the reported literatures. It was concluded that Psidium meroterpenoids were the characteristic chemical constituents of Psidium guajava Linn.

  15. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  16. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  17. EPR spectroscopic investigation of psoriatic finger nails.

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke

    2013-11-01

    Nail lesions are common features of psoriasis and found in almost half of the patients. However, there is no feasible spectroscopic method evaluating changes and severity of nail psoriasis. EPR (electron paramagnetic resonance) might be feasible for evaluating nail conditions in the patients of psoriasis. Finger nails of five cases with nail psoriasis, (three females and two males) were examined. Nail samples were subjected to the EPR assay. The small piece of the finger nail (1.5 × 5 mm(2)) was incubated in ~50 μM 5-DSA (5-doxylstearic acid) aqueous solutions for about 60 min at 37°C. After rinsing and wiping off the excess 5-DSA solution, the nail samples were measured by EPR. EPR spectra were analyzed using the intensity ratio (Fast/Slow) of the two motions at the peaks of the lower magnetic field. We observed two distinguishable sites on the basis of the EPR results. In addition, the modern EPR calculation was performed to analyze the spectra obtained. The nail psoriasis-related region is 2~3 times higher than that of the control. The present EPR results show that there are two distinguishable sites in the nail. In the case of nail psoriasis, the fragile components are 2~3 times more than those of the control. Thus, the EPR method is thought to be a novel and reliable method of evaluating the nail psoriasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Galaxy Evolution Spectroscopic Explorer: Scientific Rationale

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-01-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z approximately 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (approximately 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  19. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  20. Spectroscopic characterization of alkaline earth uranyl carbonates

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-01-01

    A series of alkaline uranyl carbonates, M[UO 2 (CO 3 ) 3 ].nH 2 O (M=Mg 2 , Ca 2 , Sr 2 , Ba 2 , Na 2 Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2 [UO 2 (CO 3 ) 3 ].6H 2 O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2 )(CO 3 ) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90+/-0.02A.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces

  1. Vacuum arc anode plasma. I. Spectroscopic investigation

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  2. Theoretical predictions for alpha particle spectroscopic strengths

    Draayer, J.P.

    1975-01-01

    Multinucleon transfers induced in heavy-ion reactions of the type ( 6 Li,d) furnish a selective probe with which to study the interplay between rotational and clustering phenomena so characteristic of the structure of the light sd-shell nuclei. For these nuclei, theoretical predictions for inter-band as well as intra-band transfer strengths can be made using recently tabulated results for angular momentum dependent SU 3 inclusion R 3 relative spectroscopic strengths and angular momentum independent SU 6 inclusion SU 3 coefficients of fractional parentage. The pure SU 3 (oscillator)-SU 4 (supermultiplet) symmetry limit agrees well with results obtained using available eigenfunctions determined in large shell model calculations. In particular, the scalar nature of a transferred ''alpha''-cluster insures that the effect of spatial symmetry admixtures in the initial and final states of the target and residual nuclei are minimized. Sum rule quantities provide a measure of the probable effects of symmetry breaking. Strength variations within a band are expected; transfers to core excited states are often favored. Results extracted from exact finite range DWBA analyses of ( 6 Li,d) data on 16 , 18 O, 20 , 21 , 22 Ne, 24 , 25 Mg show some anomalies in our understanding of the structure and/or reaction mechanisms. (18 figures) (U.S.)

  3. IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS

    Torres, Guillermo; Holman, Matthew J.; Carter, Joshua A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Sozzetti, Alessandro [INAF-Osservatorio Astronomico di Torino, I-10025 Pino Torinese (Italy); Buchhave, Lars A. [Niels Bohr Institute, Copenhagen University, DK-2100 Copenhagen (Denmark); Winn, Joshua N., E-mail: gtorres@cfa.harvard.edu [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-10-01

    We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the stellar parameter classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (Spectroscopy Made Easy (SME) and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between T{sub eff}, [Fe/H], and log g when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on log g based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius.

  4. Spectroscopic Observations of Nearby Low Mass Stars

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  5. Nonlinear spectroscopic studies of chiral media

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  6. Spectroscopic study of ohmically heated Tokamak discharges

    Breton, C.; Michelis, C. de; Mattioli, M.

    1980-07-01

    Tokamak discharges interact strongly with the wall and/or the current aperture limiter producing recycling particles, which penetrate into the discharge and which can be studied spectroscopically. Working gas (hydrogen or deuterium) is usually studied observing visible Balmer lines at several toroidal locations. Absolute measurements allow to obtain both the recycling flux and the global particle confinement time. With sufficiently high resolution the isotopic plasma composition can be obtained. The impurity elements can be divided into desorbed elements (mainly oxygen) and eroded elements (metals from both walls and limiter) according to the plasma-wall interaction processes originating them. Space-and time-resolved emission in the VUV region down to about 20 A will be reviewed for ohmically-heated discharges. The time evolution can be divided into four phases, not always clearly separated in a particular discharge: a) the initial phase, lasting less than 10 ms (the so-called burn-out phase), b) the period of increasing plasma current and electron temperature, lasting typically 10 - 100 ms, c) an eventual steady state (plateau of the plasma current with almost constant density and temperature), d) the increase of the electron density up to or just below the maximum value attainable in a given device. For all these phases the results reported from different devices will be described and compared

  7. Spectroscopic Characterization of Omeprazole and Its Salts

    Tomislav Vrbanec

    2017-01-01

    Full Text Available During drug development, it is important to have a suitable crystalline form of the active pharmaceutical ingredient (API. Mostly, the basic options originate in the form of free base, acid, or salt. Substances that are stable only within a certain pH range are a challenge for the formulation. For the prazoles, which are known to be sensitive to degradation in an acid environment, the formulation is stabilized with alkaline additives or with the application of API formulated as basic salts. Therefore, preparation and characterization of basic salts are needed to monitor any possible salinization of free molecules. We synthesized salts of omeprazole from the group of alkali metals (Li, Na, and K and alkaline earth metals (Mg, Ca. The purpose of the presented work is to demonstrate the applicability of vibrational spectroscopy to discriminate between the OMP and OMP-salt molecules. For this reason, the physicochemical properties of 5 salts were probed using infrared and Raman spectroscopy, NMR, TG, DSC, and theoretical calculation of vibrational frequencies. We found out that vibrational spectroscopy serves as an applicable spectroscopic tool which enables an accurate, quick, and nondestructive way to determine the characteristic of OMP and its salts.

  8. How spectroscopic ellipsometry can aid graphene technology?

    Losurdo, Maria, E-mail: maria.losurdo@cnr.it; Giangregorio, Maria M.; Bianco, Giuseppe V.; Capezzuto, Pio; Bruno, Giovanni

    2014-11-28

    We explore the effects of substrate, grain size, oxidation and cleaning on the optical properties of chemical vapor deposited polycrystalline monolayer graphene exploiting spectroscopic ellipsometry in the NIR-Vis–UV range. Both Drude–Lorentz oscillators' and point-by-point fit approaches are used to analyze the ellipsometric spectra. For monolayer graphene, since anisotropy cannot be resolved, an isotropic model is used. A prominent absorption peak at approximately 4.8 eV, which is a mixture of π–π* interband transitions at the M-point of the Brillouin zone and of the π-plasmonic excitation, is observed. We discuss the sensitivity of this peak to the structural and cleaning quality of graphene. The comparison with previous published dielectric function spectra of graphene is discussed giving a rationale for the observed differences. - Highlights: • Optical properties of graphene are determined by ellipsometry on copper and on glass. • Optical spectra reveal the cleaning quality of transferred graphene. • Sensitivity of absorption peak to graphene structural quality is proven. • Optical properties are proven to be sensitive to oxidation of graphene. • Electronic interaction with substrate affects graphene optical properties.

  9. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  10. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE

    Lilly, Simon J.; Maier, Christian; Carollo, Marcella; Caputi, Karina; Le Brun, Vincent; Kneib, Jean-Paul; Le Fevre, Olivier; De la Torre, Sylvain; De Ravel, Loic; Mainieri, Vincenzo; Mignoli, Marco; Zamorani, Gianni; Bardelli, Sandro; Bolzonella, Micol; Coppa, Graziano; Scodeggio, Marco; Contini, Thierry; Renzini, Alvio; Bongiorno, Angela; Cucciati, Olga

    2009-01-01

    We present spectroscopic redshifts of a large sample of galaxies with I AB -1 , independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.

  11. On determining dose rate constants spectroscopically

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-01

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different

  12. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  13. The SPHEREx All-Sky Spectroscopic Survey

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  14. Spectroscopic modeling for tungsten EUV spectra

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W"2"4"+ - W"3"2"+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W"2"2"+ - W"3"5"+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W"2"5"+ - W"2"8"+ ions, and 4d-4p inner-shell transitions, 4p"54d"n"+"1 - 4p"64d"n, of W"2"9"+ - W"3"5"+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p"54d"n4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  15. Nuclear spectroscopic studies in 162Yb

    Behrens, H.

    1980-01-01

    The decay of the highly excited 162 Yb nuclei formed in the reaction 150 Sm( 16 O,4n) 162 Yb to the ground state was studied using different gamma detectors and an electron spectrometer, a so called mini-orange. The isotope 162 Yb was moreover produced and spectroscoped by the beta-decay of 162 Lu. For the identification of decay cascades, which were passed after the fusion, and for the determination of the multipolarity of the contributing energy transitions a series of experiments took place: The excitation functions and the angular distributions of the emitted gamma radiation was measured, the conversion coefficients of important transitions were determined, and coincidence events between two detectors occasionally were registrated and analyzed. In the beta decay measurement an assignment of gamma transitions to 162 Yb followed due to the lifetime, under which they occured. The found states of 162 Yb upto spins of 22 h/2π and excitation energies above 5 MeV belong to five rotational bands. The yrast band shows a weak backbending. Corresponding to their spins and parities the bands can be reduced to intrinsic excitation of two quasineutrons. The analysis of the beta-decay of 162 Lu, which takes place from three states in 162 Lu, leads to the lowest levels of the gamma-vibrational band and the band head of the beta band. The microscopic interpretation of the rotational bands and the description of the backbending behaviour are as the interpretation of the states involved at the beta decay in agreement with experimental and theoretical results for neighbouring ytterbium isotopes. (orig.) [de

  16. Optical spectroscopic determination of human meniscus composition.

    Ala-Myllymäki, Juho; Honkanen, Juuso T J; Töyräs, Juha; Afara, Isaac O

    2016-02-01

    This study investigates the correlation between the composition of human meniscus and its absorption spectrum in the visible (VIS) and near infrared (NIR) spectral range. Meniscus samples (n = 24) were obtained from nonarthritic knees of human cadavers with no history of joint diseases. Specimens (n = 72) were obtained from three distinct sections of the meniscus, namely; anterior, center, posterior. Absorption spectra were acquired from each specimen in the VIS and NIR spectral range (400-1,100 nm). Following spectroscopic probing, the specimens were subjected to biochemical analyses to determine the matrix composition, that is water, hydroxyproline, and uronic acid contents. Multivariate analytical techniques, including principal component analysis (PCA) and partial least squares (PLS) regression, were then used to investigate the correlation between the matrix composition and it spectral response. Our results indicate that the optical absorption of meniscus matrix is related to its composition, and this relationship is optimal in the NIR spectral range (750-1,100 nm). High correlations (R(2) (uronic)  = 86.9%, R(2) (water)  = 83.8%, R(2) (hydroxyproline)  = 81.7%, p meniscus composition, thus suggesting that spectral data in the NIR range can be utilized for estimating the matrix composition of human meniscus. In conclusion, optical spectroscopy, particularly in the NIR spectral range, is a potential method for evaluating the composition of human meniscus. This presents a promising technique for rapid and nondestructive evaluation of meniscus integrity in real-time during arthroscopic surgery. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    Kirk, Donnacha [University Coll. London; Lahav, Ofer [University Coll. London; Bridle, Sarah [Manchester U.; Jouvel, Stephanie [Barcelona, IEEC; Abdalla, Filipe B. [University Coll. London; Frieman, Joshua A. [Chicago U., KICP

    2015-08-21

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.

  18. Spectroscopic characterizations of organic/inorganic nanocomposites

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  19. ON THE SPECTROSCOPIC CLASSES OF NOVAE IN M33

    Shafter, A. W.; Darnley, M. J.; Bode, M. F.; Ciardullo, R.

    2012-01-01

    We report the initial results from an ongoing multi-year spectroscopic survey of novae in M33. The survey resulted in the spectroscopic classification of six novae (M33N 2006-09a, 2007-09a, 2009-01a, 2010-10a, 2010-11a, and 2011-12a) and a determination of rates of decline (t 2 times) for four of them (2006-09a, 2007-09a, 2009-01a, and 2010-10a). When these data are combined with existing spectroscopic data for two additional M33 novae (2003-09a and 2008-02a), we find that five of the eight novae with available spectroscopic class appear to be members of either the He/N or Fe IIb (hybrid) classes, with only two clear members of the Fe II spectroscopic class. This initial finding is very different from what would be expected based on the results for M31 and the Galaxy where Fe II novae dominate, and the He/N and Fe IIb classes together make up only ∼20% of the total. It is plausible that the increased fraction of He/N and Fe IIb novae observed in M33 thus far may be the result of the younger stellar population that dominates this galaxy, which is expected to produce novae that harbor generally more massive white dwarfs than those typically associated with novae in M31 or the Milky Way.

  20. SPECTROSCOPIC SIGNATURES RELATED TO A SUNQUAKE

    Matthews, S. A.; Harra, L. K.; Green, L. M. [UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Zharkov, S., E-mail: sarah.matthews@ucl.ac.uk [Department of Mathematics and Physics, University of Hull, Hull (United Kingdom)

    2015-10-10

    The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode’s EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time–distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time–distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time–distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red

  1. Moessbauer spectroscopic characterization of ferrite ceramics

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  2. Spectroscopic studies on colloid-borne uranium

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.

    2005-01-01

    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  3. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  4. Study of transfer reactions (α,t), (α,3He) in the f-p shell: mechanism and spectroscopic use

    Roussel, P.

    1968-05-01

    We describe an experimental study of (α,t), (α, 3 He) reactions at 44 MeV using a solid-state identifier, on the target-nuclei 54 Fe and 58,60,62,64 Ni. A critical study of optical model and of disturbed wave analysis has been performed. We show the complementarity of different transfer-reactions, the ambiguity of spectroscopic factors, the importance of the problem of the reaction mechanism. (author) [fr

  5. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  6. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.

    Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko

    2013-02-19

    Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.

  7. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  8. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  9. Infrared laser spectroscopic trace gas sensing

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  10. Low-dimensional compounds containing cyanido groups. XXVIII. Crystal structure, spectroscopic and magnetic properties of two copper(II) tetracyanidoplatinate complexes with 1,2-diaminopropane

    Vavra, M.; Potočňák, I.; Dušek, Michal; Čižmár, E.; Ozerov, M.; Zvyagin, S.A.

    2015-01-01

    Roč. 225, May (2015), s. 202-208 ISSN 0022-4596 Institutional support: RVO:68378271 Keywords : spectroscopic studies * magnetic properties * crystal structure * [Pt(CN) ]2- anion * 1,2-diaminopropane Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.265, year: 2015

  11. An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134

    Aldoretta, E.J.; St-Louis, N.; Richardson, N.; Moffat, A.F.J.; Eversberg, T.; Hill, G.M.; Shenar, T.; Artigau, E.; Gauza, B.; Knapen, J.H.; Kubát, Jiří; Kubátová, Brankica; Maltais-Tariant, R.; Munoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferriere, A.; Sablowski, D.P.; Simon-Diaz, S.; St-Jean, L.; Bolduan, F.; Dias, F.M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Kuesters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E.M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschlaeger, U.; Weiss, D.; Wendt, A.

    2016-01-01

    Roč. 460, č. 3 (2016), s. 3407-3417 ISSN 0035-8711 R&D Projects: GA ČR GA13-10589S Institutional support: RVO:67985815 Keywords : instabilities * data analysis * spectroscopic techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  12. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  13. Spectroscopic studies of uranium species for environmental decontamination applications

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  14. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  15. Effect of Molecular Weight on the Thermal and Spectroscopic Properties of Poly(vinyl alcohol) Films

    Khafagy, R.M.; Abd El-Kader, K.M.; Badr, Y.A.

    2009-01-01

    Thin films of Poly(vinyl alcohol) (PVA) with molecular weights 5000, 17000,72000 and 125000 g/mol were prepared by casting technique.Samples were thermally and spectroscopically investigated using TGA, DSC, FTIR and FT-Raman spectroscopy, in order to show how the thermal stability and structure of PVA might be correlated with its molecular weight. Thermal analysis showed that samples degrade in two steps mechanism. The mechanism observed for degradation in an inert atmosphere was in accordance with the accepted mechanism of elimination followed by pyrolisation. PVA 5000MW and PVA 17000Mw showed almost similar thermal behavior due to their expected similar structure. PVA 72000Mw showed lower thermal stability since it is characterized with the presence of the unstable C-O-C ether linkages, which lead to the fast melting of this sample. PVA 125000Mw showed the highest thermal stability because crosslinking of the main chains takes place due to introducing additional PVA units, which substitute each over oxygen atom. ΔH values obtained from DSC showed good accordance with TGA and Drtg analysis. Moreover, FTIR and FT-Raman results agreed well with thermal analysis, and confirmed our supposed structural changes which might take place as the molecular weight of the sample changes: since the water uptake, presence of ether linkages, and double bonds formulation due to crosslinking, were confirmed with FTIR and FT-Raman spectral analysis. The crystallinity percentage of the samples was calculated from Raman spectra and results confirmed our spectroscopic explanations. The thermal and spectroscopic behavior of the samples was explained as a result of the competitive action of at least three factors due to increasing the molecular weight: (i) diminution of the existing physical network due to changes in hydrogen bonding; (ii) formation of a chemical network; and (iii) introduction of flexible moieties due to the specific chemical structure after crosslinking

  16. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-01-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R V and A V for O-type stars in Wd2. We find average values (R V ) = 3.77 ± 0.09 and (A V ) = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  17. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    Vargas Alvarez, Carlos A.; Kobulnicky, Henry A. [Department of Physics and Astronomy, University of Wyoming, Dept. 3905, Laramie, WY 82071 (United States); Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255 (United States); Cool, Richard J. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Miller, Brendan P., E-mail: cvargasa@uwyo.edu, E-mail: chipk@uwyo.edu, E-mail: davidbradley512@gmail.com, E-mail: sheila@physics.unc.edu, E-mail: manorris@physics.unc.edu, E-mail: rcool@obs.carnegiescience.edu, E-mail: mbrendan@umich.edu [Department of Astronomy, University of Michigan, 745 Dennison Building, 500 Church St., Ann Arbor, MI 48109 (United States)

    2013-05-15

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R{sub V} and A{sub V} for O-type stars in Wd2. We find average values (R{sub V} ) = 3.77 {+-} 0.09 and (A{sub V} ) = 6.51 {+-} 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 {+-} 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  18. Spectroscopic characterization of manganese-doped alkaline earth

    The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies.

  19. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  20. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup ...

    are in good agreement with those obtained using the method of Lehmann-. Filhés. Key words. ... use their method to obtain the orbital elements of the four double-lined spectroscopic binary systems PV Pup, HD ... Observation shows that the photometric phase, φ, which is measured from the pho- tometric reference point ...

  1. Spectroscopic analysis applied to temperature measurement in plasmas

    Fieffe-Prevost, P.

    1978-01-01

    The plasma temperature is defined only if the plasma is in a state near thermodynamic equilibrium. This plasma state is analysed in detail and spectroscopic methods for measuring the temperature are discussed. As an application the hydrogen arc of the National Institute of Metrology of the Conservatoire National des Arts et Metiers (Paris) is briefly described [fr

  2. A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances

    Pottasch, [No Value; Acker, A

    1998-01-01

    The Hipparcos satellite has measured the parallax of a small sample of planetary nebulae. In this paper we consider the results for 3 planetary nebulae (PN) for which spectroscopic distances have also been determined from stellar gravities. These gravities in turn have been derived from profile

  3. Spectroscopic properties of Pr -doped erbium oxalate crystals

    Spectroscopic properties of praseodymium ions-doped erbium oxalate ... solution with specific gravity 1.04 g/cm3 was mixed homogeneously with 0.5 M oxalic ... of concentrated nitric acid were transferred carefully and gently through the wall ...

  4. Optimal Background Attenuation for Fielded Spectroscopic Detection Systems

    Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.; Siciliano, Edward R.

    2007-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background gamma radiation. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to radiation from the surrounding area. Reducing this source of background can improve gross-count detection capabilities in the current generation of non-spectroscopic RPM's as well as source identification capabilities in the next generation of spectroscopic RPM's. To provide guidance for designing such systems, the problem of shielding a general spectroscopic-capable RPM system from terrestrial gamma radiation is considered. This analysis is carried out by template matching algorithms, to determine and isolate a set of non-threat isotopes typically present in the commerce stream. Various model detector and shielding scenarios are calculated using the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to increase the probability of detection for an ensemble of illicit sources are given. Common shielding solutions such as steel plating are evaluated based on the probability of detection for 3 particular illicit sources of interest, and the benefits are weighed against the incremental cost of shielding. Previous work has provided optimal shielding scenarios for RPMs based on gross-counting measurements, and those same solutions (shielding the internal detector cavity, direct shielding of the ground between the detectors, and the addition of collimators) are examined with respect to their utility to improving spectroscopic detection

  5. Spectroscopic and electron-ion collision data for plasma impurities

    Faenov, A.; Marchand, R.; Tawara, H.; Vainshtein, L.; Wiese, W.

    1992-01-01

    This Working Group Report briefly reviews and summarizes the available spectroscopic and electron-ion collision data for plasma impurities. Included are lithium, neon, and argon, which, although they are not plasma impurities per se, are introduced into the plasma through the application of diagnostic techniques. 32 refs, 2 tabs

  6. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  7. Spectroscopic orbit for HDE 245770 A0535+26

    Hutchings, J.B.

    1984-01-01

    Optical spectroscopic data are examined using the X-ray intensity period of 111 days. Optical and X-ray pulse-timing orbit parameters agree well and indicate an eccentricity of approximately 0.3. Masses of the stars and periastron effects are discussed. 6 references

  8. A Spectroscopic and Photometric Study of Gravitational Microlensing Events

    Kane, Stephen R.

    2000-08-01

    results presented in this thesis are from observations of 34 microlensing events over three consecutive bulge seasons. These results are presented along with a discussion of the observations and the data reduction procedures. The colour-magnitude diagrams indicate that the microlensed sources are main sequence and red clump giant stars. Most of the events appear to exhibit standard Paczynski point source - point lens curves whilst a few deviate significantly from the standard model. Various microlensing models that include anomalous structure are fitted to a selection of the observed events resulting in the discovery of a possible binary source event. These fitted events are used to estimate the sensitivity to extra-solar planets and it is found that the sampling rate for these events was insufficient by about a factor of 7.5 for detecting a Jupiter-mass planet. This result assumes that deviations of 5% can be reliably detected. If microlensing is caused predominantly by bulge stars, as has been suggested by Kiraga and Paczynski, the lensed stars should have larger extinction than other observed stars since they would preferentially be located at the far side of the Galactic bulge. Hence, spectroscopy of Galactic microlensing events may be used as a tool for studying the kinematics and extinction effects in the Galactic bulge. The spectroscopic work in this project involved using Kurucz model spectra to create theoretical extinction effects for various spectral classes towards the Galactic centre. These extinction effects are then used to interpret spectroscopic data taken with the 3.6 m ESO telescope. These data consist of a sample of microlensed stars towards the Galactic bulge and are used to derive the extinction offsets of the lensed source with respect to the average population and a measurement of the fraction of bulge-bulge lensing is made. Hence, it is shown statistically that the microlensed sources are generally located on the far side of the Galactic bulge

  9. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    2016-03-01

    ARL-TR-7618 ● MAR 2016 US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in...US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices by Blair C...Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data.

    Bhargava, Rohit; Fernandez, Daniel C; Hewitt, Stephen M; Levin, Ira W

    2006-07-01

    Vibrational spectroscopy allows a visualization of tissue constituents based on intrinsic chemical composition and provides a potential route to obtaining diagnostic markers of diseases. Characterizations utilizing infrared vibrational spectroscopy, in particular, are conventionally low throughput in data acquisition, generally lacking in spatial resolution with the resulting data requiring intensive numerical computations to extract information. These factors impair the ability of infrared spectroscopic measurements to represent accurately the spatial heterogeneity in tissue, to incorporate robustly the diversity introduced by patient cohorts or preparative artifacts and to validate developed protocols in large population studies. In this manuscript, we demonstrate a combination of Fourier transform infrared (FTIR) spectroscopic imaging, tissue microarrays (TMAs) and fast numerical analysis as a paradigm for the rapid analysis, development and validation of high throughput spectroscopic characterization protocols. We provide an extended description of the data treatment algorithm and a discussion of various factors that may influence decision-making using this approach. Finally, a number of prostate tissue biopsies, arranged in an array modality, are employed to examine the efficacy of this approach in histologic recognition of epithelial cell polarization in patients displaying a variety of normal, malignant and hyperplastic conditions. An index of epithelial cell polarization, derived from a combined spectral and morphological analysis, is determined to be a potentially useful diagnostic marker.

  11. Spectroscopic characterization of low dose rate brachytherapy sources

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  12. Catalog of 3 < z < 5.5 Quasar Candidates Selected among XMM-Newton Sources and Its Spectroscopic Verification

    Khorunzhev, Georgii; Sazonov, Sergey; Burenin, Rodion [High Energy Astrophysics, Space Research Institute, Russian Academy of Sciences, Moscow (Russian Federation); Eselevich, Maxim, E-mail: horge@iki.rssi.ru [Laboratory of Infrared Methods in Astrophysics, Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk (Russian Federation)

    2017-11-13

    We have compiled a catalog of 903 quasar candidates (including known quasars) at 3 < z < 5.5 selected among X-ray sources from the XMM-Newton serendipitous survey (3XMM-DR4 catalog). We used photometric SDSS, 2MASS, and WISE data to select the objects. The surface number density of objects in our sample exceeds that in the SDSS spectroscopic quasar sample at the same redshifts by a factor of 1.5. We have performed spectroscopic observations of a subsample of new quasar candidates using a new low- and medium-resolution spectrograph at the 1.6-m AZT-33IK telescope (Mondy, Russia) and demonstrated that the purity of these candidates is about 65%. We have discovered one of the most distant (z = 5.08) X-ray selected quasars.

  13. Catalog of 3 < z < 5.5 Quasar Candidates Selected among XMM-Newton Sources and Its Spectroscopic Verification

    Georgii Khorunzhev

    2017-11-01

    Full Text Available We have compiled a catalog of 903 quasar candidates (including known quasars at 3 < z < 5.5 selected among X-ray sources from the XMM-Newton serendipitous survey (3XMM-DR4 catalog. We used photometric SDSS, 2MASS, and WISE data to select the objects. The surface number density of objects in our sample exceeds that in the SDSS spectroscopic quasar sample at the same redshifts by a factor of 1.5. We have performed spectroscopic observations of a subsample of new quasar candidates using a new low- and medium-resolution spectrograph at the 1.6-m AZT-33IK telescope (Mondy, Russia and demonstrated that the purity of these candidates is about 65%. We have discovered one of the most distant (z = 5.08 X-ray selected quasars.

  14. Spectroscopic characterization of matrix isolated transient species

    Lue, Christopher J.

    short lived fluorescence was assigned to UCl 4, and the long-lived fluorescence was assigned to UOCl x. A low resolution map for the electronic levels in UOCl x was created. One of the first LIF studies of actinide containing molecules was performed by Grzybowski and Andrews[1] for UF6. While, the same group later recorded IR spectra for the UFx fragements[2], no fluorescence spectra were recorded. Spectra were recorded here of UF x fragments trapped in solid formed by either passing UF 6 through a microwave discharge or ablating U atoms into an F2 /Ar mixture. At the time of these experiments, the IR spectrometer was not available, and the molecules producing the fluorescence could not be deduced solely from the LIF spectra. A comparison with previous IR spectra[2] gave some indication of possible candidates. In all the experiments that investigated uranium containing matrices with IR spectroscopy, UN2 was observed. A search was undertaken to observe fluorescence from UN2. To insure a good yield of UN 2, 1% N2 was added to the carrier gas. The fluorescence spectra observed in these experiments was very intriguing, but was determined not to be coming from UN2, rather it appears to be coming from U atom clusters. However further experiments are necessary to confirm how many atoms are in the clusters. The final part of this thesis focuses on the electronic spectra of Xe-OH isolated solid Ar. Rare gas radical systems (Rg-X) such as Rg-OH are a good model system for studying weak, long range intermolecular interactions. It is known that when Rg=Xe, the strength of the interaction is much larger. For most Rg-OH complexes, the spectroscopic constants have been determined previously[3]. However, the constants for Xe-OH ares currently undetermined. Gas-phase studies were undertaken to determined these constants.[4] However, these experiments were in conflict with previous LIF spectra recorded in a matrix in which Goodman and Brus[5] observed that the A → X emission band for

  15. Partially sulfonated polyaniline: conductivity and spectroscopic study

    Bláha, Michal; Suchánková, A.; Watzlová, E.; Prokeš, J.; Pop-Georgievski, Ognen

    2017-01-01

    Roč. 71, č. 2 (2017), s. 329-338 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polyaniline * aniline * orthanilic acid Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  16. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA

    Dawson, Kyle S.; Bautista, Julian E. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire dástrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Alam, Shadab [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Albareti, Franco D. [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Armengaud, Eric [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Aubourg, Éric [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Bailey, Stephen; Beutler, Florian [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, PMB 401807, 2401 Vanderbilt Place, Nashville, TN 37240 (United States); Bershady, Matthew A. [University of Wisconsin-Madison, Department of Astronomy, 475 N. Charter St., Madison WI 53703 (United States); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, sunspot, NM 88349 (United States); Blanton, Michael R., E-mail: kdawson@astro.utah.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2016-02-15

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non

  17. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    Özaydın, C. [Batman University, Engineering Faculty, Department of Computer Eng., Batman (Turkey); Güllü, Ö., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, Batman (Turkey); Pakma, O. [Batman University, Science and Art Faculty, Department of Physics, Batman (Turkey); Ilhan, S. [Siirt University, Science and Art Faculty, Department of Chemistry, Siirt (Turkey); Akkılıç, K. [Dicle University, Education Faculty, Department of Physics Education, Diyarbakır (Turkey)

    2016-05-15

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ{sub b}) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  18. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  19. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    Özaydın, C.; Güllü, Ö.; Pakma, O.; Ilhan, S.; Akkılıç, K.

    2016-01-01

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ_b) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  20. [Spectroscopic diagnostics of high temperature plasmas

    Moos, W.

    1989-01-01

    A research program in soft x-ray/ultraviolet/visible diagnostics for magnetic fusion is described. Recent results include the electron temperature, electron density and impurity densities during EML activity on the TEXT tokamak. The Zeeman effect induced circular polarization in Li neutral beam emissions has been analyzed to determine the safety factor in sawtoothing and ECRH heated discharge. The reflective properties of multilayer mirrors (10-200 Angstrom) were measured. Future work includes an order of magnitude improvement in the time resolution of the circular-polarimeter, development of a soft x-ray normal incidence spectrometer and a feasibility study for a narrow band x-ray photometer

  1. Spectroscopic investigations of high-energy-density\

    Civiš, Martin; Ferus, Martin; Knížek, Antonín; Kubelík, Petr; Kamas, Michal; Španěl, Patrik; Dryahina, Kseniya; Shestivska, Violetta; Juha, Libor; Skřehot, P.; Laitl, V.; Civiš, Svatopluk

    2016-01-01

    Roč. 18, č. 39 (2016), s. 27317-27325 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-12010S; GA MŠk LG15013; GA MŠk(CZ) LM2015083 Grant - others:Akademie věd - GA AV ČR(CZ) R200401521 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : HIGH-POWER LASER * INDUCED DIELECTRIC-BREAKDOWN * EARTHS EARLY ATMOSPHERE Subject RIV: CF - Physical ; Theoretical Chemistry; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 4.123, year: 2016

  2. Inhibition of urinary calculi -- a spectroscopic study

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  3. Immunocytochemistry by electron spectroscopic imaging using a homogeneously boronated peptide.

    Kessels, M M; Qualmann, B; Klobasa, F; Sierralta, W D

    1996-05-01

    A linear all-L-oligopeptide containing five carboranyl amino acids (corresponding to 50 boron atoms) was synthesized and specifically attached to the free thiol group of monovalent antibody fragments F(ab)'. The boronated immunoreagent was used for the direct post-embedding detection of somatotrophic hormone in ultrathin sections of porcine pituitary embedded in Spurr resin. The specific boron-labelling of secretory vesicles in somatotrophs was detected by electron spectroscopic imaging and confirmed by conventional immunogold labelling run in parallel. In comparison with immunogold, boron-labelled F(ab)'-fragments showed higher tagging frequencies, as was expected; the small uncharged immunoreagents have an elongated shape and carry the antigen-combining structure and the detection tag at opposite ends, thus allowing for high spatial resolution in electron spectroscopic imaging.

  4. Spectroscopic identification of rare earth elements in phosphate glass

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  5. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  6. Cosmic homogeneity: a spectroscopic and model-independent measurement

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  7. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  8. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  9. Normal-incidence spectroscopic ellipsometry for critical dimension monitoring

    Huang, Hsu-Ting; Kong, Wei; Terry, Fred Lewis

    2001-01-01

    In this letter, we show that normal-incidence spectroscopic ellipsometry can be used for high-accuracy topography measurements on surface relief gratings. We present both experimental and theoretical results which show that spectroscopic ellipsometry or reflectance-difference spectroscopy at near-normal incidence coupled with vector diffraction theory for data analysis is capable of high-accuracy critical dimension (CD), feature height, and sidewall angle measurements in the extreme submicron regime. Quantitative comparisons of optical and cross-sectional scanning electron microscopy (SEM) topography measurements from a number of 350 nm line/space reactive-ion-etched Si gratings demonstrate the strong potential for in situ etching monitoring. This technique can be used for both ex situ and in situ applications and has the potential to replace the use of CD-SEM measurements in some applications. [copyright] 2001 American Institute of Physics

  10. Scalar and configuration traces of operators in large spectroscopic spaces

    Chang, B.D.; Wong, S.S.M.

    1978-01-01

    In statistical spectroscopic calculations, the primary input is the trace of products of powers of Hamiltonian and excitation operators. The lack of a systematic approach to trace evaluation has been in the past one of the major difficulties in the applications of statistical spectroscopic methods. A general method with a simple derivation is described here to evaluate the scalar and configuration traces for operators expressed either in the m-scheme or fully coupled JT scheme. It is shown to be an effective method by actually programming it on a computer. Implications on the future applications of statistical spectroscopy in the area of level density, strength function and perturbation theory are also briefly discussed. (Auth.)

  11. The spectroscopic orbit of Capella revisited

    Weber, M.; Strassmeier, K. G.

    2011-07-01

    Context. Capella is among the few binary stars with two evolved giant components. The hotter component is a chromospherically active star within the Hertzsprung gap, while the cooler star is possibly helium-core burning. Aims: The known inclination of the orbital plane from astrometry in combination with precise radial velocities will allow very accurate masses to be determined for the individual Capella stars. This will constrain their evolutionary stage and possibly the role of the active star's magnetic field on the dynamical evolution of the binary system. Methods: We obtained a total of 438 high-resolution échelle spectra during the years 2007-2010 and used the measured velocities to recompute the orbital elements. Our double-lined orbital solution yields average residuals of 64 m s-1 for the cool component and 297 m s-1 for the more rapidly rotating hotter component. Results: The semi-amplitude of the cool component is smaller by 0.045 km s-1 than the orbit determination of Torres et al. from data taken during 1996-1999 but more precise by a factor of 5.5, while for the hotter component it is larger by 0.580 km s-1 and more precise by a factor of 3.6. This corresponds to masses of 2.573 ± 0.009 M⊙ and 2.488 ± 0.008 M⊙ for the cool and hot component, respectively. Their relative errors of 0.34% and 0.30% are about half of the values given in Torres et al. for a combined literature-data solution but with absolute values different by 4% and 2% for the two components, respectively. The mass ratio of the system is therefore q = MA/MB = 0.9673 ± 0.0020. Conclusions: Our orbit is the most precise and also likely to be the most accurate ever obtained for Capella. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A89

  12. Spectroscopic and kinetic study of bismuth dimers

    Franklin, Robert Eugene

    1997-08-01

    The spectroscopy of high rotational levels in Bi2 X(0g+) and A(0u+) was investigated for 2/le v/prime'/le5 and 0/le v/sp/prime/le4 by observing total fluorescence from laser excitation with a scanning, continuous wave, narrow linewidth ring laser. Rotational levels with J/le211 were accessed. Dunham coefficients were derived that fit all observed rotational lines to within 0.01 cm-1. From these coefficients, Franck-Condon factors were calculated that accurately reflect a set of experimentally determined Franck-Condon factors originating from the initially populated levels 0/le v/sp/prime/le5. Vibrational energy transfer in the low-lying vibrational levels (v/sp/prime/le4) of the A(0u+) state of Bi2 was investigated using spectrally resolved, continuous wave laser induced fluorescence. Spectrally resolved emissions from collisionally populated Bi2(A) vibrational levels were observed for rare gas collision partners. Vibrational transfer promoted rapid thermalization of the excited A state molecules. Landau- Teller scaling of vibrational transfer rates was found to be an acceptable model for the scaling of transfer rates with vibrational quantum number. Fundamental transfer rate coefficients ranged from kv(1,0)=5.29/pm0.73×10-12/ [ cm]3/molec-sec for helium to kv(1,0)=2.38/pm0.36×10-12/ [ cm]3/molec-sec for krypton. Electronic quenching and multi-quantum transfer rates were found to be approximately an order of magnitude slower than the corresponding single quantum transfer rates. Rotational energy transfer in high rotational levels of the A state of Bi2 was also investigated by spectrally resolved, continuous wave laser induced fluorescence. Spectrally resolved emissions from collisionally populated Bi2(A) rotational levels were observed for collisions with helium, neon and argon after laser excitation of J/sp/prime=171,201,231. Rotational energy transfer was the most efficient kinetic process in Bi2(A) and is adequately modeled by the energy based statistical

  13. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  14. Spectroscopic Tools for Quantitative Studies of DNA Structure and Dynamics

    Preus, Søren

    The main objective of this thesis is to develop quantitative fluorescence-based, spectroscopic tools for probing the 3D structure and dynamics of DNA and RNA. The thesis is founded on six peer-reviewed papers covering mainly the development, characterization and use of fluorescent nucleobase...... analogues. In addition, four software packages is presented for the simulation and quantitative analysis of time-resolved and steady-state UV-Vis absorption and fluorescence experiments....

  15. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  16. Spectroscopic studies of hydrogen atom and molecule collisions: Performance report

    Kielkopf, J.

    1986-01-01

    This research is concerned with spectroscopic measurements of collisions in atomic and molecular hydrogen in order to clarify the basic physical processes that take place during radiative collisions and to provide experimental values for systems where the theoretical analysis is tractable. To this end, we proposed to measure from the cores to the far wings the profiles of the spectral lines of atomic hydrogen broadened by molecular hydrogen and noble gases, and to study energy transfer in the atom and molecule

  17. QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES

    Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S.

    2012-01-01

    Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.

  18. Ion-beam spectroscopic studies of the 69As nucleus

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  19. Proton decay: spectroscopic probe beyond the proton drip line

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  20. Development of Ultra-sensitive Laser Spectroscopic Analysis Technology

    Cha, H. K.; Kim, D. H.; Song, K. S. (and others)

    2007-04-15

    Laser spectroscopic analysis technology has three distinct merits in detecting various nuclides found in nuclear fields. High selectivity originated from small bandwidth of tunable lasers makes it possible to distinguish various kinds of isotopes and isomers. High intensity of focused laser beam makes it possible to analyze ultratrace amount. Remote delivery of laser beam improves safety of workers who are exposed in dangerous environment. Also it can be applied to remote sensing of environment pollution.

  1. Development of Ultra-sensitive Laser Spectroscopic Analysis Technology

    Cha, H. K.; Kim, D. H.; Song, K. S.

    2007-04-01

    Laser spectroscopic analysis technology has three distinct merits in detecting various nuclides found in nuclear fields. High selectivity originated from small bandwidth of tunable lasers makes it possible to distinguish various kinds of isotopes and isomers. High intensity of focused laser beam makes it possible to analyze ultratrace amount. Remote delivery of laser beam improves safety of workers who are exposed in dangerous environment. Also it can be applied to remote sensing of environment pollution

  2. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  3. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  4. Physicochemical and Spectroscopic Characterization of Biofield Treated Triphenyl Phosphate

    Trivedi, Mahendra

    2015-01-01

    Triphenyl phosphate (TPP) is a triester of phosphoric acid and phenol. It is commonly used as a fire-retarding agent and plasticizer for nitrocellulose and cellulose acetate. The present study was an attempt to evaluate the impact of biofield treatment on physicochemical and spectroscopic properties of TPP. The study was carried out in two groups i.e. control and treatment. The treatment group was subjected to Mr. Trivedi's biofield treatment. The control and treated samples of TPP were chara...

  5. EEL spectroscopic tomography: towards a new dimension in nanomaterials analysis.

    Yedra, Lluís; Eljarrat, Alberto; Arenal, Raúl; Pellicer, Eva; Cabo, Moisés; López-Ortega, Alberto; Estrader, Marta; Sort, Jordi; Baró, Maria Dolors; Estradé, Sònia; Peiró, Francesca

    2012-11-01

    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80 kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe(x)Co((3-x))O(4)@Co(3)O(4) mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Spectroscopic methods for detection of impurities in water

    Strashnikova, Natalia V.; Papiashvili, Nona; Cohen-Luria, Rivka; Mark, Shlomo; Shilon, Guy; Khankin, Daniel; Kalisky, Yehoshua; Kalisky, Ofra; Parola, Abraham H.

    2011-11-01

    Optical photoluminescence spectroscopic method for detection of impurities, hazardous materials, pesticides, and pollutants in water resources, both qualitatively and quantitatively, is presented. The method is based on synchronous fluorescence spectroscopy (SFS) of organic aromatic compounds, or poly-aromatic hydrocarbons (PAH), and is carried out by following simultaneously their excitation and emission spectra. The full excitation emission matrix (EEM) generated in this way provides a 2-D and 3-D fluorescence map of the tested sample and the diagonals through the axes origin provide the synchronous fluorescence spectra at a constant wavelengths differences between the emission and excitation wavelengths, thus enabling multitude components identification. This map contains all the relevant spectroscopic information of the tested sample, and serves as a unique "fingerprint" with a very specific and accurate identification. When compared with pre-determined spectra and calibration curves from a "databank", there is a one-toone correspondence between the image and the specific compound, and it can be identified accurately both qualitatively and quantitatively. This method offers several significant advantages, and it provides a sensitive (ppm detection level), accurate and simple spectroscopic tool to monitor impurities and pollutants in water. The design and performance of the spectrofluorimeter prototype, as well as the software development and analysis of chemical organic compounds and mixtures in water will be discussed in this paper.

  7. EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis

    Yedra, Lluis, E-mail: llyedra@el.ub.es [Laboratory of Electron Nanoscopies (LENS)-MIND/IN2UB, Dept. d' Electronica, Universitat de Barcelona, c/ Marti Franques 1, E-08028 Barcelona (Spain); CCiT, Scientific and Technological Centers, Universitat de Barcelona, C/Lluis Sole i Sabaris 1, E-08028 Barcelona (Spain); Eljarrat, Alberto [Laboratory of Electron Nanoscopies (LENS)-MIND/IN2UB, Dept. d' Electronica, Universitat de Barcelona, c/ Marti Franques 1, E-08028 Barcelona (Spain); Arenal, Raul [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, E-50018 Zaragoza (Spain); Fundacion ARAID, E-50004 Zaragoza (Spain); Pellicer, Eva; Cabo, Moises [Departament de Fisica, Facultat de Ciencies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Lopez-Ortega, Alberto; Estrader, Marta [CIN2(CIN-CSIC) and Universitat Autonoma de Barcelona, Catalan Institute of Nanotechnology, Campus de la UAB, E-08193 Bellaterra (Spain); Sort, Jordi [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Departament de Fisica, Facultat de Ciencies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Baro, Maria Dolors [Departament de Fisica, Facultat de Ciencies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); and others

    2012-11-15

    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80 kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe{sub x}Co{sub (3-x)}O{sub 4}@Co{sub 3}O{sub 4} mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D. -- Highlights: Black-Right-Pointing-Pointer EELS-SI tomography was performed at low voltage and low acquisition times. Black-Right-Pointing-Pointer MVA has been applied for noise reduction and information extraction. Black-Right-Pointing-Pointer Tomographic reconstruction has been achieved for chemical information. Black-Right-Pointing-Pointer Elemental distribution extraction in 3D has been proved.

  8. A convolutional neural network to filter artifacts in spectroscopic MRI.

    Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A; Cordova, James Scott; Soher, Brian J; Poptani, Harish; Verma, Gaurav; Barker, Peter B; Shim, Hyunsuk; Cooper, Lee A D

    2018-03-09

    Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Spectroscopic amplifier for pin diode; Amplificador espectroscopico para diodo Pin

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R., E-mail: bebe.luna_s@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  10. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  11. A Fully Customized Baseline Removal Framework for Spectroscopic Applications.

    Giguere, Stephen; Boucher, Thomas; Carey, C J; Mahadevan, Sridhar; Dyar, M Darby

    2017-07-01

    The task of proper baseline or continuum removal is common to nearly all types of spectroscopy. Its goal is to remove any portion of a signal that is irrelevant to features of interest while preserving any predictive information. Despite the importance of baseline removal, median or guessed default parameters are commonly employed, often using commercially available software supplied with instruments. Several published baseline removal algorithms have been shown to be useful for particular spectroscopic applications but their generalizability is ambiguous. The new Custom Baseline Removal (Custom BLR) method presented here generalizes the problem of baseline removal by combining operations from previously proposed methods to synthesize new correction algorithms. It creates novel methods for each technique, application, and training set, discovering new algorithms that maximize the predictive accuracy of the resulting spectroscopic models. In most cases, these learned methods either match or improve on the performance of the best alternative. Examples of these advantages are shown for three different scenarios: quantification of components in near-infrared spectra of corn and laser-induced breakdown spectroscopy data of rocks, and classification/matching of minerals using Raman spectroscopy. Software to implement this optimization is available from the authors. By removing subjectivity from this commonly encountered task, Custom BLR is a significant step toward completely automatic and general baseline removal in spectroscopic and other applications.

  12. Convolutional neural networks for vibrational spectroscopic data analysis.

    Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena

    2017-02-15

    In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spectroscopic information from different theoretical descriptions of (un)polarized (e,e sup ' p) reactions

    Radici, M; Dickhoff, W H

    2003-01-01

    We analyze the unpolarized and polarized electron-induced proton knockout reactions on sup 1 sup 6 O in different kinematical settings using two theoretical approaches. The first one is based on a relativistic mean-field distorted-wave description of the bound and scattering states of the proton, including a fully relativistic electromagnetic current operator. The second approach adopts the same current operator, but describes the proton properties on the basis of microscopic calculations of the self-energy in sup 1 sup 6 O below the Fermi energy and final-state damping in nuclear matter above the Fermi energy, using the same realistic short-range and tensor correlations. Good agreement with all unpolarized data is obtained at low and high Q sup 2 by using the same spectroscopic factors fixed by the low-Q sup 2 analysis. A reasonable agreement is achieved for polarization observables. (orig.)

  14. Infrared spectroscopic measurement of skin hydration and sebum levels and comparison to corneometer and sebumeter

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. P.; Varghese, Babu

    2016-05-01

    Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simultaneous and quantitative measurement of skin hydration and sebum levels utilizing differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lie "in between" the prominent water absorption bands. The skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli were measured using our experimental set-up. The experimental results obtained with the optical set-up show good correlation with the results obtained with the commercially available instruments Corneometer and Sebumeter.

  15. Accurate potential energy curves, spectroscopic parameters, transition dipole moments, and transition probabilities of 21 low-lying states of the CO+ cation

    Xing, Wei; Shi, Deheng; Zhang, Jicai; Sun, Jinfeng; Zhu, Zunlue

    2018-05-01

    This paper calculates the potential energy curves of 21 Λ-S and 42 Ω states, which arise from the first two dissociation asymptotes of the CO+ cation. The calculations are conducted using the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with the Davidson correction. To improve the reliability and accuracy of the potential energy curves, core-valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are taken into account. The spectroscopic parameters and vibrational levels are determined. The spin-orbit coupling effect on the spectroscopic parameters and vibrational levels is evaluated. To better study the transition probabilities, the transition dipole moments are computed. The Franck-Condon factors and Einstein coefficients of some emissions are calculated. The radiative lifetimes are determined for a number of vibrational levels of several states. The transitions between different Λ-S states are evaluated. Spectroscopic routines for observing these states are proposed. The spectroscopic parameters, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very reliable and can be used as guidelines for detecting these states in an appropriate spectroscopy experiment, especially for the states that were very difficult to observe or were not detected in previous experiments.

  16. A simple spectroscopic method for determining the temperature in H2O-Ar thermal plasma jet

    Sember, Viktor; Mašláni, Alan

    2009-01-01

    Roč. 13, č. 2 (2009), s. 217-228 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] R&D Projects: GA ČR GA202/08/1084; GA MPO FT-TA4/050 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma jets * spectroscopic diagnostics * mole-fraction gradients Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009

  17. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  18. Theoretical studies on CH+ ion molecule using configuration interaction method and its spectroscopic properties

    Machado, F.B.C.

    1985-01-01

    The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt

  19. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at zcolor selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).MUSE Ultra Deep Field redshift catalogs (Full Table A.1) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  20. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    Cunha, Carlos E. [KIPAC, Menlo Park; Huterer, Dragan [Michigan U.; Lin, Huan [Fermilab; Busha, Michael T. [Zurich U.; Wechsler, Risa H. [SLAC

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  1. Spectroscopic AC susceptibility imaging (sASI) of magnetic nanoparticles

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2015-01-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurements to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement set and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R 2 =0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R 2 =0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R 2 =0.97, p<0.001). These results demonstrate the concept of ASI and advantages of sASI. - Highlights: • Development of an AC susceptibility imaging model. • Comparison of AC susceptibility imaging (ASI) and susceptibility magnitude imaging (SMI). • Demonstration of ASI and spectroscopic ASI (sASI) using three different magnetic nanoparticle types. • SASI scan separation of three different magnetic nanoparticles samples using 5 spectroscopic frequencies. • Demonstration of biological feasibility of sASI

  2. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  3. Spectroscopic properties of vitamin E models in solution

    Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.

    2015-05-01

    We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.

  4. The double-lined spectroscopic binary Iota Pegasi

    Fekel, F. C.; Tomkin, J.

    1983-01-01

    Reticon observations of the spectroscopic binary Iota Peg at 6430 A show the secondary star's weak, but well defined lines. Determinations have accordingly been made of the secondary velocity curve as well as that of the primary, together with the orbits and the minimum masses of the two components. The 1.31 + or - 0.02 and 0.81 + or - 0.01 solar mass minimum masses are sufficiently close to the expected actual masses to suggest eclipses, despite the relatively long, 10.2-day period. The spectral type of the secondary is estimated to be G8 V.

  5. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  6. Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

    Pashov, A.; Kowalczyk, P.; Jastrzebski, W.

    2018-05-01

    We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic data (either term values or spectral line positions) necessary to provide a unique numbering is considered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue and one term energy in the other suffice.

  7. Spectroscopic characterization of the ethyl radical-water complex.

    Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S

    2016-10-14

    An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.

  8. Development of laser spectroscopic technology in nuclear industry

    Lee, Jong Min; Cha, Byung Heon; Kim, Seong Ho; Cha, Hyung Ki; Lim, Chang Hwan; Song, Kye Seok; Kim, Jung Bok; Rho, Si Pyo; Han, Jae Min; Jeong, Do Yung; Lee, Jong Hoon; Choi, Hwa Lim; Yoo, Byung Duk; Choi, An Sung; Lee, Byung Chul; Kim, Chul Jung

    1992-05-01

    The goal of this project is to carry out the fundamental researches for the selective photoionization process of heavy atoms as well as the development of experimentally related instruments. Main research results carried out in this year are (1) multi-step photoionization spectroscopy of Hg atom by 3-color 3-step ionization scheme, (2) selective photoionization using polarization spectroscopy, (3) design and construction of ion separator chamber, and (4) theoretical study for spectroscopic parameters of mercury. This technology can be applied to several area of nuclear industry such as the utilization of radioactive waste, the development of new materials, high sensitive analysis of heavy atomic elements. (Author)

  9. Spectroscopic Tools Applied to Element Z = 115 Decay Chains

    Forsberg U.

    2014-03-01

    Full Text Available Nuclides that are considered to be isotopes of element Z = 115 were produced in the reaction 48Ca + 243Am at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt. The detector setup TASISpec was used. It was mounted behind the gas-filled separator TASCA. Thirty correlated α-decay chains were found, and the energies of the particles were determined with high precision. Two important spectroscopic aspects of the offline data analysis are discussed in detail: the handling of digitized preamplified signals from the silicon strip detectors, and the energy reconstruction of particles escaping to upstream detectors relying on pixel-by-pixel dead-layer thicknesses.

  10. Terahertz spectroscopic analysis of crystal orientation in polymers

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  11. Standards development for fiber optic spectroscopic components for adverse environments

    Saggese, Steven J.; Greenwell, Roger A.

    1994-09-01

    Optical fiber sensors are finding wider use in all types of applications involving adverse environments, including exposure to radiation. In order to effectively characterize and evaluate the performance of a fiber sensor system for a radiation environment, such as within a nuclear power plant or in a radioactive waste storage/disposal facility, it is beneficial to develop standard test procedures. Science & Engineering Associates (SEA) has developed two such procedures for the American Society for Testing and Materials (ASTM) which address the testing of optical fibers for remote Raman spectroscopic and broadband sensor applications in a steady state radiation environment.

  12. Spectroscopic characterization of uranium in evaporation basin sediments

    Duff, M. C.; Morris, D. E.; Hunter, D. B.; Bertsch, P. M.

    2000-05-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the containment of irrigation drainage waters contain elevated levels of uranium (U) resulting from the extensive leaching by carbonate-rich irrigation waters of the local agricultural soils that contain low levels of naturally-occurring U. The SJV ponds are subjected to changes in redox chemistry with cycles of drying and flooding. Our past studies have shown that U in the SJV Pond 14 surface sediments is present as mostly the oxidized and soluble form, U(VI). However, we were uncertain whether the U in the soil was only present as a U oxide of mixed stoichiometry, such as U 3O 8(s) (pitchblende) or other species. Here we present characterization information, which includes wet chemical and in situ spectroscopic techniques (X-ray absorption near-edge structure (XANES) and low temperature time-resolved luminescence spectroscopies) for samples from two SJV Pond sediments. Surface sediments from SJV Pond 16 were characterized for average oxidation state of U with XANES spectroscopy. The fraction of U(VI) to U(IV) in the Pond 16 sediments decreased with depth with U(IV) being the dominant oxidation state in the 5 cm to 15 cm depth. Two luminescent U(VI) species were identified in the surface sediments from Pond 14; a U(VI)-tricarbonate phase and another phase likely comprised of U(VI)-hydroxide or hydroxycarbonate. The luminescent U(VI) population in the Pond 16 sediments is dominated by species with comparable spectral characteristics to the U(VI)-hydroxide or hydroxycarbonate species found in the Pond 14 sediments. The luminescence spectroscopic results were complemented by wet chemical U leaching methods, which involved the use of carbonate and sulfuric acid solutions and oxidizing solutions of peroxide, hypochlorite and Mn(IV). Leaching was shown to decrease the total U concentration in the sediments in all cases. However, results from luminescence studies of the residual fraction in the leached

  13. Proton magnetic resonance spectroscopic imaging in neurodegenerative diseases

    Schuff, Norbert; Vermathen, Peter; Maudsley, Andrew A.; Weiner, Michael W.

    1999-01-01

    Proton magnetic resonance spectroscopic imaging ( 1 H MRSI) was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1 H MRSI of the human brain, without volume pre selection offers considerable advantage over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectral curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtain full volumetric brain coverage and data acquisition at short spin-echo times (TE<30 ms) for the detection of metabolites. (author)

  14. Dual-probe spectroscopic fingerprints of defects in graphene

    Settnes, Mikkel; Power, Stephen; Petersen, Dirch Hjorth

    2014-01-01

    (e.g., an extended graphene sheet). Applying this method, we study the transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the dual......-probe setup is a useful tool for characterizing the electronic transport properties of extended defects or designed nanostructures. In particular, we show that nanoscale perforations, or antidots, in a graphene sheet display Fano-type resonances with a strong dependence on the edge geometry of the perforation....

  15. Novel spectroscopic techniques with using soft x-ray

    Gejo, Tatsuo

    2010-01-01

    Recent progress of experimental techniques related to synchrotron radiation makes possible of detail investigation of molecular dynamics after irradiation of soft X-ray. We introduce several novel spectroscopic techniques with using soft X-ray: Symmetry-resolved zero kinetic energy electron spectroscopy, symmetry-resolved metastable photofragment spectroscopy, soft X-ray emission spectroscopy, time-resolved fluorescence spectroscopy, and time-resolved-fluorescence mass-selected-ion coincidence spectroscopy. We also show new techniques performed by other groups at BL27SU in SPring-8. (author)

  16. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  17. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  18. Spectroscopic Feedback for High Density Data Storage and Micromachining

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  19. Localization effects in the disordered Ta interlayer of multilayer Ta–FeNi films: Evidence from dc transport and spectroscopic ellipsometry study

    Kovaleva, Natalia; Chvostová, Dagmar; Pacherová, Oliva; Fekete, Ladislav; Kugel, K.I.; Pudonin, F.A.; Dejneka, Alexandr

    2017-01-01

    Roč. 111, č. 18 (2017), s. 1-5, č. článku 183104. ISSN 0003-6951 R&D Projects: GA ČR GA15-13778S Institutional support: RVO:68378271 Keywords : dc transport * wide-band * spectroscopic ellipsometry techniques * disordered metallic Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  20. Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes.

    Xu, Hao; Nagasaka, Shinobu; Kameta, Naohiro; Masuda, Mitsutoshi; Ito, Takashi; Higgins, Daniel A

    2017-08-02

    Synthetic organic nanotubes self-assembled from bolaamphiphile surfactants are now being explored for use as drug delivery vehicles. In this work, several factors important to their implementation in drug delivery are explored. All experiments are performed with the nanotubes immersed in ethanol. First, Nile Red (NR) and a hydroxylated Nile Red derivative (NR-OH) are loaded into the nanotubes and spectroscopic fluorescence imaging methods are used to determine the apparent dielectric constant of their local environment. Both are found in relatively nonpolar environments, with the NR-OH molecules preferring regions of relatively higher dielectric constant compared to NR. Unique two-color imaging fluorescence correlation spectroscopy (imaging FCS) measurements are then used along with the spectroscopic imaging results to deduce the dielectric properties of the environments sensed by mobile and immobile populations of probe molecules. The results reveal that mobile NR molecules pass through less polar regions, likely within the nanotube walls, while immobile NR molecules are found in more polar regions, possibly near the nanotube surfaces. In contrast, mobile and immobile NR-OH molecules are found to locate in environments of similar polarity. The imaging FCS results also provide quantitative data on the apparent diffusion coefficient for each dye. The mean diffusion coefficient for the NR dye was approximately two-fold larger than that of NR-OH. Slower diffusion by the latter could result from its additional hydrogen bonding interactions with polar triglycine, amine, and glucose moieties near the nanotube surfaces. The knowledge gained in these studies will allow for the development of nanotubes that are better engineered for applications in the controlled transport and release of uncharged, dipolar drug molecules.

  1. Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model

    Khaydarov, R.R.

    2004-09-01

    Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)

  2. Warping methods for spectroscopic and chromatographic signal alignment: A tutorial

    Bloemberg, Tom G., E-mail: T.Bloemberg@science.ru.nl [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Radboud University Nijmegen, Education Institute for Molecular Sciences, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Gerretzen, Jan; Lunshof, Anton [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Wehrens, Ron [Centre for Research and Innovation, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all’Adige, TN (Italy); Buydens, Lutgarde M.C. [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2013-06-05

    Highlights: •The concepts of warping and alignment are introduced. •The most important warping methods are critically reviewed and explained. •Reference selection, evaluation and place of warping in preprocessing are discussed. •Some pitfalls, especially for LC–MS and similar data, are addressed. •Examples are provided, together with programming scripts to rework and extend them. -- Abstract: Warping methods are an important class of methods that can correct for misalignments in (a.o.) chemical measurements. Their use in preprocessing of chromatographic, spectroscopic and spectrometric data has grown rapidly over the last decade. This tutorial review aims to give a critical introduction to the most important warping methods, the place of warping in preprocessing and current views on the related matters of reference selection, optimization, and evaluation. Some pitfalls in warping, notably for liquid chromatography–mass spectrometry (LC–MS) data and similar, will be discussed. Examples will be given of the application of a number of freely available warping methods to a nuclear magnetic resonance (NMR) spectroscopic dataset and a chromatographic dataset. As part of the Supporting Information, we provide a number of programming scripts in Matlab and R, allowing the reader to work the extended examples in detail and to reproduce the figures in this paper.

  3. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...... for the same samples using the transferred model. However, sometimes the success of a model transfer is evaluated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference method will impact the evaluation. This paper proposes a new method...... for calibration model transfer evaluation. The new method is based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two...

  4. Spectroscopic characterisation of the stellar content of ultra diffuse galaxies

    Ruiz-Lara, T.; Beasley, M. A.; Falcón-Barroso, J.; Román, J.; Pinna, F.; Brook, C.; Di Cintio, A.; Martín-Navarro, I.; Trujillo, I.; Vazdekis, A.

    2018-05-01

    Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task requiring very deep observations and exquisite data reduction. In this work we perform one of the most complete characterisations of the stellar component of UDGs to date using deep optical spectroscopic data from OSIRIS at GTC. We measure radial and rotation velocities, star formation histories (SFH) and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (˜ 7 Gyr), metal-poor ([M/H] ˜ -1.1) and α-enhanced ([Mg/Fe] ˜ 0.4) populations followed by a smooth or episodic decline which halted ˜ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO 44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.

  5. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  6. Spectroscopic studies of carbon impurities in PISCES-A

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  7. Systems budgets architecture and development for the Maunakea Spectroscopic Explorer

    Mignot, Shan; Flagey, Nicolas; Szeto, Kei; Murowinski, Rick; McConnachie, Alan

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project is an enterprise to upgrade the existing Canada-France- Hawaii observatory into a spectroscopic facility based on a 10 meter-class telescope. As such, the project relies on engineering requirements not limited only to its instruments (the low, medium and high resolution spectrographs) but for the whole observatory. The science requirements, the operations concept, the project management and the applicable regulations are the basis from which these requirements are initially derived, yet they do not form hierarchies as each may serve several purposes, that is, pertain to several budgets. Completeness and consistency are hence the main systems engineering challenges for such a large project as MSE. Special attention is devoted to ensuring the traceability of requirements via parametric models, derivation documents, simulations, and finally maintaining KAOS diagrams and a database under IBM Rational DOORS linking them together. This paper will present the architecture of the main budgets under development and the associated processes, expand to highlight those that are interrelated and how the system, as a whole, is then optimized by modelling and analysis of the pertinent system parameters.

  8. SSGSS: THE SPITZER–SDSS–GALEX SPECTROSCOPIC SURVEY

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, Stéphane; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2011-01-01

    The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 μm spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.

  9. Spectroscopic diagnostics of plasma during laser processing of aluminium

    Lober, R; Mazumder, J

    2007-01-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO 2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 A Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO 2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data

  10. Spectroscopic study on the stability of morin in aqueous solution

    Bark, Ki Min [Dept. of Chemical Education and Research Institute of Life Science, Gyeongsang National University, Chinju (Korea, Republic of); Im, Seo Eun; Seo, Jung Ja; Park, Ok Hyun; Park, Hyoung Ryun [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of); Park, Chul Ho [Dept. of Cosmetic Science, Nambu University, Gwangju (Korea, Republic of)

    2015-02-15

    Morin (3,2,4,5,7-pentahydroxyflavone) is a flavonol conjugated to a resorcinol moiety at the C-2 position, different from many other flavonoids. The UV–vis spectrum of morin in neat water reveals two major absorption bands with maxima at 265 and 387 nm. The substance is stable in acidic solution and neat water. However, its absorption maximum at 387 nm continuously shifts to longer wavelengths and new peaks appeared at wavelengths of 312 nm with increasing pH of the solution. The shape of the absorption spectrum of morin depends on the storage time at a given pH, indicating the occurrence of other successive chemical reactions. The fluorescence spectroscopic results also prove that new conjugated double bonds are formed in the deaerated basic solution at the initial state and decompose with time. This behavior indicates that morin is very unstable, and therefore its decomposition occurs by a sequence of multistep reactions in basic solution. Probable reaction pathways for the reaction are suggested based on the spectroscopic results.

  11. Spectroscopic diagnostics of plasma during laser processing of aluminium

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  12. ePESSTO spectroscopic classification of the candidate TDE XMMSL2 J140446.9-251135

    Taubenberger, S.; Floers, A.; Vogl, C.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Anderson, J.; Gromadzki, M.; Onori, F.; Kostrzewa-Rutkowska, Z.; Jonker, P.; Leloudas, G.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Yaron, O.; Young, D.

    2018-03-01

    ePESSTO, the extended Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40; http://www.pessto.org ), reports the following spectroscopic observation of the new X-ray source XMMSL2 J140446.9-251135 in the galaxy 2MASX 14044671-2511433 (ATel #11394).

  13. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  14. Gas Chromatography-Mass Spectroscopic (GC-MS) Analysis of n ...

    tuber-regium (synonym Pleurotus tuber regium) using gas chromatography-mass spectroscopic (GC-. MS) techniques. Methods: The n-hexane extract of the sclerotia ... Soxhlet extraction and analysed using gas chromatography-mass spectroscopic (MS) techniques. ..... Phytochemical composition of Pleurotus tuber regium.

  15. A SPECTROSCOPIC CATALOG OF THE BRIGHTEST (J < 9) M DWARFS IN THE NORTHERN SKY{sup ,}

    Lepine, Sebastien; Wilde, Matthew; Rojas-Ayala, Barbara; Cruz, Kelle L. [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Hilton, Eric J.; Mann, Andrew W. [Institute for Astrophysics, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric, E-mail: lepine@amnh.org, E-mail: brojas-ayala@amnh.org, E-mail: mwilde@amnh.org, E-mail: mshara@amnh.org, E-mail: hilton@ifa.hawaii.edu, E-mail: amann@ifa.hawaii.edu, E-mail: gaidos@hawaii.edu, E-mail: kellecruz@gmail.com [Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822 (United States)

    2013-04-15

    We present a spectroscopic catalog of the 1564 brightest (J < 9) M dwarf candidates in the northern sky, as selected from the SUPERBLINK proper motion catalog. Observations confirm 1408 of the candidates to be late-K and M dwarfs with spectral subtypes K7-M6. From the low ({mu} > 40 mas yr{sup -1}) proper motion limit and high level of completeness of the SUPERBLINK catalog in that magnitude range, we estimate that our spectroscopic census most likely includes >90% of all existing, northern-sky M dwarfs with apparent magnitude J < 9. Only 682 stars in our sample are listed in the Third Catalog of Nearby Stars (CNS3); most others are relative unknowns and have spectroscopic data presented here for the first time. Spectral subtypes are assigned based on spectral index measurements of CaH and TiO molecular bands; a comparison of spectra from the same stars obtained at different observatories, however, reveals that spectral band index measurements are dependent on spectral resolution, spectrophotometric calibration, and other instrumental factors. As a result, we find that a consistent classification scheme requires that spectral indices be calibrated and corrected for each observatory/instrument used. After systematic corrections and a recalibration of the subtype-index relationships for the CaH2, CaH3, TiO5, and TiO6 spectral indices, we find that we can consistently and reliably classify all our stars to a half-subtype precision. The use of corrected spectral indices further requires us to recalibrate the {zeta} parameter, a metallicity indicator based on the ratio of TiO and CaH optical bandheads. However, we find that our {zeta} values are not sensitive enough to diagnose metallicity variations in dwarfs of subtypes M2 and earlier ({+-}0.5 dex accuracy) and are only marginally useful at later M3-M5 subtypes ({+-}0.2 dex accuracy). Fits of our spectra to the Phoenix atmospheric model grid are used to estimate effective temperatures. These suggest the existence of a

  16. The gamma contamination food factor

    Kukoc, A.H.; Anicin, I.V.; Adzic, P.R.

    1992-01-01

    We suggest that radioactive food contamination, as determined solely by a quantitative gamma-ray spectroscopic measurement, may, apart from the total activity per unit mass, be for quick reference conveniently characterized by another single figure which we call the ''Gamma Contamination Food Factor'' (GCFF). This factor may be defined as the ratio of the total specific activity of gamma-ray-emitting radionuclides in the food sample (except that of 40 K) to the specific activity of 40 K either in the sample itself or in an ''average man''. We discuss briefly the meaning and advantages of these definitions. (author)

  17. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  18. The DFBS Spectroscopic Database and the Armenian Virtual Observatory

    Areg M Mickaelian

    2009-05-01

    Full Text Available The Digitized First Byurakan Survey (DFBS is the digitized version of the famous Markarian Survey. It is the largest low-dispersion spectroscopic survey of the sky, covering 17,000 square degrees at galactic latitudes |b|>15. DFBS provides images and extracted spectra for all objects present in the FBS plates. Programs were developed to compute astrometric solution, extract spectra, and apply wavelength and photometric calibration for objects. A DFBS database and catalog has been assembled containing data for nearly 20,000,000 objects. A classification scheme for the DFBS spectra is being developed. The Armenian Virtual Observatory is based on the DFBS database and other large-area surveys and catalogue data.

  19. Spectroscopic magnetic resonance imaging of a tumefactive demyelinating lesion

    Law, M.; Meltzer, D.E.; Cha, S. [MRI Department, Department of Radiology, New York University Medical Center, Schwartz Building, Basement HCC, 530 First Avenue, New York, NY 10016 (United States)

    2002-12-01

    Tumefactive demyelinating lesions can present with features similar, clinically and radiologically, to those of brain tumours. Proton MR spectroscopy has been increasingly used to characterize intracranial pathology. As the underlying pathophysiology of neoplasms is different from that of demyelinating disease, one may expect the metabolic composition of neoplasms to be significantly different from that of demyelinating lesions. We report a 49-year-old woman in whom the neurologic and radiologic findings were highly suggestive of a high-grade brain tumor, and the spectroscopic features were sufficiently similar to that of a tumor to convince the neurosurgeon to operate. This case emphasizes the need for caution when confronted with a patient who presents with a differential diagnosis of demyelinating lesion versus neoplasm. (orig.)

  20. Spectroscopic characterization of Venus at the single molecule level.

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  1. Imaging spectroscopic analysis at the Advanced Light Source

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-01-01

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  2. Spectroscopic ellipsometry study of FePt nanoparticle films

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Spectroscopic vector analysis for fast pattern quality monitoring

    Sohn, Younghoon; Ryu, Sungyoon; Lee, Chihoon; Yang, Yusin

    2018-03-01

    In semiconductor industry, fast and effective measurement of pattern variation has been key challenge for assuring massproduct quality. Pattern measurement techniques such as conventional CD-SEMs or Optical CDs have been extensively used, but these techniques are increasingly limited in terms of measurement throughput and time spent in modeling. In this paper we propose time effective pattern monitoring method through the direct spectrum-based approach. In this technique, a wavelength band sensitive to a specific pattern change is selected from spectroscopic ellipsometry signal scattered by pattern to be measured, and the amplitude and phase variation in the wavelength band are analyzed as a measurement index of the pattern change. This pattern change measurement technique is applied to several process steps and verified its applicability. Due to its fast and simple analysis, the methods can be adapted to the massive process variation monitoring maximizing measurement throughput.

  4. Spectroscopic properties of rare earths in optical materials

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  5. IR and UV spectroscopic analysis of TBP complexes

    Azzouz, A.; Berrak, A.; Seridi, L.; Attou, M.

    1985-06-01

    The complexity of TBP molecule and the limited number of references stimulated the elaboration of this report. The spectroscopic of TBP and its complexes in the IR and UV fields permitted to elucidate or to confirm certain aspects concerning the solvation phenomenum. In IR spectroscopy, the stretching band of the P→O bond only is characteristic of the complex formed. The position of this band gives sufficient information about the kind and the stability of a complex. The TBP electronic spectra are characterized by two bands (200-220 nm) 1 and (268-290 nm) 2 whose intensity ratio (2/1) is about 0,13. The solvent nature seems to influence the positions of these bands and that of the inflexion point. The band 2 disappears when the TBP is complexed and the position and the intensity of the band 1 depend upon the complex nature

  6. Development of system and technology for moessbauer spectroscopic microscope

    Hayakawa, Kazuo; Akiyama, Yuki; Tsukamoto, Yoshinori; Kurata, Mikio; Yukihira, Kenichi [Shizuoka Institute of Science and Technology (Japan); Soejima, Hiroyoshi [Shimadzu Corporation (Japan); Yoshida, Yutaka, E-mail: yoshida@ms.sist.ac.jp [Shizuoka Institute of Science and Technology (Japan)

    2012-03-15

    We have been developing a 'Moessbauer Spectroscopic Microscope (MSM)' which consists of a focusing lens for 14.4 keV {gamma}-rays and a high precision X-Y stage. The measuring system both for electrons and {gamma}-rays combined with a new Moessbauer driver, i.e., 'a moving coil actuator with a liner encoder' enables us to measure the mapping images simultaneously corresponding to different spectral components. The system has a controlling system based on a LabVIEW program and a LIST mode data acquisition system (NIKI-GLASS/A3100). To investigate a correlation between the microstructure of a sample and {sup 57}Fe atoms, a scanning electron microscope (APCO/Mini-EOC) is also installed to this system.

  7. ESR spectroscopic investigations of the radiation-grafting of fluoropolymers

    Huebner, G; Roduner, E [University of Stuttgart (Germany); Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    ESR spectroscopic investigations have clarified the influence of several preparative parameters on the reaction rates and yields obtained in the radiation-grafting method used at PSI to prepare proton-conducting polymer membranes. At a given irradiation dose, a higher concentration of reactive radical sites was detected in ETFE films than in FEP films. This higher concentration explains the higher grafting levels and rates of the ETFE films found in our previous grafting experiments. Taken together, the in-situ ESR experiments and grafting experiments show that the rates of disappearance of radical species and grafting rates and final grafting levels depend strongly on the reaction temperature and the oxygen content of the system. Average grafted chain lengths were calculated to contain about 1,000 monomer units. (author) 2 figs., 4 refs.

  8. Fatty infiltration of the liver: evaluation by proton spectroscopic imaging

    Heiken, J.P.; Lee, J.K.; Dixon, W.T.

    1985-01-01

    The reliability of proton spectroscopic imaging in evaluating fatty infiltration of the liver was investigated in 35 subjects (12 healthy volunteers and 23 patients with fatty livers). With this modified spin-echo technique, fatty liver could be separated from normal liver both visually and quantitatively. On the opposed image, normal liver had an intermediate signal intensity, greater than that of muscle, whereas fatty liver had a lower signal intensity, equal to or less than that of muscle. In normal livers, the lipid signal fraction was less than 10%, while in fatty livers it was greater than 10% and usually exceeded 20%. With this technique, nonuniform fatty infiltration of the liver can be differentiated from hepatic metastases, and the technique may prove useful in the differentiation of some hepatic disorders

  9. A spectroscopic study of uranium(VI) interaction with magnetite

    El Aamrani, S.; Gimenez, J.; Rovira, M.; Seco, F.; Grive, M.; Bruno, J.; Duro, L.; Pablo, J. de

    2007-01-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI)

  10. Determining uranium speciation in Fernald soils by molecular spectroscopic methods

    Allen, P.G.; Berg, J.M.; Crisholm-Brause, C.J.; Conradson, S.D.; Donohoe, R.J.; Morris, D.E.; Musgrave, J.A.; Tait, C.D.

    1994-07-01

    This progress report describes new experimental results and interpretations for data collected from October 1, 1992, through September 30, 1993, as part of the Characterization Task of the Uranium in Soils Integrated Demonstration of the Office of Technology Development, Office of Environmental Restoration and Waste Management of the US Department of Energy. X-ray absorption, optical luminescence, and Raman vibrational spectroscopies were used to determine uranium speciation in contaminated soils from the US DOE's former uranium production facility at Fernald, Ohio. These analyses were carried out both before and after application of one of the various decontamination technologies being developed within the Integrated Demonstration. This year the program focused on characterization of the uranium speciation remaining in the soils after decontamination treatment. X-ray absorption and optical luminescence spectroscopic data were collected for approximately 40 Fernald soil samples, which were treated by one or more of the decontamination technologies

  11. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    Kolesniková, L.; Alonso, J. L.; Daly, A. M.; Tercero, B.; Cernicharo, J.; Gordon, B. P.; Shipman, S. T.

    2014-01-01

    New laboratory data of ethyl mercaptan, CH 3 CH 2 SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH 3 CH 2 SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH 3 SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL

  12. Spectroscopic study of photo and thermal destruction of riboflavin

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  13. Spectroscopic data for highly charged neon-like ions

    Li Shichang; Sun Yongsheng; Han Guoxiang; Yang Hanyang

    1992-01-01

    The purpose of the present work is to provide the immense amount of atomic data needed for applications to the ICF and X-ray laser research work in our institute and for the compilation-evaluation work in Chinese Research Association for Atomic and Molecular Data. Using the non-relativistic Hartree-Fock self-consistent field method including the relativistic mass-velocity and Darwin terms in the Hamiltonian (HFR) proposed by Dr.R.Cowan, we have calculated atomic structure data and spectroscopic data for the Neon-like Fe X VII, Ni X IX, Cu XX Ge XX III and Se XX V ions. In the calculations the configuration-interaction effects were taken into account. The centrifugation average energies, 88 energy levels, all possible electric dipole transition wavelengths, oscillator strengths are presented, and in order to discuss the accuracy of the present results we have also compared them with other works

  14. Spectroscopic investigation of degradation of rapseed oil methyl esters

    Kampars, V.

    2003-01-01

    Investigation of rapseed oil methyl esters by US VIS and FTIR spectroscopy during the heating at 80 deg C were carried out. The degradation begins immediately after beginning of experiment. The main process at first stage is destroying of carotenoids and oxidation of polyunsaturated fatty acids by forming conjugated polyenes. Between the formation of conjugated triens and destroying of carotenoids exist definite interconnection, but there isn't evidence for the protective activity of carotenoids. As follows from FTIR spectroscopy the increase of carbonyl compounds concentration begins immediately after the start of experiment and continues all the time. Despite to the complex character the peak at 220 nm is only one spectroscopic characteristic with a sharp alteration point and may be used for the fast and simple detection of storage stability of bio diesels. (authors)

  15. A SOLAR SPECTROSCOPIC ABSOLUTE ABUNDANCE OF ARGON FROM RESIK

    Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D.

    2010-01-01

    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 A and 3.733 A, respectively, with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 ± 0.07 (Ar XVII) and 6.49 ± 0.16 (Ar XVIII), which are in agreement to within uncertainties. The weighted mean is 6.45 ± 0.06, which is between two recent compilations of the solar Ar abundance and suggests that the photospheric and coronal abundances of Ar are very similar.

  16. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  17. Tissue preservation with mass spectroscopic analysis: Implications for cancer diagnostics.

    Hall, O Morgan; Peer, Cody J; Figg, William D

    2018-05-17

    Surgical intervention is a common treatment modality for localized cancer. Post-operative analysis involves evaluation of surgical margins to assess whether all malignant tissue has been resected because positive surgical margins lead to a greater likelihood of recurrence. Secondary treatments are utilized to minimize the negative effects of positive surgical margins. Recently, in Science Translational Medicine, Zhang et al describe a new mass spectroscopic technique that could potentially decrease the likelihood of positive surgical margins. Their nondestructive in vivo tissue sampling leads to a highly accurate and rapid cancer diagnosis with great precision between healthy and malignant tissue. This new tool has the potential to improve surgical margins and accelerate cancer diagnostics by analyzing biomolecular signatures of various tissues and diseases.

  18. Confinement in single walled carbon nanotubes investigated by spectroscopic ellipsometry

    Battie, Y.; Jamon, D.; Lauret, J.S.; Gu, Q.; Gicquel-Guézo, M.; En Naciri, A.; Loiseau, A.

    2014-01-01

    Thick films of single walled carbon nanotubes (SWCNTs) with different diameter and chirality distributions are characterized by combining transmission electron microscopy and spectroscopic ellipsometry. The dependence of the dielectric function with the increase of the SWCNT diameter occurs with a drastic redshift of the S 11 , S 22 and M 11 transition energies. The transfer integral parameter γ 0 of SWCNT is also evaluated and analyzed. We demonstrate that parts of the optical properties of SWCNTs are attributed to a one dimensional confinement effect. - Highlights: • Ellipsometric measurements are performed on carbon nanotube thick films. • The complex dielectric functions of conventional carbon nanotubes are given. • Confinement effects explain the variations of dielectric function of nanotubes

  19. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Nanostructure characterization of high k materials by spectroscopic ellipsometry

    Pereira, L.; Aguas, H.; Fortunato, E.; Martins, R.

    2006-01-01

    In this work, the optical and structural properties of high k materials such as tantalum oxide and titanium oxide were studied by spectroscopic ellipsometry, where a Tauc-Lorentz dispersion model based in one (amorphous films) or two oscillators (microcrystalline films) was used. The samples were deposited at room temperature by radio frequency magnetron sputtering and then annealed at temperatures from 100 to 500 deg. C. Concerning the tantalum oxide films, the increase of the annealing temperature, up to 500 deg. C does not change the amorphous nature of the films, increasing, however, their density. The same does not happen with the titanium oxide films that are microcrystalline, even when deposited at room temperature. Data concerning the use of a four-layer model based on one and two Tauc-Lorentz dispersions is also discussed, emphasizing its use for the detection of an amorphous incubation layer, normally present on microcrystalline films grown by sputtering

  1. Zeff from spectroscopic bremsstrahlung measurements at ASDEX Upgrade and JET

    Meister, H.; Fischer, R.; Horton, L.D.; Maggi, C.F.; Nishijima, D.; Giroud, C.; Zastrow, K.-D.; Zaniol, B.

    2004-01-01

    The effective ionic charge Z eff is a means to assess the impurity content of a fusion plasma. It can be derived from measurements of bremsstrahlung intensity. These have been extended at ASDEX Upgrade by the usage of the sight lines for the charge exchange recombination diagnostic. Together with a previously installed sight line array, it is now possible to routinely determine the bremsstrahlung intensity over the whole minor radius purely from spectroscopic measurements. In a tokamak where the plasma facing components are made up of various materials, this is necessary to check if measurements are contaminated by line radiation. The bremsstrahlung background of the respective spectra is determined using Bayesian probability theory, giving consistent and improved error statistics. Using the information for electron temperature and density profiles, the Z eff profile is determined by an integrated method. The same approach to assess the Z eff profile has been demonstrated to be successful also at the JET tokamak

  2. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  3. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  4. Spectroscopic properties of tetravalent actinide ions in solids

    Krupa, J.C.

    1987-01-01

    Optical spectroscopy is a powerful tool to study the electronic structure of an optically active transition ion in the condensed phase media and consequently to study the interactions between the central ion and its environment. The main interactions that are essential for an understanding of the energy level distribution of an f N ion in solids is briefly examined and the deduced free-ion and crystal field parameters for Pa 4+ , U 4+ , Np 4+ are compared to those of the isoelectronic configuration lanthanide ions. At last, the actinide series offers an interesting situation since the 5f electrons in the metals are delocalized in the light actinides and then localized, that sould affect the nature of the chemical bonding in the two parts of the series. Is this trend reflected in the An 4+ spectroscopic parameters

  5. A detailed spectroscopic study of an Italian fresco

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-01-01

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied

  6. Spectroscopic Profiles of Comets Garradd and McNaught

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2017-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets, as well as determine possible source differences in the coma between the observed radical species. We will present results for several comets, including C/2009 P1 (Garradd) and 260P (McNaught).

  7. Spectroscopic observations of the symbiotic star AG Draconis

    Smith, S E; Bopp, B W [Toledo Univ., OH (USA)

    1981-06-01

    Spectroscopic observations, covering the lambdalambda 3500-7000 region, of the symbiotic star AG Draconis are reported. The Balmer and He I line profiles were found to show pronounced blueward asymmetries. Changes in the line profiles of the Balmer lines were observed, and found to be well correlated with the 554-day photometric period of Meinunger, with a second, blueward component being visible in the Balmer emissions at photometric minimum. The weak, blueshifted component in the Balmer emission lines is explained in terms of a stellar wind from the hot secondary at of the order of 60 kms s/sup -1/. The behaviour of the broad emission feature at lambda6380 has been investigated. This feature was found to originate from an ion with an ionization potential in the range 77-101 eV. Various models for AG Dra are discussed.

  8. Spectroscopic and corpuscular analysis of laser-produced carbon plasma

    Czarnecka, A.; Kubkowska, M.; Kowalska-Strzeciwilk, E.; Parys, P.; Sadowski, M.J.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Ladygina, M.

    2013-01-01

    The paper describes spectroscopic and corpuscular measurements of laser-produced carbon plasma, which was created at surfaces of three targets made of CFC of the Snecma-N11 type with different crystallographic orientations. In order to irradiate the investigated samples the use was made of a Nd:YAG laser. Experiments were performed in a vacuum chamber under the initial pressure equal to 5.10-5 mbar. A Mechelle 900 optical spectrometer equipped with a CCD detector was used to record spectra emitted from the produced carbon-plasma. The recorded optical spectra showed distinct carbon lines ranging from CI to CIV. Basing on the Stark broadening of the CII 426.7 nm line it was possible to estimate the electron density of plasma from each investigated sample. Corpuscular measurements of the emitted ions were carried out by means of an electrostatic ion-energy analyzer and ion collector.

  9. IRAS colors of carbon stars - An optical spectroscopic test

    Cohen, M.; Wainscoat, R.J.; Walker, H.J.; Volk, K.; Schwartz, D.E.

    1989-01-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking vertical sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars. 16 refs

  10. Precision electron-gamma spectroscopic studies in 111Cd

    Sai Vignesh, T.; Chhetri, Premaditya; Vijay Sai, K.; Gowrishankar, R.; Venkataramaniah, K.; Deepa, S.; Rao, Dwarakarani; Kailas, S.

    2011-01-01

    The energy levels of 111 Cd has formerly been considered in terms of the states available to the 63rd neutron which is in the 3s 1/2 sub-shell. Kisslinger and Sorensen have used the pairing plus-quadrupole model to predict the energy levels. In the Coulomb excitation experiment only five levels have been excited. The decay of 111 Ag has been investigated only by few workers, Burmistov and Didorenko, Shevlev et al and Goswamy et al. The previous data on level energies, gamma energies and intensities differ considerably even for intense gamma transitions. There has been no detailed study of the internal conversion spectrum. There have been no multipolarity assignments for some of the transitions. An extensive experimental investigation of the gamma and conversion electron spectra has been undertaken to provide precision spectroscopic information on the low lying levels of 111 Cd from the beta decay of 111 Ag

  11. Temperature analysis of laser ignited metalized material using spectroscopic technique

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  12. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  13. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    Kolesniková, L.; Alonso, J. L.; Daly, A. M. [Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain); Tercero, B.; Cernicharo, J. [Departamento de Astrofísica, Centro de Astrobiología CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, E-28850 Madrid (Spain); Gordon, B. P.; Shipman, S. T., E-mail: lucie.kolesnikova@uva.es, E-mail: jlalonso@qf.uva.es, E-mail: adammichael.daly@uva.es, E-mail: terceromb@cab.inta-csic.es, E-mail: jcernicharo@cab.inta-csic.es, E-mail: brittany.gordon@ncf.edu, E-mail: shipman@ncf.edu [Division of Natural Sciences, New College of Florida, Sarasota, FL 34243 (United States)

    2014-03-20

    New laboratory data of ethyl mercaptan, CH{sub 3}CH{sub 2}SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH{sub 3}CH{sub 2}SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH{sub 3}SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.

  14. Spectroscopic imaging of X-rays anew look

    Heijne, Erik H M

    2003-01-01

    In recent hybrid imaging devices a segmented (50-100mum) semiconductor sensor matrix is matched to a separate readout chip made in some standard silicon CMOS technology. The large number of contacts are made by high-density bump bonding interconnect technology. Extended functionality with hundreds of transistors in each electronics cell can serve a variety of purposes. Fluctuations in the response of the sensor matrix can be compensated in real-time. A single photon processing circuit in each pixel can achieve spectroscopic imaging by energy measurement even at high rates. However, it is necessary to take into account the distribution of the signals over adjacent pixels. Another possibility is the discrimination by energy of photon conversions in stacked layers with increasing absorption.

  15. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  16. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy

    Mueller, S. G.; Laxer, K. D.; Cashdollar, N.; Lopez, R. C.; Weiner, M. W.

    2009-01-01

    Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NE-ET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (± SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) ≤ (mean in controls – 2SD in controls) were defined as ‘pathological’ in patients. Eight of 16 NE patients had at least two ‘pathological’ voxel (mean 2.5, range 2–5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction. PMID:16618342

  17. Spectroscopic Studies on Complex Formation of U(VI)-thiosalicylate

    Cha, Wan Sik; Cho, Hye Ryun; Park, Kyoung Kyun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The dynamic interaction between radionuclides and organic ligands is largely dependent on the composition of functional groups in a ligand chemical structure. Therefore, the structural mimics of natural ligands possessing specific functional groups, such as hydroxy, phenol, carboxyl, thiol and amine groups, have been studied to understand their influence on the migration of radionuclides including actinide species under geological groundwater conditions. In previous studies, we demonstrated that the fraction of hydrolyzed U(VI) species occurring in weak acidic solutions (pH {approx}4.5) is significantly influenced by the presence of salicylate (Sal) ligand due to the simultaneous participation of both phenol and carboxyl groups in the formation of U(VI)-complexes. Thiosalicylic acid (TSalH{sub 2}) is a good model compound for studying the effects of both carboxyl and thiol (-SH) groups. The fraction of di-anionic ligand form (TSal{sup 2-}) is higher at near neutral pH due to the lower pKa ({approx} 8) of the thiol group than the case of salicylic acid (pKa, {approx}13 for salicylic -OH), despite the structural similarity. In addition, the redox capability of the thiol group is expected to influence the reducible radiouclides and the chemical structures of natural ligands by creating cross-linkage (-S-S-) upon oxidation. The goal of the present study is to investigate aqueous U(VI)-TSal complexation equilibrium via laser-based spectroscopic techniques including time resolved laser-induced fluorescence spectroscopy (TRLFS). In this preliminary work, we report the results of spectroscopic studies using conventional UVVis absorbance and fluorescence (FL) measurement methods. The photo-stability of U(VI)-TSal complex or ligand itself upon exposure to a series of laser pulses is estimated by monitoring the change in their absorption bands. Additionally, TSal FL-quenching effect by U(VI) ions is discussed in comparison with that of Sal FL-quenching

  18. Raman spectroscopic analysis of a `noli me tangere' painting

    Hibberts, Stephen; Edwards, Howell G. M.; Abdel-Ghani, Mona; Vandenabeele, Peter

    2016-12-01

    The discovery of an oil painting in seriously damaged condition with an important historical and a heterodox detail with possible origins in the late fifteenth century has afforded the opportunity for Raman microscopic analysis prior to its restoration being undertaken. The painting depicts a risen Christ following His crucifixion in a `noli me tangere' pose with three women in an Italian terrace garden with a stone balustrade overlooking a rural landscape and an undoubted view of late-medieval Florence. The picture has suffered much abuse and is in very poor condition, which is possibly attributable to its controversial portrayal of a polydactylic Christ with six toes on His right foot. By the late sixteenth century, after the Council of Trent, this portrayal would almost certainly have been frowned upon by the Church authorities or more controversially as a depiction of the holy. Raman spectroscopic analysis of the pigments places the painting as being consistent chronologically with the Renaissance period following the identification of cinnabar, haematite, red lead, lead white, goethite, verdigris, caput mortuum and azurite with no evidence of more modern synthetic pigments or of modern restoration having been carried out. An interesting pigment mixture found here is that of the organic dye carmine and cinnabar to produce a particular bright red pigment coloration. Stratigraphic examination of the paint fragments has demonstrated the presence of an orange resin layer immediately on top of the canvas substrate, effectively rendering the pigment as a sandwich between this substratal resin and the overlying varnish. The Raman spectroscopic evidence clearly indicates that an attribution of the artwork to the Renaissance is consistent with the scientific analysis of the pigment composition. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  19. Raman spectroscopic analysis of a 'noli me tangere' painting.

    Hibberts, Stephen; Edwards, Howell G M; Abdel-Ghani, Mona; Vandenabeele, Peter

    2016-12-13

    The discovery of an oil painting in seriously damaged condition with an important historical and a heterodox detail with possible origins in the late fifteenth century has afforded the opportunity for Raman microscopic analysis prior to its restoration being undertaken. The painting depicts a risen Christ following His crucifixion in a 'noli me tangere' pose with three women in an Italian terrace garden with a stone balustrade overlooking a rural landscape and an undoubted view of late-medieval Florence. The picture has suffered much abuse and is in very poor condition, which is possibly attributable to its controversial portrayal of a polydactylic Christ with six toes on His right foot. By the late sixteenth century, after the Council of Trent, this portrayal would almost certainly have been frowned upon by the Church authorities or more controversially as a depiction of the holy. Raman spectroscopic analysis of the pigments places the painting as being consistent chronologically with the Renaissance period following the identification of cinnabar, haematite, red lead, lead white, goethite, verdigris, caput mortuum and azurite with no evidence of more modern synthetic pigments or of modern restoration having been carried out. An interesting pigment mixture found here is that of the organic dye carmine and cinnabar to produce a particular bright red pigment coloration. Stratigraphic examination of the paint fragments has demonstrated the presence of an orange resin layer immediately on top of the canvas substrate, effectively rendering the pigment as a sandwich between this substratal resin and the overlying varnish. The Raman spectroscopic evidence clearly indicates that an attribution of the artwork to the Renaissance is consistent with the scientific analysis of the pigment composition.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  20. Spectroscopic analysis technique for arc-welding process control

    Mirapeix, Jesús; Cobo, Adolfo; Conde, Olga; Quintela, María Ángeles; López-Higuera, José-Miguel

    2005-09-01

    The spectroscopic analysis of the light emitted by thermal plasmas has found many applications, from chemical analysis to monitoring and control of industrial processes. Particularly, it has been demonstrated that the analysis of the thermal plasma generated during arc or laser welding can supply information about the process and, thus, about the quality of the weld. In some critical applications (e.g. the aerospace sector), an early, real-time detection of defects in the weld seam (oxidation, porosity, lack of penetration, ...) is highly desirable as it can reduce expensive non-destructive testing (NDT). Among others techniques, full spectroscopic analysis of the plasma emission is known to offer rich information about the process itself, but it is also very demanding in terms of real-time implementations. In this paper, we proposed a technique for the analysis of the plasma emission spectrum that is able to detect, in real-time, changes in the process parameters that could lead to the formation of defects in the weld seam. It is based on the estimation of the electronic temperature of the plasma through the analysis of the emission peaks from multiple atomic species. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, we employ the LPO (Linear Phase Operator) sub-pixel algorithm to accurately estimate the central wavelength of the peaks (allowing an automatic identification of each atomic species) and cubic-spline interpolation of the noisy data to obtain the intensity and width of the peaks. Experimental tests on TIG-welding using fiber-optic capture of light and a low-cost CCD-based spectrometer, show that some typical defects can be easily detected and identified with this technique, whose typical processing time for multiple peak analysis is less than 20msec. running in a conventional PC.

  1. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  2. Detection of spectroscopic binaries in the Gaia-ESO Survey

    Van der Swaelmen, M.; Merle, T.; Van Eck, S.; Jorissen, A.

    2017-12-01

    The Gaia-ESO survey (GES) is a ground-based spectroscopic survey, complementing the Gaia mission, in order to obtain high accuracy radial velocities and chemical abundances for 10^5 stars. Thanks to the numerous spectra collected by the GES, the detection of spectroscopic multiple system candidates (SBn, n ≥ 2) is one of the science case that can be tackled. We developed at IAA (Institut d'Astronomie et d'Astrophysique) a novative automatic method to detect multiple components from the cross-correlation function (CCF) of spectra and applied it to the CCFs provided by the GES. Since the bulk of the Milky Way field targets has been observed in both HR10 and HR21 GIRAFFE settings, we are also able to compare the efficiency of our SB detection tool depending on the wavelength range. In particular, we show that HR21 leads to a less efficient detection compared to HR10. The presence of strong and/or saturated lines (Ca II triplet, Mg I line, Paschen lines) in the wavelength domain covered by HR21 hampers the computation of CCFs, which tend to be broadened compared to their HR10 counterpart. The main drawback is that the minimal detectable radial velocity difference is ˜ \\SI{60}km/s for HR21 while it is ˜ \\SI{25}km/s for HR10. A careful design of CCF masks (especially masking Ca triplet lines) can substantially improve the detectability rate of HR21. Since HR21 spectra are quite similar to the one produced by the RVS spectrograph of the Gaia mission, analysis of RVS spectra in the context of spectroscpic binaries can take adavantage of the lessons learned from the GES to maximize the detection rate.

  3. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  4. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  5. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  6. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India--spectroscopical approach.

    Ramasamy, V; Paramasivam, K; Suresh, G; Jose, M T

    2014-01-03

    Using Gamma ray and Fourier Transform Infrared (FTIR) spectroscopic techniques, level of natural radioactivity ((238)U, (232)Th and (40)K) and mineralogical characterization of Vaigai River sediments have been analyzed with the view of evaluating the radiation risk and its relation to available minerals. Different radiological parameters are calculated to know the entire radiological characterization. The average of activity concentrations and all radiological parameters are lower than the recommended safety limit. However, some sites are having higher radioactivity values than the safety limit. From the FTIR spectroscopic technique, the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, gibbsite, calcite, montmorillonite and organic carbon are identified and they are characterized. The extinction co-efficient values are calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index is calculated to know the crystalline nature of quartz and the result indicates that the presence of ordered crystalline quartz in the present sediment. The role of minerals in the level of radioactivity is assessed by multivariate statistical analysis (Pearson's correlation and Cluster analysis). The statistical analysis confirms that the clay mineral kaolinite is the major factor than other major minerals to induce the important radioactivity variables such as absorbed dose rate and concentrations of (232)Th and (238)U. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evolution of containment facilities for spectroscopic analysis at Rockwell Hanford Operations

    Hiller, J.M.

    1984-01-01

    The analysis of radioactive material requires much thought concerning getting the job done while still maintaining a safe working environment. A Rockwell Hanford Operations, several stages of evolution in instrumentation for spectroscopic elemental analysis have evolved, reflecting different philosophies respect to shielding and contamination control. Atomic absorption and inductively coupled plasma emission spectroscopic systems have been used for analyzing samples in support of a fission product recovery plant, nuclear waste processing and characterization programs, and U and Pu separation plants. Design thoughts, criticisms, and lessons learned in 20 years of containment for spectroscopic analysis are presented

  8. Evolution of containment facilities for spectroscopic analysis at Rockwell Hanford Operations

    Hiller, J.M.

    1984-01-01

    The analysis of radioactive material requires much thought concerning getting the job done while still maintaining a safe working environment. At Rockwell Hanford Operations, we have gone through several stages of evolution in instrumentation for spectroscopic elemental analysis, reflecting different philosophies with respect to shielding and contamination control. Atomic absorption and inductively coupled plasma emission spectroscopic systems have been used for analyzing samples in support of a fission product recovery plant, nuclear waste processing and characterization programs, and U and Pu separation plants. Design thoughts, criticisms, and lessons learned in 20 years of containment for spectroscopic analysis are presented. 3 refs., 6 figs., 2 tabs

  9. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  10. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  11. Spectroscopic Characteristics of Highly Selective Manganese Catalysis in Acqueous Polyurethane Systems

    Miroljub Barac

    2006-11-01

    Full Text Available The latest investigations on producing more efficient catalytic aqueouspolyurethane systems are in the domain of metal complexes with mixed ligands. In ourprevious research works, the high selectivity for the isocyanate-hydroxyl reaction inaqueous polyurethane systems has been shown by the manganese(III mixed-ligandcomplexes. The two new complexes have been prepared with two acetylacetonate (acacligands and one maleate ligand and its hydroxylamine derivative of the general formula[Mn(C5H7O22L]. Their structures have been established by using the fundamental analyses,the FTIR and UV/VIS spectroscopic methods, as well as the magnetic measurements. Inorder to explain the different selectivity of the manganese(III mixed-ligand complexes, theUV and ESR spectroscopy have been employed to determine the kinetics of the complexes’decomposition. The thermal stability of the complexes has been determined by way of thedynamic TG method at the heating rate of 5°C⋅min-1 and at the temperature ranged 20-550°C. It suggests the decomposition of the complexes by loss of acid ligand. The main factor in the selective catalysis control in theaqueous polyurethane systems is the nature of the acid ligands and their impact on themanganese(II/manganese(III equilibrium.

  12. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment

    Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.

    2010-01-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-α transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D 2 , LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.

  13. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model

    Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M.

    2017-04-01

    Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5 weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.

  14. A SYSTEMATIC SEARCH FOR MASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    Tsalmantza, P.; Decarli, R.; Hogg, David W.; Dotti, M.

    2011-01-01

    We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey (SDSS) spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated with the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest frame of the galaxy. For a sample of 54,586 quasars and 3929 galaxies at redshifts 0.1 < z < 1.5, we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra and discuss possible interpretations.

  15. Spectroscopic and radiative properties study of Nd3+ doped cadmium-phosphate glasses

    Mahmoud, K.H.

    2010-01-01

    A spectroscopic investigation is performed on Nd 3+ doped cadmium-phosphate glasses. The Judd-Ofelt analysis is applied to the glass system in order to evaluate their potential as both glass laser and amplifier materials. The phenomenological Judd-Ofelt parameters Ω (2) , Ω (4) , and Ω (6) are determined, their values are 4.80x10 -20 , 6.18x10 -20 , and 7.14x10 -20 cm -2 , respectively. The quality factor for glass system is 0.86. Predicted radiative decay rates and branching ratios of transitions from Nd 3+4 F 3/2 state to the 4 I J manifolds are determined and analyzed. The calculated lifetime of the 4 F 3/2 metastable state of Nd 3+ is 31 μs. The results showed that 4 F 3/2 to 4 I 11/2 transition, with fluorescence at 1056 nm, has the most potential for laser application. Photoluminescence up-conversion under excitation at 488 nm laser light exhibits three emission bands of Nd 3+ ions at 541 (green), 601 (orange), and 677 nm (red). These emission bands are assigned to 4 G 7/2 → 4 I 9/2 , 4 G 7/2 → 4 I 11/2 , and 4 G 7/2 → 4 I 13/2 transitions, respectively. Analysis of luminescence spectra enhances the use of glass system in optical displays, lasers, and optical memory devices.

  16. A Spectroscopic Study of the Rich Supernova Remnant Population in M83

    Winkler, P. Frank; Blair, William P.; Long, Knox S.

    2017-04-01

    We report the results from a spectrophotometric study sampling the ≳ 300 candidate supernova remnants (SNRs) in M83 identified through optical imaging with Magellan/IMACS and Hubble Space Telescope/WFC3. Of the 118 candidates identified based on a high [S II] λλ 6716, 6731 to Hα emission ratio, 117 show spectroscopic signatures of shock-heated gas, confirming them as SNRs—the largest uniform set of SNR spectra for any galaxy. Spectra of 22 objects with a high [O III] λ5007 to Hα emission ratio, selected in an attempt to identify young ejecta-dominated SNRs like Cas A, reveal only one (previously reported) object with the broad (≳ 1000 {km} {{{s}}}-1) emission lines characteristic of ejecta-dominated SNRs, beyond the known SN1957D remnant. The other 20 [O III]-selected candidates include planetary nebulae, compact H II regions, and one background QSO. Although our spectroscopic sample includes 22 SNRs smaller than 11 pc, none of the other objects show broad emission lines; instead their spectra stem from relatively slow (˜ 200 {km} {{{s}}}-1) radiative shocks propagating into the metal-rich interstellar medium of M83. With six SNe in the past century, one might expect more of M83's small-diameter SNRs to show evidence of ejecta; this appears not to be the case. We attribute their absence to several factors, including that SNRs expanding into a dense medium evolve quickly to the ISM-dominated phase, and that SNRs expanding into regions already evacuated by earlier SNe are probably very faint. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  17. Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan

    2016-09-01

    We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  18. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space

  19. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbé, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan

    2012-01-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ∼7000 galaxies at 1 2 ) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ∼5 per resolution element at H 140 ∼ 23.1 and a 5σ emission-line sensitivity of ∼5 × 10 –17 erg s –1 cm –2 for typical objects, improving by a factor of ∼2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ∼0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s –1 . We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ∼ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope.

  20. Continuing ARAS visible spectroscopic monitoring of the slow classical nova Sct 2017 = ASASSN-17hx

    Guarro, Joan; Berardi, Paolo; Sollecchia, Umberto; Lester, Tim; Bohlsen, Terry; Luckas, Paul; Campos, Fran; Franco, Lorenzo; Garde, Olivier; Buil, Christian; Edlin, Jim; Teyssier, François

    2017-09-01

    We report the results of our continuing spectroscopic monitoring of the slow classical nova Sct 2017 = ASASSN-17hx (Atel# 10523, #10524, #10527, #10558, #10736) as part of the ongoing program by members of the ARAS group.

  1. On-line data processing apparatus for spectroscopic measurements of atomic uranium

    Miron, E.; Levin, L.A.; Erez, G; Baumatz, D; Goren, I.; Shpancer, I.

    1977-01-01

    A computer-based apparatus for on-line spectroscopic measurements of atomic uranium is described. The system is capable of enhancing the signal-to-noise ratio by averaging, and performing calculations. Computation flow charts and programs are included

  2. Spectroscopic Classifications of Optical Transients with the Lick Shane 3-m telescope

    Dimitriadis, G.; Foley, R. J.

    2018-05-01

    We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane 3-m telescope. Targets were supplied by ATLAS, ASAS-SN, and the KEGS K2 SN search.

  3. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    de Ruiter, J. M.; Purchase, R. L.; Monti, A.; van der Ham, C. J. M.; Gullo, M. P.; Joya, K. S.; D'Angelantonio, M.; Barbieri, A.; Hetterscheid, D. G. H.; de Groot, H. J. M.; Buda, F.

    2016-01-01

    derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst

  4. Syntheses and spectroscopic properties of mercury(II) and nickel(II ...

    Syntheses and spectroscopic properties of mercury(II) and nickel(II) ... The complexes were characterized by IR, diffuse reflectance, 1H NMR spectra and elemental ... coordinating through thiolato sulphur and hydrazinic nitrogen atoms.

  5. Spectroscopic parameters, vibrational levels, transition dipole moments and transition probabilities of the 9 low-lying states of the NCl+ cation

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-03-01

    This work calculates the potential energy curves of 9 Λ-S and 28 Ω states of the NCl+ cation. The technique employed is the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. The Λ-S states are X2Π, 12Σ+, 14Π, 14Σ+, 14Σ-, 24Π, 14Δ, 16Σ+, and 16Π, which are yielded from the first two dissociation channels of NCl+ cation. The Ω states are generated from these Λ-S states. The 14Π, 14Δ, 16Σ+, and 16Π states are inverted with the spin-orbit coupling effect included. The 14Σ+, 16Σ+, and 16Π states are very weakly bound, whose well depths are only several-hundred cm- 1. One avoided crossing of PECs occurs between the 12Σ+ and 22Σ+ states. To improve the quality of potential energy curves, core-valence correlation and scalar relativistic corrections are included. The potential energies are extrapolated to the complete basis set limit. The spectroscopic parameters and vibrational levels are calculated. The transition dipole moments are computed. The Franck-Condon factors, Einstein coefficients, and radiative lifetimes of many transitions are determined. The spectroscopic approaches are proposed for observing these states according to the transition probabilities. The spin-orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The spectroscopic parameters, vibrational levels, transition dipole moments, as well as transition probabilities reported in this paper could be considered to be very reliable.

  6. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  7. Principles of spectroscopic diagnostics of a plasma with oscillating electric fields

    Oks, E.A.

    1986-01-01

    Three types of main principles of spectroscopic diagnosis of the plasma with quasimonochromatic electric fields (QEF) are considered. Principles based on the effects intersectionally depending on the parameters of QEF and the plasma medium are considered. Occurrence of depressions or dips in the profiles of spectral lines is the most important effect among others. Principles based on the nonlinear theory of plasma and laser sattelites of spectral lines as well as laser-spectroscopic diagnosis of QEF in the plasma are considered

  8. A spectroscopic study of absorption and emission features of interstellar dust components

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  9. Spectroscopic validation of the supersonic plasma jet model

    Selezneva, S.E.; Sember, V.; Gravelle, D.V.; Boulos, M.I.

    2002-01-01

    Optical emission spectroscopy is applied to validate numerical simulations of supersonic plasma flow generated by induction torch with a convergent-divergent nozzle. The plasmas exhausting from the discharge tube with the pressure 0.4-1.4 atm. through two nozzle configurations (the outlet Mach number equals 1.5 and 3) into low-pressure (1.8 kPa) chamber are compared. Both modelling and experiments show that the effect of the nozzle geometry on physical properties of plasma jet is significant. The profiles of electron number density obtained from modeling and spectroscopy agree well and show the deviations from local thermodynamic equilibrium. Analysis of intercoupling between different sorts of nonequilibrium processes is performed. The results reveal that the ion recombination is more essential in the nozzle with the higher outlet number than in the nozzle with the lower outlet number. It is demonstrated that in the jets the axial electron temperature is quite low (3000-8000 K). For spectroscopic data interpretation we propose a method based on the definition of two excitation temperatures. We suppose that in mildly under expanded argon jets with frozen ion recombination the electron temperature can be defined by the electronic transitions from level 5p (the energy E=14.5 eV) to level 4p (E=13.116 eV). The obtained results are useful for the optimization of plasma reactors for plasma chemistry and plasma processing applications. (author)

  10. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  11. Mechanical contrast in spectroscopic magnetomotive optical coherence elastography

    Ahmad, Adeel; Huang, Pin-Chieh; Sobh, Nahil A; Pande, Paritosh; Kim, Jongsik; Boppart, Stephen A

    2015-01-01

    The viscoelastic properties of tissues are altered during pathogenesis of numerous diseases and can therefore be a useful indicator of disease status and progression. Several elastography studies have utilized the mechanical frequency response and the resonance frequencies of tissue samples to characterize their mechanical properties. However, using the resonance frequency as a source of mechanical contrast in heterogeneous samples is complicated because it not only depends on the viscoelastic properties but also on the geometry and boundary conditions. In an elastography technique called magnetomotive optical coherence elastography (MM-OCE), the controlled movement of magnetic nanoparticles (MNPs) within the sample is used to obtain the mechanical properties. Previous demonstrations of MM-OCE have typically used point measurements in elastically homogeneous samples assuming a uniform concentration of MNPs. In this study, we evaluate the feasibility of generating MM-OCE elastograms in heterogeneous samples based on a spectroscopic approach which involves measuring the magnetomotive response at different excitation frequencies. Biological tissues and tissue-mimicking phantoms with two elastically distinct regions placed in side-by-side and bilayer configurations were used for the experiments, and finite element method simulations were used to validate the experimental results. (paper)

  12. Expression, purification and spectroscopic characterization of the Regulator complex

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Ospina-Bedoya, M. [Universidad de Antioquia, Medellin (Colombia)

    2012-07-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  13. Expression, purification and spectroscopic characterization of the Regulator complex

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C.; Ospina-Bedoya, M.

    2012-01-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  14. High Energy Solar Spectroscopic Imager (HESSI) Team Investigations

    Emslie, A. Gordon

    1998-01-01

    This report covers activities on the above grant for the period through the end of September 1997. The work originally proposed to be performed under a three-year award was converted at that time to a two-year award for the remainder of the period, and is now funded under award NAGS-4027 through Goddard Space Flight Center. The P.I. is a co-investigator on the High Energy Solar Spectroscopic Imager (HESSI) team, selected as a Small-Class Explorer (SNMX) mission in 1997. He has also been a participant in the Space Physics Roadmap Planning Group. Our research has been strongly influenced by the NASA mission opportunities related to these activities. The report is subdivided into four sections, each dealing with a different aspect of our research within this guiding theme. Personnel involved in this research at UAH include the P.I. and graduate students Michele Montgomery and Amy Winebarger. Much of the work has been carried out in collaboration with investigators at other institutions, as detailed below. Attachment: Laser wakefield acceleration and astrophysical applications.

  15. Far-infrared Spectroscopic Characterization of Anti-vinyl Alcohol

    Bunn, Hayley; Soliday, Rebekah M.; Sumner, Isaiah; Raston, Paul L.

    2017-09-01

    We report a detailed analysis of the high-resolution far-infrared spectrum of anti-vinyl alcohol, which has been previously identified toward Sagittarius B2(N). The ν 15 OH torsional fundamental investigated here is more than 200 cm-1 removed from the next nearest vibration, making it practically unperturbed and ideal to help refine the ground state rotational constants that were previously determined from 25 microwave lines. We assigned 1335 lines within the ν 15 fundamental centered at 261.5512 cm-1, with J and K a ranges of 1-59 and 0-16, respectively. The microwave and far-infrared line positions were fit with Watson-type A- and S-reduced Hamiltonians, with the inclusion of quartic and select sextic distortion terms. This resulted in a significant refinement of the ground state constants, in addition to the determination of the {ν }15=1 state constants for the first time. The spectroscopic parameters are in good agreement with the results from anharmonic coupled-cluster calculations, and should be useful in searches for rotationally and/or vibrationally warm anti-vinyl alcohol in interstellar molecular clouds.

  16. Electron spectroscopic imaging of antigens by reaction with boronated antibodies.

    Qualmann, B; Kessels, M M; Klobasa, F; Jungblut, P W; Sierralta, W D

    1996-07-01

    Two small homogeneous markers for electron spectroscopic imaging (ESI) containing eight dodecaborane cages linked to a poly-alpha, epsilon-L-lysine dendrimer were synthesized; one of these was made water soluble by the attachment of a polyether. The markers were coupled to the sulfhydryl group of (monovalent) antibody fragments (Fab') by a homobifunctional cross-linker. While the coupling ratios of the poorly water-soluble compound did not exceed 20%, the polyether-containing variant reacted quantitatively. Its suitability for immunolabelling was tested in a study of the mechanism of the transcellular transport of an administered heterologous protein (bovine serum albumin, BSA) through ileal enterocytes of newborn piglets by endocytotic vesicles in comparison to conventional immunogold reagents. The post-embedding technique was employed. The boronated Fab' gave rise to considerably higher tagging frequencies than seen with immunogold, as could be expected from its form- and size-related physical advantages and the dense packing of BSA in the vesicles. The new probe, carrying the antigen-combining cleft at one end and the boron clusters at the opposite end of the oval-shaped conjugate, add to the potential of ESI-based immunocytochemistry.

  17. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  18. Dielectric and impedance spectroscopic studies of neodymium gallate

    Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  19. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  20. Improvement of the spectroscopic investigation of pellet ablation clouds

    Koubiti, M.; Ferri, S.; Godbert-Mouret, L.; Marandet, Y.; Rosato, J.; Stamm, R.; Goto, M.; Morita, S.

    2012-11-01

    The method allowing the characterization of the so-called ablation cloud of a pellet from its spectroscopic emission lines (intensities and shapes) is described. It is illustrated using measurements concerning carbon and aluminum pellets injected in the Large Helical Devices (LHD). The electron densities in pellet ablation clouds are sufficiently high that the energy levels of the main emitting species are at Local Thermodynamic Equilibrium (LTE). This justifies the electron temperature determination from the measured intensities using Boltzmann plots. In the case of carbon pellet, the C II 723 nm line was previously fitted with a convolution of a Lorentzian and a Gaussian profiles to determine the electron density. It is proposed here to use more elaborate theoretical profiles accounting for the Stark-Zeeman contributions in order to obtain more accurate plasma parameters especially for the high-resolution spectra in which both Zeeman and Stark features are visible. We present some preliminary comparisons with such spectra which were measured recently in LHD and discuss the possible improvement of the considered investigation technique once all the contributions to the line profile are effectively included. (author)

  1. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Simon, V., E-mail: viosimon@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Radu, T.; Vulpoi, A. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Rosca, C. [Optilens Clinic of Ophthalmology, 400604 Cluj-Napoca (Romania); Eniu, D. [Iuliu Haţieganu University of Medicine and Pharmacy, Department of Molecular Sciences, 400349 Cluj-Napoca (Romania)

    2015-01-15

    Highlights: • Changes on intraocular lens (IOL) surface after implantation. • Partial opacification of IOL central area. • Elemental composition on IOL surface prior to and after implantation. • First XPS depth profiling examination of the opacifying deposits. • Cell-mediated hydroxyapatite structuring. - Abstract: The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  2. Characterisation of thin films by phase modulated spectroscopic ellipsometry

    Bhattacharyya, D.; Das, N.C.

    1998-07-01

    A wide variety of thin film coatings, deposited by different techniques and with potential applications in various important areas, have been characterised by the Phase Modulated Spectroscopic Ellipsometer, installed recently in the Spectroscopy Division, B.A.R.C. The Phase Modulated technique provides a faster and more accurate data acquisition process than the conventional ellipsometry. The measured Ellipsometry spectra are fitted with theoretical spectra generated assuming an appropriate model regarding the sample. The fittings have been done objectively by minimising the squared difference (χ 2 ) between the measured and calculated values of the ellipsometric parameters and thus accurate information have been derived regarding the thickness and optical constants (viz, the refractive index and extinction coefficient) of the different layers, the surface roughness and the inhomogeneities present in the layers. Measurements have been done on (i) ion-implanted Si-wafers to investigate the formation of SiC layers, (ii) phenyl- silane coating on glass to investigate the surface modifications achieved for better adsorption of rhodamine dye on glass, (iii) GaN films on quartz to investigate the formation of high quality GaN layers by sputtering of GaAs targets, (iv) Diamond-like-coating (DLC) samples prepared by Chemical Vapour Deposition (CVD) to investigate the optical properties which would ultimately lead to an accurate estimation of the ratio of sp 3 and sp 2 bonded carbon atoms in the films and (v) SS 304 under different surface treatments to investigate the growth of different passive films. (author)

  3. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  4. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  5. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  6. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. In Vivo H MR spectroscopic imaging of human brain

    Choe, Bo Young; Suh, Tae Suk; Choi, Kyo Ho; Bahk, Yong Whee; Shinn, Kyung Sub

    1994-01-01

    To evaluate the spatial distribution of various proton metabolites in the human brain with use of water-suppressed in vivo H MR spectroscopic imaging (MRSI) technique. All of water-suppressed in vivo H MRSI were performed on 1.5 T whole-body MRI/MRS system using Stimulated Echo Acquisition Method (STEAM) Chemical Shift Imaging (CSI) pulse sequence. T1-weighted MR images were used for CSI field of view (FOV; 24 cm). Voxel size of 1.5 cm 3 was designated from the periphery of the brain which was divided by 1024 X 16 X 16 data points. Metabolite images of N-acetylaspartate (NAA), creatine/ phosphocreatine (Cr) + choline/phosphocholine (Cho), and complex of γ-aminobutyric acid (GABA) + glutamate (Glu) were obtained on the human brain. Our preliminary study suggests that in vivo H MRSI could provide the metabolite imaging to compensate for hypermetabolism on Positron Emission Tomography (PET) scans on the basis of the metabolic informations on brain tissues. The unique ability of in vivo H MRSI to offer noninvasive information about tissue biochemistry in disease states will stimulate on clinical research and disease diagnosis

  8. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  9. Continuous spectroscopic analysis of vanadous and vanadic ions

    Bishop, J.V.; Dutcher, R.A.; Fisher, M.S.; Kottle, S.; Stowe, R.A.

    1993-10-01

    Spectroscopic methods were investigated for the determination of vanadium ions in aqueous solutions arising in the production of vanadium (11) formate and its use in the LOMI (Low Oxidation-state Metal Ion) process for the chemical decontamination of systems in nuclear power plants. In the LOMI process, a dilute solution of vanadous formate and picolinic acid is used. The vanadous formate n reduces metal oxides in the scale on the equipment, causing the scale to break up and become suspended. The picolinic acid chelates these materials and makes them soluble. During the decontamination the progress is followed by analyses of the metal ions and of the radioactivity. When the values stop increasing, the decontamination is terminated. At present, it cannot be determined if the values are no longer changing due to all the scale being removed or due to the vanadous ion being spent. Infrared and ultraviolet-visible analysis were investigated as the means of analyzing for vanadium species. It was found that the complex formed by V(II) with picolinic acid could be used for colorimetric analysis for V(II) in the range of 0 - 0.011 moles/liter, which encompasses the concentration range used in the LOMI process. The findings will be used to develop an on-line instrument for continuously monitoring V(II) during decontamination

  10. Spectroscopic determination of valence band parameters in InP

    Lewis, R.A.; Lough, B.C.C.

    2003-01-01

    Full text: The general form of the Hamiltonian for an electron or hole in a semiconductor has been given by Luttinger. The valence band is characterised by three parameters - γ 1 , γ 2 , γ 3 -now commonly known as the Luttinger parameters. Despite many investigations there is still considerable uncertainty regarding the Luttinger parameters of InP. The situation has been reviewed by Hackenberg et al. These authors themselves sought to determine the Luttinger parameters by hot-electron luminescence and discovered that many Luttinger parameter triplets were consistent with their data. We employ a spectroscopic approach to estimating valence-band parameters in InP. Calculations have been made for both the unperturbed energy levels and the energy levels in a magnetic field of acceptor impurities in semiconductors characterised by different Luttinger parameters. We compare our recent experimental data for the transitions associated with the Zn acceptor impurity in InP in magnetic fields up to 30 T to determine the most appropriate set of valence-band parameters for InP

  11. Spectroscopic follow-up of the Hercules-Aquila Cloud

    Simion, Iulia T.; Belokurov, Vasily; Koposov, Sergey E.; Sheffield, Allyson; Johnston, Kathryn V.

    2018-05-01

    We designed a follow-up program to find the spectroscopic properties of the Hercules-Aquila Cloud (HAC) and test scenarios for its formation. We measured the radial velocities (RVs) of 45 RR Lyrae in the southern portion of the HAC using the facilities at the MDM observatory, producing the first large sample of velocities in the HAC. We found a double-peaked distribution in RVs, skewed slightly to negative velocities. We compared both the morphology of HAC projected on to the plane of the sky and the distribution of velocities in this structure outlined by RR Lyrae and other tracer populations at different distances to N-body simulations. We found that the behaviour is characteristic of an old, well-mixed accretion event with small apo-galactic radius. We cannot yet rule out other formation mechanisms for the HAC. However, if our interpretation is correct, HAC represents just a small portion of a much larger debris structure spread throughout the inner Galaxy whose distinct kinematic structure should be apparent in RV studies along many lines of sight.

  12. Reproducibility of P-31 spectroscopic imaging of normal human myocardium

    Tavares, N.J.; Chew, W.; Auffermann, W.; Higgins, C.B.

    1988-01-01

    To assess reproducibility of P-31 MR spectroscopy of human myocardium, ten normal male volunteers were studied on two separate occasions. Spectra were acquired on a clinical 1.5-T MR imaging unit (Signa, General Electric) using a one-dimensional gated spectroscopic imaging sequence (matrix size, 32 X 256) over 20 minutes. Peaks in the adenosine triphosphate (ATP) region, phosphocreatine (PCR), phosphodiesters (PD), and peaks attributable to 2,3 diphosphoglycerate from blood were observed. Interindividual and intraindividual variability expressed as standard errors of the mean (mean +- SEM) were 1.54 +- 0.04 (variability among subjects) and 0.04 (variability between first and second studies) for PCR/β ATP; 0.97 +- 0.18 and 0.06 for PD/β ATP; and 0.62 +- 0.10 and 0.05 for PD/PCR, respectively. In conclusion, P-31 MR spectroscopy yields consistent and reproducible myocardial spectra that might be useful in the future for the evaluation and monitoring of cardiac disease

  13. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  15. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA.

    Shahal, Tamar; Gilat, Noa; Michaeli, Yael; Redy-Keisar, Orit; Shabat, Doron; Ebenstein, Yuval

    2014-08-19

    5-Hydroxymethylcytosine (5hmC), a modified form of the DNA base cytosine, is an important epigenetic mark linked to regulation of gene expression in development, and tumorigenesis. We have developed a spectroscopic method for a global quantification of 5hmC in genomic DNA. The assay is performed within a multiwell plate, which allows simultaneous recording of up to 350 samples. Our quantification procedure of 5hmC is direct, simple, and rapid. It relies on a two-step protocol that consists of enzymatic glucosylation of 5hmC with an azide-modified glucose, followed by a "click reaction" with an alkyne-fluorescent tag. The fluorescence intensity recorded from the DNA sample is proportional to its 5hmC content and can be quantified by a simple plate reader measurement. This labeling technique is specific and highly sensitive, allowing detection of 5hmC down to 0.002% of the total nucleotides. Our results reveal significant variations in the 5hmC content obtained from different mouse tissues, in agreement with previously reported data.

  16. Non-spectroscopic surface plasmon sensor with a tunable sensitivity

    Wen, Qiuling; Han, Xu; Hu, Chuang; Zhang, Jiasen

    2015-01-01

    We demonstrate a non-spectroscopic surface plasmon sensor with a tunable sensitivity which is based on the relationship between the wave number of surface plasmon polaritons (SPPs) on metal film and the refractive index of the specimen in contact with the metal film. A change in the wave number of the SPPs results in a variation in the propagation angle of the leakage radiation of the SPPs. A reference light is used to interfere with the leakage radiation, and the refractive index of the specimen can be obtained by measuring the period of the interference fringes. The sensitivity of the sensor can be tuned by changing the incident direction of the reference light and this cannot be realized by conventional surface plasmon sensors. For a reference angle of 1.007°, the sensitivity and resolution of the sensor are 4629 μm/RIU (RIU stands for refractive index unit) and 3.6 × 10 −4 RIU, respectively. In addition, the sensor only needs a monochromatic light source, which simplifies the measurement setup and reduces the cost

  17. Magnetic resonance spectroscopic imaging at superresolution: Overview and perspectives.

    Kasten, Jeffrey; Klauser, Antoine; Lazeyras, François; Van De Ville, Dimitri

    2016-02-01

    The notion of non-invasive, high-resolution spatial mapping of metabolite concentrations has long enticed the medical community. While magnetic resonance spectroscopic imaging (MRSI) is capable of achieving the requisite spatio-spectral localization, it has traditionally been encumbered by significant resolution constraints that have thus far undermined its clinical utility. To surpass these obstacles, research efforts have primarily focused on hardware enhancements or the development of accelerated acquisition strategies to improve the experimental sensitivity per unit time. Concomitantly, a number of innovative reconstruction techniques have emerged as alternatives to the standard inverse discrete Fourier transform (DFT). While perhaps lesser known, these latter methods strive to effect commensurate resolution gains by exploiting known properties of the underlying MRSI signal in concert with advanced image and signal processing techniques. This review article aims to aggregate and provide an overview of the past few decades of so-called "superresolution" MRSI reconstruction methodologies, and to introduce readers to current state-of-the-art approaches. A number of perspectives are then offered as to the future of high-resolution MRSI, with a particular focus on translation into clinical settings. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Raman spectroscopic analysis identifies testicular microlithiasis as intratubular hydroxyapatite.

    De Jong, B W D; De Gouveia Brazao, C A; Stoop, H; Wolffenbuttel, K P; Oosterhuis, J W; Puppels, G J; Weber, R F A; Looijenga, L H J; Kok, D J

    2004-01-01

    As diagnosed by ultrasonography, testicular microlithiasis is associated with various benign and malignant conditions. The molecular constitution of these microliths is largely unknown. Raman spectroscopy provides detailed in situ information about the molecular composition of tissues and to our knowledge it has not been applied to gonadal microliths. We analyzed the molecular composition of gonadal microlithiasis and its surrounding region using Raman spectroscopy in malignant and benign conditions. Multiple microliths from 6 independent samples diagnosed with gonadal microlithiasis by ultrasound and histologically confirmed were investigated by Raman spectroscopy. The samples included 4 testicular parenchyma samples adjacent to a germ cell tumor (4 seminomas), a gonadoblastoma of a dysgenetic gonad and testicular biopsy of a subfertile male without malignancy. Raman spectroscopic mapping demonstrated that testicular microliths were located within the seminiferous tubule. Glycogen surrounded all microliths in the samples associated with germ cell neoplasm but not in the benign case. The molecular composition of the 26 microliths in all 6 conditions was pure hydroxyapatite. Microliths in the testis are located in the seminiferous tubules and composed of hydroxyapatite. In cases of germ cell neoplasm they co-localize with glycogen deposits.

  19. Adsorption and spectroscopic characterization of lactoferrin on hydroxyapatite nanocrystals.

    Iafisco, Michele; Di Foggia, Michele; Bonora, Sergio; Prat, Maria; Roveri, Norberto

    2011-01-28

    Lactoferrin (LF), a well-characterized protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic and anti-inflammatory properties, has been adsorbed onto biomimetic hydroxyapatite (HA) nanocrystals at two different pH values (7.4 and 9.0). The interaction was herein investigated by spectroscopic, thermal and microscopic techniques. The positive electrostatic surface potential of LF at pH 7.4 allows a strong surface interaction with the slightly negative HA nanocrystals and avoids the protein-protein interaction, leading to the formation of a coating protein monolayer. In contrast, at pH 9.0 the surface potential of LF is a mix of negative and positive zones favouring the protein-protein interaction and reducing the interaction with HA nanocrystals; as a result a double layer of coating protein was formed. These experimental findings are supported by the good fittings of the adsorption isotherms by different theoretical models according to Langmuir, Freundlich and Langmuir-Freundlich models. The nanosized HA does not appreciably affect the conformation of the adsorbed protein. In fact, using FT-Raman and FT-IR, we found that after adsorption the protein was only slightly unfolded with a small fraction of the α-helix structure being converted into turn, while the β-sheet content remained almost unchanged. The bioactive surface of HA functionalized with LF could be utilized to improve the material performance towards the biological environment for biomedical applications.

  20. Critical insights into nuclear collectivity from complementary nuclear spectroscopic methods

    Garrett, P. E.; Wood, J. L.; Yates, S. W.

    2018-06-01

    Low-energy collectivity of nuclei has been, and is being, characterized in a critical manner using data from a variety of spectroscopic methods, including Coulomb excitation, β decay, inelastic scattering of charged and uncharged particles, transfer reactions, etc. In addition to level energies and spins, transition multipolarities and intensities, lifetimes, and nuclear moments are available. The totality of information from these probes must be considered in achieving an accurate vision of the excitations in nuclei and determining the applicability of nuclear models. From these data, major changes in our view of low-energy collectivity in nuclei have emerged; most notable is the demise of the long-held view of low-energy quadrupole collectivity near closed shells as due to vibrations about a spherical equilibrium shape. In this contribution, we focus on the basic predictions of the spherical harmonic vibrator limit of the Bohr Hamiltonian. Properties such as B(E2) values, quadrupole moments, E0 strengths, etc are outlined. Using the predicted properties as a guide, evidence is cited for and against the existence of vibrational states, and especially multi-phonon states, in nuclei that are, or historically were considered to be, spherical or have a nearly spherical shape in their ground state. It is found that very few of the nuclei that were identified in the last major survey seeking nearly spherical harmonic vibrators satisfy the more stringent guidelines presented herein. Details of these fundamental shifts in our view of low-energy collectivity in nuclei are presented.

  1. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    Tiezhu Shi

    2017-05-01

    Full Text Available This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF, artificial neural network (ANN, radial basis function- and linear function- based support vector machine (RBF- and LF-SVM were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs. The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value. The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%, ANN (OA = 89%, RBF- (OA = 89% and LF-SVM (OA = 87% had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05. These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies.

  2. Structure and linear spectroscopic properties of near IR polymethine dyes

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  3. Spectroscopic study on a thermoelectron-enhanced microplasma jet

    Ito, Tsuyohito; Nishiyama, Hiroyuki; Terashima, Kazuo; Sugimoto, Kyozo; Yoshikawa, Hirohisa; Takahashi, Hideaki; Sakurai, Takeki

    2004-01-01

    An Ar thermoelectron-enhanced microplasma (TEMP) jet was characterized by spectroscopic study. The 1s 5 lowest metastable densities at the core of the plasma and very close to the substrate, about 4 mm apart from the torch, were obtained successfully using laser absorption spectroscopy (LAS) and laser induced evanescent-mode fluorescence spectroscopy (LIEF). For TEMP generated with 450 MHz, 5 W and 60 Torr, these densities were estimated to be about 3 x 10 12 cm -3 and about 10 10 cm -3 , by the LAS and LIEF methods, respectively. Moreover, gaseous temperature was also estimated as about 700 K by the LAS method. Depopulation of the 1s 5 metastable atoms might be caused primarily by gaseous diffusion between the torch and the substrate. Finally, we report a device with a TEMP generator at the top of a flexible fibre called the 'plasma fibre', which allows plasma processing in any location, as with laser processing using an optical fibre. This article was due to be published in issue 23 of 2003. To access this special issue, please follow this link: http://www.iop.org/EJ/toc/0022-3727/36/23

  4. The limit of detection for explosives in spectroscopic differential reflectometry

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  5. Moessbauer spectroscopic studies of hemoglobin and its isolated subunits

    Hoy, G.R.; Cook, D.C.; Berger, R.L.; Friedman, F.K.

    1986-01-01

    Samples of 90% enriched 57Fe hemoglobin and its isolated subunits have been prepared. Moessbauer spectroscopic measurements have been made on three such samples. Sample one contained contributions of oxyhemoglobin, deoxyhemoglobin, and carbonmonoxyhemoglobin. This sample was studied from a temperature of 90 K down to 230 mK. Measurements were also made at 4.2 K using a small applied magnetic field of 1.0 T. In general, the measured quadrupole splittings and isomer shifts for each component agreed with previous measurements on single component samples in the literature, and thus demonstrated that chemically enriched hemoglobin has not been altered. The second and third samples were isolated alpha and beta subunits, respectively. We have found measurable Moessbauer spectral differences between the HbO 2 sites in the alpha subunit sample and the beta subunit sample. The measured Moessbauer spectral areas indicate that the iron ion has the largest mean-square displacement at the deoxy Hb sites as compared to that at the oxy- and carbonmonoxy Hb sites. The mean-square displacement at the HbO 2 sites is the smallest

  6. A spectroscopic study of uranium species formed in chloride melts

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  7. Phosphorus-31 spectroscopic imaging of the human liver

    Biran, M.; Raffard, G.; Canioni, P.; Kien, P.

    1993-01-01

    During the last decade, progresses in the field of nuclear magnetic resonance spectroscopy (M.R.S.), have allowed the metabolic studies of complex biological systems. Since the coming out of whole body magnets, clinical applications are possible; they utilize magnetic field gradients coupled with selective pulse sequences. Study of the phosphorylated metabolism of human liver can be performed with sequences as ISIS, FROGS or 1D-CSI. But they present some disadvantages (for instance contamination by phosphocreatine from muscle). In the present work, we have studied the human liver in vivo by 31 P spectroscopic imaging. Several spectra could be acquired with only one acquisition. This study has needed the building of radiofrequency coils (surface coils), specially designed for liver observation (15 cm diameter 31 P coil and 19 cm diameter proton coil, both transmitter and receiver coils). Preliminary studies have been done on a phantom followed by in vivo measurements on healthy subject livers. We have obtained localized 31 P N.M.R. spectra corresponding to different voxels within the hepatic tissue. The conditions of acquisition of spectra and the problems related to the saturation of phosphorylated metabolite signals (in particular phosphodiesters) are discussed. (author). 5 figs., 15 refs

  8. A global fitting code for multichordal neutral beam spectroscopic data

    Seraydarian, R.P.; Burrell, K.H.; Groebner, R.J.

    1992-05-01

    Knowledge of the heat deposition profile is crucial to all transport analysis of beam heated discharges. The heat deposition profile can be inferred from the fast ion birth profile which, in turn, is directly related to the loss of neutral atoms from the beam. This loss can be measured spectroscopically be the decrease in amplitude of spectral emissions from the beam as it penetrates the plasma. The spectra are complicated by the motional Stark effect which produces a manifold of nine bright peaks for each of the three beam energy components. A code has been written to analyze this kind of data. In the first phase of this work, spectra from tokamak shots are fit with a Stark splitting and Doppler shift model that ties together the geometry of several spatial positions when they are fit simultaneously. In the second phase, a relative position-to-position intensity calibration will be applied to these results to obtain the spectral amplitudes from which beam atom loss can be estimated. This paper reports on the computer code for the first phase. Sample fits to real tokamak spectral data are shown

  9. A spectroscopic look at the gravitationally lensed Type Ia supernova 2016geu at z = 0.409

    Cano, Z.; Selsing, J.; Hjorth, J.

    2018-01-01

    The spectacular success of Type Ia supernovae (SNe Ia) in SN-cosmology is based on the assumption that their photometric and spectroscopic properties are invariant with redshift. However, this fundamental assumption needs to be tested with observations of high-z SNe Ia. To date, the majority of SNe...... Ia observed at moderate to large redshifts (0.4 le z le 1.0) are faint, and the resultant analyses are based on observations with modest signal-to-noise ratios that impart a degree of ambiguity in their determined properties. In rare cases, however, the Universe offers a helping hand: To date a few...... SNe Ia have been observed that have had their luminosities magnified by intervening galaxies and galaxy clusters acting as gravitational lenses. In this paper, we present long-slit spectroscopy of the lensed SN Ia 2016geu, which occurred at a redshift of z = 0.409, and was magnified by a factor of ap...

  10. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  11. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  12. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling

  13. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  14. Spectroscopic characterization of III-V semiconductor nanomaterials

    Crankshaw, Shanna Marie

    through a novel spectroscopic technique first formulated for the rather different purpose of dispersion engineering for slow-light schemes. The frequency-resolved technique combined with the unusual (110) quantum wells in a furthermore atypical waveguide experimental geometry has revealed fascinating behavior of electron spin splitting which points to the possibility of optically orienting electron spins with linearly polarized light---an experimental result supporting a theoretical description of the phenomenon itself only a few years old. Lastly, to explore a space of further-restricted dimensionality, the final chapters describe InP semiconductor nanowires with dimensions small enough to be considered truly one-dimensional. Like the bulk GaAs of the first few chapters, the InP nanowires here crystallize in a wurtzite structure. In the InP nanowire case, though, the experimental techniques explored for characterization are temperature-dependent time-integrated photoluminescence at the single-wire level (including samples with InAsP insertions) and time-resolved photoluminescence at the ensemble level. The carrier dynamics revealed through these time-resolved studies are the first of their kind for wurtzite InP nanowires. The chapters are thus ordered as a progression from three (bulk), to two (quantum well), to one (nanowire), to zero dimensions (axially-structured nanowire), with the uniting theme the emphasis on connecting the semiconductor nanomaterials' crystallinity to its exhibited properties by relevant experimental spectroscopic techniques, whether these are standard methods or effectively invented for the case at hand.

  15. Proton MR spectroscopic features of chronic hepatitis and liver cirrhosis

    Cho, Soon Gu; Chung, Won Kyun; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Kim, Hyung Jin; Suh, Chang Hae

    2000-01-01

    The purpose of this study was to evaluate change in the proton MR spectroscopic ( 1 H-MRS) features of the liver according to changes in the severity of the chronic hepatitis spectrum (normal-chronic hepatitis-liver cirrhosis), and to determine the possibility of replacing liver biopsy by 1 H-MRS. Sixty profiles of 1 H-MRS features from 15 normal volunteers, 30 cases of chronic hepatitis, and 15 of liver cirrhosis were evaluated. All cases of chronic hepatitis and liver cirrhosis were confirmed by biopsy, and histopathologic disease severity was categorized according to Ludwig's classification. Using the STEAM (STimulated Echo-Aquisition Mode) sequence, 1 H-MRS was performed. The ratios of peak areas of (glutamate + glutamine)/lipid, phosphomonoesters/lipid, (glycogen + glucose)/lipid, and (3.9-4.1 ppm unknown peak)/lipid and their mean and standard deviation were calculated in normal, chronic hepatitis stages I and II, and early and late liver cirrhosis groups and the results were compared between these groups. One-way variable analysis was applied to the statistics. Mean and standard deviation of phosphomonoesters/lipid in the normal, chronic hepatitis grades I and II, and early and late liver cirrhosis groups were 0.0146±0.0090, 0.0222±0.0170, 0.0341±0.0276, 0.0698±0.0360, and 0.0881±0.0276, respectively, and (glycogen + glucose)/lipid were 0.0403±0.0267, 0.0922±0.0377, 0.1230±0.0364, 0.1853±0.0667, 0.2325±0.1071, respectively. These results implied that the ratio of the above metabolites to lipid content increased according to increasing disease severity (p less than 0.05). For (glutamate + glutamine)/lipid however, the ratios for each group were 0.0204±0.0067, 0.0117±0.0078, 0.0409±0.0167, 0.0212±0.0103, and 0.0693±0.0371, respectively, and there was no correlation with disease severity. In the chronic hepatitis grades I and II, and early and late liver cirrhosis groups, the ratios for (3.9-4.1 ppm unknown peak)/lipid were 0.0302±0.0087, 0

  16. Electrochemical and spectroscopic study on thiolation of polyaniline

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  17. Raman spectroscopic studies of optically trapped red blood cells

    Dasgupta, R.; Gupta, P.K.

    2010-01-01

    Raman spectroscopic studies were performed on optically trapped red blood cells (RBCs) collected from healthy volunteers and patients suffering from malaria (Plasmodium vivax infection) using near infrared (785 nm) laser source. The results show significant alteration in the spectra averaged over ∼ 50 non-parasitized RBCs per sample. As compared to RBCs from healthy donors, in cells collected from malaria patients, a significant decrease in the intensity of the low spin (oxygenated-haemoglobin) marker Raman band at 1223 cm -1 (υ 13 or υ 42 ) along with a concomitant increase in the high spin (deoxygenated-haemoglobin) marker bands at 1210 cm -1 (υ 5 + υ 18 ) and 1546 cm -1 (υ 11 ) was observed. The changes primarily suggest a reduced haemoglobin-oxygen affinity for the non-parasitized red cells in malaria patients. The possible causes include up regulation of intra-erythrocytic 2,3-diphosphoglycerate and/or ineffective erythropoiesis resulted from the disease. During the above study we also observed that significant photo-damage may results to the intracellular haemoglobin (Hb) if higher laser power is used. For a laser power above ∼ 5 mW the observed increase in intensity of the Raman bands at 975 cm -1 (υ 46 ), 1244 cm -1 (υ 42 ) and 1366 cm -1 (υ 4 ) with increasing exposure time suggests photo-denaturation of Hb and the concomitant decrease in intensity of the Raman band at 1544 cm -1 (υ 11 ) suggests photo induced methaemoglobin formation. The photo damage of intracellular haemoglobin by the above processes was also observed to result in intracellular heme aggregation. (author)

  18. CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Green, Gregory M.; Hogg, David W.

    2015-01-01

    We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectral line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line “outliers.” By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf

  19. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin.

    Ali, Hassan Refat H; Alhalaweh, Amjad; Velaga, Sitaram P

    2013-05-01

    Identification of optimal solid form of an active pharmaceutical ingredient and form control are very important in drug development. Thus, the structural information of these forms and in-depth insight on the modes of molecular interactions are necessary, and vibrational spectroscopic methods are well suited for this purpose. In-depth structural analysis of different solid forms of indomethacin (IND) using Raman and infrared (IR) spectroscopy is the objective. We have investigated the modes of molecular interactions in polymorphs (α and γ), amorphous and discovered cocrystals of IND with nicotinamide (NIC) and trans-cinnamic acid (CIN) coformers. The solid forms of IND have been prepared; their purity has been verified by differential scanning calorimetry and powder X-ray diffractometry and then studied in the solid-state by Raman and IR spectroscopy. The modes of the interactions were closely investigated from the vibrational data. The key vibrational features of IND solid forms have been specified. The IR (C=O) band at 1713 cm(-1) attributed to cyclic acid dimer of γ IND has disappeared in IND-NIC/CIN whilst retained in IND-SAC cocrystal. IND cocrystallizes in different conformations and crystal lattices with different coformers. The cyclic acid dimer of IND has been kept on its cocrystallization with saccharin and it could have been broken with NIC and CIN. The complementary nature of Raman and IR spectroscopy allowed unambiguous investigation of the chemical composition of pharmaceutical materials which is of particular importance in the absence of detailed structural information, as in the case of IND-NIC and IND-CIN.

  20. Surface spectroscopic characterization of a model methane-activation catalyst

    Chen, J.G.; Weisel, M.D.; Hoffmann, F.M.; Hall, R.B.

    1992-01-01

    In an effort to understand the details concerning the alkali-promoted selectivity for the oxidative coupling of methane, the authors have carried out a detailed characterization of a model K/NiO/Ni(100) catalyst under well-controlled, ultrahigh vacuum conditions. The authors' systematic approach involved the following procedures: detailed investigation of the formation and structure of NiO on a clean Ni(100) surface; spectroscopic characterization of K-doped NiO by in situ deposition of potassium onto well-characterized NiO/Ni(100) substrate; and determination of the reactivities of NiO/Ni(100) and K/NiO/Ni(100) towards H 2 and CH 4 . In this paper, the authors will use the model K/NiO/Ni(100) system as an example to demonstrate that a detailed, complementary characterization of the model catalyst could best be achieved by using a combination of a variety of surface techniques: The methods of HREELS, LEED, XPS and AES could be applied to obtain properties on and near the surface regions; the technique of FYNES, being a photon-in/photon-out method could be utilized to investigate the bulk properties up to 2000 Angstrom below the surface; the method of FTIR using CO as a probing molecule is, on the other hand, sensitive only to the properties of the top-most surface layer. The result is to be presented in this paper will be mainly those obtained by using the two vibrational spectroscopies (HREELS and FTIR). Results from other surface techniques will also be discussed or presented when they provide additional information to the vibrational data

  1. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  2. Undersampling strategies for compressed sensing accelerated MR spectroscopic imaging

    Vidya Shankar, Rohini; Hu, Houchun Harry; Bikkamane Jayadev, Nutandev; Chang, John C.; Kodibagkar, Vikram D.

    2017-03-01

    Compressed sensing (CS) can accelerate magnetic resonance spectroscopic imaging (MRSI), facilitating its widespread clinical integration. The objective of this study was to assess the effect of different undersampling strategy on CS-MRSI reconstruction quality. Phantom data were acquired on a Philips 3 T Ingenia scanner. Four types of undersampling masks, corresponding to each strategy, namely, low resolution, variable density, iterative design, and a priori were simulated in Matlab and retrospectively applied to the test 1X MRSI data to generate undersampled datasets corresponding to the 2X - 5X, and 7X accelerations for each type of mask. Reconstruction parameters were kept the same in each case(all masks and accelerations) to ensure that any resulting differences can be attributed to the type of mask being employed. The reconstructed datasets from each mask were statistically compared with the reference 1X, and assessed using metrics like the root mean square error and metabolite ratios. Simulation results indicate that both the a priori and variable density undersampling masks maintain high fidelity with the 1X up to five-fold acceleration. The low resolution mask based reconstructions showed statistically significant differences from the 1X with the reconstruction failing at 3X, while the iterative design reconstructions maintained fidelity with the 1X till 4X acceleration. In summary, a pilot study was conducted to identify an optimal sampling mask in CS-MRSI. Simulation results demonstrate that the a priori and variable density masks can provide statistically similar results to the fully sampled reference. Future work would involve implementing these two masks prospectively on a clinical scanner.

  3. Surface Spectroscopic Signatures of Mechanical Deformation in HDPE.

    Averett, Shawn C; Stanley, Steven K; Hanson, Joshua J; Smith, Stacey J; Patterson, James E

    2018-01-01

    High-density polyethylene (HDPE) has been extensively studied, both as a model for semi-crystalline polymers and because of its own industrial utility. During cold drawing, crystalline regions of HDPE are known to break up and align with the direction of tensile load. Structural changes due to deformation should also manifest at the surface of the polymer, but until now, a detailed molecular understanding of how the surface responds to mechanical deformation has been lacking. This work establishes a precedent for using vibrational sum-frequency generation (VSFG) spectroscopy to investigate changes in the molecular-level structure of the surface of HDPE after cold drawing. X-ray diffraction (XRD) was used to confirm that the observed surface behavior corresponds to the expected bulk response. Before tensile loading, the VSFG spectra indicate that there is significant variability in the surface structure and tilt of the methylene groups away from the surface normal. After deformation, the VSFG spectroscopic signatures are notably different. These changes suggest that hydrocarbon chains at the surface of visibly necked HDPE are aligned with the direction of loading, while the associated methylene groups are oriented with the local C 2 v symmetry axis roughly parallel to the surface normal. Small amounts of unaltered material are also found at the surface of necked HDPE, with the relative amount of unaltered material decreasing as the amount of deformation increases. Aspects of the nonresonant SFG response in the transition zone between necked and undeformed polymer provide additional insight into the deformation process and may provide the first indication of mechanical deformation. Nonlinear surface spectroscopy can thus be used as a noninvasive and nondestructive tool to probe the stress history of a HPDE sample in situations where X-ray techniques are not available or not applicable. Vibrational sum-frequency generation thus has great potential as a platform for

  4. Spectroscopic markers of the TR quaternary transition in human hemoglobin.

    Schirò, Giorgio; Cammarata, Marco; Levantino, Matteo; Cupane, Antonio

    2005-04-01

    In this work, we use a sol-gel protocol to trap and compare the R and T quaternary states of both the deoxygenated (deoxyHb) and carbonmonoxide (HbCO) derivatives of human hemoglobin. The near infrared optical absorption band III and the infrared CO stretching band are used to detect the effect of quaternary structure on the spectral properties of deoxyHb and HbCO; comparison with myoglobin allows for an assessment of tertiary and quaternary contributions to the measured band shifts. The RT transition is shown to cause a blue shift of the band III by approximately 35 cm(-1) for deoxyHb and a red shift of the CO stretching band by only approximately 0.3 cm(-1) for HbCO. This clearly shows that quaternary structure changes are transmitted to the heme pocket and that effects on deoxyHb are much larger than on HbCO, at least as far as the band energies are concerned. Experiments performed in the ample temperature interval of 300-10K show that the above quaternary structure effects are "static" and do not influence the dynamic properties of the heme pocket, at least as probed by the temperature dependence of band III and of the CO stretching band. The availability of quaternary structure sensitive spectroscopic markers and the quantitative measurement of the quaternary structure contribution to band shifts will be of considerable help in the analysis of flash-photolysis experiments on hemoglobin. Moreover, it will enable one to characterize the dynamic properties of functionally relevant hemoglobin intermediates and to study the kinetics of both the T-->R and R-->T quaternary transitions through time-resolved spectroscopy.

  5. Spectroscopic detection and mapping of vinyl cyanide on Titan

    Cordiner, Martin; Yukiko Palmer, Maureen; Lai, James; Nixon, Conor A.; Teanby, Nicholas; Charnley, Steven B.; Vuitton, Veronique; Kisiel, Zbigniew; Irwin, Patrick; Molter, Ned; Mumma, Michael J.

    2017-10-01

    The first spectroscopic detection of vinyl cyanide (otherwise known as acrylonitrile; C2H3CN) on Titan was obtained by Palmer et al. (2017), based on three rotational emission lines observed with ALMA at millimeter wavelengths (in receiver band 6). The astrobiological significance of this detection was highlighted due to the theorized ability of C2H3CN molecules to combine into cell membrane-like structures under the cold conditions found in Titan's hydrocarbon lakes. Here we report the detection of three additional C2H3CN transitions at higher frequencies (from ALMA band 7 flux calibration data). We present the first emission maps for this gas on Titan, and compare the molecular distribution with that of other nitriles observed with ALMA including HC3N, CH3CN, C2H5CN and HNC. The molecular abundance patterns are interpreted based on our understanding of Titan's high-altitude photochemistry and time-variable global circulation. Similar to the short-lived HC3N molecule, vinyl cyanide is found to be most abundant in the vicinity of the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. The vertical abundance profile of C2H3CN (from radiative transfer modeling), as well as its latitudinal distribution, are consistent with a short photochemical lifetime for this species. Complementary results from our more recent (2017) nitrile mapping studies at higher spatial resolution will also be discussed.REFERENCES:Palmer, M. Y., Cordiner, M. A., Nixon, C. A. et al. "ALMA detection and astrobiological potential of vinyl cyanide on Titan", Sci. Adv. 2017, 3, e1700022

  6. Spectroscopic characterization of Ho3+ ion-doped fluoride glass

    Florez, A.; Oliveira, S.L.; Florez, M.; Gomez, L.A.; Nunes, L.A.O.

    2006-01-01

    Among the new optical materials available, fluoride glass, which has an extended transmission window, is emerging as an important material for use in optical fibers, lasers, sensors, etc. Here, we analyze the spectroscopic properties of Ho 3+ ions in a fluoroindate glass based on absorption measurements. Ho 3+ -doped fluoroindate glass with the composition (40 - x)InF 3 -20SrF 2 -20ZnF 2 -16BaF 2 -2GdF 3 -2NaF-xHoF 3 , x = 1.0, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0 and 9.0 mol%, was prepared under an argon atmosphere. Absorption spectra in the range 300-2200 nm were then obtained. The experimental oscillator strength f Exp. was calculated from the areas under absorption bands. Using Judd-Ofelt theory and least-squares fitting, the phenomenological intensity parameter Ω λ (λ = 2, 4, 6) and the theoretical oscillator strength f Cal. were calculated. To evaluate potential applications and to analyze the properties of Ho 3+ ions in these host glasses, the following spectroscopy parameters were calculated: the transition probability between multiplets A JJ' , the branching ratio β JJ' , the radiative lifetime τ R , the peak cross-section for stimulated emission σ p , and the emitting-level multiphonon rate W NR for each band. The results were compared with those reported in the literature for similar glasses of the same concentration

  7. The spectroscopic study of building composites containing natural sorbents.

    Król, M; Mozgawa, W

    2011-08-15

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies

    Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  9. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  10. ETHYL CYANIDE ON TITAN: SPECTROSCOPIC DETECTION AND MAPPING USING ALMA

    Cordiner, M. A.; Palmer, M. Y.; Nixon, C. A.; Charnley, S. B.; Mumma, M. J.; Serigano, J. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ (United Kingdom); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikøw 32/46, 02-668 Warszawa (Poland); Kuan, Y.-J.; Chuang, Y.-L. [National Taiwan Normal University, Taipei 116, Taiwan (China); Wang, K.-S., E-mail: martin.cordiner@nasa.gov [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China)

    2015-02-10

    We report the first spectroscopic detection of ethyl cyanide (C{sub 2}H{sub 5}CN) in Titan’s atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter Array (ALMA). The presence of C{sub 2}H{sub 5}CN in Titan’s ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C{sub 2}H{sub 5}CNH{sup +}. Here we report the detection of 27 rotational lines from C{sub 2}H{sub 5}CN (in 19 separate emission features detected at >3σ confidence) in the frequency range 222–241 GHz. Simultaneous detections of multiple emission lines from HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH were also obtained. In contrast to HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH, which peak in Titan’s northern (spring) hemisphere, the emission from C{sub 2}H{sub 5}CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C{sub 2}H{sub 5}CN. Radiative transfer models show that C{sub 2}H{sub 5}CN is most concentrated at altitudes ≳200 km, suggesting production predominantly in the stratosphere and above. Vertical column densities are found to be in the range (1–5) × 10{sup 14} cm{sup −2}.

  11. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Bergmair, Michael; Bruno, Giovanni; Cattelan, Denis; Cobet, Christoph; de Martino, Antonello; Fleischer, Karsten; Dohcevic-Mitrovic, Zorana; Esser, Norbert; Galliet, Melanie; Gajic, Rados; Hemzal, Dušan; Hingerl, Kurt; Humlicek, Josef; Ossikovski, Razvigor; Popovic, Zoran V.; Saxl, Ottilia

    2009-01-01

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures. PMID:21170135

  12. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Losurdo, Maria, E-mail: maria.losurdo@ba.imip.cnr.i [National Council of Research-Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP (Italy); Bergmair, Michael [Johannes Kepler University Linz, Christian Doppler Laboratory for Surface Optics, Center for Surface- and Nanoanalytics (Austria); Bruno, Giovanni [National Council of Research-Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP (Italy); Cattelan, Denis, E-mail: denis.cattelan@horiba.co [HORIBA Scientific, Thin Film Division (France); Cobet, Christoph [ISAS Institute for Analytical Sciences, Department Berlin (Germany); Martino, Antonello de [Ecole Polytechnique, Centre National de la Recherche Scientique (CNRS-LPICM) (France); Fleischer, Karsten [ISAS Institute for Analytical Sciences, Department Berlin (Germany); Dohcevic-Mitrovic, Zorana [Institute of Physics, Center for Solid State Physics and New Materials (Serbia); Esser, Norbert [ISAS Institute for Analytical Sciences, Department Berlin (Germany); Galliet, Melanie, E-mail: melanie.gaillet@horiba.co [HORIBA Scientific, Thin Film Division (France); Gajic, Rados [Institute of Physics, Center for Solid State Physics and New Materials (Serbia); Hemzal, Dusan; Hingerl, Kurt [Johannes Kepler University Linz, Christian Doppler Laboratory for Surface Optics, Center for Surface- and Nanoanalytics (Austria); Humlicek, Josef; Ossikovski, Razvigor [Ecole Polytechnique, Centre National de la Recherche Scientique (CNRS-LPICM) (France); Popovic, Zoran V. [Institute of Physics, Center for Solid State Physics and New Materials (Serbia); Saxl, Ottilia [Institute of Nanotechnology (United Kingdom)

    2009-10-15

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

  13. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Losurdo, Maria; Bergmair, Michael; Bruno, Giovanni; Cattelan, Denis; Cobet, Christoph; Martino, Antonello de; Fleischer, Karsten; Dohcevic-Mitrovic, Zorana; Esser, Norbert; Galliet, Melanie; Gajic, Rados; Hemzal, Dusan; Hingerl, Kurt; Humlicek, Josef; Ossikovski, Razvigor; Popovic, Zoran V.; Saxl, Ottilia

    2009-01-01

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

  14. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  15. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data

    Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J.S.

    2016-01-01

    The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface ( (www.hitran.org)) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4–50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage (www.hitran.org/hapi). - Highlights: • HAPI extends the HITRANonline portal and provides an access to the HITRAN data. • Free, flexible, and portable Python library for working with the spectroscopic data. • Incorporates functions for querying, filtering and processing the spectroscopic data. • Provides functionality for single-layer spectra simulation. • Can be used in the radiative transfer codes, spectroscopic data validation, etc.

  16. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  17. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  18. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  19. Towards a spectroscopic standard database for Pu in repository environments

    Amme, M.

    2005-01-01

    Full text of publication follows: The alteration behaviour of Pu in geological and technical environments is, although of crucial importance for example in final repository assessment procedures for high-level nuclear waste, not sufficiently investigated. Since Pu chemistry differs significantly from U behaviour (mostly due to the different stabilities of the +IV oxidation states of both elements), conclusions based on the uranium analogy cannot be extended to Pu chemistry in many cases. In order to examine precisely the alteration behaviour of Pu under repository storage conditions, customized tools for the spectroscopic identification of the element need to be developed. We are currently constructing systematically a database of Pu compounds and collect their spectra for this purpose. Pu compounds (with the element in the oxidation states +III, +IV, +V, and +VI) are synthesised, mostly by using hydrothermal synthesis techniques [1]. Compounds of high importance for repository studies are: Carbonates, (oxy)hydroxides, silicates, peroxides, and phosphates. The products are characterised by Scanning Electron Microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS), and X-Ray diffraction (XRD). Furthermore, vibrational spectra (Raman and IR) of the substances will be recorded. These will allow the unambiguous identification of chemically similar compounds, once the database is compiled: Although reported for a few cases with nuclear material only, the combined investigation of solids with Raman [2,3] and SEM-EDX [3] in a combined mode, especially when spatially resolving, holds great potential An investigation with accelerator-based XAS techniques is planned within the framework of the Excellence network Actinet 6. [1] Grigorev, M., Bessonov, A., Makarenkov, V., Fedoseev, A., Model of the (PuO 2 ) 2 SiO 4 * 2H 2 O crystal structure, based on powder X-ray diffraction data, Radiochemistry, Vol. 45, No 3 (2003) 257-260. [2] M. Amme, B. Renker, B. Schmid, M. Feth, H

  20. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  1. A 10-A spectroscopic ruler applied to short polyprolines.

    Sahoo, Harekrushna; Roccatano, Danilo; Hennig, Andreas; Nau, Werner M

    2007-08-08

    as a spectroscopic ruler for short polyprolines, which is presumably due to the breakdown of the point dipole approximation in Förster theory, when the size of the chromophores becomes comparable or larger than the distances under investigation.

  2. Multi-voxel MR spectroscopic imaging of the brain: utility in clinical setting-initial results

    Parmar, Hemant; Lim, Tchoyoson C.C.; Yin Hong; Chua, Violet; Khin, Lay-Wai; Raidy, Tom; Hui, Francis

    2005-01-01

    Background and purpose: Compared to single voxel methods, MR spectroscopic imaging (MRSI) of the brain provides metabolic information with improved anatomical coverage and spectral resolution, but may be difficult to perform in the clinical setting. We evaluate the factors influencing spectral quality in MRSI using a semi-automated method, focussing on lipid contamination, and phase correction errors related to magnetic field inhomogeneity. Methods: We retrospectively analysed MRSI studies planned by radiologists and radiographers. Two-dimensional MRSI studies using point-resolved spectroscopy (PRESS) localisation, at long echo time (135 or 144 ms) were acquired on a 1.5 T scanner. Studies that contained lipid contamination and abnormally inverted spectra were reviewed and the latter correlated with anatomic location at the base of skull, and with the area of the region of interest (ROI) studied. Results: Of 128 consecutive MRSI studies, six showed abnormal inverted spectra, of which four were acquired at the base of skull. Multivariate logistic regression analysis showed that study location at the base of skull, but not larger ROI, was a significant predictor for the risk of being affected by inverted spectra (RR for base of skull: 11.76, 95% CI: 1.86-74.18, P = 0.009. RR for area of ROI: 3.68, 95% CI: 0.57-23.67, P = 0.170). Seven studies showed lipid contamination; all were in close proximity to the overlying scalp. Conclusion: Using a semi-automated acquisition and post-processing method, MRSI can be successfully applied in the clinical setting. However, care should be taken to avoid regions of high magnetic field inhomogeneity at the base of skull, and lipid contamination in voxels prescribed near the scalp

  3. Spectroscopic Imaging Using Ge and CdTe Based Detector Systems for Hard X-ray Applications

    Astromskas, Vytautas

    Third generation synchrotron facilities such as the Diamond Light Source (DLS) have a wide range of experiments performed for a wide range of science fields. The DLS operates at energies up to 150 keV which introduces great challenges to radiation detector technology. This work focuses on the requirements that the detector technology faces for X-ray Absorption Fine Structure (XAFS) and powder diffraction experiments in I12 and I15 beam lines, respectively. A segmented HPGe demonstrator detector with in-built charge sensitive CUBE preamplifiers and a Schottky e- collection CdTe Medipix3RX detector systems were investigated to understand the underlying mechanisms that limit spectroscopic, imaging performances and stability and to find ways to overcome or minimise those limitations. The energy resolution and stability of the Ge demonstrator detector was found to have the required characteristics for XAFS measurements. Charge sharing was identified as a limiting factor to the resolution which is going to be addressed in the future development of a full detector system as well as reductions in electronic noise and cross-talk effects. The stability study of the Schottky CdTe Medipix3RX detector showed that polarization is highly dependent on temperature, irradiation duration and incoming flux. A new pixel behaviour called tri-phase (3-P) pixel was identified and a novel method for determining optimum operational conditions was developed. The use of the 3-P pixels as a criterion for depolarization resulted in a stable performance of the detector. Furthermore, the detector was applied in powder diffraction measurement at the I15 beam line and resulted in the detector diffraction pattern matching the simulated data. CdTe Medipix3RX and HEXITEC spectroscopic imaging detectors were applied in identification and discrimination of transitional metals for security application and K-edge subtraction for medical applications. The results showed that both detectors have potential

  4. Infrared spectroscopic ellipsometry of micrometer-sized SiO2 line gratings

    Walder, Cordula; Zellmeier, Matthias; Rappich, Jörg; Ketelsen, Helge; Hinrichs, Karsten

    2017-09-01

    For the design and process control of periodic nano-structured surfaces spectroscopic ellipsometry is already established in the UV-VIS spectral regime. The objective of this work is to show the feasibility of spectroscopic ellipsometry in the infrared, exemplarily, on micrometer-sized SiO2 line gratings grown on silicon wafers. The grating period ranges from 10 to about 34 μm. The IR-ellipsometric spectra of the gratings exhibit complex changes with structure variations. Especially in the spectral range of the oxide stretching modes, the presence of a Rayleigh singularity can lead to pronounced changes of the spectrum with the sample geometry. The IR-ellipsometric spectra of the gratings are well reproducible by calculations with the RCWA method (Rigorous Coupled Wave Analysis). Therefore, infrared spectroscopic ellipsometry allows the quantitative characterization and process control of micrometer-sized structures.

  5. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  6. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  7. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    Giacomo Ciamician, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy))" data-affiliation=" (Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy))" >Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-01-01

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm –1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  8. Bio-medical X-ray imaging with spectroscopic pixel detectors

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  9. How spectroscopic x-ray imaging benefits from inter-pixel communication

    Koenig, Thomas; Hamann, Elias; Cecilia, Angelica; Ballabriga, Rafael; Campbell, Michael; Ruat, Marie; Tlustos, Lukas; Fauler, Alex; Fiederle, Michael; Baumbach, Tilo

    2014-01-01

    Spectroscopic x-ray imaging based on pixellated semiconductor detectors can be sensitive to charge sharing and K-fluorescence, depending on the sensor material used, its thickness and the pixel pitch employed. As a consequence, spectroscopic resolution is partially lost. In this paper, we study a new detector ASIC, the Medipix3RX, that offers a novel feature called charge summing, which is established by making adjacent pixels communicate with each other. Consequently, single photon interactions resulting in multiple hits are almost completely avoided. We investigate this charge summing mode with respect to those of its imaging properties that are of interest in medical physics and benchmark them against the case without charge summing. In particular, we review its influence on spectroscopic resolution and find that the low energy bias normally present when recording energy spectra is dramatically reduced. Furthermore, we show that charge summing provides a modulation transfer function which is almost indepen...

  10. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    Puzzarini, Cristina [Dipartimento di Chimica " Giacomo Ciamician," Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Ali, Ashraf [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Biczysko, Malgorzata; Barone, Vincenzo, E-mail: cristina.puzzarini@unibo.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  11. A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries

    Mendez, R. A.; Tokovinin, A.; Horch, E.

    2018-01-01

    We present a speckle survey of Hipparcos visual doubles and spectroscopic binary stars identified by the Geneva-Copenhagen spectroscopic survey with the SOAR 4m telescope + HRCam. These systems represent our best chance to take advantage of Gaia parallaxes for the purpose of stellar mass determinations. Many of these systems already have mass fractions (although generally no spectroscopic orbit - an astrometric orbit will determine individual masses), metallicity information, and Hipparcos distances. They will be used to improve our knowledge of the mass-luminosity relation, particularly for lower-metallicity stars. Our survey will create the first all-sky, volume-limited, speckle archive for the two primary samples, complementing a similar effort that has been recently been completed at the WIYN 3.5-m telescope in the Northern Hemisphere. This extension to the Southern Hemisphere will fill out the picture for a wider metallicity range.

  12. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers

    Wester, D.W.; Sullivan, J.C.

    1980-01-01

    Recently a need for more detailed knowledge of the chemistry of actinide ions in basic media has arisen in connection with deducing their chemistry in the environment. In this work the results of polarographic, cyclic voltammetric, and spectroscopic studies of U(IV), -(V), and -(VI) in carbonate and bicarbonate media are reported. Polarographic studies were in excellent agreement with those reported previously. Cyclic voltammetric scans confirmed the irreversible reduction to U(V) in both solutions, but disproportionation of the U(V) was observed only in the bicarbonate solutions. The oxidation of U(V) in carbonate was followed spectroscopically for the first time. Reduction in bicarbonate produced U(IV), the spectrum of which is now reported and the oxidation of which was also followed spectroscopically for the first time

  13. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  14. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  15. Features of the use of charge-coupled devices in emission spectroscopic analysis

    Livshits, A.M.; Peleznev, A.V.

    1993-01-01

    Multielement radiation receivers based on linear charge-coupled photodiode devices have become more aand more widely used recently in spectroscopic analysis. The main feature of such receivers is their ability to record not only the intensity of the incident light flux, but also its spatial distribution. This article considers the advantages and disadvantages of charge-coupled devices when used in emission spectroscopic analysis. The main methods nd devices employed for this purpose and discussed here can be divided into four types: photographic photometry, visual styloscopy, quantometry, and successive analysis. 4 refs., 1 fig

  16. The convective noise floor for the spectroscopic detection of low mass companions to solar type stars

    Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.

    1986-01-01

    The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.

  17. A closer look at the quadruply lensed quasar PSOJ0147: spectroscopic redshifts and microlensing effect

    Lee, Chien-Hsiu

    2018-04-01

    I present a timely spectroscopic follow-up of the newly discovered, quadruply lensed quasar PSOJ0147 from the Pan-STARRS 1 survey. The newly acquired optical spectra with GMOS onboard the Gemini North Telescope allow us to pin down the redshifts of both the foreground lensing galaxy and the background lensed quasar to be z = 0.572 and 2.341, providing a firm basis for cosmography with future high-cadence photometric monitoring. I also inspect difference spectra from two of the quasar images, revealing the microlensing effect. Long-term spectroscopic follow-ups will shed lights on the structure of the active galactic nucleus and its environment.

  18. Incorporating spectroscopic on-line monitoring as a method of detection for a Lewis cell setup

    Heller, Forrest D.; Casella, Amanda J.; Lumetta, Gregg J.; Nash, Kenneth L.; Sinkov, Sergey I.; Bryan, Samuel A.

    2017-01-01

    A Lewis cell was designed and constructed for investigating solvent extraction systems by spectrophotometrically monitoring both the organic and aqueous phases in real time. This new Lewis cell was tested and shown to perform well compared to other previously reported Lewis cell designs. The advantage of the new design is that the spectroscopic measurement allows determination of not only metal ion concentrations, but also information regarding chemical speciation—information not available with previous Lewis cell designs. For convenience, the new Lewis cell design was dubbed COSMOFLEX (COntinuous Spectroscopic MOnitoring of Forrest’s Liquid-liquid EXtraction cell).

  19. The spectroscopic orbits and physical parameters of GG Carinae

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of

  20. Transport and spectroscopic studies of liquid and polymer electrolytes

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  1. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Višňak Jakub

    2016-01-01

    Full Text Available A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP, electron correlation via (TDDFT/B3LYP (dispersion interaction corrected and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description – more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS and UV-VIS spectroscopic studies (including our original experimental research on this topic. In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site and analytical chemical studies (including natural samples are discussed.

  2. Eta Carinae's 2014.6 spectroscopic event: Clues to the long-term recovery from its Great Eruption

    Mehner, A.; Davidson, K.; Humphreys, R. M.; Walter, F. M.; Baade, D.; de Wit, W. J.; Martin, J.; Ishibashi, K.; Rivinius, T.; Martayan, C.; Ruiz, M. T.; Weis, K.

    2015-06-01

    Aims: Every 5.5 years, η Car's light curve and spectrum change remarkably across all observed wavelength bands. These so-called spectroscopic events are most likely caused by the close approach of a companion. We compare the recent spectroscopic event in mid-2014 to the events in 2003 and 2009 and investigate long-term trends. Methods: Eta Car was observed with HST STIS, VLT UVES, and CTIO 1.5 m CHIRON for a period of more than two years in 2012-2015. Archival observations with these instruments cover three orbital cycles and the events of 2003.5, 2009.1, and 2014.6. The STIS spectra provide high spatial resolution and include epochs during the 2014 event when observations from most ground-based observatories were not feasible. The strategy for UVES observations allows for a multidimensional analysis, because each location in the reflection nebula is correlated with a different stellar latitude. Results: Important spectroscopic diagnostics during η Car's events show significant changes in 2014 compared to previous events. While the timing of the first He ii λ4686 flash was remarkably similar to previous events, the He ii equivalent widths were slightly larger, and the line flux increased by a factor of ~7 compared to 2003. The second He ii peak occurred at about the same phase as in 2009, but was stronger. The He i line flux grew by a factor of ~8 in 2009-2014 compared to 1998-2003. The N ii emission lines also increased in strength. On the other hand, Hα and Fe ii lines show the smallest emission strengths ever observed in η Car. The optical continuum brightened by a factor of ~4 in the past 10-15 years.The polar spectrum shows fewer changes in the broad wind emission lines: the Fe ii emission strength decreased by a factor of ~2 (compared to a factor of ~4 in our direct line of sight). The He ii equivalent widths at FOS4 were larger in 2009 and 2014 than during the 2003 event. Conclusions: The basic character of η Car's spectroscopic events has changed in

  3. Extensive spectroscopic calculations of the 21 Λ-S and 74 Ω states of the AsN molecule including the spin–orbit coupling effect

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2015-01-01

    The potential energy curves (PECs) of 74 Ω states generated from the 21 Λ-S states of AsN molecule are studied for the first time for internuclear separations from 0.1 to 1.0 nm. Of these 21 Λ-S states, the X 1 Σ + , a′ 3 Σ + , 1 5 Σ + , 1 3 Δ, 1 3 Σ − , a 3 Π, 1 5 Π, 2 5 Σ + , 3 5 Σ + , 2 3 Δ, 2 3 Π, 3 3 Π, 3 5 Π, and A 1 Π states are found to be bound, and the 2 3 Σ + , 3 3 Σ + , 1 5 Σ − , 1 5 Δ, 2 5 Δ, 2 5 Π, and 1 7 Σ + states are found to be repulsive ones. The 3 3 Π state possesses the double well. The 2 5 Σ + , 3 5 Σ + , 3 5 Π, and 3 3 Π states possess the shallow well. The a′ 3 Σ + , 1 3 Σ − , 2 3 Π, 1 3 Δ, 1 5 Π, 2 5 Π, 3 5 Π, and 1 7 Σ + states are found to be the inverted ones with the spin–orbit coupling effect taken into account. The PECs are calculated using the CASSCF method, which is followed by the internally contracted MRCI approach with Davidson correction. Core–valence correlation and scalar relativistic corrections are included. The vibrational properties are evaluated for the 2 5 Σ + , 3 5 Σ + , and 3 5 Π states and the second well of the 3 3 Π state. The spin–orbit coupling effect is accounted for by the state interaction method with the Breit–Pauli Hamiltonian. The PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical results. The Franck–Condon factors and radiative lifetimes of the transitions from the a′ 3 Σ + 1 , a 3 Π 1 , A 1 Π 1 , 1 3 Δ 1 and a 3 Π 0− states to the X 1 Σ + 0+ state are calculated for several low vibrational levels, and some necessary discussion is performed. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. - Highlights: • Effect of core–valence correlation and scalar relativistic corrections is included. • PECs are extrapolated to the CBS limit for the 21 Λ-S states and

  4. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  5. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.

    2016-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter,radiation ...

  6. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry

    Oates, T.W.H.; Wormeester, Herbert; Arwin, H.

    2011-01-01

    In this article, spectroscopic ellipsometry studies of plasmon resonances at metal–dielectric interfaces of thin films are reviewed. We show how ellipsometry provides valuable non-invasive amplitude and phase information from which one can determine the effective dielectric functions, and how these

  7. Atomic Data for Fusion: Volume 6, Spectroscopic data for titanium, chromium, and nickel

    Wiese, W.L.; Musgrove, A.

    1989-09-01

    Comprehensive spectroscopic data tables are presented for all ionization stages of chromium. Tables of ionization potentials, spectral lines, energy levels, and transition probabilities are presented. These tables contain data which have been excerpted from general critical compilations prepared under the sponsorship of the National Standard Reference Data System (NSRDS)

  8. Metabolite ratios in 1H MR spectroscopic imaging of the prostate

    Kobus, T.; Wright, A.J.; Weiland, E.; Heerschap, A.; Scheenen, T.W.J.

    2015-01-01

    In (1)H MR spectroscopic imaging ((1)H-MRSI) of the prostate the spatial distribution of the signal levels of the metabolites choline, creatine, polyamines, and citrate are assessed. The ratio of choline (plus spermine as the main polyamine) plus creatine over citrate [(Cho+(Spm+)Cr)/Cit] is derived

  9. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  10. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G.; Padamati, Sandeep K.; Gomez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R.; de Visser, Sam P.

    2015-01-01

    Fe-III-hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their

  11. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes

    Albrecht, Tim; Li, WW; Ulstrup, Jens

    2005-01-01

    On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme...

  12. Raman spectroscopic studies on CeVO4 at high pressures

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  13. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers

    Gomez, Neffer A.; Abonia, Rodrigo, E-mail: rodrigo.abonia@correounivalle.edu.co [Departamento de Quimica, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Cadavid, Hector [Grupo GRALTA, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Vargas, Ines H. [Area de Ingenieria de Distribucion, Empresas Publicas de Medellin (EPM), Medellin (Colombia)

    2011-09-15

    In this work, a complete UV-Vis, IR and (1H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3 vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3 oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no structural changes occurred to the oils by the use. Chemical transformations like catalytic hydrogenation (hardening) and hydrolysis were performed to the FR3 oil sample and the obtained products were analyzed by spectroscopic methods in order to collect further structural information about the FR3 oil. Accelerated aging tests in laboratory were also performed for three FR3 oil samples affording interesting information about the structure of the degradation products. These findings would be valuable to search for a spectroscopy-based technique for monitoring the lifetime and performance of this insulating vegetable oil. (author)

  14. Stability of UV exposed RR-P3BT films by spectroscopic ellipsometry

    Diware, Mangesh S.; Byun, J. S.; Hwang, S. Y.; Kim, T. J.; Kim, Y. D.

    2013-01-01

    Stability of regioregular poly(3-butylthiophene) (RR-P3BT) films under irradiation of ultra-violet (UV) light has been studied by spectroscopic ellipsometry at room temperature. Consistent decrease in dielectric function with UV exposure time showed the degree of degradation of polymer. This work suggests that, protective methods are mandatory to use this kind of material in optical devices.

  15. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  16. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  17. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  18. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  19. Gas Chromatography-Mass Spectroscopic (GC-MS) Analysis of n ...

    1Department of Pharmacognosy and Phytotherapy, 2Department of Pharmaceutics and Pharmaceutical Technology, University of Port Harcourt, Nigeria ... tuber-regium (synonym Pleurotus tuber regium) using gas chromatography-mass spectroscopic (GC- ... Department of Plant Science and Biotechnology,. University of ...

  20. Atomic data for controlled fusion research. Volume IV. Spectroscopic data for iron

    Wiese, W.L. (ed.)

    1985-02-01

    Comprehensive spectroscopic data tables are presented for all ions of Fe. Tables of ionization potentials, wave lengths of spectral lines, atomic energy levels, and transition probabilities are given which were excerpted from general critical compilations. All utilized compilations are less than five years old and include data on electric dipole as well as magnetic dipole transitions.

  1. Atomic data for controlled fusion research. Volume IV. Spectroscopic data for iron

    Wiese, W.L.

    1985-02-01

    Comprehensive spectroscopic data tables are presented for all ions of Fe. Tables of ionization potentials, wave lengths of spectral lines, atomic energy levels, and transition probabilities are given which were excerpted from general critical compilations. All utilized compilations are less than five years old and include data on electric dipole as well as magnetic dipole transitions

  2. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  3. A spectroscopic census in young stellar regions: the σ Orionis cluster

    Hernández, Jesús; Perez, Alice; Hernan, Ramírez [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Briceño, Cesar [Cerro Tololo Interamerican Observatory, Casilla 603, La Serena (Chile); Olguin, Lorenzo [Depto. de Investigación en Física, Universidad de Sonora, Sonora (Mexico); Contreras, Maria E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, BC (Mexico); Allen, Lori [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Espaillat, Catherine, E-mail: hernandj@cida.ve [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-10-10

    We present a spectroscopic survey of the stellar population of the σ Orionis cluster. We have obtained spectral types for 340 stars. Spectroscopic data for spectral typing come from several spectrographs with similar spectroscopic coverage and resolution. More than half of the stars in our sample are members confirmed by the presence of lithium in absorption, strong Hα in emission or weak gravity-sensitive features. In addition, we have obtained high-resolution (R ∼ 34,000) spectra in the Hα region for 169 stars in the region. Radial velocities were calculated from this data set. The radial velocity distribution for members of the cluster is in agreement with previous work. Analysis of the profile of the Hα line and infrared observations reveals two binary systems or fast rotators that mimic the Hα width expected in stars with accretion disks. On the other hand, there are stars with optically thick disks and narrow Hα profiles not expected in stars with accretion disks. This contribution constitutes the largest homogeneous spectroscopic data set of the σ Orionis cluster to date.

  4. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). III. 142 ADDITIONAL O-TYPE SYSTEMS

    Apellániz, J. Maíz; Sota, A.; Alfaro, E. J.; Arias, J. I.; Barbá, R. H.; Walborn, N. R.; Simón-Díaz, S.; Herrero, A.; Negueruela, I.; Marco, A.; Leão, J. R. S.; Gamen, R. C.

    2016-01-01

    This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R  ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.

  5. Determination of the mass-ratio distribution, I: single-lined spectroscopic binary stars

    Hogeveen, S.J.

    1992-01-01

    For single-lined spectroscopic binary stars (sbi), the mass ratio q = Msec=Mprim is calculated from the mass function f(m), which is determined from observations. For statistical investigations of the mass-ratio distribution, the term sin^3 i, that remains in the cubic equation from which q is

  6. Dunham spectroscopic constants for the ground and excited states of H2+

    Murai, Tomokazu

    1975-01-01

    The Dunham spectroscopic constants for 12 of the electronic states of H 2 + are computed theoretically from the adiabatic potentials, which are calculated by the author based on the method presented by Bates et al. in the Born-Oppenheimer approximation. (author)

  7. Characterization of ion-implanted aluminum and iron by spectroscopic ellipsometry

    Brodkin, J.S.; Franzen, W.; Culbertson, R.J.

    1990-01-01

    The change in the optical constants of aluminum alloy and iron samples caused by implantation with nitrogen and chromium ions has been investigated by spectroscopic ellipsometry. The objective is to develop a method for simple, non-destructive characterization of ion-implanted metals. 5 refs., 6 figs

  8. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: reply to comment

    Bosschaart, Nienke; van Leeuwen, Ton; Aalders, Maurice C.G.; Faber, Dirk

    2014-01-01

    We reply to the comment by Kraszewski et al on “Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.” We present additional simulations evaluating the proposed window function. We conclude that our simulations show good qualitative agreement with the results of

  9. Spectroscopic Classifications of AT2017fqf as SN Ia and AT2017fqk as SN II

    Tartaglia, Leonardo; Valenti, Stefano; Bostroem, K. Azalee; Yang, Sheng; Hosseinzadeh, G.

    2017-07-01

    We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane telescope. All observations were made on 2017 July 27 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).

  10. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  11. Central star of NGC 1360: a spectroscopic binary within a planetary nebula

    Mendez, R H; Niemela, V S [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1977-02-01

    CPD - 26/sup 0/389, a hot subdwarf at the centre of the planetary nebula NGC 1360, is shown to be a single-lined spectroscopic binary with a period of about 8 day. The primary (visible) component appears to be less massive than its companion, and the total stellar mass of the system is presumably below one solar mass.

  12. Spectroscopic Surveys with the ELT: A Gigantic Step into the Deep Universe

    Evans, C.; Puech, M.; Hammer, F.; Gallego, J.; Sánchez, A.; García, L.; Iglesias, J.

    2018-03-01

    The Phase A design of MOSAIC, a powerful multi-object spectrograph intended for ESO's Extremely Large Telescope, concluded in late 2017. With the design complete, a three-day workshop was held last October in Toledo to discuss the breakthrough spectroscopic surveys that MOSAIC can deliver across a broad range of contemporary astronomy.

  13. Spectroscopic determination of anthraquinone in kraft pulping liquors using a membrane interface

    X.S. Chai; X.T. Yang; Q.X. Hou; J.Y. Zhu; L.-G. Danielsson

    2003-01-01

    A spectroscopic technique for determining AQ in pulping liquor was developed to effectively separate AQ from dissolved lignin. This technique is based on a flow analysis system with a Nafion membrane interface. The AQ passed through the membrane is converted into its reduced form, AHQ, using sodium hydrosulfite. AHQ has distinguished absorption characteristics in the...

  14. Atomic Data for Fusion: Volume 6, Spectroscopic data for titanium, chromium, and nickel

    Wiese, W.L.; Musgrove, A. (eds.) (National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1989-09-01

    Comprehensive spectroscopic data tables are presented for all ionization stages of chromium. Tables of ionization potentials, spectral lines, energy levels, and transition probabilities are presented. These tables contain data which have been excerpted from general critical compilations prepared under the sponsorship of the National Standard Reference Data System (NSRDS).

  15. Spectroscopic characterization of D-003 obtained from the sugar cane (Saccharum officinarum L.) wax

    Marrero Delange, David; Cora Medina, Miriam; Laguna Granja, Abilio; Gonzalez Canavaciolo Victor L

    2013-01-01

    D-003, an active pharmaceutical ingredient (API) purified from sugar cane (Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported

  16. Spectroscopic link between adsorption site occupation and local surface chemical reactivity

    Baraldi, A.; Lizzit, S.; Comelli, G.

    2004-01-01

    rules, from which adsorption sites are directly determined. Theoretical calculations rationalize the results for transition metal surfaces in terms of the energy shift of the d-band center of mass and this proves that adsorbate-induced SCL shifts provide a spectroscopic measure of local surface...

  17. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). III. 142 ADDITIONAL O-TYPE SYSTEMS

    Apellániz, J. Maíz [Centro de Astrobiología, CSIC-INTA, campus ESAC, camino bajo del castillo s/n, E-28 692 Madrid (Spain); Sota, A.; Alfaro, E. J. [Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18 008 Granada (Spain); Arias, J. I.; Barbá, R. H. [Departamento de Física, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena (Chile); Walborn, N. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21 218 (United States); Simón-Díaz, S.; Herrero, A. [Instituto de Astrofísica de Canarias, E-38 200 La Laguna, Tenerife (Spain); Negueruela, I.; Marco, A. [DFISTS, EPS, Universidad de Alicante, carretera San Vicente del Raspeig s/n, E-03 690 Alicante (Spain); Leão, J. R. S. [Univ. Federal do Rio Grande do Norte—UFRN, Caixa Postal 1524, CEP 59 078-970, Natal—RN (Brazil); Gamen, R. C., E-mail: jmaiz@cab.inta-csic.es [Instituto de Astrofísica de La Plata (CONICET, UNLP), Paseo del Bosque s/n, 1900 La Plata (Argentina)

    2016-05-01

    This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R  ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.

  18. Spectroscopic characterization of Simultaneous determination of Albendazol from the sugar cane (Saccharum officinarum L.) wax

    Marrero Delange, David; Cora Medina, Miriam; Laguna Granja, Abilio; Gonzalez Canavaciolo, Victor L

    2013-01-01

    D-003, an active pharmaceutical ingredient (API) purified from sugar cane (Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported

  19. Measuring FeO variation using astronomical spectroscopic observations

    S. Unterguggenberger

    2017-03-01

    respectively. However, a comparison between the modelled O3 in the upper mesosphere and measurements of O3 made with the SABER satellite instrument suggests that these quantum yields may be a factor of ∼ 2 smaller.

  20. Spectroscopic Observations of the 2011 Draconids Meteor Shower

    Rudawska, R.; Zender, J.; Jenniskens, P.; Vaubaillon, J.; Koten, Pavel; Margonis, A.; Toth, J.; McAuliffe, J.; Koschny, D.

    2014-01-01

    Roč. 112, 1-4 (2014), s. 45-57 ISSN 0167-9295 R&D Projects: GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2014

  1. A Spectroscopic and Photometric Survey of Novae in M31

    Shafter, A.W.; Darnley, M.J.; Hornoch, Kamil; Filippenko, A.V.; Bode, M.F.; Ciardullo, R.; Misselt, K.A.; Hounsell, R.A.; Chornock, R.; Matheson, T.

    2011-01-01

    Roč. 734, č. 1 (2011), 12/1-12/28 ISSN 0004-637X Institutional research plan: CEZ:AV0Z10030501 Keywords : individual galaxy (M31) * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  2. Spectroscopic Identification of Cool White Dwarfs in the Solar Neighborhood

    Kawka, Adela; Vennes, S.

    2006-01-01

    Roč. 643, č. 1 (2006), s. 402-415 ISSN 0004-637X R&D Projects: GA ČR GP205/05/P186 Institutional research plan: CEZ:AV0Z10030501 Keywords : white dwarfs * solar neighborhood * atmospheres Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.119, year: 2006

  3. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  4. The first spectroscopically confirmed Mira star in M33

    Barsukova, E.A.; Goranskij, V.P.; Hornoch, Kamil; Fabrika, S.; Pietsch, W.; Sholukhova, O.; Valeev, A.F.

    2011-01-01

    Roč. 413, č. 3 (2011), s. 1797-1802 ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : AGB and post AGB * variables stars * general galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  5. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    Shimonishi, Takashi; Onaka, Takashi; Kato, Daisuke; Sakon, Itsuki; Ita, Yoshifusa; Kawamura, Akiko; Kaneda, Hidehiro

    2013-01-01

    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg 2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near

  6. THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS

    Pinsonneault, Marc H.; Epstein, Courtney; Johnson, Jennifer A. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Elsworth, Yvonne; Chaplin, William J. [University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT (United Kingdom); Hekker, Saskia; Silva Aguirre, Victor; Stello, Dennis [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mészáros, Sz. [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States); García, Rafael A.; Beck, Paul [Laboratoire AIM, CEA/DSM-CNRS—Université Denis Diderot-IRFU/SAp, F-91191 Gif-sur-Yvette Cedex (France); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Mathur, Savita [Space Science Institute, 4750 Walnut street, Suite 205, Boulder, CO 80301 (United States); García Pérez, Ana [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, 32 Fowlkes Road, TX 79734-3005 (United States); Allende Prieto, Carlos [Instituto de Astrofsica de Canarias (IAC), C/Va Lactea, s/n, E-38200 La Laguna, Tenerife (Spain); An, Deokkeun [Department of Science Education, Ewha Womans University, Seoul (Korea, Republic of); Beers, Timothy C., E-mail: pinsonneault.1@osu.edu [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); and others

    2015-01-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T {sub eff}, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T {sub eff} and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T {sub eff} and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  7. Comb mode filtering silver mirror cavity for spectroscopic distance measurement

    Šmíd, Radek; Hänsel, A.; Pravdová, Lenka; Sobota, Jaroslav; Číp, Ondřej; Bhattacharya, N.

    2016-01-01

    Roč. 87, č. 9 (2016), 093107:1-8 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GPP102/12/P962; GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical frequency comb * femtosecond laser * long * air Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.515, year: 2016

  8. Infrared absorption and Raman scattering spectroscopic studies of condensed ions

    Dao, N.Q.; Knidiri, M.

    1975-01-01

    Infrared and Raman spectra of the complex K 5 (UO 2 ) 2 F 9 were recorded in the region 4000 to 80 cm -1 . Factor group analysis was used to classify the internal vibrations of the binuclear ion (UO 2 ) 2 F 9 5- . Infrared and Raman spectra were assigned and splitting of the internal modes of the (UO 2 ) 2 F 9 5- anion interpreted. (author)

  9. Spectroscopic Characterization of a Steam Arc Cutting Torch

    Sember, Viktor; Mašláni, Alan; Křenek, Petr; Heinrich, M.; Nimmervoll, R.; Pauser, H.; Hrabovský, Milan

    2011-01-01

    Roč. 31, č. 5 (2011), s. 755-770 ISSN 0272-4324 R&D Projects: GA ČR GAP205/11/2070 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma cutting * Optical emission spectroscopy * Steam arc * Supersonic plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2011 http://www.springerlink.com/content/m4185257378320u2/fulltext.pdf

  10. Spectroscopic determination of temperatures in plasmas generated by arc torches

    Mašláni, Alan; Sember, Viktor; Hrabovský, Milan

    2017-01-01

    Roč. 133, July (2017), s. 14-20 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GA15-19444S Institutional support: RVO:61389021 Keywords : Arc plasma torch * Optical emission spectroscopy * Temperature * Boltzmann plot Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.241, year: 2016

  11. Structural and spectroscopic investigation of lanthanum-substituted ...

    Administrator

    and one Y atom form two alternated equilateral triangles at level 1/4 and 3/4 centred on ..... Carpena et al observed that the localization of Nd. 3+ ions in the cationic sites depended ... Atomic coordinates, occupancy factors and thermal parameters after Rietveld refinement of Sr10–xLax(PO4)6–x. (SiO4)xO samples. Wyckoff.

  12. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  13. Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed

    S. M. Ball

    2010-07-01

    Full Text Available Time profiles of molecular iodine emissions from seven species of seaweed have been measured at high time resolution (7.5 s by direct spectroscopic quantification of the gas phase I2 using broadband cavity enhanced absorption spectroscopy. Substantial differences were found between species, both in the amounts of I2 emitted when the plants were exposed to air and in the shapes of their emission time profiles. Two species of kelp, Laminaria digitata and Laminaria hyperborea, were found to be the most potent emitters, producing an intense burst of I2 when first exposed to air. I2 was also observed from Saccharina latissima and Ascophyllum nodosum but in lower amounts and with broader time profiles. I2 mixing ratios from two Fucus species and Dictyopteris membranacea were at or below the detection limit of the present instrument (25 pptv. A further set of experiments investigated the time dependence of I2 emissions and aerosol particle formation when fragments of L. digitata were exposed to desiccation in air, to ozone and to oligoguluronate stress factors. Particle formation occurred in all L. digitata stress experiments where ozone and light were present, subject to the I2 mixing ratios being above certain threshold amounts. Moreover, the particle number concentrations closely tracked variations in the I2 mixing ratios, confirming the results of previous studies that the condensable particle-forming gases derive from the photochemical oxidation of the plant's I2 emissions. This work also supports the theory that particle nucleation in the coastal atmosphere occurs in "hot-spot" regions of locally elevated concentrations of condensable gases: the greatest atmospheric concentrations of I2 and hence of condensable iodine oxides are likely to be above plants of the most efficiently

  14. IN-SYNC. VII. Evidence for a Decreasing Spectroscopic Binary Fraction (from 1 to 100 Myr) within the IN-SYNC Sample

    Jaehnig, Karl; Bird, Jonathan C.; Stassun, Keivan G.; Da Rio, Nicola; Tan, Jonathan C.; Cotaar, Michiel; Somers, Garrett

    2017-12-01

    We study the occurrence of spectroscopic binaries in young star-forming regions using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS-III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC 2264, NGC 1333, IC 348, and the Pleiades have been carried out, yielding H-band spectra with a nominal resolution of R = 22,500 for sources with H factor of 3-4, from the age of our pre-main-sequence (PMS) sample to the Pleiades age . The significance of this decline is weakened if spot-induced radial-velocity jitter is strong in the sample, and is only marginally significant when comparing any one of the PMS clusters against the Pleiades. However, the same decline in both sense and magnitude is found for each of the five PMS clusters, and the decline reaches a statistical significance of greater than 95% confidence when considering the PMS clusters jointly. Our results suggest that dynamical processes disrupt the widest spectroscopic binaries ({P}{orb}≈ {10}3{--}{10}4 days) as clusters age, indicating that this occurs early in the stars’ evolution, while they still reside within their nascent clusters.

  15. Correlation between chemical, crystallographic and spectroscopic parameters in graphite thermometry applied to a contact aureole of La Soledad monzogranite (Venezuelan Andes

    K. Reategui

    2017-11-01

    Full Text Available Graphite samples from a metamorphic contact aureole between phyllites of the Cerro Azul Association (Palaeozoic and La Soledad Monzogranite, in the Venezuelan Andes, were studied by chemical (% inorganic carbon and isotopic distribution, crystallographic (DRX and spectroscopic (Raman techniques in order to assess changes in the graphite in the vicinity of the contact, the correlation between the different parameters, and the determination of the higher temperature reached by the host rock during igneous intrusion. The δ13C reached less negative values near the monzogranite, caused by devolatilization; the graphite present just in contact with the pluton experienced retrograde recrystallization, which causes a shift towards more negative values. The calculated degree of graphitization intervals (GD = 53–80 corresponds to a well-structured mineral with ordered packaging. The peak metamorphic temperature at the contact was calculated from crystallographic (XRD and spectroscopic (Raman parameters with great agreement in both techniques, registering the 528 ± 16 and 526 ± 20 ºC respectively. The metapelitic rocks reached the Cordierite Zone (cordierite + biotite + muscovite in the contact aureole where the graphite is well ordered and in hexagonal microtexture. Factors such as fluid activity and the subsequent retrograde recrystallization have an effect on isotopic redistributions after the intrusive event, as well as on the crystallinity change rate with the temperature, avoiding a clear correlation between the isotopic variations of 13C in graphite and the temperature.

  16. Testing the white dwarf mass-radius relation and comparing optical and far-UV spectroscopic results with Gaia DR2, HST and FUSE

    Joyce, S. R. G.; Barstow, M. A.; Casewell, S. L.; Burleigh, M. R.; Holberg, J. B.; Bond, H. E.

    2018-05-01

    Observational tests of the white dwarf mass-radius relationship have always been limited by the uncertainty in the available distance measurements. Most studies have focused on Balmer line spectroscopy because these spectra can be obtained from ground based observatories, while the Lyman lines are only accessible to space based UV telescopes. We present results using parallax data from Gaia DR2 combined with space based spectroscopy from HST and FUSE covering the Balmer and Lyman lines. We find that our sample supports the theoretical relation, although there is at least one star which is shown to be inconsistent. Comparison of results between Balmer and Lyman line spectra shows they are in agreement when the latest broadening tables are used. We also assess the factors which contribute to the error in the mass-radius calculations and confirm the findings of other studies which show that the spread in results for targets where multiple spectra are available is larger than the statistical error. The uncertainty in the spectroscopically derived log g parameter is now the main source of error rather than the parallax. Finally, we present new results for the radius and spectroscopic mass of Sirius B which agree with the dynamical mass and mass-radius relation within 1σ.

  17. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments

    Ahmad, Mahtab [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451 (Saudi Arabia); Ok, Yong Sik; Rajapaksha, Anushka Upamali; Lim, Jung Eun [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Kim, Byung-Yong; Ahn, Jae-Hyung [Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851 (Korea, Republic of); Lee, Young Han [Division of Plant Environment Research, Gyeongsangnam-do Agricultural Research and Extension Service, Jinju 660-360 (Korea, Republic of); Al-Wabel, Mohammad I [Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451 (Saudi Arabia); Lee, Sung-Eun, E-mail: selpest@knu.ac.kr [School of Applied Biosciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sang Soo, E-mail: sslee97@kangwon.ac.kr [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2016-01-15

    Highlights: • Biochar immobilizes Pb and Cu in a contaminated shooting range soil. • Soybean stover-biochar is an efficient metal immobilizer than pine needle-biochar. • Biochar produced at 700 °C showed significant potential of sequestering C in soil. • Biochar showed less impact on the bacterial community than feedstock biomass. - Abstract: Biochar (BC) could be a potential candidate for the remediation of metal contaminated soil. Mechanistic understandings are needed for the appropriate selection of BC and investigating molecular microbial ecological interactions. The soybean stover-derived BCs were more effective in immobilizing Pb (88%) and Cu (87%) than the pine needle-derived BCs in a contaminated shooting range soil. The sequential chemical extractions indicated that BCs stimulated the geochemical transformation of metal species. Spectroscopic investigations using scanning electron microscopic elemental dot mapping and extended X-ray absorption fine structure spectroscopic measurements showed that Pb in the BCs amended soils was immobilized by the formation of stable chloropyromorphite. Soil organic C and microbial activity were also enhanced by BC. The non-labile C fraction in the soil amended with BCs produced at 700 °C was increased. Biochars showed less impact on the bacterial community than feedstock biomass as promulgated by the pyrosequencing of 16S rRNA gene. The feedstock type (namely soybean stover and pine needles) was the main factor influencing the BCs efficacy on metals’ (im) mobilization and bacterial health in soils.

  18. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments

    Ahmad, Mahtab; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Lim, Jung Eun; Kim, Byung-Yong; Ahn, Jae-Hyung; Lee, Young Han; Al-Wabel, Mohammad I; Lee, Sung-Eun; Lee, Sang Soo

    2016-01-01

    Highlights: • Biochar immobilizes Pb and Cu in a contaminated shooting range soil. • Soybean stover-biochar is an efficient metal immobilizer than pine needle-biochar. • Biochar produced at 700 °C showed significant potential of sequestering C in soil. • Biochar showed less impact on the bacterial community than feedstock biomass. - Abstract: Biochar (BC) could be a potential candidate for the remediation of metal contaminated soil. Mechanistic understandings are needed for the appropriate selection of BC and investigating molecular microbial ecological interactions. The soybean stover-derived BCs were more effective in immobilizing Pb (88%) and Cu (87%) than the pine needle-derived BCs in a contaminated shooting range soil. The sequential chemical extractions indicated that BCs stimulated the geochemical transformation of metal species. Spectroscopic investigations using scanning electron microscopic elemental dot mapping and extended X-ray absorption fine structure spectroscopic measurements showed that Pb in the BCs amended soils was immobilized by the formation of stable chloropyromorphite. Soil organic C and microbial activity were also enhanced by BC. The non-labile C fraction in the soil amended with BCs produced at 700 °C was increased. Biochars showed less impact on the bacterial community than feedstock biomass as promulgated by the pyrosequencing of 16S rRNA gene. The feedstock type (namely soybean stover and pine needles) was the main factor influencing the BCs efficacy on metals’ (im) mobilization and bacterial health in soils.

  19. Exploring the Interactions of the Dietary Plant Flavonoids Fisetin and Naringenin with G-Quadruplex and Duplex DNA, Showing Contrasting Binding Behavior: Spectroscopic and Molecular Modeling Approaches.

    Bhattacharjee, Snehasish; Chakraborty, Sandipan; Sengupta, Pradeep K; Bhowmik, Sudipta

    2016-09-01

    Guanine-rich sequences have the propensity to fold into a four-stranded DNA structure known as a G-quadruplex (G4). G4 forming sequences are abundant in the promoter region of several oncogenes and become a key target for anticancer drug binding. Here we have studied the interactions of two structurally similar dietary plant flavonoids fisetin and naringenin with G4 as well as double stranded (duplex) DNA by using different spectroscopic and modeling techniques. Our study demonstrates the differential binding ability of the two flavonoids with G4 and duplex DNA. Fisetin more strongly interacts with parallel G4 structure than duplex DNA, whereas naringenin shows stronger binding affinity to duplex rather than G4 DNA. Molecular docking results also corroborate our spectroscopic results, and it was found that both of the ligands are stacked externally in the G4 DNA structure. C-ring planarity of the flavonoid structure appears to be a crucial factor for preferential G4 DNA recognition of flavonoids. The goal of this study is to explore the critical effects of small differences in the structure of closely similar chemical classes of such small molecules (flavonoids) which lead to the contrasting binding properties with the two different forms of DNA. The resulting insights may be expected to facilitate the designing of the highly selective G4 DNA binders based on flavonoid scaffolds.

  20. System Ba/sub 2/Znsub(1-x)Cusub(x)UO/sub 6/ - a vibrational spectroscopic proof of the Jahn Teller effect

    Kemmler-Sack, S; Rother, H J [Tuebingen Univ. (Germany, F.R.). Inst. fuer Chemie

    1979-01-01

    The ordered perovskites Ba/sub 2/ZnUO/sub 6/ (cubic, space group Fm3m) and Ba/sub 2/CuUO/sub 6/ (tetragonal, space group I/sub 4//mmm) form solid solutions. For small Cu content the lattice symmetry is cubic, with x>=0.25 an increasing tetragonal distortion (c/a ..sqrt..2 > 1) is observed. From the vibrational spectra and in accordance with the factor group analysis the symmetry of the UO/sub 6/ octahedra is for small Cu content Osub(h) and on the Cu-rich side Dsub(4h). In the region of the lattice vibrations (T/sub 2/ field) the lifting of the degeneracy - due to the Jahn Teller effect of Cu/sup 2 +/ - leads to a band separation, which decreases with sinking copper content. Therefore the Jahn Teller effect is easily noticeable with vibrational spectroscopic methods. In the corresponding series with Wsup(VI) the vibrational spectroscopic investigations lead qualitatively to the same results as in the Usup(VI) system. As further examples the stacking polytypes Ba/sub 2/ZnTeO/sub 6/ and Ba/sub 2/CuTeO/sub 6/ are considered. The vibrational spectra show, that the Jahn Teller effect in this lattice, which is strengthened by partial face-sharing of octahedra, is less pronounced than in the perovskites in which only corner-sharing is present.