WorldWideScience

Sample records for spectrometry environment biology

  1. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms

    International Nuclear Information System (INIS)

    1999-01-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  2. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 7 papers are interesting for the ETDE database and are analyzed separately. (O.M.)

  3. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  4. Subattomole sensitivity in biological accelerator mass spectrometry.

    Science.gov (United States)

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  5. Biology, Genetics, and Environment

    Science.gov (United States)

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  6. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  7. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Lebedev, Albert T.

    2005-01-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10 -21 ), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents

  8. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  9. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  10. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  11. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  12. Micro/nanofabricated environments for synthetic biology.

    Science.gov (United States)

    Collier, C Patrick; Simpson, Michael L

    2011-08-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  14. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, Adam D. [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  15. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  16. Applications of mass spectrometry in the trace element analysis of biological materials

    International Nuclear Information System (INIS)

    Moens, L.

    1997-01-01

    The importance of mass spectrometry for the analysis of biological material is illustrated by reviewing the different mass spectrometric methods applied and describing some typical applications published recently. Though atomic absorption spectrometry is used in the majority of analyses of biological material, most mass spectrometric methods have been used to some extent for trace element determination in biomedical research. The relative importance of the different methods is estimated by reviewing recent research papers. It is striking that especially inductively coupled plasma mass spectrometry is increasingly being applied, partly because the method can be used on-line after chromatographic separation, in speciation studies. Mass spectrometric methods prove to offer unique possibilities in stable isotope tracer studies and for this purpose also experimentally demanding methods such as thermal ionization mass spectrometry and accelerator mass spectrometry are frequently used. (orig.)

  17. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Science.gov (United States)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.

    2017-01-01

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728

  18. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin M.

    2017-06-12

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC), supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.

  19. [Mass spectrometry technology and its application in analysis of biological samples].

    Science.gov (United States)

    Zhao, Long-Shan; Li, Qing; Guo, Chao-Wei; Chen, Xiao-Hui; Bi, Kai-Shun

    2012-02-01

    With the excellent merits of wide analytical range, high sensitivity, small sample size, fast analysis speed, good repeatability, simple operation, low mobile phase consumption, as well as its capability of simultaneous isolation and identification, etc, mass spectrometry techniques have become widely used in the area of environmental science, energy chemical industry, biological medicine, and so on. This article reviews the application of mass spectrometry technology in biological sample analysis in the latest three years with the focus on the new applications in pharmacokinetics and bioequivalence, toxicokinetics, pharmacokinetic-pharmacodynamic, population pharmacokinetics, identification and fragmentation pathways of drugs and their metabolites and metabonomics to provide references for further study of biological sample analysis.

  20. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  1. Gamma ray spectrometry: applications in uranium prospecting and environment

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1999-01-01

    The experience in the use of gamma spectrometry for uranium prospecting and for the determination of natural radiation background is described. The basic principles of the techniques are also given. (author)

  2. [Confirming Indicators of Qualitative Results by Chromatography-mass Spectrometry in Biological Samples].

    Science.gov (United States)

    Liu, S D; Zhang, D M; Zhang, W; Zhang, W F

    2017-04-01

    Because of the exist of complex matrix, the confirming indicators of qualitative results for toxic substances in biological samples by chromatography-mass spectrometry are different from that in non-biological samples. Even in biological samples, the confirming indicators are different in various application areas. This paper reviews the similarities and differences of confirming indicators for the analyte in biological samples by chromatography-mass spectrometry in the field of forensic toxicological analysis and other application areas. These confirming indicators include retention time (RT), relative retention time (RRT), signal to noise (S/N), characteristic ions, relative abundance of characteristic ions, parent ion-daughter ion pair and abundance ratio of ion pair, etc. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  3. An introduction to the technique of combined ion mobility spectrometry-mass spectrometry for the analysis of complex biological samples

    International Nuclear Information System (INIS)

    McDowall, Mark A.; Bateman, Robert H.; Bajic, Steve; Giles, Kevin; Langridge, Jim; McKenna, Therese; Pringle, Steven D.; Wildgoose, Jason L.

    2008-01-01

    Full Text: Ultra Performance Liquid Chromatography (UPLC) offers several advantages compared with conventional High Performance Liquid Chromatography (HPLC) as an 'inlet system' for mass spectrometry. UPLC provides improved chromatographic resolution, increased sensitivity and reduced analysis time. This is achieved through the use of sub 2μm particles (stationary phase) combined with high-pressure solvent delivery (up to 15,000 psi). When coupled with orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS), UPLC presents a means to achieve high sample throughput with reduced spectral overlap, increased sensitivity, and exact mass measurement capabilities with high mass spectral resolution (Ca 20,000 FWHM). Dispersive ion mobility spectrometry (IMS) implemented within a traveling-wave ion guide provides an orthogonal separation strategy for ions in the gas phase that can resolve isobaric ions formed by either Electrospray of MALDI ionization typically in Ca 20 mille seconds. All three techniques have the potential to be combined on-line (e.g. UPLC-IMS-MS/MS) in real time to maximize peak capacity and resolving power for the analysis of complex biological mixtures including; intact proteins, modified peptides and endogenous/exogenous metabolites

  4. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.

    Science.gov (United States)

    Aretz, Ina; Meierhofer, David

    2016-04-27

    Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  5. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology

    Directory of Open Access Journals (Sweden)

    Ina Aretz

    2016-04-01

    Full Text Available Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  6. Role of accelerator mass spectrometry in biological dosimetry

    International Nuclear Information System (INIS)

    Felton, J.S.; Turteltaub, K.W.; Frantz, C.; Vogel, J.S.; Gledhill, B.L.

    1992-01-01

    Understanding risks from exposures to carcinogens and other chemicals depends upon measurement of their dose to target tissues and their reactivity with critical macromolecules. The authors have used AMS detection of radio-isotopes to assess doses and reactivities at low, environmentally relevant doses. Several biomedical investigations show the effectiveness of quantification of biologically important events at extremely high sensitivity with AMS. Specifically, they have measured the addition of environmental carcinogens such as 2-amino-3,8-dimethylimidazo[4,5-f]-quinoaxaline (MelQx), a chemical found in cooked food, to DNA at concentrations relevant to human exposure. Other low level detection problems in biology, such as immunoassay assessment of small environmental chemicals, is being developed with attomole sensitivity. AMS also aids the assessment of genotoxic risks from chemicals by quantifying the binding of labeled chemicals to DNA. The very toxic and potent carcinogen, tetrachlorodibenzo-p-dioxin (TCDD) was assessed for DNA binding, but no detectable radiocarbon-labeled TCDD was found associated with mouse liver DNA at less than systematically toxic levels. The data indicate that a mutation mechanism does not mediate TCDD carcinogenesis

  7. Mass spectrometry based proteomics in cell biology and signaling research

    International Nuclear Information System (INIS)

    Mann, M.; Andersen, J.; Ishihama, Y.; Rappsilber, J.; Ong, S.; Foster, L.; Blagoev, B.; Kratchmarova, I.; Lasonder, E.

    2002-01-01

    novel signaling molecules and to determine sites of phosphorylation. Proteomics can also be used to help in the annotation of genomes. Stage specific preparations of the human Malaria parasite Plasmodium falciparum were analyzed by liquid chromatography coupled to tandem mass spectrometry and resulted in the identification of more than 1300 proteins. Interestingly, a proportion of the sequenced peptides mapped to the genome but not to the set of predicted proteins of the parasite

  8. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  9. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  10. Arsenic in the environment: Biology and chemistry

    Science.gov (United States)

    Bhattacharya, Prosun; Welch, Alan H.; Stollenwerk, Kenneth G.; McLaughlin , Mike J.; Bundschuh, Jochen; Panaullah, G.

    2007-01-01

    Arsenic (As) distribution and toxicology in the environment is a serious issue, with millions of individuals worldwide being affected by As toxicosis. Sources of As contamination are both natural and anthropogenic and the scale of contamination ranges from local to regional. There are many areas of research that are being actively pursued to address the As contamination problem. These include new methods of screening for As in the field, determining the epidemiology of As in humans, and identifying the risk of As uptake in agriculture. Remediation of As-affected water supplies is important and research includes assessing natural remediation potential as well as phytoremediation. Another area of active research is on the microbially mediated biogeochemical interactions of As in the environment.In 2005, a conference was convened to bring together scientists involved in many of the different areas of As research. In this paper, we present a synthesis of the As issues in the light of long-standing research and with regards to the new findings presented at this conference. This contribution provides a backdrop to the issues raised at the conference together with an overview of contemporary and historical issues of As contamination and health impacts.

  11. Recent trends in total reflection X-ray fluorescence spectrometry for biological applications

    International Nuclear Information System (INIS)

    Szoboszlai, Norbert; Polgari, Zsofia; Mihucz, Victor G.; Zaray, Gyula

    2009-01-01

    This review is focused on the application of total reflection X-ray fluorescence (TXRF) spectrometry in the field of biological research. In the last decade, most papers were published by authors who applied laboratory-scale TXRF equipments. The application of synchrotron radiation as excitation source (SR-TXRF) shows a slowly increasing tendency. In the cited papers the micro-, trace and multielement capability of these TXRF techniques was demonstrated in the clinical and medical laboratory practice, as well as in various plant physiological studies. For speciation of elements in biological matrices, the TXRF was used as element specific detector following an off-line separation step (e.g., thin layer chromatography, high performance liquid chromatography), however, these off-line methods are not competitive with the on-line coupled HPLC-inductively coupled plasma mass spectrometry

  12. A concept for biological valuation in the marine environment

    Directory of Open Access Journals (Sweden)

    Eric Willem Maria Stienen

    2007-03-01

    Full Text Available In order to develop management strategies for sustainable useand conservation in the marine environment, reliable and meaningful,but integrated ecological information is needed. Biological valuationmaps that compile and summarize all available biological andecological information for a study area, and that allocate anoverall biological value to subzones, can be used as baselinemaps for future spatial planning at sea. This paper providesa concept for marine biological valuation which is based on aliterature review of existing valuation criteria and the consensusreached by a discussion group of experts.

  13. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  14. Peroxy Radicals Observed in a Forested Environment with Time of Flight Mass Spectrometry

    Science.gov (United States)

    Cantrell, C. A.; Mauldin, L.; Nowak, J. B.

    2017-12-01

    Observations of peroxy radicals were made using time-of-flight chemical ionization mass spectrometry (ToF-CIMS) during the PROPHET-AMOS (Program for Research on Oxidants, Photochemistry, Emissions and Transport - Atmospheric Measurements of Oxidants in Summer) campaign in summer 2016 at the University of Michigan Biological Station (UMBS) in the northern lower peninsula of Michigan. The environment is one of high isoprene productivity and generally low NOx, depending on the origin of air masses that are sampled, and has been the subject of several comprehensive atmospheric observational studies. The ToF-CIMS was configured to measure OH, HO2+RO2, and extremely oxygenated volatile organic compounds (ELVOCs) in a cycle of about 5 minutes for each. This presentation examines the time- and chemical coordinate-dependent behavior of the peroxy radicals, and compares the observations with models that are constrained by observations of the controlling variables. The results are used to estimate factors such as the photochemical production rate of ozone and other atmospheric oxidation parameters for this remote forest site.

  15. Neutron spectrometry and dosimetry in the environment and at workplaces

    International Nuclear Information System (INIS)

    Alevra, A.V.; Klein, H.; Knauf, K.; Wittstock, J.; Wolber, G.

    1998-01-01

    Results obtained in diverse environments (including workplaces) using both spectrometric and dosimetric instrumentation were compared. The following topics are included: PTB Bonner sphere spectrometers; natural cosmic ray-induced neutron background; neutron fields at the Dukovany nuclear power plant (Czech Republic); neutron fields at the isochronous cyclotron of the German Cancer Research center in Heidelberg; and accuracy of the integral results obtained with Bonner spheres. (P.A.)

  16. Biota and biological principles of the aquatic environment

    International Nuclear Information System (INIS)

    Greeson, P.E.

    1982-01-01

    The first of several compilations of briefing papers on water quality prepared by the U.S. Geological Survey is presented. Each briefing paper is prepared in a simple, nontechnical, easy to understand manner. This U.S. Geological Survey Circular contains papers on selected biota and biological principles of the aquatic environment. Briefing papers are included on Why biology in water quality studies , Stream biology, Phytoplankton, Periphyton, Drift organisms in streams, Family Chironomidae (Diptera), Influences of water temperature on aquatic biota, and Stream channelization: Effects on stream fauna

  17. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    International Nuclear Information System (INIS)

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-01-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described

  18. Ultra-Sensitive Elemental Analysis Using Plasmas 5.Speciation of Arsenic Compounds in Biological Samples by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry System

    Science.gov (United States)

    Kaise, Toshikazu

    Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.

  19. Application of secondary ion mass spectrometry (SIMS) to biological sample analysis

    International Nuclear Information System (INIS)

    Tamura, Hifumi

    1990-01-01

    Some major issues and problems related with the analysis of biological samples are discussed, focusing on demonstrated and possible solutions and the application of secondary ion mass spectrometry (SIMS) to investigation of the composition of biological samples. The effective use of secondary electrons in combination with negative ions is most practical for the analysis of biological samples. Regardless of whether positive or negative ions are used, the electric potential at the surface of a sample stays around a constant value because of the absense of the accumulation of electric charges at the surface, leading to almost complete avoidance of the charging of the biological sample. A soft tissue sample can suffer damage to the tissue or migration of atoms in removing water from the sample. Some processes including fixation and freeze drying are available to prevent this. The application of SIMS to biological analysis is still in the basic research stage and further studies will be required to develop practical methods. Possible areas of its application include medicine, pathology, toxicology, pharmacology, plant physiology and other areas related with marine life and marine contamination. (N.K.)

  20. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  1. Comprehension of complex biological processes by analytical methods: how far can we go using mass spectrometry?

    International Nuclear Information System (INIS)

    Gerner, C.

    2013-01-01

    Comprehensive understanding of complex biological processes is the basis for many biomedical issues of great relevance for modern society including risk assessment, drug development, quality control of industrial products and many more. Screening methods provide means for investigating biological samples without research hypothesis. However, the first boom of analytical screening efforts has passed and we again need to ask whether and how to apply screening methods. Mass spectrometry is a modern tool with unrivalled analytical capacities. This applies to all relevant characteristics of analytical methods such as specificity, sensitivity, accuracy, multiplicity and diversity of applications. Indeed, mass spectrometry qualifies to deal with complexity. Chronic inflammation is a common feature of almost all relevant diseases challenging our modern society; these diseases are apparently highly diverse and include arteriosclerosis, cancer, back pain, neurodegenerative diseases, depression and other. The complexity of mechanisms regulating chronic inflammation is the reason for the practical challenge to deal with it. The presentation shall give an overview of capabilities and limitations of the application of this analytical tool to solve critical questions with great relevance for our society. (author)

  2. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  3. In situ measurements in an immerged environment of ambient gamma radiation activity and associated spectrometry

    International Nuclear Information System (INIS)

    Metivier, J.

    1993-01-01

    A set of site measurement devices composed of an ictometer, an air ionization chamber and a gamma ray spectrometry chain was modified so that the type of measurements could be carried out in an immerged environment with the equipment lying on the sediments of the prospected area. The different detectors can be controlled-and the data stored in a portable and autonomous 'PC' microcomputer from a light craft

  4. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    Science.gov (United States)

    Erny, G L; Cifuentes, A

    2006-02-24

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.

  5. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  6. Matrix-assisted laser desorption fourier transform mass spectrometry for biological compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.; Buchanan, M.

    1990-01-01

    The recent development of matrix-assisted UV laser desorption (LD) mass spectrometry has made possible the ionization and detection of extremely large molecules (with molecular weights exceeding 100,000 Daltons). This technique has generated enormous interest in the biological community for the direct examination of large peptides and oligonucleotides. Although this matrix-assisted ionization method has been developed and used almost exclusively with time-of-flight (TOF) mass spectrometers, research is currently in progress to demonstrate this technique with trapped ion mass spectrometers, such as Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The potential capabilities of FTMS for wide mass range, high resolution measurement, and ion trapping experiments suggest that this instrumental technique should be useful for the detailed structural characterization of large ions generated by the matrix-assisted technique. We have recently demonstrated that matrix-assisted ultraviolet laser desorption can be successfully used with FTMS for the ionization of small peptides. The objective of this report is to summarize the application and current limitations of matrix-assisted laser desorption FTMS for the characterization of peptides and oligonucleotides at the isomeric level. 4 refs., 3 figs., 2 tabs.

  7. Isotope analysis of hydrogen and oxygen by infrared spectrometry and activation. Applications to biological media

    International Nuclear Information System (INIS)

    Botter, F.; Darras, R.; Engelmann, C.; Scaringella, M.; Basset, G.; Moreau, F.; Marsac, J.

    1977-01-01

    Two methods for the analysis of biological fluids are presented: the γ activation of blood samples in order to determine their 18 O content, and the infrared spectrometry, applied to the circulating blood, in order to evaluate the heavy water concentration. Measurements of pulmonary extravascular, water performed in rat and man, are presented. Favorable conditions for clinical research in pulmonary diseases are obtained by combining the use of a dye (as intravascular indicator) and heavy water (as a diffusible indicator) with their continuous measurement). The method has several major advantages: it is simple, inexpensive safe for the patient, accurate and allows data acquisition and data processing to be immediately performed. Other medical applications are considered [fr

  8. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    Science.gov (United States)

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  9. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  10. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kiss, A.; Leach, F.E.; Robinson, E.W.; Paša-Tolić, L.; Heeren, R.M.A.

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically

  11. Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples

    NARCIS (Netherlands)

    Broersen, A.; Liere, van R.; Altelaar, A.F.M.; Heeren, R.M.A.; McDonnell, L.A.

    2008-01-01

    High-resolution imaging mass spectrometry of large biological samples is the goal of several research groups. In mosaic imaging, the most common method, the large sample is divided into a mosaic of small areas that are then analyzed with high resolution. Here we present an automated alignment

  12. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  13. Challenges and Opportunities for Biological Mass Spectrometry Core Facilities in the Developing World.

    Science.gov (United States)

    Bell, Liam; Calder, Bridget; Hiller, Reinhard; Klein, Ashwil; Soares, Nelson C; Stoychev, Stoyan H; Vorster, Barend C; Tabb, David L

    2018-04-01

    The developing world is seeing rapid growth in the availability of biological mass spectrometry (MS), particularly through core facilities. As proteomics and metabolomics becomes locally feasible for investigators in these nations, application areas associated with high burden in these nations, such as infectious disease, will see greatly increased research output. This article evaluates the rapid growth of MS in South Africa (currently approaching 20 laboratories) as a model for establishing MS core facilities in other nations of the developing world. Facilities should emphasize new services rather than new instruments. The reduction of the delays associated with reagent and other supply acquisition would benefit both facilities and the users who make use of their services. Instrument maintenance and repair, often mediated by an in-country business for an international vendor, is also likely to operate on a slower schedule than in the wealthiest nations. A key challenge to facilities in the developing world is educating potential facility users in how best to design experiments for proteomics and metabolomics, what reagents are most likely to introduce problematic artifacts, and how to interpret results from the facility. Here, we summarize the experience of 6 different institutions to raise the level of biological MS available to researchers in South Africa.

  14. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    Science.gov (United States)

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Patterson, K.Y.; Veillon, Claude

    1992-01-01

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g -1 . The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  16. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  17. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  18. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  19. Adsorption of biometals to monosodium titanate in biological environments

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D.T.; MESSER, R. L. W.; LEWIS, J. B.; CLICK, D. R. LOCKWOOD, P. E.; WATAHA, J. C.

    2005-06-06

    Monosodium titanate (MST) is an inorganic sorbent/ion exchanger developed for the removal of radionuclides from nuclear wastes. We investigated the ability of MST to bind Cd(II), Hg(II), or Au(III) to establish the utility of MST for applications in environmental decontamination or medical therapy (drug delivery). Adsorption isotherms for MST were determined at pH 7-7.5 in water or phosphate-buffered saline. The extent of metal binding was determined spectroscopically by measuring the concentrations of the metals in solution before and after contact with the MST. Cytotoxic responses to MST were assessed using THP1 monocytes and succinate dehydrogenase activity. Monocytic activation by MST was assessed by TNF{alpha} secretion (ELISA) with or without lipopolysaccharide (LPS) activation. MST sorbed Cd(II), Hg(II), and Au(III) under conditions similar to that in physiological systems. MST exhibited the highest affinity for Cd(II) followed by Hg(II) and Au (III). MST (up to 100 mg/L) exhibited only minor (< 25% suppression of succinate dehydrogenase) cytotoxicity and did not trigger TNF{alpha} secretion nor modulate LPS-induced TNF{alpha} secretion from monocytes. MST exhibits high affinity for biometals with no significant biological liabilities in these introductory studies. MST deserves further scrutiny as a substance with the capacity to decontaminate biological environments or deliver metals in a controlled fashion.

  20. Application of ion mobility spectrometry for the determination of tramadol in biological samples

    Directory of Open Access Journals (Sweden)

    Ali Sheibani

    2014-12-01

    Full Text Available In this study, a simple and rapid ion mobility spectrometry (IMS method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs. Under optimum conditions, the calibration curves were linear within two orders of magnitude with R2 ≥ 0.998 for the determination of tramadol in human plasma, saliva, serum, and urine samples. The limits of detection and the limits of quantitation were between 0.1 and 0.3 and 0.3 and 1 ng/mL, respectively. The relative standard deviations were between 7.5 and 8.8%. The recovery results (90–103.9% indicate that the proposed method can be applied for tramadol analysis in different biological samples.

  1. BSPS Program (ESI-Mass Spectrometry) Biological Sample Data Analysis; Disruption of Bacteria Spores

    National Research Council Canada - National Science Library

    Lall, Ravi P

    2005-01-01

    The various biological processing technologies and biological identification approaches are essential for support of the mission to develop and demonstrate an advanced Biological Sample Preparation System...

  2. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  3. Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

    Science.gov (United States)

    Loicq, Jérôme; Stockman, Y.; Georges, Marc; Gaspar Venancio, Luis M.

    2017-11-01

    The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.

  4. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    Directory of Open Access Journals (Sweden)

    Gerber Susanne

    2011-04-01

    Full Text Available Abstract Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images. STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts

  5. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

    Science.gov (United States)

    Stoma, Szymon; Fröhlich, Martina; Gerber, Susanne; Klipp, Edda

    2011-04-28

    Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We

  6. Investigation by gamma-ray spectrometry and INAA of radioactivity impact on phosphate fertilizer plant environment

    International Nuclear Information System (INIS)

    Pantelica, A.; Companis, I.; Georgescu, I. I.; Pincovshi, E.

    2006-01-01

    The radioactive polluting effect of a phosphate fertilizer plant on the environment was investigated by gamma-ray spectrometry and neutron activation analysis (INAA). The hazards could arise from industrial plants using raw phosphate materials to prepare fertilizers for agricultural purposes due to the phosphate rock which, depending on the type and geographical zone of provenance may contain rather large amounts of uranium. The fertilizer plant under study is situated about 4 km from the town of Turnu Magurele, on the left bank of the Danube River in Romania. The main by-products of the factory are: nitro phosphate type fertilizers (NP, NPK), Ammonia, Nitric acid, Ammonium nitrate, Urea, Sulfuric acid, Phosphoric acid, Sodium fluorosilicate and Aluminum sulfate. Gamma-ray spectrometry was used to determine activity concentrations of naturally occurring radionuclides ( 2 26Ra, 2 35U, 2 38U, 2 32Th, and 4 0K), as well as 1 37Cs man-made radionuclide in surface soils collected from semicircular areas within radii of 0.5 and 15 km of the plant; in addition, different NPK type fertilizers and phosphate rocks were investigated. The samples (mass of about 100-g each) were kept tightly closed for one month to permit 2 26Ra to establish radioactive equilibrium with its decay products. This method makes it possible to assess U, Th, and K contents in samples by measuring 2 38U and 2 32Th (in equilibrium with their radioactive daughters) and 4 0K radioactivity, taken into account that 1 g of U, Th and K yield 1 2358 Bq 2 38U, 569 Bq 2 35U, 4057.2 Bq 2 32Th and 33.11 Bq 4 0K, respectively. The spectrometrical chain was based on a HPGe (EG and G Ortec) detector of 30 % relative efficiency and 2.1 keV resolution at 1332 keV of 6 0Co. INAA technique (neutron irradiation at TRIGA reactor of SCN Pitesti) was used to determine macro, micro and trace elements in samples collected from both technological shops of the factory (air dust and drinking tap water) and its surroundings

  7. An improved mass spectrometry-based measurement of NO metabolites in biological fluids.

    Science.gov (United States)

    Yang, Xingbin; Bondonno, Catherine P; Indrawan, Adeline; Hodgson, Jonathan M; Croft, Kevin D

    2013-03-01

    Assessment of NO metabolism in vivo relies on the accurate measurement of its metabolites nitrite (NO(2)(-)), nitrate (NO(3)(-)), and nitrosothiols (RSNOs) in biological fluids. We report a sensitive method to simultaneously determine NO(2)(-) and NO(3)(-) in biological matrixes. Tetraoctylammonium was used to catalyze the complete conversion of NO(2)(-) and NO(3)(-) to stable pentafluorobenzyl (PFB) derivatives directly from aqueous acetone medium before gas chromatography and negative-ion chemical ionization mass spectrometry (GC/NICI/MS). This catalyst dramatically improved the yield of PFB derivatives for NO(2)(-) (4.5 times) and NO(3)(-) (55 times) compared to noncatalyzed derivatization methods. Analysis was performed using (15)N-labeled internal standards by selected-ion monitoring at m/z 46 for fragment NO(2)(-) and m/z 47 for its isotope analogue, (15)NO(2)(-), and m/z 62 for NO(3)(-) and m/z 63 for (15)NO(3)(-). This method allowed specific detection of both PFB derivatives over a wide dynamic range with a limit of detection below 4.5 pg for NO(2)(-) and 2.5 pg for NO(3)(-). After the specific conversion of RSNOs by HgCl(2) to NO(2)(-), this GC/NICI/MS analysis was used to measure RSNOs in plasma. A further comparison with the widely used tri-iodide chemiluminescence (I(3)(-)-CL) assay indicated that the GC/MS assay validated the lower physiological RSNO and nitrite levels reported using I(3)(-)-CL detection compared with values obtained using UV-photolysis methods. Plasma levels of RSNOs determined by GC/MS and I(3)(-)-CL were well correlated (r = 0.8). The improved GC/MS method was successfully used to determine the changes in plasma, urinary, and salivary NO(2)(-) and NO(3)(-) as well as plasma RSNOs in humans after either a low-NO(3)(-) or a high-NO(3)(-) meal. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  9. Development of aluminium-26 accelerator mass spectrometry for biological and toxicological applications

    Science.gov (United States)

    Barker, James

    Aluminium is now recognised as a toxic element. Its accumulation in the body leads to serious conditions in renal failure patients on haemodialysis, and there is suspected involvement in the aetiology of Alzheimer's Disease. Although uptake from food and water are important exposure pathways, there is so far little quantitative knowledge about gastrointestinal absorption of aluminium, its general speciation in the blood or its metabolism. This is partly because seven of aluminium's eight radioisotopes have half-lives too short to conduct accurate biochemical studies. The use of [67]Ga as a tracer for aluminium begs the question of its biochemical similarity. Radiotracer studies on aluminium are possible with [26]Al (T[2] = 716,000 years), but a comparatively large amount of this scarce and expensive radioisotope (price ca. 50 pence per Bq) would be needed to measure by normal counting techniques. Use of conventional mass spectrometry is impracticable due to [26]Mg interference (comprises 11 % of total stable Mg and inherent in all biological or environmental samples), but high energy Accelerator Mass Spectrometry (A.M.S.), resulting in some fully-stripped ions (Al[13+], Mg[12+]) , potentially overcomes this problem. [26]Al is particularly attractive in human toxicology because of its negligible natural abundance and low radiological hazard. We have used the 20 MV tandem Van De Graaff accelerator (S.E.R.C. Daresbury) to conduct 1A1 A.M.S. measurements in biological media. Stable currents of ALQ[-](100 nA for > 5 hours) were obtained from a modified Middleton ion source, using alumina/silver ion source preparations of 50 mug Al. [26]Al is unambiguously identified from and [26]Mg [27]AlO[-] is repeatedly measured on a Faray Cup placed in the beamline after adjusting the ion source magnet. Linear calibration (C.V. range tested ([26]Al/[27]Al ratios from 10[-6] to 10[-11]) and a detection limit (2?) of ca. 7 x 10[-18]g (5 nBq) [26]Al ratio [26]Al/[27]Al limit of 1.4 x

  10. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Durrant, S.F.; Krushevska, A.; Amarasiriwardena, D.; Argentine, M.D.; Romon-Guesnier, S.; Barnes, R.M.

    1994-01-01

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70 Zn: 68 Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  11. Enhancement of biological mass spectrometry by using separations based on changes in ion mobility (FAIMS and DMS).

    Science.gov (United States)

    Purves, Randy W

    2013-01-01

    Analysis of complex biological samples for low-level analytes by liquid chromatography-tandem mass spectrometry (LC-MS/MS) often requires additional selectivity. Differential mobility techniques (FAIMS and DMS) have been shown to enhance LC-MS/MS analyses by separating ions in the gas-phase on a millisecond timescale by use of a mechanism that is complementary to both liquid chromatography and mass spectrometry. In this overview, a simplified description of the operation of these devices is given and an example presented that illustrates the utility of FAIMS (DMS) for solving a challenging analytical assay. Important recent advances in the field, including work with gas modifiers, are presented, along with an outlook for the technology.

  12. Study on the Effects of Sample Density on Gamma Spectrometry System Measurement Efficiency at Radiochemistry and Environment Laboratory

    International Nuclear Information System (INIS)

    Wo, Y.M.; Dainee Nor Fardzila Ahmad Tugi; Khairul Nizam Razali

    2015-01-01

    The effects of sample density on the measurement efficiency of the gamma spectrometry system were studied by using four sets multi nuclide standard sources of various densities between 0.3 - 1.4 g/ ml. The study was conducted on seven unit 25 % coaxial HPGe detector gamma spectrometry systems in Radiochemistry and Environment Laboratory (RAS). Difference on efficiency against gamma emitting radionuclides energy and measurement systems were compared and discussed. Correction factor for self absorption caused by difference in sample matrix density of the gamma systems were estimated. The correction factors are to be used in quantification of radionuclides concentration in various densities of service and research samples in RAS. (author)

  13. Doppler-broadening of positron annihilation in a biological environment

    International Nuclear Information System (INIS)

    Torrisi, L.; La Mela, C.; Catania, Univ.

    1997-01-01

    The aim of this study was to investigate the Doppler effect of the 511 keV γ peak from positron annihilation in biological matter: The broadening of the annihilation peak is due to positron annihilation with electrons that have high momentum. In aqueous solutions annihilation depends on the temperature and it is linked positronium formation. Measurements in vivo, on human brain, were taken during the diagnosis of positron emission tomography (PET) on healthy patients by injecting them with the beta emitter of short lifetime 18F . The Doppler-broadening in biological tissues rich in water content decreased significantly compared to biological solutions and water

  14. Differential Mobility-Mass Spectrometry Double Spike Isotope Dilution Study of Release of β-Methylaminoalanine and Proteinogenic Amino Acids during Biological Sample Hydrolysis.

    Science.gov (United States)

    Beach, Daniel G; Kerrin, Elliott S; Giddings, Sabrina D; Quilliam, Michael A; McCarron, Pearse

    2018-01-08

    The non-protein amino acid β-methylamino-L-alanine (BMAA) has been linked to neurodegenerative disease and reported throughout the environment. Proposed mechanisms of bioaccumulation, trophic transfer and chronic toxicity of BMAA rely on the hypothesis of protein misincorporation. Poorly selective methods for BMAA analysis have led to controversy. Here, a recently reported highly selective method for BMAA quantitation using hydrophilic interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS) is expanded to include proteinogenic amino acids from hydrolyzed biological samples. For BMAA quantitation, we present a double spiking isotope dilution approach using D 3 -BMAA and 13 C 15 N 2 -BMAA. These methods were applied to study release of BMAA during acid hydrolysis under a variety of conditions, revealing that the majority of BMAA can be extracted along with only a small proportion of protein. A time course hydrolysis of BMAA from mussel tissue was carried out to assess the recovery of BMAA during sample preparation. The majority of BMAA measured by typical methods was released before a significant proportion of protein was hydrolyzed. Little change was observed in protein hydrolysis beyond typical hydrolysis times but the concentration of BMAA increased linearly. These findings demonstrate protein misincorporation is not the predominant form of BMAA in cycad and shellfish.

  15. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  16. Gene-environment interaction and biological monitoring of occupational exposures

    International Nuclear Information System (INIS)

    Hirvonen, Ari

    2005-01-01

    Biological monitoring methods and biological limit values applied in occupational and environmental medicine have been traditionally developed on the assumption that individuals do not differ significantly in their biotransformation capacities. It has become clear, however, that this is not the case, but wide inter-individual differences exist in the metabolism of chemicals. Integration of the data on individual metabolic capacity in biological monitoring studies is therefore anticipated to represent a significant refinement of the currently used methods. We have recently conducted several biological monitoring studies on occupationally exposed subjects, which have included the determination of the workers' genotypes for the metabolic genes of potential importance for a given chemical exposure. The exposure levels have been measured by urine metabolites, adducts in blood macromolecules, and cytogenetic alterations in lymphocytes. Our studies indicate that genetic polymorphisms in metabolic genes may indeed be important modifiers of individual biological monitoring results of, e.g., carbon disulphide and styrene. The information is anticipated to be useful in insuring that the workplace is safe for everyone, including the most sensitive individuals. This knowledge could also be useful to occupational physicians, industrial hygienists, and regulatory bodies in charge of defining acceptable exposure limits for environmental and/or occupational pollutants

  17. Complete Analysis of a Biologically Active Tetrapeptide: A Project Utilizing Thin-Layer Chromatography and Tandem Quadrupole Mass Spectrometry

    Science.gov (United States)

    Lefevre, Joseph W.; Dodsworth, David W.

    2000-04-01

    The biologically active tetrapeptide d-Ala-Gly-l-Phe-d-Leu ([des-Tyr1-d-Ala2-d-Leu5]enkephalin) was analyzed for its amino acid content and stereochemistry by normal and reversed-phase thin-layer chromatography (TLC), and its sequence was determined by tandem quadrupole mass spectrometry. The project involved sequential N-dansylation of a portion of the tetrapeptide, hydrolysis, isolation, and identification of the N-terminal amino acid as dansyl-alanine by comparison with standards using normal-phase TLC. A second portion of the tetrapeptide was hydrolyzed and the resulting four free amino acids were converted to their corresponding dansyl derivatives and purified by preparative normal-phase TLC. The three dansyl amino acids not identified previously were identified by TLC. The stereochemistry of each was determined by comparison with dansyl-dl-amino acid standards using reversed-phase TLC in the presence of ß-cyclodextrin, a chiral mobile phase additive. Finally, the correct amino acid sequence was determined by tandem quadrupole mass spectrometry. This project gives students valuable experience in microscale synthesis, both normal and reversed-phase TLC, stereochemical analysis, and mass spectrometry.

  18. Environment, Biology, and Culture: Implications for Adolescent Development.

    Science.gov (United States)

    Zahn-Waxler, Carolyn

    1996-01-01

    Introduces this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Problems of adolescence addressed include antisocial behavior, depressive symptoms, substance abuse, low achievement, and eating problems. Considers factors implicated in successful…

  19. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  20. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  1. Iodine 129 measurements by gamma spectrometry in biological samples. Results in seaweeds (Fucus serratus et laminaria digitata)

    International Nuclear Information System (INIS)

    Maro, D.; Hebert, D.; Gandon, R.; Solier, L.

    1999-01-01

    A iodine selective radiochemistry method was developed to measure 129 I(period 1,57 x 10 10 7 years) by gamma spectrometry in biological samples. This method avoids using neutron activation analysis or accelerator mass spectrometry. The method is based on iodine extraction from samples in order to obtain an aqueous matrix with no attenuation agent except 127 I(stable isotope). The parallel determination of 127 I allows to correct 129 I measurements for self attenuation and also monitor seasonal changes in iodine metabolism in biological species. Measurements were performed in two seaweed species (Fucus serratus and Laminaria digitata) samples in the area of La Hague reprocessing plant discharge between January and February 1997). Samples from stations close to the point of release (Goury and Herquemoulin), showed 129 I activities around 60 Bq kg -1 dry weight in Fucus serratus and around 300 Bq kg -1 dry weight in Laminaria digitata. 300 km away from the realize point, 129 I activities were 10 Bq kg -1 dry weight in Fucus serratus and 171 Bq kg -1 dry weight in Laminaria digitata. 127 I concentrations were between 547 and 1,232 mg kg -1 dry weight in Fucus serratus and between 6,624 and 14,296 mg kg -1 dry weight in Laminaria digitata. (authors)

  2. Determination Performance Of Gamma Spectrometry Co-Axial HPGE Detector In Radiochemistry And Environment Group, Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mei-Woo, Y.

    2014-01-01

    Gamma Spectrometry System is used to measure qualitatively and quantitatively a gamma emitting radionuclide. The accuracy of the measurement very much depends on the performance specifications of the HPGe detectors. From this study it found that all the seven co-axial HPGe detectors in Radiochemistry and Environment Group, Nuclear Malaysia are in good working conditions base on the verification of performance specifications namely Resolution, Peak Shape, Peak-to-Compton ratio and Relative Efficiency against the warranted value from the manufacturers. (author)

  3. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics.

    Science.gov (United States)

    Scifo, Enzo; Calza, Giulio; Fuhrmann, Martin; Soliymani, Rabah; Baumann, Marc; Lalowski, Maciej

    2017-06-01

    Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.

  4. A review of research on common biological agents and their impact on environment

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.

    2009-01-01

    Biological agents are unique class of microorganisms which can be used to produce the disease in large populations of humans, animals and plants. If used for hostile purposes, any disease-causing microorganism could be considered a weapon. The use of biological agents is not a new concept and history is replete with examples of biological weapon use. Before the twenty century, biological warfare took on three main forms by deliberate poisoning of food and water with infectious material, use of microorganisms or toxins in some form of weapon system, and use of biologically inoculated fabrics. Four kinds of biological warfare agents are bacteria, viruses, rickettsiae, fungi. These are distinguished by being living organisms, that reproduce within their host victims, who then become contagious with a deadly multiplier effect, bacteria, viruses, or fungi or toxin found in nature can be used to kill or injure people. Biological agents may be used for an isolated assassination, as well as to cause incapacitation or death to thousands. These biological agents represent a dangerous military threat because they are alive, and are therefore unpredictable and uncontrollable once released. The act of bioterrorism can range from a simple hoax to the actual use of biological weapons. Biological agents have the potential to make an environment more dangerous over time. If the environment is contaminated, a long-term threat to the population could be created. This paper discusses common biological agents, their mode of action in living organisms and possible impact on the environment. (author)

  5. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND COMMUNICATING SCIENCE: PHARMACEUTICALS IN THE ENVIRONMENT

    Science.gov (United States)

    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers...

  6. Screens as light biological variable in microgravitational space environment.

    Science.gov (United States)

    Schlacht, S.; Masali, M.

    Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate

  7. Determination of mercury species in biological samples by inductively coupled plasma mass spectrometry combined with solvent extraction and ultrasonication

    International Nuclear Information System (INIS)

    Sun, J.; Li, Y.F.; Wang, J.X.; Chen, C.Y.; Li, B.; Gao, Y.X.; Chai, Z.F.

    2005-01-01

    Mercury (Hg) is a well-known toxic element. The toxic effects of Hg depend on its chemical forms. The most important chemical forms are elemental Hg (Hg 0 ), inorganic Hg (Hg 2+ ) and methylmercury (CH 3 Hg + ). In the biogeochemical cycle of Hg, these species may interchange in atmospheric, aquatic and terrestrial environments. Among them, methylmercury is considerably higher toxic than elemental mercury and inorganic mercury because it is recognized as one of major health hazards for human due to its teratogenic, immunotoxic, and neurotoxic effects. Therefore, determinations of not only total mercury, but also methylmercury content in biological samples is necessary. In large numbers of analytical methods, inductively coupled plasma mass spectrometry (ICP-MS) using conventional sample introduction with a peristaltic pump is widely used for the determination of trace metals in a wide variety of different sample matrices. ICP-MS can offer high sensitivity, low detection limit, reasonable accuracy and precision, and can easily be automated. However, mercury is considered as an element with analytical problems. One problem is well known in Hg analysis that the memory effect increases the blank counts and worsens the analytical performance of ICP-MS. The possibility of Hg losses during sample decomposition procedure due to its volatility is another important issue. Additionally, its high first ionization potential and numerous isotopes have limited its sensitivity in ICP-MS analysis. In order to solve the above questions, the present work was carried out to develop a method based on ICP-MS coupled with solvent extraction for determination of mercury species in biological samples. At first step, we investigated different solvent extraction methods including acid leaching, CuSO 4 extraction, alkaline-methanol extraction, and surfactant extraction with ultrasonication for methylmercury determination using the certified reference materials GBW07601 (Human Hair). Next, we

  8. Small Groups in Programmed Environments: Behavioral and Biological Interactions.

    Science.gov (United States)

    1983-04-01

    DISTRIBUTION STATEMENT (of the abettdre entered in Block 20. it differm Iroi Repot) IS. SUPPLEMENTARY NOTES The Pavlovian Journal of Bioloqical Science, in...Experimentation in Controlled Environments: Its Implications for Economic Behavior and Social Poligy Making. Toronto: Alcoholism and Drug Addiction

  9. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sardans, Jordi; Montes, Fernando; Penuelas, Josep

    2010-01-01

    this technique that reaches figures of merit equivalent to Inductively coupled plasma mass spectrometry (ICP-MS). Herein is presented an overview of recent advances and applications of (ETAAS) for the determination of As, Cd, Cu, Hg and Pb in biological samples drawn from studies over the last decade.

  10. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    of this technique that reaches figures of merit equivalent to Inductively coupled plasma mass spectrometry (ICP-MS). Herein is presented an overview of recent advances and applications of (ETAAS) for the determination of As, Cd, Cu, Hg and Pb in biological samples drawn from studies over the last decade.

  11. Fast Atom Bombardment Spectrometry - a novel analytical method for biologically interesting, non-volatile substances

    International Nuclear Information System (INIS)

    Schmid, E.

    1987-03-01

    Today important chemical substances like proteins can be produced easily and in large amounts. The primary structure of proteins can be analysed automatically, however the procedure can take some months of time. A novel method, fast atom bombardment mass spectrometry (FAB-MS) in combination with enzymatic degradation not only decreases the analysis time, but gives also additional information about the primary structure. Especially for the verification of protein structures - which is important for recombinant proteins - FAB-MS is a very useful method. 40 refs., 56 figs. (P.W.)

  12. Application of ion mobility spectrometry for the determination of tramadol in biological samples

    OpenAIRE

    Ali Sheibani; Najmeh Haghpazir

    2014-01-01

    In this study, a simple and rapid ion mobility spectrometry (IMS) method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs). Under optimum conditions, the calibration curves were linear within two orders of magnitude with R2 ≥ 0.998 for ...

  13. Fluorescent Proteins for Investigating Biological Events in Acidic Environments

    Directory of Open Access Journals (Sweden)

    Hajime Shinoda

    2018-05-01

    Full Text Available The interior lumen of acidic organelles (e.g., endosomes, secretory granules, lysosomes and plant vacuoles is an important platform for modification, transport and degradation of biomolecules as well as signal transduction, which remains challenging to investigate using conventional fluorescent proteins (FPs. Due to the highly acidic luminal environment (pH ~ 4.5–6.0, most FPs and related sensors are apt to lose their fluorescence. To address the need to image in acidic environments, several research groups have developed acid-tolerant FPs in a wide color range. Furthermore, the engineering of pH insensitive sensors, and their concomitant use with pH sensitive sensors for the purpose of pH-calibration has enabled characterization of the role of luminal ions. In this short review, we summarize the recent development of acid-tolerant FPs and related functional sensors and discuss the future prospects for this field.

  14. Diffusion in crowded biological environments: applications of Brownian dynamics

    OpenAIRE

    Długosz, Maciej; Trylska, Joanna

    2011-01-01

    Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mg/ml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and sign...

  15. Realization of Flight Control System in Virtual Reality Environment with Biological Signals

    OpenAIRE

    ALTIN, Cemil; ER, Orhan

    2018-01-01

    In this study, anunmanned aerial vehicle was flown on a virtual reality gaming platform with thehelp of commands processed by signal processing methods of biological signals. In thedeveloped application, Matlab signal processing environment and Unity 3Denvironment which is a virtual reality software platform are integrated witheach other and made to work. The biological signals obtained from the EEG ve EMGsensors are processed in Matlab environment and then converted to commands andtransferre...

  16. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  17. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.; Laskin, Julia

    2017-01-17

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.

  18. Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles.

    Science.gov (United States)

    Guinan, T M; Kirkbride, P; Della Vedova, C B; Kershaw, S G; Kobus, H; Voelcker, N H

    2015-12-07

    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high throughput analytical technique capable of detecting low molecular weight analytes, including illicit drugs, and with potential applications in forensic toxicology as well as athlete and workplace testing, particularly for biological fluids (oral fluids, urine and blood). However, successful detection of illicit drugs using SALDI-MS often requires extraction steps to reduce the inherent complexity of biological fluids. Here, we demonstrate an all-in-one extraction and analytical system consisting of hydrophobically functionalized porous silicon microparticles (pSi-MPs) for affinity SALDI-MS of prescription and illicit drugs. This novel approach allows for the analysis of drugs from multiple biological fluids without sample preparation protocols. The effect of pSi-MP size, pore diameter, pore depth and functionalization on analytical performance is investigated. pSi-MPs were optimized for the rapid and high sensitivity detection of methadone, cocaine and 3,4-methylenedioxymethamphetamine (MDMA). This optimized system allowed extraction and detection of methadone from spiked saliva and clinical urine samples. Furthermore, by detecting oxycodone in additional clinical saliva and plasma samples, we were able to demonstrate the versatility of the pSi-MP SALDI-MS technique.

  19. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  20. Fast vaporization solid phase microextraction and ion mobility spectrometry: A new approach for determination of creatinine in biological fluids.

    Science.gov (United States)

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein

    2015-11-01

    In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An intercomparison of γ-spectrometry on two samples of biological origin by eight laboratories in four countries

    International Nuclear Information System (INIS)

    Twining, J.R.

    1996-01-01

    This report gives details of the first inter-laboratory comparison of γ-spectrometry to be run within SPERA, the South Pacific Environmental Radioactivity Association since its inauguration in 1991. Laboratories in Australia, Chile, French Polynesia and New Zealand participated in the exercise. Two 'unknown' samples of biological origin were analysed. The first was a sample of milk powder derived from IAEA reference material. This sample provided an assessment of overall accuracy of 134 Cs, 137 Cs and 40 K determinations. The second sample consisted of dried fish flesh including natural 40 K and spiked with a mixed nuclide solution containing 210 Pb, 109 Cd, 54 Mn, 60 Co and trace 133 Ba. Together the samples gave information on analytical precision over a range of energies and activities. When the results were compared with the recommended values and confidence intervals of the IAEA reference material, the overall accuracy of the γ-spectrometry analytical procedures was found to be good. The average mean values for combined laboratory data fell within the recommended value ranges for each isotope. Ninety percent of the individual laboratory isotope mean values were within two standard errors of the 95% confidence interval of the standard, 75% were within 1 s.e., and 33% of the analyses fell within the confidence interval. The largest sources of error were derived from reporting and calculating of results which gave a 16% gross error rate. (Author)

  2. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods.

    Science.gov (United States)

    Ren, Yue; Wang, He; Liu, Jiangjiang; Zhang, Zhiping; McLuckey, Morgan N; Ouyang, Zheng

    2013-10-01

    Paper spray has been developed as a fast sampling ionization method for direct analysis of raw biological and chemical samples using mass spectrometry (MS). Quantitation of therapeutic drugs in blood samples at high accuracy has also been achieved using paper spray MS without traditional sample preparation or chromatographic separation. The paper spray ionization is a process integrated with a fast extraction of the analyte from the raw sample by a solvent, the transport of the extracted analytes on the paper, and a spray ionization at the tip of the paper substrate with a high voltage applied. In this study, the influence on the analytical performance by the solvent-substrate systems and the selection of the elution methods was investigated. The protein hemoglobin could be observed from fresh blood samples on silanized paper or from dried blood spots on silica-coated paper. The on-paper separation of the chemicals during the paper spray was characterized through the analysis of a mixture of the methyl violet 2B and methylene blue. The mode of applying the spray solvent was found to have a significant impact on the separation. The results in this study led to a better understanding of the analyte elution, on-paper separation, as well as the ionization processes of the paper spray. This study also help to establish a guideline for optimizing the analytical performance of paper spray for direct analysis of target analytes using mass spectrometry.

  3. Application of isotope dilution for the determination of thorium in biological samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito; Shiraishi, Kunio; Takaku, Yuichi; Masuda, Kimihiko; Seki, Riki; Yamamoto, Masayoshi.

    1992-01-01

    The applicability of isotope dilution-inductively coupled plasma mass spectrometry (ID-ICP-MS) was examined for Th in biological samples. A naturally occurring isotope of Th(Th-230) was used as the spiking isotope. The concentration of Th-230 in the final sample solution was about 50 - 60 pg/ml; an isotope ratio of 232/230 could be measured with a relative standard deviation of less than 2%. The error magnification depended on the amount of Th-232 being concomitant with the Th-230. Though it was shown that one ng of Th-232 could be determined with reasonable precision with a tracer of the present purity, more care should be taken to reduce any source of systematic error. (author)

  4. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  5. Neutron activation analysis, gamma ray spectrometry and radiation environment monitoring instrument concept: GEORAD

    International Nuclear Information System (INIS)

    Ambrosi, R.M.; Talboys, D.L.; Sims, M.R.; Bannister, N.P.; Makarewicz, M.; Stevenson, T.; Hutchinson, I.B.; Watterson, J.I.W.; Lanza, R.C.; Richter, L.; Mills, A.; Fraser, G.W.

    2005-01-01

    Geological processes on Earth can be related to those that may have occurred in past epochs on Mars, if analytical methods used on Earth can be operated remotely on the surface of the Red Planet. Nuclear analytical techniques commonly used in terrestrial geology are neutron activation analysis (NAA) and gamma-ray spectroscopy (GRS), which determine the elemental composition, elemental concentration and stratigraphical distribution of water in rocks and soils. We describe a detector concept called GEORAD (GEOlogical and RADiation environment package) for the proposed ExoMars rover within the ESA's Aurora Programme for the exploration of the Solar System. GEORAD consists of a compact neutron source for the NAA of rocks and soils and a GRS. The GRS has a dual role since it can be used for natural radioactivity studies and NAA. A fully depleted silicon detector coupled to neutron sensitive converters measures the solar particle and neutron flux interacting with the Martian surface. We describe how the GEORAD detector suite could contribute to the geological and biological characterisation of Mars both for the detection of extinct or extant life and to evaluate potential hazards facing future manned missions. We show how GEORAD measurements complement the astrobiological objectives of the Aurora programme

  6. Determination of cobalt in human biological liquids from electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dragan, Felicia [University of Oradea, Faculty of Medicine and Pharmacy, 29 N Jiga, 410028 Oradea (Romania); HIncu, Lucian [University of Medicine and Pharmacy ' Carol Davila' , Faculty of Pharmacy, 6 Traian Vuia, 020956 Bucuresti (Romania); Bratu, Ioan, E-mail: fdragan@uoradea.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Problems and possibilities of the determination of Co in serum and urine samples by electrothermal atomic absorption spectrometry (ETAAS) are described. Optimal instrumental parameters as well as a suitable atomizer, calibration procedure and hydrogen peroxide as modifier are proposed for direct ETAAS measurement of Co in serum and urine. The detection limit achieved was 0.1 {mu}g L{sup -1} for both matrices and relative standard deviations varied in the range 5-20% depending on the Co concentration in the sample. The validity of the method was verified by the analyses of standard reference materials. For serum samples with Co content lower than the detection limit, a separation and preconcentration procedure based on liquid/liquid extraction is suggested prior to determination of Co in the organic phase by ETAAS. This procedure permits determination of 0.02 {mu}g L{sup -1} Co in serum samples with a relative standard deviation of 10-18%.

  7. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  8. Comparison of Technology Use between Biology and Physics Teachers in a 1:1 Laptop Environment

    Science.gov (United States)

    Crook, Simon J.; Sharma, Manjula D.; Wilson, Rachel

    2015-01-01

    Using a mixed-methods approach the authors compared the associated practices of senior physics teachers (n = 7) and students (n = 53) in a 1:1 laptop environment with those of senior biology teachers (n = 10) and students (n = 125) also in a 1:1 laptop environment, in seven high schools in Sydney, NSW, Australia. They found that the physics…

  9. The application of gamma-spectrometry to nuclear power plant (NPP) and environment

    International Nuclear Information System (INIS)

    Asgharizadeh, Farid.

    1995-01-01

    One of measuring systems is nuclear spectrometry, particularly Gamma-Ray Spectrometry, to measure and determine the radionuclide concentration within plant materials and environmental samples. There are four major applied techniques related to Nuclear Power Plant operation and environmental monitoring aspects. Some details about gamma ray spectrometry technique is discussed in chapter 2. The main emphasis is on the calculation of gamma-ray detector efficiency for different geometries, the minimum detectable activity concepts and dead-time correction. Also,some formula and relations are introduced. In chapter 3, the major applications of gamma-ray spectrometry for analysis of nuclear power plant and environmental samples are discussed. These applications are divided into four topics: Nuclear Fuel survey; based on the activity of fission products concentration in reactor coolant, two other applications are introduced: Fuel Burnup calculation and the calculation of rated activity of natural radionuclides in construction of materials which is the last and most important application: Measurement and determination of radionuclides activity concentr[[[[n in environmental samples is described through section 3.3 Sampling and measuring methods for research and monitoring aspects is evaluated. Some data about sample preparation methods such as pretreatment and solubilization procedures are presented. Quantitative chemical separations of trace constituents from complex sample materials invariably require meticulous work by an analytical chemist. The radiochemical separation deals with this subject. Instrumental aspects, relate to gamma-ray spectrometry, quality assurance, presentation and reporting of results are described. In the experimental part, determination of radionuclides concentration in sediment sample is presented

  10. Chemical preparation of biological materials for accurate chromium determination by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Dunstan, L.P.; Garner, E.L.

    1977-01-01

    The current interest in trace elements in biological materials has created a need for accurate methods of analysis. The source of discrepancies and variations in chromium concentration determinations is often traceable to inadequate methods of sample preparation. Any method of Cr analysis that requires acid digestion of a biological matrix must take into consideration the existence or formation of a volatile Cr component. In addition, because Cr is often present at concentrations less than 1 μg/g, the analytical blank becomes a potential source of error. Chemical procedures have been developed for the digestion of the biological matrix and the separation of Cr without either large analytical blanks or significant losses by volatilization. These procedures have been used for the analysis of NBS Standard Reference Material (SRM) 1569 Brewers Yeast; SRM 1577 Bovine Liver; SRM 1570 Spinach and other biological materials including human hair and nails. At this time, samples containing 1 μg of Cr can be determined with an estimated accuracy of 2 percent

  11. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  12. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.

  13. Application of Compton suppression spectrometry in the improvement of nuclear analytical techniques for biological samples

    International Nuclear Information System (INIS)

    Ahmed, Y. A.; Ewa, I.O.B.; Funtua, I.I.; Jonah, S.A.; Landsberger, S.

    2007-01-01

    Compton Suppression Factors (SF) and Compton Reduction Factors (RF) of the UT Austin's Compton suppression spectrometer being parameters characterizing the system performance were measured using ''1''3''7Cs and ''6''0Co point sources. The system performance was evaluated as a function of energy and geometry. The (P/C), A(P/C), (P/T), Cp, and Ce were obtained for each of the parameters. The natural background reduction factor in the anticoincidence mode and that of normal mode was calculated and its effect on the detection limit of biological samples evaluated. Applicability of the spectrometer and the method for biological samples was tested in the measurement of twenty-four elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn, In, K, Mo, Cd, Zn, As, Sb, Ni, Rb, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco items. They were determined from seven National Institute for Standard and Technology (NIST) certified reference materials (rice flour, oyster tissue, non-fat powdered milk, peach leaves, tomato leaves, apple leaves, and citrus leaves). Our results shows good agreement with the NIST certified values, indicating that the method developed in the present study is suitable for the determination of aforementioned elements in biological samples without undue interference problems

  14. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-01-01

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  15. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    Science.gov (United States)

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  16. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods.

    Science.gov (United States)

    Lísa, Miroslav; Cífková, Eva; Khalikova, Maria; Ovčačíková, Magdaléna; Holčapek, Michal

    2017-11-24

    Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements

  17. Recent advances in mass spectrometry-based approaches for proteomics and biologics: Great contribution for developing therapeutic antibodies.

    Science.gov (United States)

    Iwamoto, Noriko; Shimada, Takashi

    2018-05-01

    Since the turn of the century, mass spectrometry (MS) technologies have continued to improve dramatically, and advanced strategies that were impossible a decade ago are increasingly becoming available. The basic characteristics behind these advancements are MS resolution, quantitative accuracy, and information science for appropriate data processing. The spectral data from MS contain various types of information. The benefits of improving the resolution of MS data include accurate molecular structural-derived information, and as a result, we can obtain a refined biomolecular structure determination in a sequential and large-scale manner. Moreover, in MS data, not only accurate structural information but also the generated ion amount plays an important rule. This progress has greatly contributed a research field that captures biological events as a system by comprehensively tracing the various changes in biomolecular dynamics. The sequential changes of proteome expression in biological pathways are very essential, and the amounts of the changes often directly become the targets of drug discovery or indicators of clinical efficacy. To take this proteomic approach, it is necessary to separate the individual MS spectra derived from each biomolecule in the complexed biological samples. MS itself is not so infinite to perform the all peak separation, and we should consider improving the methods for sample processing and purification to make them suitable for injection into MS. The above-described characteristics can only be achieved using MS with any analytical instrument. Moreover, MS is expected to be applied and expand into many fields, not only basic life sciences but also forensic medicine, plant sciences, materials, and natural products. In this review, we focus on the technical fundamentals and future aspects of the strategies for accurate structural identification, structure-indicated quantitation, and on the challenges for pharmacokinetics of high

  18. Two-Step Resonance-Enhanced Desorption Laser Mass Spectrometry for In Situ Analysis of Organic-Rich Environments

    Science.gov (United States)

    Getty, S. A.; Grubisic, A.; Uckert, K.; Li, X.; Cornish, T.; Cook, J. E.; Brinckerhoff, W. B.

    2016-01-01

    A wide diversity of planetary surfaces in the solar system represent high priority targets for in situ compositional and contextual analysis as part of future missions. The planned mission portfolio will inform our knowledge of the chemistry at play on Mars, icy moons, comets, and primitive asteroids, which can lead to advances in our understanding of the interplay between inorganic and organic building blocks that led to the evolution of habitable environments on Earth and beyond. In many of these environments, the presence of water or aqueously altered mineralogy is an important indicator of habitable environments that are present or may have been present in the past. As a result, the search for complex organic chemistry that may imply the presence of a feedstock, if not an inventory of biosignatures, is naturally aligned with targeted analyses of water-rich surface materials. Here we describe the two-step laser mass spectrometry (L2MS) analytical technique that has seen broad application in the study of organics in meteoritic samples, now demonstrated to be compatible with an in situ investigation with technique improvements to target high priority planetary environments as part of a future scientific payload. An ultraviolet (UV) pulsed laser is used in previous and current embodiments of laser desorption/ionization mass spectrometry (LDMS) to produce ionized species traceable to the mineral and organic composition of a planetary surface sample. L2MS, an advanced technique in laser mass spectrometry, is selective to the aromatic organic fraction of a complex sample, which can provide additional sensitivity and confidence in the detection of specific compound structures. Use of a compact two-step laser mass spectrometer prototype has been previously reported to provide specificity to key aromatic species, such as PAHs, nucleobases, and certain amino acids. Recent improvements in this technique have focused on the interaction between the mineral matrix and the

  19. Constrains in gamma spectrometry analysis of fallout 137Cs in coastal marine environment of Arabian sea in India

    International Nuclear Information System (INIS)

    Sartandel, S.J.; Jha, S.K.; Puranik, V.D.

    2012-01-01

    In this study, an accurate faster gamma spectrometry method for measuring the low level activity concentrations of 137 Cs using in situ pre-concentration technique on copper ferrocyanide cartridge was standardized. Due to unavailability of reference standard in the copper ferrocyanide matrix, efficiency calibration curves were plotted using RGU and RGTh reference standards. To harmonize the difference in density of standard and sample the required density correction factors for photo peak efficiency were generated. The in situ pre-concentration technique followed by gamma-ray spectrometry was applied for activity determination in surface seawater from eight locations in the coastal marine environment of Arabian Sea. The mean activity concentration of 137 Cs ranged between 0.71 and 0.91 Bq/m 3 . Higher activity concentrations were observed at location with latitude, longitude of 21.6 deg N, 69.57 deg E as compared to concentration observed at location with latitude, longitude 16.98 deg N, 73.25 deg E. The observed concentrations were found to be in range of data reported in Asia-Pacific Marine radioactive database (ASPARMARD). The results will fill up the gaps in the existing database. The generated data will be useful for monitoring fresh input of anthropogenic radionuclide into coastal marine environment for post Fukushima environmental assessment. (author)

  20. An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64.

    Science.gov (United States)

    Winkler, Robert

    2015-01-01

    In biological mass spectrometry, crude instrumental data need to be converted into meaningful theoretical models. Several data processing and data evaluation steps are required to come to the final results. These operations are often difficult to reproduce, because of too specific computing platforms. This effect, known as 'workflow decay', can be diminished by using a standardized informatic infrastructure. Thus, we compiled an integrated platform, which contains ready-to-use tools and workflows for mass spectrometry data analysis. Apart from general unit operations, such as peak picking and identification of proteins and metabolites, we put a strong emphasis on the statistical validation of results and Data Mining. MASSyPup64 includes e.g., the OpenMS/TOPPAS framework, the Trans-Proteomic-Pipeline programs, the ProteoWizard tools, X!Tandem, Comet and SpiderMass. The statistical computing language R is installed with packages for MS data analyses, such as XCMS/metaXCMS and MetabR. The R package Rattle provides a user-friendly access to multiple Data Mining methods. Further, we added the non-conventional spreadsheet program teapot for editing large data sets and a command line tool for transposing large matrices. Individual programs, console commands and modules can be integrated using the Workflow Management System (WMS) taverna. We explain the useful combination of the tools by practical examples: (1) A workflow for protein identification and validation, with subsequent Association Analysis of peptides, (2) Cluster analysis and Data Mining in targeted Metabolomics, and (3) Raw data processing, Data Mining and identification of metabolites in untargeted Metabolomics. Association Analyses reveal relationships between variables across different sample sets. We present its application for finding co-occurring peptides, which can be used for target proteomics, the discovery of alternative biomarkers and protein-protein interactions. Data Mining derived models

  1. Quantitative analysis of biological fluids by electron probe and X ray spectrometry

    International Nuclear Information System (INIS)

    Girod, Chantal

    1986-01-01

    In order to know the kidney normal operation and to have an insight on cellular transport mechanisms and hormonal regulations at the nephron level, a technique based on the use of an electron probe has been developed for the elemental analysis of micro-volumes of biological fluids. This academic document reports applications of this technique on animals on which such fluids have been sampled at different levels of the nephron. As these samples are available in too small volumes to be dosed by conventional methods, they have been quantitatively analysed by using an electronic probe based analyser in order to determine concentrations of all elements with an atomic number greater than that of carbon. After a presentation of the implemented method and hardware, the author thus describes how an analysis is performed, and reports and discusses an example (analysis conditions, data acquisition, data processing, minimum detectable concentration, reasons for measurement scattering)

  2. Radionuclides in man and his environment measured by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Hellborg, Ragnar; Erlandsson, Bengt; Kiisk, Madis; Persson, Per; Skog, Goeran; Stenstroem, Kristina; Mattsson, Soeren; Leide-Svegborn, Sigrid; Olofsson, Mikael

    1999-01-01

    Accelerator mass spectrometry (AMS) is a highly sensitive analytical method for measuring very low concentrations of both radionuclides and stable nuclides. For radioanalytical purposes, the main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg size) and shorter measuring times (less than one hour). In this report some current applications of the AMS technique at the Lund Pelletron accelerator are presented, in particular studies of 14 C-labeled pharmaceuticals used in clinical nuclear medicine and biomedical research

  3. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  4. A Problem-Solving Environment for Biological Network Informatics: Bio-Spice

    Science.gov (United States)

    2007-06-01

    user an environment to access software tools. The Dashboard is built upon the NetBeans Integrated Development Environment (IDE), an open source Java...based integration platform was demonstrated. During the subsequent six month development cycle, the first version of the NetBeans based Bio-SPICE...frameworks (OAA, NetBeans , and Systems Biology Workbench (SBW)[15]), it becomes possible for Bio-SPICE tools to truly interoperate. This interoperation

  5. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  6. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  7. Ultra high performance liquid chromatography tandem mass spectrometry determination and profiling of prohibited steroids in human biological matrices. A review.

    Science.gov (United States)

    Gosetti, Fabio; Mazzucco, Eleonora; Gennaro, Maria Carla; Marengo, Emilio

    2013-05-15

    so that, notwithstanding the generally high instrumental costs, the cost of the individual assay is affordable. In addition, the improved specificity and resolution offered by time-of-flight or quadrupole time-of-flight mass spectrometry allow their application in doping control analysis or in steroid profiling for accurate and sensitive full mass range acquisition. Aim of the present review is to consider, compare and discuss the applications of the UHPLC/MS methods present in literature for the identification and determination of forbidden steroids and their metabolites in human biological matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Monitoring Microbes in the Spacecraft Environment by Mass Spectrometry of Ribosomal RNA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The unique stresses in the spacecraft environment including isolation, containment, weightlessness, increased radiation exposure, and enhanced microbial...

  10. Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    Science.gov (United States)

    2010-01-01

    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals. PMID:20163100

  11. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ferrua, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D.

    2007-01-01

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (2 3 ) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L -1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L -1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L -1 . Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  12. Application of slurry nebulization to trace elemental analysis of some biological samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mochizuki, T.; Sakashita, A.; Iwata, H.; Ishibashi, Y.; Gunji, N.

    1991-01-01

    The application of slurry nebulization/inductively coupled plasma mass spectrometry (ICP-MS) to trace elemental analysis of biological samples has been investigated. Three standard samples of the National Institute of Standards and Technology (NIST) were dispersed in 1% aqueous Triton X-100 solution by grinding with a planetary micronizing mill. The resulting slurries were nebulized into an ICP without any additional treatments. The 1% (m/v) slurry of the NIST bovine liver showed no significant influence on cone blockage and signal suppression/enhancement. Detection limit, precision and accuracy were discussed for the determination of 24 elements of interest in bovine liver, rice flour and pine needles. Detection limits ranged from 0.0001 μg g -1 for U to 0.52 μg g -1 for Zn at the effective integrating time of 10 s. For high mass elements, low blank values were obtained, yielding excellent limits ( -1 ). Acceptable accuracy and precision were obtained for most of the elements in the NIST bovine liver and rice flour, even for the volatile elements, such as As, Se and Br. However, relatively poor accuracy was obtained for the analysis of pine needles. (orig.)

  13. NATO Advanced Research Workshop, 19-22 May 1997: Rapid Method for Monitoring the Environment for Biological Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    The NATO Advanced Research Workshop met for the purpose of bringing to light rapid methods for monitoring the environment for biological hazards such as biological warfare agents, naturally occurring...

  14. Marine environment pollution: The contribution of mass spectrometry to the study of seawater.

    Science.gov (United States)

    Magi, Emanuele; Di Carro, Marina

    2016-09-09

    The study of marine pollution has been traditionally addressed to persistent chemicals, generally known as priority pollutants; a current trend in environmental analysis is a shift toward "emerging pollutants," defined as newly identified or previously unrecognized contaminants. The present review is focused on the peculiar contribution of mass spectrometry (MS) to the study of pollutants in the seawater compartment. The work is organized in five paragraphs where the most relevant groups of pollutants, both "classical" and "emerging," are presented and discussed, highlighting the relative data obtained by the means of different MS techniques. The hyphenation of MS and separative techniques, together with the development of different ion sources, makes MS and tandem MS the analytical tool of choice for the determination of trace organic contaminants in seawater. © 2016 Wiley Periodicals, Inc. Mass Spec Rev. © 2016 Wiley Periodicals, Inc.

  15. Turkish students' perceptions of their biology learning environments: the effects of gender and grade level

    NARCIS (Netherlands)

    Telli, S.; Brok, den P.J.; Tekkaya, C.; Cakiroglu, J.

    2009-01-01

    This study investigates the effects of gender and grade level on Turkish secondary school students’ perceptions of their biology learning environment. A total of 1474 high school students completed the What is Happening in This Classroom (WIHIC) questionnaire. The WIHIC maps several important

  16. Effects of Conceptual Change Text Based Instruction on Ecology, Attitudes toward Biology and Environment

    Science.gov (United States)

    Çetin, Gülcan; Ertepinar, Hamide; Geban, Ömer

    2015-01-01

    The purpose of this study is to investigate the effects of the conceptual change text based instruction on ninth grade students' understanding of ecological concepts, and attitudes toward biology and environment. Participants were 82 ninth grade students in a public high school in the Northwestern Turkey. A treatment was employed over a five-week…

  17. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  18. Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bakhtiar, Ray; Majumdar, Tapan K

    2007-01-01

    During the last decade, quantification of low molecular weight molecules using liquid chromatography-tandem mass spectrometry in biological fluids has become a common procedure in many preclinical and clinical laboratories. This overview highlights a number of issues involving "small molecule drugs", bioanalytical liquid chromatography-tandem mass spectrometry, which are frequently encountered during assay development. In addition, possible solutions to these issues are proposed with examples in some of the case studies. Topics such as chromatographic peak shape, carry-over, cross-talk, standard curve non-linearity, internal standard selection, matrix effect, and metabolite interference are presented. Since plasma is one of the most widely adopted biological fluid in drug discovery and development, the focus of this discussion will be limited to plasma analysis. This article is not intended to be a comprehensive overview and readers are encouraged to refer to the citations herein.

  19. Use of oxidative and reducing vapor generation for reducing the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Vtorushina, Eh.A.; Saprykin, A.I.; Knapp, G.

    2009-01-01

    Procedures of microwave combustion in an oxygen flow and microwave acid decomposition of biological samples were optimized for the subsequent determination of iodine. A new method was proposed for the generation of molecular iodine from periodate iona using hydrogen peroxide as a reductant. Procedures were developed for determining iodine in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) using oxidative and reducing vapor generation; these allowed the detection limit for iodine to be lowered by 3-4 orders of magnitude. The developed procedures were used to analyze certified reference materials of milk (Skim Milk Powder BCR 150) and seaweed (Sea Lettuce BCR 279) and a Supradyn vitamin complex

  20. The ultraviolet environment of Mars: biological implications past, present, and future

    Science.gov (United States)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  1. The ultraviolet environment of Mars: biological implications past, present, and future.

    Science.gov (United States)

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  2. Secure encapsulation and publication of biological services in the cloud computing environment.

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  3. Research in radiation biology, in the environment, and in radiation protection at CRNL

    International Nuclear Information System (INIS)

    Marko, A.M.; Myers, D.K.; Ophel, I.L.; Cowper, G.; Newcombe, H.B.

    1978-01-01

    Research in radiation biology at CRNL is concerned with: evaluation of the effects of low doses of radiation upon humans and other living organisms; the development of new methods for detecting the effects of radiation exposure in large populations; the continued development of improved methods by which radiation levels can be measured accurately and reliably; and evaluation of the effects of nuclear power use upon the environment. The present report summarizes our background knowledge of radiation hazards and describes current research activities in Biology and Health Physics Division at CRNL. (author)

  4. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  5. Influence of Web-Aided Cooperative Learning Environment on Motivation and on Self-Efficacy Belief in Biology Teaching

    Science.gov (United States)

    Hevedanli, Murat

    2015-01-01

    The purpose of this study is to investigate the influence of the web-aided cooperative learning environment on biology preservice teachers' motivation and on their self-efficacy beliefs in biology teaching. The study was carried out with 30 biology preservice teachers attending a state university in Turkey. In the study, the pretest-posttest…

  6. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  7. Magnetic nanoparticles in different biological environments analyzed by magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Löwa, Norbert, E-mail: norbert.loewa@ptb.de; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank

    2017-04-01

    Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non–linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment. - Highlights: • MPS signal amplitude: allows for MNP quantification in physiological environment. • MPS signal shape: specifically detects changes due to MNP interaction. • Correlation between changes in MPS amplitude and shape were found. • MPS signal (shape/amplitude) correlation allow for a quantification correction. • Reliable quantification result if the dynamic magnetic behavior of MNP do not change.

  8. The use of selective adsorbents in capillary electrophoresis-mass spectrometry for analyte preconcentration and microreactions: a powerful three-dimensional tool for multiple chemical and biological applications.

    Science.gov (United States)

    Guzman, N A; Stubbs, R J

    2001-10-01

    Much attention has recently been directed to the development and application of online sample preconcentration and microreactions in capillary electrophoresis using selective adsorbents based on chemical or biological specificity. The basic principle involves two interacting chemical or biological systems with high selectivity and affinity for each other. These molecular interactions in nature usually involve noncovalent and reversible chemical processes. Properly bound to a solid support, an "affinity ligand" can selectively adsorb a "target analyte" found in a simple or complex mixture at a wide range of concentrations. As a result, the isolated analyte is enriched and highly purified. When this affinity technique, allowing noncovalent chemical interactions and biochemical reactions to occur, is coupled on-line to high-resolution capillary electrophoresis and mass spectrometry, a powerful tool of chemical and biological information is created. This paper describes the concept of biological recognition and affinity interaction on-line with high-resolution separation, the fabrication of an "analyte concentrator-microreactor", optimization conditions of adsorption and desorption, the coupling to mass spectrometry, and various applications of clinical and pharmaceutical interest.

  9. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    OpenAIRE

    Erny, Guillaume L.; Cifuentes, Alejandro

    2006-01-01

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc, of pharmaceuticals. In this manuscript, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including e.g., antiinflammatories, antihypertensives, relaxants, etc, by liquid chromatography-mass spectrometry and ...

  10. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  11. REVIEW OF SELECTED BIOLOGICAL METHODS OF ASSESSING THE QUALITY OF NATURAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Beata Jakubus

    2015-04-01

    Full Text Available The xenobiotics introduced into the environment are the effect of human activities. It is especially soil contamination that leads to degradation of soils, which may finally be referred to the biological imbalance of the ecosystem. Normally chemical methods are used for the assessment of soil’s quality. Unfortunately, they are not always quick and inexpensive. Therefore, the practice and the science at environmental monitoring more frequently employ biological methods. Most of them meet the above mentioned conditions and become a supplement of routine laboratory practices. This publication shows an overview of selected common biological methods used to estimate the quality of the environment. The first part of the paper presents biomonitoring as a first step of environmental control which relies on the observation of indicator organisms. The next section was dedicated to the bioassays, indicating the greater or lesser practical applications confirmed by literature on the subject. Particular attention has been focused on phytotests and the tests based on the invertebrates.

  12. Sensor Fusion and Autonomy as a Powerful Combination for Biological Assessment in the Marine Environment

    Directory of Open Access Journals (Sweden)

    Mark A. Moline

    2016-02-01

    Full Text Available The ocean environment and the physical and biological processes that govern dynamics are complex. Sampling the ocean to better understand these processes is difficult given the temporal and spatial domains and sampling tools available. Biological systems are especially difficult as organisms possess behavior, operate at horizontal scales smaller than traditional shipboard sampling allows, and are often disturbed by the sampling platforms themselves. Sensors that measure biological processes have also generally not kept pace with the development of physical counterparts as their requirements are as complex as the target organisms. Here, we attempt to address this challenge by advocating the need for sensor-platform combinations to integrate and process data in real-time and develop data products that are useful in increasing sampling efficiencies. Too often, the data of interest is only garnered after post-processing after a sampling effort and the opportunity to use that information to guide sampling is lost. Here we demonstrate a new autonomous platform, where data are collected, analyzed, and data products are output in real-time to inform autonomous decision-making. This integrated capability allows for enhanced and informed sampling towards improving our understanding of the marine environment.

  13. Environment Biological and Health Care Efforts Influenced of Lymfatic Filariasis Incidence, Sarmi Distric

    Directory of Open Access Journals (Sweden)

    Mina Sipayung

    2014-05-01

    District Sarmi is the most endemic area of filariasis in Papua which has rate of microfilaria (mf (47.06% up to the year 2012. In the Province Papua filarial worm is Wuchereria bancrofti and is transmitted through the bite of a mosquito vectors. Lymphatic filariasis does not cause death, but in chronic cases it causes disability, psychosocial problems, stigma, and decreased productivity. This study was aimed to analyze environment biological and health care efforts that influence the incidence of lymphatic filariasis. This study used case-control method. Samples comprised 32 case samples (mf + and 32 control samples (mf-. Primary data were collected through interviews and observation. Data were analyzed using Chi-Square and continued with multivariate Logistic Regression. Statistical analysis obtained indicated two variables on the incidence of lymphatic filariasis limfatik in District Sarmi (health care efforts pvalue = 0.002, OR: 7.779, as well as the biological environment pvalue= 0.008, OR: 5.841. Significant variables were health services with sub-variables promotion, prevention and the environmental biology. Suggestion: Mosquito bites should be avoided, the vector should be controlled through mutual cooperation and health promotion should be implemented. Keywords: Wuchereria bancrofti, lymphatic filariasis, vector, health care,                         Sarmi Distric

  14. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-06-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entities present in the air is far from being complete. Currently, metagenomics and next-generation sequencing (NGS) may resolve this shortage of information and have been recently applied to metropolitan areas. Although the procedures and methods are not totally standardized yet, the first studies from urban air samples confirm the previous results obtained by culture and microscopy regarding abundance and variation of these biological particles. However, DNA-sequence analyses call into question some preceding ideas and also provide new interesting insights into diversity and their spatial distribution inside the cities. Here, we review the procedures, results and perspectives of the recent works that apply NGS to study the main biological particles present in the air of urban environments. [Int Microbiol 19(2):69-80(2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  15. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  16. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2013-01-01

    Full Text Available Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  17. Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology.

    Science.gov (United States)

    Schmidt, Markus; de Lorenzo, Víctor

    2012-07-16

    The plausible release of deeply engineered or even entirely synthetic/artificial microorganisms raises the issue of their intentional (e.g. bioremediation) or accidental interaction with the Environment. Containment systems designed in the 1980s-1990s for limiting the spread of genetically engineered bacteria and their recombinant traits are still applicable to contemporary Synthetic Biology constructs. Yet, the ease of DNA synthesis and the uncertainty on how non-natural properties and strains could interplay with the existing biological word poses yet again the challenge of designing safe and efficacious firewalls to curtail possible interactions. Such barriers may include xeno-nucleic acids (XNAs) instead of DNA as information-bearing molecules, rewriting the genetic code to make it non-understandable by the existing gene expression machineries, and/or making growth dependent on xenobiotic chemicals. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Presence of pesticide residues in water, sediment and biological samples taken from aquatic environments in Honduras

    International Nuclear Information System (INIS)

    Meyer, D.E.

    1999-01-01

    The objective of this study was to detect the presence of persistent pesticides in water, sediment and biological samples taken from aquatic environments in Honduras during the period 1995-98. Additionally, the LC 50 for 2 fungicides and 2 insecticides on post-larval Penaeus vannamei was determined in static water bioassays. A total of 80 water samples, 16 sediment samples and 7 biological samples (fish muscle tissue) were analyzed for detection of organochlorine and organophosphate pesticide residues. The results of sample analyses indicate a widespread contamination of Honduran continental and coastal waters with organochlorine pesticides. Most detections were of low ( 50 values and were therefore found to be much more toxic to the post-larval shrimp than the fungicides tridemorph and propiconazole. (author)

  19. Applications of 14C - AMS on Archaeology, Climate, Environment, Geology, Oceanography and Biology

    International Nuclear Information System (INIS)

    Gomes, P. R. S.; Macario, K. D.; Anjos, R. M.

    2007-01-01

    In this contribution we describe several experiments on 14 C-AMS (Accelerator Mass Spectrometry) related to historical, ecological and environmental questions. We discuss the chronology of prehistoric settlements of the central-south Brazilian coast. The unexpected result pulls back by some two thousand years the antiquity consensually accepted for the settlement of that region. We performed an experiment concerning the isotopic signature of the local waters of an important Brazilian coastal upwelling. The results of 14 C-AMS measurements in seaweed tissue show differences in the isotopic signature of the water sources. The present results contribute to opening new perspectives for the use of 14 C as a tracer of the biological production in upwelling areas all over the world. We performed experiments on climate at the Amazon region. At remote lakes of the Amazon region, the Hg accumulation rate archived in sediment cores is a powerful tool for the interpretation of the paleoclimatology and paleoecology of the region. Different sedimentation regimes are observed from ∼41500 yr. BP to the present. The understanding of sea-level fluctuations are fundamental for human occupation of littoral areas and hydrocarbon industry on offshore exploration. We performed radiocarbon dating of foraminifera shell samples, collected in upper slope of Campos Basin, in Southern Brazil. The mean accumulation ratio for the whole column is 6.17 cm/1000 years. Fluctuations in this mean values indicate that the ocean bottom dynamics has some variation during the period. (Author)

  20. Environment and biology of the Kara Sea: a general view for contamination studies.

    Science.gov (United States)

    Miquel, J C

    2001-01-01

    The recent revelation that over the past 30 years there has been a history of dumping waste including high-level radioactive wastes in the shallow Kara Sea has caused wide-spread concern. The potential impact of these contaminants and other non-nuclear pollutants in the Arctic ecosystem and on human health need to be assessed and, thus, a better insight gained on radioecological processes in cold waters. The present paper proposes a general view on the biology and the environment of the Kara Sea, as a basic tool for the experimental and modelling assessments of the impact of these contaminants.

  1. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review.

    Science.gov (United States)

    Wang, Zhuhong; Chen, Jiubin; Zhang, Ting

    2017-05-18

    Copper (Cu) is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ 65 Cu (-16.49 to +20.04‰) in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals) behaviors in the environment and biological systems.

  2. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  3. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Zhuhong Wang

    2017-05-01

    Full Text Available Copper (Cu is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (−16.49 to +20.04‰ in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals behaviors in the environment and biological systems.

  4. Avoiding Panic and Keeping the Ports Open in a Chemical and Biological Threat Environment. A Literature Review

    National Research Council Canada - National Science Library

    Korpi, Tanja M; Hemmer, Christopher

    2005-01-01

    ... and biological threat environment. As a starting point for such a program, this study examines the extant literature on the psychology of risk assessment, warnings, sociological studies of reactions to disasters...

  5. How can increased use of biological N2 fixation in agriculture benefit the environment?

    International Nuclear Information System (INIS)

    Jensen, Erik Steen; Hauggaard-Nielsen, Henrik

    2001-01-01

    Asymbiotic, associative or symbiotic biological N 2 fixation (BNF), is a free and renewable resource, which should constitute an integral part of sustainable agro-ecosystems. Yet there has been a rapid increase in use of fertiliser N and a parallel decline in the cultivation of leguminous plants and BNF, especially in the developed world. Fertilisers have boosted crop yields, but intensive agricultural systems have increasingly negative effects on the atmospheric and aquatic environments. BNF, either alone or in combination with fertilisers and animal manures, may prove to be a better solution to supply nitrogen to the cropping systems of the future. This review focuses on the potential benefit of BNF on the environment especially on soil acidification, rhizosphere processes and plant CO 2 fixation. As fertiliser N has supplanted BNF in agriculture the re-substitution of BNF is considered. What is the consequence of fertiliser N production on energy use? The effect of fertiliser use on the release of the greenhouse gas CO 2 is estimated at approximately 1 % of the global anthropogenic emission of CO 2 . The role of BNF on nitrogen cycling, ammonia volatilisation, N 2 O emission and NO 3 leaching suggests that BNF is less likely than fertilisers to cause losses during pre-cropping and cropping. Sometimes however the post-harvest losses may be greater, due to the special qualities of legume residues. Nevertheless, legumes provide other 'ecological services' including improved soil structure, erosion protection and greater biological diversity. (author)

  6. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  7. Rapid, simple, and highly sensitive analysis of drugs in biological samples using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2012-01-01

    Rapid and precise identification of toxic substances is necessary for urgent diagnosis and treatment of poisoning cases and for establishing the cause of death in postmortem examinations. However, identification of compounds in biological samples using gas chromatography and liquid chromatography coupled with mass spectrometry entails time-consuming and labor-intensive sample preparations. In this study, we examined a simple preparation and highly sensitive analysis of drugs in biological samples such as urine, plasma, and organs using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry (TLC/MALDI/MS). When the urine containing 3,4-methylenedioxymethamphetamine (MDMA) without sample dilution was spotted on a thin-layer chromatography (TLC) plate and was analyzed by TLC/MALDI/MS, the detection limit of the MDMA spot was 0.05 ng/spot. The value was the same as that in aqueous solution spotted on a stainless steel plate. All the 11 psychotropic compounds tested (MDMA, 4-hydroxy-3-methoxymethamphetamine, 3,4-methylenedioxyamphetamine, methamphetamine, p-hydroxymethamphetamine, amphetamine, ketamine, caffeine, chlorpromazine, triazolam, and morphine) on a TLC plate were detected at levels of 0.05-5 ng, and the type (layer thickness and fluorescence) of TLC plate did not affect detection sensitivity. In addition, when rat liver homogenate obtained after MDMA administration (10 mg/kg) was spotted on a TLC plate, MDMA and its main metabolites were identified using TLC/MALDI/MS, and the spots on a TLC plate were visualized by MALDI/imaging MS. The total analytical time from spotting of intact biological samples to the output of analytical results was within 30 min. TLC/MALDI/MS enabled rapid, simple, and highly sensitive analysis of drugs from intact biological samples and crude extracts. Accordingly, this method could be applied to rapid drug screening and precise identification of toxic substances in poisoning cases and

  8. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  9. Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography-mass spectrometry for the determination of antidepressant drugs in biological fluids.

    Science.gov (United States)

    Kamaruzaman, Sazlinda; Sanagi, Mohd Marsin; Yahaya, Noorfatimah; Wan Ibrahim, Wan Aini; Endud, Salasiah; Wan Ibrahim, Wan Nazihah

    2017-11-01

    A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r 2  = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 77-82 ISSN 1469-0667 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube mass spectroscopy (SIFT-MS) * breath analysis * breath metabolities * flowing afterglow mass spectrometry (FA-MS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.198, year: 2007

  11. Screening and identification of antioxidants in biological samples using high-performance liquid chromatography-mass spectrometry and its application on Salacca edulis Reinw.

    Science.gov (United States)

    Shui, Guanghou; Leong, Lai Peng

    2005-02-23

    In this study, a new approach was developed for screening and identifying antioxidants in biological samples. The approach was based on significant decreases of the intensities of ion peaks obtained from high-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) upon reaction with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals. HPLC-MS/MS was further applied to elucidate structures of antioxidant peaks characterized in a spiking test. The new approach could also be used to monitor the reactivity of antioxidants in biological sample with free radicals. The approach was successfully applied to the identification of antioxidants in salak (Salacca edulis Reinw), a tropical fruit that is reported to be a very good source of natural antioxidants, but it was still not clear which compounds were responsible for its antioxidant property. The antioxidants in salak were identified to be chlorogenic acid, (-)-epicatechin, and singly linked proanthocyanidins that mainly existed as dimers through hexamers of catechin or epicatechin. In salak, chlorogenic acid was identified to be an antioxidant of the slow reaction type as it reacted with free radicals much more slowly than either (-)-epicatechin or proanthocyanidins. The new approach was proved to be useful for the characterization and identification of antioxidants in biological samples as a mass detector combined with an HPLC separation system not only serves as an ideal tool to monitor free radical active components but also provides their possible chemical structures in a biological sample.

  12. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    Science.gov (United States)

    Richardson, C. Doc; Hinman, Nancy W.; Scott, Jill R.

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  13. Systematic metabolite annotation and identification in complex biological extracts : combining robust mass spectrometry fragmentation and nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Hooft, van der J.J.J.

    2012-01-01

    Detailed knowledge of the chemical content of organisms, organs, tissues, and cells is needed to fully characterize complex biological systems. The high chemical variety of compounds present in biological systems is illustrated by the presence of a large variety of compounds, ranging from apolar

  14. Use of high-intensity sonication for pre-treatment of biological tissues prior to multielemental analysis by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    De La Calle, Inmaculada; Costas, Marta; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2012-01-01

    In this work, two ultrasound-based procedures are developed for sample preparation prior to determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Sr in biological tissues by total reflection X-ray fluorescence spectrometry. Ultrasound-assisted extraction by means of a cup-horn sonoreactor and ultrasonic-probe slurry sampling were compared with a well-established procedure such as magnetic agitation slurry sampling. For that purpose, seven certified reference materials and different real samples of animal tissue were used. Similar accuracy and precision is obtained with the three sample preparation approaches tried. Limits of detection were dependent on both the sample matrix and the sample pre-treatment used, best values being achieved with ultrasound-assisted extraction. Advantages of ultrasound-assisted extraction include reduced sample handling, decreased contamination risks (neither addition of surfactants nor use of foreign objects inside the extraction vial), simpler background (no solid particles onto the sample carrier) and improved recovery for some elements such as P. A mixture of 10% v/v HNO 3 + 20–40% v/v HCl was suitable for extraction from biological tissues. - Highlights: ► We implement high-intensity sonication for pre-treatment of biological tissues. ► Multielemental analysis is performed by total reflection X-ray spectrometry. ► Ultrasound-based procedures are developed and compared to conventional slurry preparation. ► Features such as background, recovery and sample handling are favored by using ultrasonic extraction.

  15. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1979-01-01

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  16. The Open Microscopy Environment: open image informatics for the biological sciences

    Science.gov (United States)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  17. Biochemical and biological responses in V79 cells grown in different background radiation environment

    International Nuclear Information System (INIS)

    Amicarelli, F.; Colafarina, S.; Ara, C.; Antonelli, F.; Balata, M.; Belli, M.; Simone, G.; Satta, L.

    2003-01-01

    Full text: In order to investigate the influence of a low background radiation environment on the biochemical and biological responses of mammalian cells cultured in vitro, a cell culture laboratory has been set up at the Gran Sasso National Laboratory (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN), located under the Gran Sasso d'Italia mountain, where cosmic rays are reduced by a factor of 10 6 and neutrons by a factor of 10 3 respect to the outside environment. Chinese hamster V79 cells were grown in parallel for up to nine months at LNGS and at the Istituto Superiore di Sanita (ISS). At the LNGS the exposure due to radon was reduced by a factor of about 25 with respect to the ISS. The biological end points addressed concerned cells proliferation, the expression of enzymes specific for the reduction of superoxydes, mutation induction by gamma-rays at the hprt locus and apoptotic sensitivity. After 9 months of culture, the cells grown at the LNGS, compared to the cells grown at the ISS, exhibit: i) a significant increase of the cell density at confluence; ii) a significantly higher capacity to scavenge organic and inorganic hydroperoxydes but a reduced scavenging capacity towards superoxide anions; iii) an increase in both the basal hprt mutation frequency and the sensitivity to the mutagenic effect of gamma-rays. The cells grown at the LNGS also show greater apoptotic sensitivity at the third month of culture that is no longer detected after nine months. Overall, these data suggest that cell response to ionizing radiation may be more complex than that predicted by a linear relationship with the dose and are consistent with the occurrence of an adaptive response related to the background radiation. However, other possibilities cannot be excluded such as the selection, in the two cultures, of clones having different characteristics, independently of the different radiation background. Work is in progress to better elucidate this point

  18. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    Science.gov (United States)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  19. Determination of boron and lithium in diverse biological matrices using neutron activation-mass spectrometry (NA-MS)

    International Nuclear Information System (INIS)

    Iyengar, G.V.; Downing, R.G.; Clarke, W.B.

    1990-01-01

    Essential features of the neutron activation-mass Spectrometry (NA-MS) technique are described. Applicability of this technique for the simultaneous determination of boron and lithium is demonstrated for a diverse group of biomaterials. NA-MS is a nondestructive analytical technique, and dynamic in nature since its coverage extends to a broad range of concentration levels. Contamination after the irradiation step, extraneous by natural lithium or boron is inconsequential, since only the activation products are the analyted assayed. Coupling the nuclear activation phenomenon which generates 4 He and 3 He (from 10 B and 6 Li, respectively), with the high precision potential of mass spectrometry forms the bases of this technique. Under ideal conditions the detection limit is extendable to pg g -1 concentration ranges and therefore, it is extremely well suited to investigate the natural concentration levels of boron and lithium in biomaterials. The potential of this method for the determination of lithium in biomedical trace element research is of special significance since determination of sub-ppb levels of lithium by other analytical techniques faces serious analytical difficulties mainly due to contamination control and in some cases to insufficiently low detection limits. (orig.)

  20. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms

    International Nuclear Information System (INIS)

    Casals, E; Gonzalez, E; Puntes, V F

    2012-01-01

    A deeper understanding of the behaviour of inorganic nanoparticles in biological media is needed not only to fully control and develop the potential of these materials but also to increase knowledge of the physical chemistry of inorganic materials when their morphology approaches that of molecular entities. Although this knowledge and control is not yet entirely acquired, industry and society are already using nanomaterials in greater quantities and in consumer products. As normally happens when something new arrives in society, the interest in the broader implications of this emerging technology has grown together with unfounded ‘nanoeuphoria’ and ‘nanoscares’. In this context, only by understanding the mechanisms of the nano-bio interaction will it be possible to safely develop nanotechnology. In this review, we discuss on how nanoparticles behave once they are naturally or intentionally produced and are exposed to humans and the environment. The response of nanoparticles inside organisms or released to the environment is complex and diverse, and depends on a variety of parameters involved. Mainly, they may (i) be aggregated into microscopic particles or embedded in exposed materials; (ii) the surfaces of the nanoparticles, which determine their bioactivity, experience constant modifications; and (iii) nanoparticles may corrode and dissolve or they can suffer morphological modifications.

  1. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms

    Science.gov (United States)

    Casals, E.; Gonzalez, E.; Puntes, V. F.

    2012-11-01

    A deeper understanding of the behaviour of inorganic nanoparticles in biological media is needed not only to fully control and develop the potential of these materials but also to increase knowledge of the physical chemistry of inorganic materials when their morphology approaches that of molecular entities. Although this knowledge and control is not yet entirely acquired, industry and society are already using nanomaterials in greater quantities and in consumer products. As normally happens when something new arrives in society, the interest in the broader implications of this emerging technology has grown together with unfounded ‘nanoeuphoria’ and ‘nanoscares’. In this context, only by understanding the mechanisms of the nano-bio interaction will it be possible to safely develop nanotechnology. In this review, we discuss on how nanoparticles behave once they are naturally or intentionally produced and are exposed to humans and the environment. The response of nanoparticles inside organisms or released to the environment is complex and diverse, and depends on a variety of parameters involved. Mainly, they may (i) be aggregated into microscopic particles or embedded in exposed materials; (ii) the surfaces of the nanoparticles, which determine their bioactivity, experience constant modifications; and (iii) nanoparticles may corrode and dissolve or they can suffer morphological modifications.

  2. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Gene-environment interaction in Major Depression: focus on experience-dependent biological systems

    Directory of Open Access Journals (Sweden)

    Nicola eLopizzo

    2015-05-01

    Full Text Available Major Depressive Disorder (MDD is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to life long risk for mental health outcomes. In this review we will discuss how genetic variants (polymorphisms, SNPs within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene X environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, in this review we aim to underlie the role of genetic and epigenetic processes involved in stress and neuroplasticity related biological systems on development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

  4. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    Science.gov (United States)

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  5. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction.

    Science.gov (United States)

    Deng, Fenfang; Yu, Hong; Pan, Xinhong; Hu, Guoyuan; Wang, Qiqin; Peng, Rongfei; Tan, Lei; Yang, Zhicong

    2018-02-23

    This paper demonstrated the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of five glycopeptide antibiotics in food and biological samples. The target glycopeptide antibiotics were isolated from the samples by solvent extraction, and the extracts were cleaned with a tandem solid-phase extraction step using mixed strong cation exchange and hydrophilic/lipophilic balance cartridges. Subsequently, the analytes were eluted with different solvents, and then quantified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Under optimal conditions, good linear correlations were obtained for the five glycopeptide antibiotics in the concentration range of 1.0 μg/L to 20.0 μg/L, and with linear correlation coefficients >0.998. Employing this method, the target glycopeptide antibiotics in food and biological samples were identified with a recovery of 83.0-102%, and a low quantitation limit of 1.0 μg/kg in food and 2.0 μg/L in biological samples with low matrix effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry

    Science.gov (United States)

    Kump, P.; Vogel-Mikuš, K.

    2018-05-01

    Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.

  7. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    Science.gov (United States)

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  8. Joint Bratislava–Prague studies of radiocarbon and uranium in the environment using accelerator mass spectrometry and radiometric methods

    Czech Academy of Sciences Publication Activity Database

    Povinec, P. P.; Světlík, Ivo; Ješkovský, M.; Sivo, A.; John, J.; Špendlíková, I.; Němec, M.; Kučera, Jan; Richtáriková, M.; Breier, R.; Fejgl, Michal; Černý, Radek

    2015-01-01

    Roč. 304, č. 1 (2015), s. 67-73 ISSN 0236-5731 Institutional support: RVO:61389005 Keywords : Accelerator mass spectrometry * Atmosphere * Environmental radioactivity * Radiocarbon * Tree rings * Uranium Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.983, year: 2015

  9. The matrix effect of biological concomitant element on the signal intensity of Ge, As, and Se in inductively coupled plasma/mass spectrometry

    International Nuclear Information System (INIS)

    Park, Kyung Su; Kim, Sun Tae; Kim, Young Man; Kim, Yun Je; Lee, Won

    2002-01-01

    The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 μg/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression . We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen

  10. Multiple analyte adduct formation in liquid chromatography-tandem mass spectrometry - Advantages and limitations in the analysis of biologically-related samples.

    Science.gov (United States)

    Dziadosz, Marek

    2018-05-01

    Multiple analyte adduct formation was examined and discussed in the context of reproducible signal detection in liquid chromatography-tandem mass spectrometry applied in the analysis of biologically-related samples. Appropriate infusion solutions were prepared in H 2 O/methanol (3/97, v/v) with 1 mM sodium acetate and 10 mM acetic acid. An API 4000 QTrap tandem mass spectrometer was used for experiments performed in the negative scan mode (-Q1 MS) and the negative enhanced product ion mode (-EPI). γ‑Hydroxybutyrate and its deuterated form were used as model compounds to highlight both the complexity of adduct formation in popular mobile phases used and the effective signal compensation by the application of isotope-labelled analytes as internal standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Rapid screening for drugs of abuse in biological fluids by ultra high performance liquid chromatography/Orbitrap mass spectrometry.

    Science.gov (United States)

    Jagerdeo, Eshwar; Schaff, Jason E

    2016-08-01

    We present a UPLC(®)-High Resolution Mass Spectrometric method to simultaneously screen for nineteen benzodiazepines, twelve opiates, cocaine and three metabolites, and three "Z-drug" hypnotic sedatives in both blood and urine specimens. Sample processing consists of a high-speed, high-temperature enzymatic hydrolysis for urine samples followed by a rapid supported liquid extraction (SLE). The combination of ultra-high resolution chromatography with high resolution mass spectrometry allows all 38 analytes to be uniquely detected with a ten minute analytical run. Limits of detection for all target analytes are 3ng/mL or better, with only 0.3mL of specimen used for analysis. The combination of low sample volume with fast processing and analysis makes this method a suitable replacement for immunoassay screening of the targeted drug classes, while providing far superior specificity and better limits of detection than can routinely be obtained by immunoassay. Published by Elsevier B.V.

  12. The Preservation of "Non-Biological" Environments in the Solar System

    Science.gov (United States)

    Hargrove, Eugene

    Nature preservation will be a central element of the exploration of the Solar System, whether this emphasis is initially planned for or not. Exploration of extraterrestrial environments will generate images and scientific information that will excite the imagination of the general public throughout the world and be supportive of more funding for exploration. However, damage to the environments visited, once made public, will likely generate a backlash against exploration programs that could inhibit exploration or even bring it completely to an end. The exploration in the nineteenth century of the western United States, with landscapes aesthetically very different from those found in Europe but very similar to those existing on the Moon and on Mars, provides an excellent indication of what will happen in off-planet exploration. Nearly every place painted by a major artist or photographed by a photographer on a geological survey during that time period is today a national park or national monument. If extraterrestrial environments are not protected, the major space societies that are currently enthusiastically supportive of space agencies around the world could become political opponents, much as the Sierra Club evolved into a serious and effective critic of the U.S. Forest Service and National Park Service in the United States. At a minimum, space agencies must be protective of the historical landing sites on the Moon, avoid strip mining on the Moon that may draw criticism, and protect major features on Mars from damage, such as the Cydonian Face on Mars, Valles Marineris, the grand canyon of Mars, and Olympus Mons, a mountain three times as tall as Mount Everest. A good first step might be to establish a world-heritage-style site to protect the visible side of the Moon. Although extraterrestrial sites may initially be labeled "non-biological," caution must be taken to be protective of possible extraterrestrial life, active or dormant, even in the most unlikely

  13. Accelerator mass spectrometry analysis of 14C-oxaliplatin concentrations in biological samples and 14C contents in biological samples and antineoplastic agents

    Science.gov (United States)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the 14C concentration in 14C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) - AMS system. The calibration curves of 14C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a 14C content of water in three vacuum blood collection tubes and a syringe were measured. 14C was not detected from water in these devices. The mean 14C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of 14C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, 14C contents of the antineoplastic agents were quantitated. 14C contents were different among 10 antineoplastic agents; 14C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  14. Accelerator mass spectrometry analysis of "1"4C-oxaliplatin concentrations in biological samples and "1"4C contents in biological samples and antineoplastic agents

    International Nuclear Information System (INIS)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-01-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the "1"4C concentration in "1"4C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) – AMS system. The calibration curves of "1"4C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a "1"4C content of water in three vacuum blood collection tubes and a syringe were measured. "1"4C was not detected from water in these devices. The mean "1"4C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of "1"4C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, "1"4C contents of the antineoplastic agents were quantitated. "1"4C contents were different among 10 antineoplastic agents; "1"4C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  15. Accelerator mass spectrometry analysis of {sup 14}C-oxaliplatin concentrations in biological samples and {sup 14}C contents in biological samples and antineoplastic agents

    Energy Technology Data Exchange (ETDEWEB)

    Toyoguchi, Teiko, E-mail: tteiko@med.id.yamagata-u.ac.jp [Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata 990-9585 (Japan); Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi [Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata 990-9585 (Japan); Kato, Kazuhiro; Tokanai, Fuyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata 990-8560 (Japan)

    2015-10-15

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the {sup 14}C concentration in {sup 14}C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) – AMS system. The calibration curves of {sup 14}C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a {sup 14}C content of water in three vacuum blood collection tubes and a syringe were measured. {sup 14}C was not detected from water in these devices. The mean {sup 14}C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of {sup 14}C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, {sup 14}C contents of the antineoplastic agents were quantitated. {sup 14}C contents were different among 10 antineoplastic agents; {sup 14}C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  16. Liquid chromatography coupled with tandem mass spectrometry for the quantitative analysis of anticancer drugs in biological matrices

    NARCIS (Netherlands)

    Stokvis, Ellen

    2004-01-01

    In this thesis, the development and validation of liquid chromatography tandem mass spectrometric (LC-MS/MS) methods for the quantitative bioanalysis of anticancer drugs are described. The monitoring of these drugs in biological fluids and tissues is important during both pre-clinical and clinical

  17. PENGARUH STRATEGI PEMBELAJARAN BIOLOGY ENVIRONMENT TECHNOLOGY SOCIETY (BETS) TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN HASIL BELAJAR BIOLOGI KELAS X KOTA MALANG

    OpenAIRE

    Eka Arum Sasi Mahardika; Hadi Suwono; Sri Endah Indriwati

    2016-01-01

    This study aims to determine the effect BETS learning to critical thinking skills and learning outcomes biology class X Senior High School in Malang. This research was conducted at SMAN 7 Malang from February-May 2016. Critical thinking skills and cognitive learning outcomes measured by a written test, whereas affective and psikomor measured by observations during the learning activities. Result critical thinking skills and cognitive learning outcomes were analyzed using statistical test with...

  18. Secondary ion mass spectrometry and environment. SIMS as applied to the detection of stable and radioactive isotopes in marine organisms

    International Nuclear Information System (INIS)

    Chassard-Bouchaud, C.; Escaig, F.; Hallegot, P.

    1984-01-01

    Several marine species of economical interest, Crustacea (crabs and prawns) and Molluscs (common mussels and oysters) were collected from coastal waters of France: English Channel, Atlantic Ocean and Mediterranean Sea and of Japan. Microanalyses which were performed at the tissue and cell levels, using Secondary Ion Mass Spectrometry, revealed many contaminants; stable isotopes as well as radioactive actinids such as uranium were detected. Uptake, storage and excretion target organs were identified [fr

  19. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Legg, Kevin M; Powell, Roger; Reisdorph, Nichole; Reisdorph, Rick; Danielson, Phillip B

    2017-03-01

    Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The detection and quantitative analysis of the psychoactive component of Salvia divinorum, salvinorin A, in human biological fluids using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    McDonough, Pamela C; Holler, Justin M; Vorce, Shawn P; Bosy, Thomas Z; Magluilo, Joseph; Past, Marilyn R

    2008-01-01

    Salvia divinorum, a member of the mint plant family, has hallucinogenic properties that have become increasingly sought after by recreational drug users. The main psychoactive component, salvinorin A, has potency comparable to lysergic acid diethylamide. Though still legal to possess in most of the United States and much of Europe, little is known regarding the compound's long-term health effects, addiction liability, and pharmacokinetics. Limited data are available in the scientific literature, and few analytical methods are published for the detection in human biological fluids. These factors contribute to the unfamiliarity of the compound and complicate the method development process necessary to accommodate special requested testing for salvinorin A. A sensitive analytical method for the detection and quantitation of salvinorin A in human biological fluids was developed and validated to resolve analytical shortcomings. The method utilizes a solid-phase extraction technique coupled with liquid chromatography-electrospray ionization mass spectrometry operated in selected ion monitoring mode. The assay has a linear range of 5.0-100 ng/mL with a correlation coefficient of 0.997. The limit of detection and limit of quantitation were experimentally determined as 2.5 and 5.0 ng/mL, respectively. The method has been applied to blood and urine samples successfully and can be used to detect the presence of salvinorin A in forensic testing.

  1. PENGARUH STRATEGI PEMBELAJARAN BIOLOGY ENVIRONMENT TECHNOLOGY SOCIETY (BETS TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN HASIL BELAJAR BIOLOGI KELAS X KOTA MALANG

    Directory of Open Access Journals (Sweden)

    Eka Arum Sasi Mahardika

    2016-08-01

    Penelitian ini bertujuan untuk mengetahui pengaruh pembelajaran BETS terhadap kemampuan berpikir kritis dan hasil belajar biologi  kelas X SMA Kota Malang. Penelitian ini dilaksanakan di SMAN 7 Malang pada bulan Februari-Mei 2016. Kemampuan berpikir kritis dan hasil belajar kognitif diukur melalui tes tulis sedangkan ranah afektif dan psikomor diukur melalui observasi selama pembelajaran. Data kemampuan berpikir kritis dan hasil belajar kognitif dianalisis menggunakan uji statistik dengan bantuan Software SPSS 22.0 for Window. Hasil penelitian menunjukkan bahwa ada pengaruh strategi BETS terhadap kemampuan berpikir kritis dan hasil belajar kognitif; afektif kelas eksperimen lebih tinggi dibandingkan kelas kontrol; psikomotor kelas kontrol lebih tinggi dibandingkan kelas kontrol.

  2. Thirteenth ISMAS symposium cum workshop on spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Alamelu, D.

    2008-01-01

    Mass spectrometry is an important analytical tool and finds applications in almost all branches of science and technology like Physics, Chemistry, Biology, Material Science, Geology, Nuclear Science, Industry, Oceanography, Environment etc. Innovations in the designs of mass spectrometers coupled with new ionization techniques have further strengthened the capabilities of mass spectrometry for analyzing all types of molecules including thermally labile and non-volatile at concentrations down to femto gram levels. The applications of mass spectrometry to the biomedical sciences have provided a unique, easy and fast approach to genomics, proteomics and metabolomics. The availability of different types of mass spectrometers for inorganic elemental and isotopic composition determination have strengthened the role of mass spectrometry for analyzing all elements starting from hydrogen onwards. It is now possible to carry out speciation analysis using electrospray mass spectrometry. The individual conference papers in the proceedings covers fundamentals of mass spectrometry, qualitative and quantitative aspects and data interpretation, maintenance of mass spectrometers, selection of mass spectrometer, and recent advances in the field. Papers relevant to INIS are indexed separately

  3. The determination of B and Sr isotopes of quaternary biologic fossils in Yanghuzhuang Yanqing basin and their living environment

    International Nuclear Information System (INIS)

    Xiao Yingkai; Xiao Jun; Zhao Zhiqi; He Maoyong; Li Shizhen

    2007-01-01

    The B and Sr isotopic compositions of early Quaternary biologic fossils in Yanghuzhuang and living bivalves in Weishui river were measured. Comparing with the data of marine foraminifer, the results show a non-marine living environment for these foraminifers lived in early Quaternary in Yanghuzhuang, Yanqing; Basin. (authors)

  4. Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples.

    Science.gov (United States)

    Piper, Thomas; Thevis, Mario

    2017-01-01

    The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail. © 2017 Elsevier Inc. All rights reserved.

  5. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Ziarrusta, Haizea; Val, Nahia; Dominguez, Haizea; Mijangos, Leire; Prieto, Ailette; Usobiaga, Aresatz; Etxebarria, Nestor; Zuloaga, Olatz; Olivares, Maitane

    2017-11-01

    This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine ten fluoroquinolones (FQs) (norfloxacin, enoxacin, pefloxacin, ofloxacin, levofloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, and sparfloxacin) in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile). The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the separation and detection steps. The extraction of analytes from fish tissues was accomplished using focused ultrasound solid-liquid extraction using methanol/acetic acid (95:5 v/v) as extractant. The preconcentration and clean-up steps were optimized in terms of extraction efficiency and cleanliness and the best strategy for each matrix was selected: (i) Oasis HLB for seawater and muscle, (ii) liquid-liquid extraction combined with Oasis HLB for the lipid-rich liver, (iii) the combination of Evolute-WAX and Oasis HLB for estuarine water and wastewater treatment plant effluent, and (iv) molecular imprinted polymers for biofluids. The methods afforded satisfactory apparent recoveries (80-126%) and repeatability (RSD < 15%), except for sparfloxacin, which showed a lack of correction with the available isotopically labeled surrogates ([ 2 H 8 ]-ciprofloxacin and [ 2 H 5 ]-enrofloxacin). Ciprofloxacin, norfloxacin, and ofloxacin were detected in both water and fish liver samples from the Biscay Coast at concentrations up to 278 ng/L and 4 ng/g, respectively. To the best of our knowledge, this work is one of the few analyzing up to ten FQs and in so many fish tissues and biofluids. Graphical abstract Determination of fluoroquinolones in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle

  6. Identification and characteristics of biological agents in work environment of medical emergency services in selected ambulances

    Directory of Open Access Journals (Sweden)

    Agata Bielawska-Drózd

    2017-08-01

    Full Text Available Objectives: Assessment of microbial air quality and surface contamination in ambulances and administration offices as a control place without occupational exposure to biological agents; based on quantitative and qualitative analysis of bacteria, yeasts and filamentous fungi found in collected samples. Material and Methods: The sampling was done by wet cyclone technology using the Coriolis recon apparatus, imprint and swab methods, respectively. In total, 280 samples from 28 ambulances and 10 offices in Warszawa were tested. Data was analyzed using Shapiro-Wilk normality test, Kruskal-Wallis test with α = 0.05. P value ≤ 0.05 was considered as significant. Results: The levels of air contamination were from 0 to 2.3×101 colony-forming unit (CFU/m3 for bacteria and for yeast and filamentous fungi were from 0 to 1.8×101 CFU/m3. The assessment of office space air samples has shown the following numbers of microorganisms: bacteria from 3.0×101 to 4.2×101 CFU/m3 and yeast and filamentous fungi from 0 to 1.9×101 CFU/m3. For surface contamination the mean bacterial count in ambulances has been between 1.0×101 and 1.3×102 CFU/25 cm2 and in offices – between 1.1×101 and 8.5×101 CFU/25 cm2. Mean fungal count has reached the level from 2.8×100 to 4.2×101 CFU/25 cm2 in ambulances and 1.3×101 to 5.8×101 CFU/25 cm2 in offices. The qualitative analysis has revealed the presence of Acinetobacter spp. (surfaces, coagulase – negative Staphylococci (air and surfaces, Aspergillus and Penicillium genera (air and surfaces. Conclusions: The study has revealed a satisfactory microbiological quantity of analyzed air and surface samples in both study and control environments. However, the presence of potentially pathogenic microorganisms in the air and on surfaces in ambulances may endanger the medical emergency staff and patients with infection. Disinfection and cleaning techniques therefore should be constantly developed and implemented. Int J Occup

  7. Identification and characteristics of biological agents in work environment of medical emergency services in selected ambulances.

    Science.gov (United States)

    Bielawska-Drózd, Agata; Cieślik, Piotr; Wlizło-Skowronek, Bożena; Winnicka, Izabela; Kubiak, Leszek; Jaroszuk-Ściseł, Jolanta; Depczyńska, Daria; Bohacz, Justyna; Korniłłowicz-Kowalska, Teresa; Skopińska-Różewska, Ewa; Kocik, Janusz

    2017-06-19

    Assessment of microbial air quality and surface contamination in ambulances and administration offices as a control place without occupational exposure to biological agents; based on quantitative and qualitative analysis of bacteria, yeasts and filamentous fungi found in collected samples. The sampling was done by wet cyclone technology using the Coriolis recon apparatus, imprint and swab methods, respectively. In total, 280 samples from 28 ambulances and 10 offices in Warszawa were tested. Data was analyzed using Shapiro-Wilk normality test, Kruskal-Wallis test with α = 0.05. P value ≤ 0.05 was considered as significant. The levels of air contamination were from 0 to 2.3×101 colony-forming unit (CFU)/m3 for bacteria and for yeast and filamentous fungi were from 0 to 1.8×101 CFU/m3. The assessment of office space air samples has shown the following numbers of microorganisms: bacteria from 3.0×101 to 4.2×101 CFU/m3 and yeast and filamentous fungi from 0 to 1.9×101 CFU/m3. For surface contamination the mean bacterial count in ambulances has been between 1.0×101 and 1.3×102 CFU/25 cm2 and in offices - between 1.1×101 and 8.5×101 CFU/25 cm2. Mean fungal count has reached the level from 2.8×100 to 4.2×101 CFU/25 cm2 in ambulances and 1.3×101 to 5.8×101 CFU/25 cm2 in offices. The qualitative analysis has revealed the presence of Acinetobacter spp. (surfaces), coagulase - negative Staphylococci (air and surfaces), Aspergillus and Penicillium genera (air and surfaces). The study has revealed a satisfactory microbiological quantity of analyzed air and surface samples in both study and control environments. However, the presence of potentially pathogenic microorganisms in the air and on surfaces in ambulances may endanger the medical emergency staff and patients with infection. Disinfection and cleaning techniques therefore should be constantly developed and implemented. Int J Occup Med Environ Health 2017;30(4):617-627. This work is available in Open Access

  8. Data management in the modern structural biology and biomedical research environment.

    Science.gov (United States)

    Zimmerman, Matthew D; Grabowski, Marek; Domagalski, Marcin J; Maclean, Elizabeth M; Chruszcz, Maksymilian; Minor, Wladek

    2014-01-01

    Modern high-throughput structural biology laboratories produce vast amounts of raw experimental data. The traditional method of data reduction is very simple-results are summarized in peer-reviewed publications, which are hopefully published in high-impact journals. By their nature, publications include only the most important results derived from experiments that may have been performed over the course of many years. The main content of the published paper is a concise compilation of these data, an interpretation of the experimental results, and a comparison of these results with those obtained by other scientists.Due to an avalanche of structural biology manuscripts submitted to scientific journals, in many recent cases descriptions of experimental methodology (and sometimes even experimental results) are pushed to supplementary materials that are only published online and sometimes may not be reviewed as thoroughly as the main body of a manuscript. Trouble may arise when experimental results are contradicting the results obtained by other scientists, which requires (in the best case) the reexamination of the original raw data or independent repetition of the experiment according to the published description of the experiment. There are reports that a significant fraction of experiments obtained in academic laboratories cannot be repeated in an industrial environment (Begley CG & Ellis LM, Nature 483(7391):531-3, 2012). This is not an indication of scientific fraud but rather reflects the inadequate description of experiments performed on different equipment and on biological samples that were produced with disparate methods. For that reason the goal of a modern data management system is not only the simple replacement of the laboratory notebook by an electronic one but also the creation of a sophisticated, internally consistent, scalable data management system that will combine data obtained by a variety of experiments performed by various individuals on diverse

  9. Microdetermination of lead, cadmium, zinc and tin in biological and related materials by atomic absorption spectrometry after mineralisation and extraction

    International Nuclear Information System (INIS)

    Boiteau, H.L.; Metayer, C.

    1978-01-01

    Two technics permitting to determine either lead, cadmium and zinc, or tin in any biological material (blood, urines, organs, alimentary products of animal or vegetable origin) are described. Every operation (mineralisation and extraction) is made in the same tube and technics, conceived in a way to simplify the manipulations and to reduce the more possible the contamination risks are suitable for determination in series. By working on trial samples near 250 mg, the lower determination limits are around 2 ppb for cadmium, 40 ppb for lead and tin and 2 ppm for zinc. The repeatability studies of different technical stages show that mineralisation and extraction only have a weak incidence on the acccuracy of the results [fr

  10. Psychological Effects towards Humans Living in the Environment Made of Biological Concrete in Malaysia at 2015

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2017-01-01

    Full Text Available In day-to-day life concrete become a compulsory material in the construction field as to make it a real concern among researchers for producing concrete with improved properties. Biological method is one of the new methods to improve concrete properties. Although, much research about biological concrete has been carried out, but till now nobody has not studied for the psychological effects of using a house or offices made up of biological concrete. The aim of this study is to investigate and find out the person's opinion about staying in a house or offices made up of biological concrete. In this study, a questionnaire containing eight questions was prepared and distributed among 21 persons in Malaysia University of Technology including students, academic and non-academic staffs among which few of them was an expert in the field of biological concrete and others did not have any knowledge about the bioconcrete. Finally, the results obtained from the questionnaires were analyzed. The results showed that 81% of participants in this study would like to stay in a house or office made up of biological concrete. However, 38% of participants believe that staying in a house or office made of biological concrete can cause health related problems. The current research paper can be considered significant for architects and civil engineers to have the insight to look into the psychological aspects of using biological concrete for various applications in the field of construction.

  11. Photodegradation of multiclass fungicides in the aquatic environment and determination by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Celeiro, Maria; Facorro, Rocio; Dagnac, Thierry; Vilar, Vítor J P; Llompart, Maria

    2017-08-01

    The photodegradation behaviour for nine widespread fungicides (benalaxyl, cyprodinil, dimethomorph, fenhexamide, iprovalicarb, kresoxim-methyl, metalaxyl, myclobutanil and tebuconazole) was evaluated in different types of water. Two different systems, direct UV photolysis and UVC/H 2 O 2 advanced oxidation process (AOP), were applied for the photodegradation tests. For the monitoring of the target compound degradation, a method based on direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Several fungicide photodegradation by-products were tentatively identified by high-resolution mass spectrometry (HRMS) as well. For the photolysis studies, the efficiency of different types of radiation, UVC (λ = 254 nm) and UVA (λ = 365 nm), was compared. UVC photolysis provided the highest removal with a complete degradation for fenhexamide and kresoxim-methyl, and percentages between 48 and 78% for the other compounds, excluding iprovalicarb and myclobutanil with removals <35%, after 30 min of irradiation. Besides, the photodegradation tests were performed with different initial concentrations of fungicides, and the efficiency of two photoreactor systems was compared. In all cases, the kinetics followed pseudo-first order, and the half-life times could also be calculated. The addition of H 2 O 2 under UVC light allowed an improvement of the reaction kinetics, especially for the most recalcitrant fungicides, obtaining in all cases removals higher than 82% in less than 6 min. Finally, in order to evaluate the suitability of the proposed systems, both UVC photolysis and UVC/H 2 O 2 system were tested in different real water matrices (wastewater, tap water, swimming pool water and river water), showing that the UVC/H 2 O 2 system had the highest removal efficiency in less than 6 min, for all water samples.

  12. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples.

    Science.gov (United States)

    Niu, Zongliang; Yu, Chunwei; He, Xiaowen; Zhang, Jun; Wen, Yingying

    2017-09-05

    A salting-out assisted liquid-liquid extraction (SALLE) combined with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of four pyrethroid insecticides (PYRs) in high salinity and biological samples. Several parameters including sample pH, salting-out solution volume and salting-out solution pH influencing the extraction efficiency were systematically investigated with the aid of orthogonal design. The optimal extraction conditions of SALLE were: 4mL of salting-out solution with pH=4 and the sample pH=3. Under the optimum extraction and determination conditions, good responses for four PYRs were obtained in a range of 5-5000ng/mL, with linear coefficients greater than 0.998. The recoveries of the four PYRs ranged from 74% to 110%, with standard deviations ranging from 1.8% to 9.8%. The limits of detection based on a signal-to-noise ratio of 3 were between 1.5-60.6ng/mL. The method was applied to the determination of PYRs in urine, seawater and wastewater samples with a satisfactory result. The results demonstrated that this SALLE-GC-MS method was successfully applied to determine PYRs in high salinity and biological samples. SALLE avoided the need for the elimination of salinity and protein in the sample matrix, as well as clean-up of the extractant. Most of all, no centrifugation or any special apparatus are required, make this a promising method for rapid sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Determination of trace elements in biological samples treated with formic acid by inductively coupled plasma mass spectrometry using a microconcentric nebulizer

    International Nuclear Information System (INIS)

    Tormen, Luciano; Gil, Raul A.; Frescura, Vera L.A.; Dante Martinez, Luis; Curtius, Adilson J.

    2010-01-01

    A simple and fast method for the determination of As, Ba, Cd, Co, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Rb, Se, Sr, Tl, U, V and Zn in biological samples by inductively coupled plasma mass spectrometry (ICP-MS), after sample solubilization with formic acid and introduction by a microconcentric nebulizer, is proposed. The sample is mixed with formic acid, kept at 90 o C for one hour and then diluted with nitric acid aqueous solution to a 50% v/v formic acid and 1% v/v nitric acid final concentrations. The final sample solution flow rate for introduction into the plasma was 30 μL min -1 . The optimized and adopted nebulizer gas flow rate was 0.7 L min -1 and RF power was 800 W. These conditions are very different than those normally used when a conventional nebulizer is employed. Rodhium was used as internal standard. External calibration against aqueous standard solutions, without formic acid, could be used for quantification, except for As, Se and Zn. However, external calibration with 50% formic acid allows the determination of all analytes with high accuracy and it is recommended. The detection limits were between 0.0005 (Tl) and 0.22 mg kg -1 (Fe) and the precision expressed by the relative standard deviations (RSD) were between 0.2% (Sr) and 3.5% (Ga). Accuracy was validated by the analysis of four certified reference biological materials of animal tissues, comparing the results by linear regressions and by the t-test at a 95% confidence level. The recommended procedure avoids plasma instability and carbon deposit on the cones.

  14. Metabolomic Profiling of the Effects of Melittin on Cisplatin Resistant and Cisplatin Sensitive Ovarian Cancer Cells Using Mass Spectrometry and Biolog Microarray Technology

    Directory of Open Access Journals (Sweden)

    Sanad Alonezi

    2016-10-01

    Full Text Available In the present study, liquid chromatography-mass spectrometry (LC-MS was employed to characterise the metabolic profiles of two human ovarian cancer cell lines A2780 (cisplatin-sensitive and A2780CR (cisplatin-resistant in response to their exposure to melittin, a cytotoxic peptide from bee venom. In addition, the metabolomics data were supported by application of Biolog microarray technology to examine the utilisation of carbon sources by the two cell lines. Data extraction with MZmine 2.14 and database searching were applied to provide metabolite lists. Principal component analysis (PCA gave clear separation between the cisplatin-sensitive and resistant strains and their respective controls. The cisplatin-resistant cells were slightly more sensitive to melittin than the sensitive cells with IC50 values of 4.5 and 6.8 μg/mL respectively, although the latter cell line exhibited the greatest metabolic perturbation upon treatment. The changes induced by melittin in the cisplatin-sensitive cells led mostly to reduced levels of amino acids in the proline/glutamine/arginine pathway, as well as to decreased levels of carnitines, polyamines, adenosine triphosphate (ATP and nicotinamide adenine dinucleotide (NAD+. The effects on energy metabolism were supported by the data from the Biolog assays. The lipid compositions of the two cell lines were quite different with the A2780 cells having higher levels of several ether lipids than the A2780CR cells. Melittin also had some effect on the lipid composition of the cells. Overall, this study suggests that melittin might have some potential as an adjuvant therapy in cancer treatment.

  15. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  16. Simultaneous determination of macro and trace elements in biological reference materials by microwave induced plasma optical emission spectrometry with slurry sample introduction

    International Nuclear Information System (INIS)

    Matusiewicz, Henryk; Golik, Bartosz

    2004-01-01

    A slurry sampling technique (SST) has been utilized for simultaneous multi-element analysis by microwave-induced plasma optical emission spectrometry (MIP-OES). Slurry samples from a spray chamber are fed directly into the microwave cavity-torch assembly (power 300 W) with no desolvation apparatus. The performance of SST-MIP-OES was demonstrated by the determination of macro (Na, K, Ca, Mg, P) and trace (Cd, Cu, Mn, Sr, Zn) elements in three biological certified reference materials using a V-groove, clog-free Babington-type nebulizer. Slurry concentrations up to 1% m/v (particles 3 (pH 1.2) containing 0.01% of Triton X-100, were used with calibration by the standard additions method. The method offers relatively good precision (R.S.D. ranged from 7 to 11%) with measured concentrations being in satisfactory agreement with certified values for NRCC TORT-1 (Lobster hepatopancreas), NRCC LUTS-1 (Lobster hepatopancreas) and IAEA-153 (Milk powder). The concentrations of Na, K, Ca, Mg, P and Cd, Cu, Mn, Sr, Zn were determined in the range 90-22 000 μg/g and 1-420 μg/g, respectively. The method could be useful as a routine procedure

  17. Simultaneous determination of macro and trace elements in biological reference materials by microwave induced plasma optical emission spectrometry with slurry sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, Henryk E-mail: Henryk.Matusiewicz@put.poznan.pl; Golik, Bartosz

    2004-05-21

    A slurry sampling technique (SST) has been utilized for simultaneous multi-element analysis by microwave-induced plasma optical emission spectrometry (MIP-OES). Slurry samples from a spray chamber are fed directly into the microwave cavity-torch assembly (power 300 W) with no desolvation apparatus. The performance of SST-MIP-OES was demonstrated by the determination of macro (Na, K, Ca, Mg, P) and trace (Cd, Cu, Mn, Sr, Zn) elements in three biological certified reference materials using a V-groove, clog-free Babington-type nebulizer. Slurry concentrations up to 1% m/v (particles <20 {mu}m), prepared in 10% HNO{sub 3} (pH 1.2) containing 0.01% of Triton X-100, were used with calibration by the standard additions method. The method offers relatively good precision (R.S.D. ranged from 7 to 11%) with measured concentrations being in satisfactory agreement with certified values for NRCC TORT-1 (Lobster hepatopancreas), NRCC LUTS-1 (Lobster hepatopancreas) and IAEA-153 (Milk powder). The concentrations of Na, K, Ca, Mg, P and Cd, Cu, Mn, Sr, Zn were determined in the range 90-22 000 {mu}g/g and 1-420 {mu}g/g, respectively. The method could be useful as a routine procedure.

  18. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples.

    Science.gov (United States)

    Lind, Mads V; Savolainen, Otto I; Ross, Alastair B

    2016-08-01

    Data quality is critical for epidemiology, and as scientific understanding expands, the range of data available for epidemiological studies and the types of tools used for measurement have also expanded. It is essential for the epidemiologist to have a grasp of the issues involved with different measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses, focusing on metabolites and their application and potential issues related to large-scale epidemiology studies, the use of MS "omics" approaches for biomarker discovery and how MS-based results can be used for increasing biological knowledge gained from epidemiological studies. Better understanding of the possibilities and possible problems related to MS-based measurements will help the epidemiologist in their discussions with analytical chemists and lead to the use of the most appropriate statistical tools for these data.

  19. Analysis of cocaine and its metabolites from biological specimens using solid-phase extraction and positive ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Crouch, D J; Alburges, M E; Spanbauer, A C; Rollins, D E; Moody, D E

    1995-10-01

    An accurate and reliable gas chromatographic-mass spectrometric method was developed to analyze tissue, whole blood, plasma, and urine samples for cocaine (COC) and its major metabolites. COC, benzoylecgonine (BZE), and ecgonine methyl ester (EME) were isolated from the biological matrix using solid-phase extraction, and the tert-butyldimethylsilyl derivatives of BZE, EME, and their deuterium-labeled internal standards were formed. Separation of the compounds was performed by capillary chromatography, and analysis was performed by positive ion chemical ionization mass spectrometry using methane and ammonia as the reagent gases. The tert-butyldimethylsilyl derivatives of BZE and EME were stable and produced mass spectral ions with higher mass-to-charge ratios than trimethylsilyl derivatives. Recovery of COC and its metabolites exceeded 80% at all three concentrations tested. Linearity of the method was established from 2.5 to 2000 microg/L. Intra-assay precision had a coefficient of variation (CV) of less than 9% for all analytes when tested at 10, 25, 100, and 200 microg/L. Interassay precision also had a CV of less than 9% for COC, BZE, and EME at 25 and 100 microg/L. At 200 microg/L, %CVs for COC, BZE, and EME were 11.5, 12.0, and 12.7, respectively. In addition to the analysis of COC, BZE, and EME, the method was used to quantitate cocaethylene and to identify norcocaine.

  20. Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, C.; Sanz Landaluze, J.; Ximenez-Embun, P.; Madrid-Albarran, Y.; Camara, C

    2004-01-16

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MC column were in-house developed and multicapillary column was operated at moderate temperatures (30-100 deg. C). The method was optimized for organo-selenium species (dimethylselenide (DMSe), diethylselenide (DEtSe) and dimethyldiselenide (DMDSe)), using a chemometric approach. Stationary phases for the separation column were optimized using a conventional GC and contrasted with the results obtained with the MC. Application was focussed on selenium accumulating biological matter, such as lupine, yeast, Indian mustard and garlic. These samples were grown in hydroponic solution containing inorganic selenium (Na{sub 2}SeO{sub 3} and Na{sub 2}SeO{sub 4}). SPME sampling was carried out in fixed volume flow boxes in headspace above the living plants and in vials using treated samples. Results demonstrate inorganic selenium transformation into volatile organic species during metabolism. Separation is fast, a chromatogram can be obtained in less than 3 min and detection limits were at sub-ppb level for all investigated species. The system is independent from the use of a conventional gas chromatographic oven and can be used as a versatile alternative to highly cost intensive methods such as GC-ICP-MS.

  1. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Method development for speciation analysis of nanoparticle and ionic forms of gold in biological samples by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Malejko, Julita; Świerżewska, Natalia; Bajguz, Andrzej; Godlewska-Żyłkiewicz, Beata

    2018-04-01

    A new method based on coupling high performance liquid chromatography (HPLC) to inductively coupled plasma mass spectrometry (ICP MS) has been developed for the speciation analysis of gold nanoparticles (AuNPs) and dissolved gold species (Au(III)) in biological samples. The column type, the composition and the flow rate of the mobile phase were carefully investigated in order to optimize the separation conditions. The usefulness of two polymeric reversed phase columns (PLRP-S with 100 nm and 400 nm pore size) to separate gold species were investigated for the first time. Under the optimal conditions (PLRP-S400 column, 10 mmol L-1 SDS and 5% methanol as the mobile phase, 0.5 mL min-1 flow rate), detection limits of 2.2 ng L-1 for Au(III), 2.8 ng L-1 for 10 nm AuNPs and 3.7 ng L-1 for 40 nm AuNPs were achieved. The accuracy of the method was proved by analysis of reference material RM 8011 (NIST) of gold nanoparticles of nominal diameter of 10 nm. The HPLC-ICP MS method has been successfully applied to the detection and size characterization of gold species in lysates of green algae Acutodesmus obliquus, typical representative of phytoplankton flora, incubated with 10 nm AuNPs or Au(III).

  3. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  4. Developing Navy Capability to Recover Forces in Chemical, Biological, and Radiological Hazard Environments

    Science.gov (United States)

    2013-01-01

    damage control; LHD flight deck and well deck operations; fleet surgical team; Afloat Training Group; Assault Craft Unit; Naval Surface Warfare Center ...Biological, Radiological and Nuclear School, and U.S. Army Edgewood Chemical Biological Center , Guidelines for Mass Casualty Decontamination During a HAZMAT...Policy Center of the RAND National Defense Research Institute, a federally funded research and development center sponsored by OSD, the Joint Staff

  5. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments

    OpenAIRE

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M.; Alcamí, Antonio; Gutiérrez-Bustillo, A. Montserrat; Moreno, Diego A.

    2016-01-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entit...

  6. Relationship of Ambient Atmosphere and Biological Aerosol Responses from a Fielded Pyrolysis-Gas Chromatography-Ion Mobility Spectrometry Bioanalytical Detector

    National Research Council Canada - National Science Library

    Snyder, A

    2003-01-01

    .... A pyrolysis-gas chromatography-ion mobility spectrometry stand-alone bioaerosol system was interfaced to an aerosol concentrator to collect ambient background aerosols and produce bioanalytical...

  7. Plutonium, its occurrence in environment and methods of detection

    Energy Technology Data Exchange (ETDEWEB)

    Petr, I [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska

    1977-12-01

    A brief survey is given of the physical properties of plutonium nuclides, their toxicity, values of maximum permissible annual intake, and their occurrence in the environment, and of their determination in water, soil, air and biological objects. The principles are stated of the individual methods of plutonium determination, i.e., the method of radiochemical analysis with subsequent detection or alpha spectrometry, the method of filter sampling of air with subsequent alpha spectrometry, coincidence alpha-beta spectrometry or radiochemical analysis, and the use of X and gamma spectrometry. A comparison of the different methods is presented.

  8. Determination of organoarsenicals in the environment by solid-phase microextraction-gas chromatography-mass spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Szostek, B.; Aldstadt, J. H.; Environmental Research

    1998-05-22

    The development of a method for the analysis of organoarsenic compounds that combines dithiol derivatization with solid-phase microextraction (SPME) sample preparation and gas chromatography-mass spectrometry (GC-MS) is described. Optimization focused on a SPME-GC-MS procedure for determination of 2-chlorovinylarsonous acid (CVAA), the primary decomposition product of the chemical warfare agent known as Lewisite. Two other organoarsenic compounds of environmental interest, dimethylarsinic acid and phenylarsonic acid, were also studied. A series of dithiol compounds was examined for derivatization of the arsenicals, and the best results were obtained either with 1,3-propanedithiol or 1,2-ethanedithiol. The derivatization procedure, fiber type, and extraction time were optimized. For CVAA, calibration curves were linear over three orders of magnitude and limits-of-detection were <6x10{sup -9} M in solution, the latter a more than 400x improvement compared to conventional solvent extraction GC-MS methods. A precision of <10% R.S.D. was typical for the SPME-GC-MS procedure. The method was applied to a series of water samples and soil/sediment extracts, as well as to aged soil samples that had been contaminated with Lewisite.

  9. Determination of Pb-210 and U-238 in environment samples by direct measurement using low energy γ spectrometry

    International Nuclear Information System (INIS)

    Godoy, J.M. de; Mendonca, A.H.; Sachett, I.A.

    1985-01-01

    The determination of Pb-210 and U-238 by γ spectrometry in environmental samples was carried out using the 47 KeV (4%) line for Pb-210 and the 63 KeV (3,9%) line from Th-234 to U-238. An intrinsic Ge detector with 0,8 KeV resolution for the 60 KeV line of Am-41 was employed. The eficiency was determined by using the radionuclide water solution. The samples were measured in a cylindric geometry with 7 cm diameter and 3 cm hight with a mass ranging from 25 to 180g, depending on the density. The self absorption correction factor for each sample was determined by using an external source of Pb-210 and Am-241. The results showed good agreement with the radiochemical analysis values. The diferences were lower than 20%; the detection limit changed from sample to sample staying on the pCi/g range for the 200 minutes couting time. (Author) [pt

  10. The drivers of corporate environment inputs: Based on neo-institution theory evidence from Chinese listed biological and other companies.

    Science.gov (United States)

    Guo, Rui; Tao, Lan; Yan, Liang; Chen, Lianfang; Wang, Haijun

    2014-09-01

    From corporate internal governance structure and external institutional environment, this study uses a legitimacy perspective of intuitional theory to analyze the main influence factors on corporate environmental protection inputs and propose some hypotheses. With the establishment of empirical models, it analyzes the data of 2004-2009 listed biological and other companies in China to test the hypotheses. The findings are concluded that in internal institutional environment, the nature of the controlling shareholder, the proportion of the first shareholder in the ownership structure, the combination of chairman and general manager in board efficiency and the intensity of environmental laws and regulations of the industry in external institutional environment have an significant impact on the behaviors of corporate environmental protection inputs.

  11. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Czech Academy of Sciences Publication Activity Database

    Domazet Jurašin, D.; Ćurlin, M.; Capjak, I.; Crnković, T.; Lovrić, M.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 7, 15 Feb (2016), s. 246-262 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : biological fluids * colloidal stability * maghemite Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.127, year: 2016

  12. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  13. Applicability of cloud point extraction for the separation trace amount of lead ion in environmental and biological samples prior to determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2016-09-01

    Full Text Available A sensitive cloud point extraction procedure(CPE for the preconcentration of trace lead prior to its determination by flame atomic absorption spectrometry (FAAS has been developed. The CPE method is based on the complex of Pb(II ion with 1-(2-pyridylazo-2-naphthol (PAN, and then entrapped in the non-ionic surfactant Triton X-114. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PAN and Triton X-114, equilibration temperature and time, were investigated in detail. A preconcentration factor of 30 was obtained for the preconcentration of Pb(II ion with 15.0 mL solution. Under the optimal conditions, the calibration curve was linear in the range of 7.5 ng mL−1–3.5 μg mL−1 of lead with R2 = 0.9998 (n = 10. Detection limit based on three times the standard deviation of the blank (3Sb was 5.27 ng mL−1. Eight replicate determinations of 1.0 μg mL−1 lead gave a mean absorbance of 0.275 with a relative standard deviation of 1.6%. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed method has been applied for determination of trace amounts of lead in biological and water samples with satisfactory results.

  14. Study of the movement of metallic pollutants in the physical environment and biological chains

    International Nuclear Information System (INIS)

    Bittel, R.; Magnaval, R.

    1976-01-01

    The authors describe, giving examples, the use of nuclear and non-nuclear techniques in studying the movement of metallic elements capable of contaminating the environment, man and various other organisms. A brief account is given of the methods employed. Emphasis is placed on obtaining data which can be used in predicting the harm which may result in the long term for man and the environment from increases in the concentrations of metallic pollutants. (author)

  15. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  17. Biological effects of transuranic elements in the environment: human effects and risk estimates

    International Nuclear Information System (INIS)

    Thompson, R.C.; Wachholz, B.W.

    1980-01-01

    The potential for human effects from environmentally dispersed transuranic elements is briefly reviewed. Inhalation of transuranics suspended in air and ingestion of transuranics deposited on or incorporated in foodstuffs are the significant routes of entry. Inhalation is probably the more important of these routes because gastrointestinal absorption of ingested transuranics is so inefficient. Major uncertainties are those concerned with substantially enhanced absorption by the very young and the possibility of increased availability as transuranics become incorporated in biological food chains

  18. Biological model of vision for an artificial system that learns to perceive its environment

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, M.R.; Nguyen, H.G.

    1989-06-01

    The objective is to design an artificial vision system for use in robotics applications. Because the desired performance is equivalent to that achieved by nature, the authors anticipate that the objective will be accomplished most efficiently through modeling aspects of the neuroanatomy and neurophysiology of the biological visual system. Information enters the biological visual system through the retina and is passed to the lateral geniculate and optic tectum. The lateral geniculate nucleus (LGN) also receives information from the cerebral cortex and the result of these two inflows is returned to the cortex. The optic tectum likewise receives the retinal information in a context of other converging signals and organizes motor responses. A computer algorithm is described which implements models of the biological visual mechanisms of the retina, thalamic lateral geniculate and perigeniculate nuclei, and primary visual cortex. Motion and pattern analyses are performed in parallel and interact in the cortex to construct perceptions. We hypothesize that motion reflexes serve as unconditioned pathways for the learning and recall of pattern information. The algorithm demonstrates this conditioning through a learning function approximating heterosynaptic facilitation.

  19. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  20. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B. [Lab. Pierre Sue, CEA-CNRS UMR 9956, CEA/Saclay, Gif-sur-Yvette (France); Coves, J. [Inst. de Biologie Structurale - J.-P. Ebel, Lab. des Proteines Membranaires, Grenoble (France); Hazemann, J.L. [Lab. de Geophysique Interne et Tectonopbysique, UMR CNRS/Univ. Joseph Fourier, Saint-Martin-D' Heres (France)

    2009-07-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  1. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    International Nuclear Information System (INIS)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B.; Coves, J.; Hazemann, J.L.

    2009-01-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  2. Determination of the distribution of uranium and the transuranic elements in the environment by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Chastagner, P.

    1987-01-01

    Protection of the world population from releases of uranium, plutonium, and other transuranic materials requires, among other things, a knowledge of the sources, transport, and distribution of these elements in the environment. Both isotopic and quantitative analytical data are required in the determination of these factors. Also, the analyses must be precise and accurate enough to distinguish newly released material from older material such as the worldwide deposits from atmospheric weapons testing. For this reason, uranium, neptunium, and plutonium and other transuranic elements in the environment are routinely determined by high-sensitivity thermal ionization mass spectrometric techniques. With current instrumentation and techniques, routine isotope dilution and isotopic analyses are made with purified elemental samples as small as 2 x 10 -14 g. The detection limit for uranium and most of the transuranic isotopes is ∼ 5 x 10 18 g (∼ 13,000 atoms), which is at least an order of magnitude better than the detection limits of the radiometric counting techniques normally employed. The mass spectral sensitivities are equal for all of the isotopes of a given element but vary from element to element. Thus, each elemental sample must be highly purified. Separation techniques recover ∼ 80% of the uranium and the transuranic material from soils and other materials. Interelement separation factors > 10 5 are achieved with advanced ion exchange methods. Results of recent application of these techniques at the Savannah River Lab. and other laboratories are include

  3. Reconstructing the deposition environment and long-term fate of Chernobyl 137Cs at the floodplain scale through mobile gamma spectrometry.

    Science.gov (United States)

    Varley, Adam; Tyler, Andrew; Bondar, Yuri; Hosseini, Ali; Zabrotski, Viachaslau; Dowdall, Mark

    2018-09-01

    Cs-137 is considered to be the most significant anthropogenic contributor to human dose and presents a particularly difficult remediation challenge after a dispersal following nuclear incident. The Chernobyl Nuclear Power Plant meltdown in April 1986 represents the largest nuclear accident in history and released over 80 PBq of 137 Cs into the environment. As a result, much of the land in close proximity to Chernobyl, which includes the Polessie State Radioecology Reserve in Belarus, remains highly contaminated with 137 Cs to such an extent they remain uninhabitable. Whilst there is a broad scale understanding of the depositional patterns within and beyond the exclusion zone, detailed mapping of the distribution is often limited. New developments in mobile gamma spectrometry provide the opportunity to map the fallout of 137 Cs and begin to reconstruct the depositional environment and the long-term behaviour of 137 Cs in the environment. Here, full gamma spectrum analysis using algorithms based on the peak-valley ratio derived from Monte Carlo simulations are used to estimate the total 137 Cs deposition and its depth distribution in the soil. The results revealed a pattern of 137 Cs distribution consistent with the deposition occurring at a time of flooding, which is validated by review of satellite imagery acquired at similar times of the year. The results were also consistent with systematic burial of the fallout 137 Cs by annual flooding events. These results were validated by sediment cores collected along a transect across the flood plain. The true merit of the approach was confirmed by exposing new insights into the spatial distribution and long term fate of 137 Cs across the floodplain. Such systematic patterns of behaviour are likely to be fundamental to the understanding of the radioecological behaviour of 137 Cs whilst also providing a tracer for quantifying the ecological controls on sediment movement and deposition at a landscape scale. Copyright © 2018

  4. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards Biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; den Brok, P.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  5. World, environment, Umwelt, and innerworld: a biological perspective on visual awareness

    Science.gov (United States)

    Koenderink, Jan J.

    2013-03-01

    The world is all physical reality (Higgs bosons, and so forth), the "environment" is a geographical locality (your city, …), the "Umwelt" is the totality of possible actions of the environment on the sensitive body surface of an agent (you, your dog, …) and the possible actions of the agent on the environment (mechanical, chemical, …), whereas the "innerworld" is what it is for the agent to be, that is awareness. Awareness is pre-personal, proto-conscious, and (perhaps) proto-rational. The various "worlds" described above are on distinct ontological levels. The world, and the environment are studied in the exact sciences, the Umwelt is studied by physiology and ethology. Ethology is like behavioristic psychology, with the difference that it applies to all animals. It skips the innerworld, e.g., it considers speech to be a movement of air molecules.The innerworld can only be known through first person reports, thus is intrinsically subjective. It can only be approached through "experimental phenomenology", which is based on intersubjectivity among humans. In this setting speech may mean something in addition to the movements of molecules. These views lead to a model of vision as an "optical user interface". It has consequences for many applications.

  6. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; Brok, den P.J.; Fisher, D. L.; Khine, M. S.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  7. Evaluation of biological properties and fate in the environment of a new class of biosurfactants.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Delbeke, Elisabeth I P; Van Geem, Kevin M; Stevens, Christian V

    2018-06-01

    Selected sophorolipid quaternary ammonium salts (SQAS), being a new class of modified biosurfactants, were studied in this work for the first time with regard to their biodegradability and fate in the environment. It was made to find whether environment-friendly bioproducts like biosurfactants are still safe to the environment after their chemical modification. The susceptibility of these SQAS for biodegradation was estimated together with the evaluation of their influence on activated sludge microorganisms. Additionally, the mechanisms of removal of the SQAS from wastewater and from the aquatic environment, were analysed. The evaluated SQAS were potentially biodegradable, although none of them could be classified as readily biodegradable. The biodegradation degrees after 28 days ranged from 4 to 42%, dependent on the SQAS tested, i.e. below the required OECD 301D Closed Bottle Test level of 60%. Simultaneously, the analysis of the mass spectra revealed the presence of the breakdown products of each SQAS studied. Biodegradation was preceded by sorption of the SQAS on sludge particles, which occurred to be a main mechanism of the removal of these newly synthesized biosurfactants from wastewater. The mean degree of sorption calculated on the basis of SQAS determination was from 75 to 96%, dependent on the studied SQAS. The presence of SQAS in wastewater did not deteriorate the operation of the activated sludge system, although the products of the SQAS biodegradation remained in the liquid phase and might contribute to the increase of COD of the effluent to be introduced to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  9. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment.

    Science.gov (United States)

    Krauss, Martin; Wilcke, Wolfgang; Martius, Christopher; Bandeira, Adelmar G; Garcia, Marcos V B; Amelung, Wulf

    2005-05-01

    To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m(-3) in air (>85% of the sum of 21PAHs concentration), up to 1000 microg kg(-1) in plants (>90%), 477 microg kg(-1) in litter (>90%), 32 microg kg(-1) in topsoil (>90%), and 160 microg kg(-1) (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 microg kg(-1)), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 microg kg(-1) compared to atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin.

  10. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment

    International Nuclear Information System (INIS)

    Krauss, Martin; Wilcke, Wolfgang; Martius, Christopher; Bandeira, Adelmar G.; Garcia, Marcos V.B.; Amelung, Wulf

    2005-01-01

    To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m -3 in air (>85% of the Σ21PAHs concentration), up to 1000 μg kg -1 in plants (>90%), 477 μg kg -1 in litter (>90%), 32 μg kg -1 in topsoil (>90%), and 160 μg kg -1 (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 μg kg -1 ), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 μg kg -1 compared to -1 in interior parts) and high PERY concentrations in all compartments (12-86 μg kg -1 ), indicating an in situ production of PERY in the nests. Our results demonstrate that the deposition of pyrolytic PAHs from the atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin. - Evidence of non-pyrolytic, biogenic production of PAHs is provided

  11. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Science.gov (United States)

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  12. A review of the biological and geochemical behaviour of technetium in the marine environment

    International Nuclear Information System (INIS)

    Beasley, T.M.; Lorz, H.V.

    1986-01-01

    Present understanding of the behavior of Tc in the marine environment is summarised. The prevalent valence state of Tc in oxygenated seawater is +7, arguing that pertechnetate ion, TcO - 4 , represents the most likely form of this radioelement in seawater. Laboratory experiments using radio-labeled pertechnetate ion have shown that binding of this anion to different classes of marine sediments is slight. Concentration factors for the majority of marine organisms studied to date are small; notable exceptions are seen in certain species of brown algae, polychaetes and macrocrustaceans. Uptake and loss kinetics are generally rapid with the majority of the Tc being associated with shell, exoskeleton and gut. There are, as yet, no data supporting the contention that stable element analogs such as iodate can be used to predict the long-term behavior of 99 Tc (as pertechnetate) in the marine environment. (author)

  13. Microbial load in indoor sport environments: new quality issues by molecular biology

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano Spica

    2004-12-01

    Full Text Available

    The quality of hygiene found in sporting environments represents an emergent requirement in societies of industrialised countries.

    Besides safety issues, the microbial load of indoor air, water and surfaces affects comfort and performance. Recent studies have identified fungi as the quantitatively most important component, of unhealthy indoor air.

    Few studies have been carried out regarding indoor sport, recreational and rehabilitative facilities, such as swimming pools, saunas and spas. The aim of our study is to determine the extent of fungal and microbial contamination in indoor swimming pool environments, by means of both morphological and molecular typing of isolated species.

    Establishment of appropriate standardised monitoring procedures prevents infections and improves quality.

  14. Indoor environment and children's health: recent developments in chemical, biological, physical and social aspects.

    Science.gov (United States)

    Le Cann, Pierre; Bonvallot, Nathalie; Glorennec, Philippe; Deguen, Séverine; Goeury, Christophe; Le Bot, Barbara

    2011-12-01

    Much research is being carried out into indoor exposure to harmful agents. This review focused on the impact on children's health, taking a broad approach to the indoor environment and including chemical, microbial, physical and social aspects. Papers published from 2006 onwards were reviewed, with regards to scientific context. Most of publications dealt with chemical exposure. Apart from the ongoing issue of combustion by-products, most of these papers concerned semi volatile organic compounds (such as phthalates). These may be associated with neurotoxic, reprotoxic or respiratory effects and may, therefore, be of particular interest so far as children are concerned. In a lesser extent, volatile organic compounds (such as aldehydes) that have mainly respiratory effects are still studied. Assessing exposure to metals is still of concern, with increasing interest in bioaccessibility. Most of the papers on microbial exposure focused on respiratory tract infections, especially asthma linked to allergens and bio-aerosols. Physical exposure includes noise and electromagnetic fields, and articles dealt with the auditory and non auditory effects of noise. Articles on radiofrequency electromagnetic fields mainly concerned questions about non-thermal effects and papers on extremely low-frequency magnetic fields focused on the characterization of exposure. The impact of the indoor environment on children's health cannot be assessed merely by considering the effect of these different types of exposure: this review highlights new findings and also discusses the interactions between agents in indoor environments and also with social aspects. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Multidimensional Gamma-Ray Spectrometry and its Use in Biology; La Spectrometry Gamma Multidimensionnelle et son Application en Biologie; Mnogomernaya spektrometriya gamma-luchej i ee ispol'zovanie v biologii; La Espectrometria Gamma Multidimensional y su Empleo en Biologia

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J. M.; Kornberg, H. A. [Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, WA (United States)

    1965-10-15

    Multidimensional gamma-ray spectrometry is a new technique for the measurement of radionuclides which has special application in biology. This instrumental technique allows direct identification and measurement of individual gamma-ray emitters in complex mixtures of radionuclides in diverse sample matrices without prior chemical treatment. The detector system is designed to provide: high sensitivity through use of two large (6-in diam., 4-in thick) Nal(Tl) detectors; high selectivity by using coincidence counting techniques which separate gamma ray spectra by taking advantage of the gamma-ray decay characteristics of each radionuclide ; and ultra-low background and reduced Compton interference through a surrounding anticoincidence annulus detector (a NaI(Tl) crystal 11 Vulgar-Fraction-One-Half -in thick with a 6 Vulgar-Fraction-One-Half - in - diam. hole). A 4096-channel multidimensional analyser analyses the two gamma-rays in coincidence according to their energies and stores them in the plane of the 64 X 64-channel memory while non-coincident events are stored only on the axes of the memory. This effectively decreases the background and Compton interference by orders of magnitude while greatly improving the selectivity. Direct gamma-ray spectrometric measurement of trace levels of radionuclides in biological samples has been inhibited by the presence of relatively large amounts of natural 4 Degree-Sign K whose 1.47 MeV gamma-radiation has interfered with their measurement. Since most radionuclides decay through emission of two or more gamma-rays in cascade the new technique does provide a direct selective measurement and permits wider application. For example, {sup 22}Na (a naturally occurring cosmic-ray produced radionuclide), {sup 134}Cs and {sup 137}Cs (fission products) can be readily measured at existing levels (in some cases at less than 1 dpmAg) in meat, fish, foodstuffs, as well as in urine, so that uptake-excretion studies are possible. This technique

  16. Mutagenic potential scale developed for relative evaluation of biological system response to environments presenting different gamma exposure rates

    International Nuclear Information System (INIS)

    Nouailhetas, Yannick; Almeida, Carlos E. Bonacossa de; Mezrahi, Arnaldo; Shu, Jane; Xavier, Ana Maria

    1999-01-01

    The elaboration of a mutagenic potential scale (MPS) will be accomplished through the evaluation of the frequency of induced mutations in a plant biological system in different sites. The selection of these sites will be based on general public perception of risk to health. In this selection, it will include areas such ecological paradises and also neighborhoods of nuclear reactors and uranium mining and milling industry with potential radiological impact. The developed project foresees the contribution of other research groups that will also provide data from different sites. The referred scale will be built based on the response of the genetic system that gives color to the cells of Tradescantia (BNL 4430) stamen hair to mutagenic agents. Methodological improvements has been developed aiming the computerization of mutagenic events evaluation and statistical analysis of data that will significantly increase the efficiency of the system and obtention of results. Other biological systems of environmental quality are being added to the project, for future use. MPS should facilitate the general public and professionals of the nuclear area to understand risks, on a biological basis, of exposure from radiologically impacted environments. (author)

  17. An Advanced Environment for Hybrid Modeling of Biological Systems Based on Modelica

    Directory of Open Access Journals (Sweden)

    Proß Sabrina

    2011-03-01

    Full Text Available Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process.

  18. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry

    International Nuclear Information System (INIS)

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U.

    2007-01-01

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS-bar 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9ng/L detection limit) and analyzed low-volume water samples (200mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110ng/L) were significantly higher (P w/w each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC

  19. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U

    2007-01-01

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS# 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9 ng/L detection limit) and analyzed low-volume water samples (200 mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110 ng/L) were significantly higher (P1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS# 4300-43-0). Both newly detected compounds were present as impurities (0.2%(w/w) each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.

  20. Effects of space environment on biological characters of cultured rose seedlings

    Science.gov (United States)

    Min, L.; Huai, X.; Jinying, L.; Yi, P.; Chunhua, Z.

    Cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology cytology physiology and molecular biology of the seedlings After loaded on the space flight the plant s height number of leaves and fresh weight per seedling were all increased significantly compared to the ground controls The content of chlorophyll was basically unchanged In some cells the ultrastructural changes involved twist contraction and deformation of cell wall curvature and loose arrangement of lamellae of some chloroplasts and a significant increase in number of starch grains per chloroplast In addition the number of mitochondria increased but some mitochondrial outer membrane broke and some mitochondrial cristae disappeared The activities of the defense enzymes such as superoxide dismutase peroxidase and catalyse in rose leaves increased and the content of malondialdehyde decreased In the RAPD analysis with 40 10-mer primers 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls and five primers amplified polymorphic products The rate of DNA variation was 6 34

  1. Study of the interaction of multiply charged ions and complex systems of biological interest: effects of the molecular environment

    International Nuclear Information System (INIS)

    Capron, Michael

    2011-01-01

    This PhD thesis describes the experimental study of the interaction between slow multiply charged ions (tens of keV) and molecular systems of biological interest (amino acids and nucleobases). It is the aim to identify and to better understand the effect of a molecular environment on different collision induced phenomena. To do so, the time of flight spectra of cationic products emerging from collisions with isolated molecules as well as clusters are compared. It is shown that the molecular environment protects the molecule as it allows to distribute the transferred energies and charges over the whole system (global decrease of the fragmentation and quenching of some fragmentation channels). Furthermore, in the case of adenine clusters, the molecular environment weakens some intramolecular bonds. Moreover, products of chemical reactions are observed concerning proton transfer processes in hydrated cluster of adenine and the formation of peptides bonds between beta-alanine molecules in a cluster. The latter finding is studied as a function of the cluster size and type of the projectile. Some criteria for peptide bond formation, such as flexibility and geometry of the molecule, are investigated for different amino acids. (author)

  2. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  3. Silica- and silylated europium-based luminescent hybrids: new analysis tools for biological environments

    International Nuclear Information System (INIS)

    Pereira Duarte, Adriana

    2012-01-01

    The association of the very interesting luminescence properties of the lanthanide chelates with the physicochemical properties of inorganic matrix such as silica is a promising way to obtain new probes or luminescent markers for biology analyses. In this idea, this work focuses on the preparation of new hybrid materials based on the grafting of new europium(III) complexes on silica nanoparticles. These europium complexes were developed in our group using bifunctional ligands containing both complexing and grafting sites. Intrinsic characteristic of the ligands gives us the ability to make a covalent bond between the material surface and the complex. Two different methodologies were used; the first one is the direct grafting reaction involving the complex and silica nanoparticles (i.e. dense or meso-porous particles). The second one is the Stoeber reaction, where the SiO 2 nanoparticles were prepared in presence of the europium complex. The last methodology has an additional difficult, because of the presence of silylated europium complex, it needs a closer control of the physicochemical conditions. The new organic-inorganic hybrid materials, obtained in this work, present an interesting luminescence behavior and this one is depending on the localization of the europium complex, i.e. on the surface or within the nanoparticles. In addition, the obtained hybrids present the nano-metric dimension and the complex is not leachable. Analyses were realized to describe the luminescence properties, beyond surface and structural characteristics. Initial results show that the new hybrids are promising candidates for luminescent bio-markers, particularly for the time-resolved analysis. (author) [fr

  4. Contamination of mercury in the biological and physical environment of northwest Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Delisle, C E

    1977-10-01

    Mercury and its compounds are present in the environment of northwest Quebec and present serious risks to human health. This study shows that all bodies of water investigated yield fish with mercury concentrations in excess of the Canadian safe limit (0.5 ppm) for human consumption. Data are reported for total mercury in 902 fishes from 58 bodies of water sampled between 1972 and 1976. Out of these, 158 were Coregonus clupeaformis with an average concentration of 0.27 ppm of mercury, 82 were Catostomus commersoni with 0.38 ppm, 287 were Stizostedion vitreum vitreum with 0.79 ppm, 364 were Esox lucius with 0.84 ppm, and 11 were Acipenser fulvescens with 0.36 ppm. It is concluded that walleye and pike are rarely safe to eat in northwest Quebec. Data on limited numbers of molluscs, benthic organisms, plankton, aquatic birds and aquatic mammals from this area are also reported and show only a few in excess of the safe level. Exceptions are found in ducks, grebes, mergansers and otters, mink and marten. Mercury in sediments varied from 50 ppb (background level) to more than 1000 ppb, depending on the body of water and its proximity to zones of influence of human activity. Surface waters rarely exceed 0.20 ppb mercury even in areas where sediment contamination is high. Ground water reached 48 ppb in some areas, however, suggesting contamination from natural sources.

  5. Biological pathways and chemical behavior of plutonium and other actinides in the environment

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Bondietti, E.A.; Eyman, L.D.

    1976-01-01

    The principal long-lived actinide elements that may enter the environment from either U or Pu fuel cycles are Pu, Am, Cm, and Np. Approximately 25% of the alpha activity estimated to be released to the atmosphere from the LMFBR fuel cycle will be contributed by 241 Am, 242 Cm, and 244 Cm. The balance of the alpha activity will come from Pu isotopes. Activities of 242 Cm, 244 Cm, 241 Am, 243 Am, and 237 Np in waste may exceed concentrations of Pu isotopes in waste after various periods of decay. Thorium and uranium isotopes may also be released by operations of the thorium fuel cycle. Environmental actinides are discussed under the following headings: sources of man-made actinide elements; pathways of exposure; environmental chemistry of actinides; uptake of actinides by plants; distribution of actinides in components of White Oak Lake; entry of actinides into terrestrial food chains; relationship between chemical behavior and uptake of actinides by organisms; and behavior of Pu in freshwater and marine food chains

  6. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays

    NARCIS (Netherlands)

    Bults, Peter; van de Merbel, Nico C; Bischoff, Rainer

    2015-01-01

    The quantification of proteins (biopharmaceuticals or biomarkers) in complex biological samples such as blood plasma requires exquisite sensitivity and selectivity, as all biological matrices contain myriads of proteins that are all made of the same 20 proteinogenic amino acids, notwithstanding

  7. Applications of 14C-AMS on archaeology, climate, environment, geology, oceanography and biology

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Anjos, R.M.; Macario, K.D.; Santos, G.M.

    2005-01-01

    The first experiment discusses the chronology of prehistoric settlements of the central-south Brazilian coast. In the southern Brazilian coast there is a high density of these shellmounds, dated in general between 6,000 and 2,000 BP. A charcoal sample from a coastal shellmound of Rio de Janeiro State was dated by 14 C-AMS to 7,860±80 years BP. This is an unexpected result that pulls back by some two thousand years the antiquity consensually accepted for the settlement of that region. We performed an experiment concerning the isotopic signature of the local waters of an important Brazilian coastal upwelling, located in Arraial do Cabo, R.J., with applications in the fields of Oceanography and Marine Ecology. We assess the contribution of the wind-driven coastal upwelling of Arraial do Cabo to the local biological production. The variation of the carbon isotopic compositions was investigated in a population of a seaweed. Upwelling events were simulated in the laboratory, in order to study three regimes: total upwelling (SACW), partial upwelling (mixed water) and no-upwelling (TW). Water samples were collected at 70 m depth (SACW) and at 10 m (TW). The seaweed was cultivated during seven days, in controlled conditions, into the three mentioned types of water. The results of 14 C-AMS measurements in the seaweed tissue show a clear indication of difference in the isotopic signature of the water sources, allowing to infer the differences of the water sources. We believe that the present results contribute to opening new perspectives for the use of 14 C as a tracer of the biological production in upwelling areas all over the world. The next reported experiment is on climate at the Amazon region. An increase in the Hg flux is a strong indicator of disturbance in a forest ecosystem related to abrupt changes in the water balance, and its changes reflect changes in the ocean and average regional temperatures. In regions where the geological background of mercury is

  8. Biological transfer of radionuclides in marine environments - Identifying and filling knowledge gaps for environmental impact assessments

    International Nuclear Information System (INIS)

    Brown, J.E.; Borretzen, P.; Hosseini, A.; Iosjpe, M.

    2004-01-01

    A review on concentration factors (CF) for the marine environment was conducted in order to consider the relevance of existing data from the perspective of environmental protection and to identify areas of data paucity. Data have been organised in a format compatible with a reference organism approach, for selected radionuclides, and efforts have been taken to identify the factors that may be of importance in the context of dosimetric and dose-effects analyses. These reference organism categories had been previously selected by identifying organism groups that were likely to experience the highest levels of radiation exposure, owing to high uptake levels or residence in a particular habitat, for defined scenarios. Significant data gaps in the CF database have been identified, notably for marine mammals and birds. Most empirical information pertains to a limit suite of radionuclides, particularly 137 Cs, 210 Po and 99 Tc. A methodology has been developed to help bridge this information deficit. This has been based on simple dynamic, biokinetic models that mainly use parameters derived from laboratory-based study and field observation. In some cases, allometric relationships have been employed to allow further model parameterization. Initial testing of the model by comparing model output with empirical data sets suggest that the models provide sensible equilibrium CFs. Furthermore, analyses of modelling results suggest that for some radionuclides, in particularly those with long effective half-lives, the time to equilibrium can be far greater than the life-time of an organism. This clearly emphasises the limitations of applying a universal equilibrium approach. The methodology, therefore, has an added advantage that non-equilibrium scenarios can be considered in a more rigorous manner. Further refinements to the modelling approach might be attained by exploring the importance of various model parameters, through sensitivity analyses, and by identifying those

  9. Proceedings of twelfth ISMAS symposium cum workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Alamelu, D.; Jaison, P.G.; Aggarwal, S.K.

    2007-03-01

    Mass Spectrometry is an important analytical tool and has encompassed almost all branches of science and technology including Agricultural, biology, Chemistry, Earth sciences, environment, Forensic Science, Medical Sciences, Hydrology, Nuclear Technology, Oceanography, Physics etc. Recent advancements in the instrumentation of Mass Spectrometry have further strengthened its role for various applications. It is indeed a matter of great pleasure to present this special Issue of ISMAS Bulletin which is brought out on the occasion of the 12th ISMAS Symposium cum Workshop on Mass spectrometry (12th ISMAS-WS 2007) being held at Cidade-de-Goa, Dona Paula, Goa from March 25 to 30, 2007 in association with National Institute of Oceanography, Goa. This Symposium cum Workshop is co-sponsored by Scientific Departments of Government of India. Papers relevant to INIS are indexed separately

  10. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  11. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples

    NARCIS (Netherlands)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-01-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid

  12. Review: LC coupled to low- and high-resolution mass spectrometry for new psychoactive substance screening in biological matrices - Where do we stand today?

    Science.gov (United States)

    Meyer, Markus R; Maurer, Hans H

    2016-07-13

    The field of new psychoactive substances (NPS) is highly dynamic and the situation changes from year to year. Therefore, the current review provides a timely update about the latest developments to help analysts keep the pace with NPS distribution. It covers PubMed-listed studies published between January 2014 and January 2016 dealing with the application of liquid chromatography (LC) coupled low- and high-resolution mass spectrometry (MS) for broad screenings for NPS in clinical (CT) and forensic (FT) toxicology. Latest developments and applications are highlighted and selected papers critically discussed. Comprehensive tables summarizing all discussed articles complete the overview. Finally, an outlook on the future of LC coupled MS in CT and FT is provided and readers will learn why low-resolution mass spectrometry might remain the standard for the next couple of years at least for easy-to-use quantitative screening procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS).

    Science.gov (United States)

    Vu, Dai Long; Ranglová, Karolína; Hájek, Jan; Hrouzek, Pavel

    2018-05-01

    Quantification of selenated amino-acids currently relies on methods employing inductively coupled plasma mass spectrometry (ICP-MS). Although very accurate, these methods do not allow the simultaneous determination of standard amino-acids, hampering the comparison of the content of selenated versus non-selenated species such as methionine (Met) and selenomethionine (SeMet). This paper reports two approaches for the simultaneous quantification of Met and SeMet. In the first approach, standard enzymatic hydrolysis employing Protease XIV was applied for the preparation of samples. The second approach utilized methanesulfonic acid (MA) for the hydrolysis of samples, either in a reflux system or in a microwave oven, followed by derivatization with diethyl ethoxymethylenemalonate. The prepared samples were then analyzed by multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS). Both approaches provided platforms for the accurate determination of selenium/sulfur substitution rate in Met. Moreover the second approach also provided accurate simultaneous quantification of Met and SeMet with a low limit of detection, low limit of quantification and wide linearity range, comparable to the commonly used gas chromatography mass spectrometry (GC-MS) method or ICP-MS. The novel method was validated using certified reference material in conjunction with the GC-MS reference method. Copyright © 2018. Published by Elsevier B.V.

  14. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  15. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Eichert, D.; Salome, M.; Banu, M.; Susini, J.; Rey, C.

    2005-01-01

    Several reports have mentioned the existence of non-apatitic environments of phosphate and carbonate ions in synthetic and biological poorly crystalline apatites. However there were no direct spectroscopic evidences for the existence of non-apatitic environment of calcium ions. X-ray Absorption Spectroscopy, at the K-edge of calcium, allows the discrimination between different calcium phosphates of biological interest despite great spectral similarities. A primary analysis of the spectra reveals the existence, in synthetic poorly crystalline apatites, of variable features related to the maturation stage of the sample and corresponding to the existence of non-apatitic environments of calcium ions. Although these features can also be found in several other calcium phosphate salts, and do not allow a clear identification of the ionic environments of calcium ions, they give a possibility to directly determine the maturity of poorly crystalline apatite from calcium X-ray Absorption Near Edge Structure spectra

  16. Environment

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    IGT's efforts in environmental protection are primarily concerned with reducing the level of undesirable emissions from combustion, treating solid and liquid waste materials, and producing cleaner fuels. Projects being funded include: an ultra-low-emission gas-fired cyclonic burner for firetube boiler retrofit; a combination of IGT's de-NOX technology for municipal solid waste combustors with the injection of sorbents to reduce pollutants; second-generation NOx reduction techniques for regenerative glass melting furnaces; investigation of the applicability of electric DC field flame stabilization; development of a slagging cyclonic combustor for a class of industrial solid wastes; remediation research of various biological, chemical, and thermal technologies for cleaning and/or immobilizing contaminants in soils and sludges; and fuel cell research on molten carbonate and solid oxide fuel cells

  17. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis

    International Nuclear Information System (INIS)

    Hutchinson, Thomas H.; Lyons, Brett P.; Thain, John E.; Law, Robin J.

    2013-01-01

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  18. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    Science.gov (United States)

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed 'legacy contaminants'; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however,the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  19. On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lemos, Valfredo A.; Bezerra, Marcos A.; Amorim, Fabio A.C.

    2008-01-01

    In the present paper, an on-line preconcentration procedure for determination of cadmium, copper and zinc by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) is proposed. Amberlite XAD-4 functionalized with 3,4-dihydroxybenzoic acid (XAD4-DHB) packed in a minicolumn was used as sorbent material. The metals were retained on the XAD-DHB resin, from which it could be eluted directly to the thermospray flame furnace system. The detection limits were 28 (Cd), 100 (Cu) and 77 ng L -1 (Zn) for 60 s preconcentration time, at a sample flow rate of 7.0 mL min -1 . Enrichment factors were 102, 91 and 62, for cadmium, copper and zinc, respectively. The procedure has been applied successfully to metal determination in biological standard reference materials

  20. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  1. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  2. Ultra-trace determination of iodine in sediments and biological material using UV photochemical generation-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Patricia [Institute for National Measurements Standards, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada)], E-mail: patricia.grinberg@nrc.ca; Sturgeon, Ralph E. [Institute for National Measurements Standards, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada)

    2009-03-15

    Several sample preparation techniques have been evaluated for the determination of iodine using UV-photochemical generation-quadrupole inductively coupled plasma mass spectrometry. Thermal decomposition of samples at 1000 {sup o}C followed by capture of the liberated iodine in dilute acetic acid permitted subsequent UV-photochemical generation of a volatile iodine species that serves to enhance sensitivity 25-fold over conventional solution nebulization, delivering reagent blank detection limits of 8.75 pg g{sup -1127}I and 0.075 pg g{sup -1129}I for solid samples (400 mg test mass). The methodology was validated through determination of total iodine in several Standard Reference Materials, including NIST 1572 Citrus leaves, NIST 1549 Non-fat milk powder, NIST 1566a Oyster tissue and NIST 2709 San Joaquin Soil. Liberation of iodine from samples and its collection as well as photochemical generation were quantitative, permitting calibration to be achieved using standards prepared in dilute acetic acid.

  3. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    International Nuclear Information System (INIS)

    Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe

    2015-01-01

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays

  4. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    Energy Technology Data Exchange (ETDEWEB)

    Baldassarre, Francesca, E-mail: francesca.baldassarre@unisalento.it [University of Salento, Department of Cultural Heritage (Italy); Cacciola, Matteo, E-mail: matteo.cacciola@unirc.it [University “Mediterranea” of Reggio Calabria, DICEAM (Italy); Ciccarella, Giuseppe, E-mail: giuseppe.ciccarella@unisalento.it [University of Salento, Department of Innovation Engineering (Italy)

    2015-09-15

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  5. Ninth ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2000-12-01

    Mass spectrometry has wide-ranging applications in such diverse areas as nuclear industry, agriculture, drugs, environment, petroleum and lentils. There is an urgent need to absorb and assimilate state-of-the-art technological developments in the field. Emerging trends in atomic mass spectrometry, advances in organic mass spectrometry, qualitative and quantitative analyses by mass spectrometry and mass spectrometry in oceanography are some of the areas that need to be expeditiously examined and are covered in this volume. Papers relevant to INIS are indexed separately

  6. Hydrologic and geochemical controls on the transport of radionuclides in natural undisturbed arid environments as determined by accelerator mass spectrometry measurements

    International Nuclear Information System (INIS)

    Nimz, G; Caffee, M W; McAninch, J

    2000-01-01

    This project developed techniques for measuring globally distributed radionuclides that occur today in extremely low abundances (''fallout'' from the era of atmospheric nuclear testing), and then applied these techniques to better understand the mechanisms by which radionuclides migrate. The techniques employ accelerator mass spectrometry (AMS), a relatively new analytical tool that permits this work to be conducted for the first time. The goal in this project was to develop AMS analytical techniques for 129 I (fallout concentration: ∼ 10 6 atoms/g) 99 Tc (∼ 10 9 atoms/g), 90 Sr (∼10 7 atoms/gram soil), and 93 Zr (∼ 10 9 atoms/g), and improved methods for 36 Cl (∼ 10 9 atoms/g). As a demonstration of the analytical techniques, and as an investigation of identified problems associated with characterizing moisture and radionuclide movement in unsaturated desert soils, we developed a vadose zone research site at the Nevada Test Site. Our findings can be summarized as follows: (1) The distribution of chloride and 36 Cl at the research site indicates that the widely-used ''chloride accumulation'' method for estimating moisture flux is erroneous; some mechanism for attenuation of chloride exists, violating an assumption of the accumulation method; (2) 129 I is fractionated into several soil compartments that have varying migration abilities; the two most mobile can be tentatively identified as Fe/Mn oxyhydroxides and organic acids based on our sequential leaching techniques; (3) These most mobile constituents are capable of migrating at a rate greater than that of 36 Cl, usually considered the most mobile solute in hydrologic systems; these constituents may be colloidal in character, of neutral surface charge, and therefore conservative in aqueous migration; (4) 99 Tc is readily measurable by AMS, as we demonstrate by the first AMS 99 Tc measurements of contaminated waters; extraction of 99 Tc from silicate soils is difficult, but can be done using the extended

  7. Isotope dilution mass spectrometry as the primary method of measurement for the amount of matter. Application to cadmium determination in biological materials and comparison with instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Munoz, Luis; Gras, Nuri; Quejido, Alberto; Ferrada, Carlos

    2001-01-01

    A primary method of measurement as defined by the Consultative Committee on the Quantity of Matter (Comite Consultatif pour la Quantite de Matiere, CCQM) of the International Bureau of Weights and Measurements (Bureau International des Poids et Mesures, BIPM), is one whose measurement process is perfectly known, has valid theoretical foundations and is fully described and answers to an equation that relates what is measured with what is intended to be measured without any significant empirical correction factors. It is also a method that has insignificant systematic errors, where only magnitudes from the International System of Units (SI) are used and where, preferably, the uncertainties are small ones. They are, therefore, procedures that do not need instrumental calibration. The absolute methods of measurement allow a chain of traceability to be formed between the result obtained and the magnitude of the SI assigned to what is measured. So the results are said to be traceable to the SI. One of the methods that meets these requirements and is recognized as the primary method by the CCQM is Isotope Dilution Mass Spectrometry (IDMS). Through a project of Technical Cooperation with the International Atomic Energy Agency in the area of Chemical Metrology, the CCHEN obtained training in CIEMAT, Spain, in IDMS and its applications to the analysis of biological samples. This work describes the first experience carried out entirely in Chilean laboratories, applying IDMS to the determination of cadmium in the biological reference materials Oyster Tissue 15566-A from the NIST, United States, Dogfish Liver, DOLT-2 from the NRC-CNRC, Canada and Poplar Leaves GBW07604 from the NRCC, China. The samples were traced with an isotope enriched spike 111 Cd and then shaken to obtain the isotopic exchange. Once dissolved, the isotopic relationship 111 Cd/ 114 Cd was determined in the samples using mass spectrometry with plasma source. These results were compared with those obtained

  8. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  9. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    Science.gov (United States)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  10. Determination of biological and physicochemical parameters of Artemia franciscana strains in hypersaline environments for aquaculture in the Colombian Caribbean.

    Science.gov (United States)

    Camargo, William N; Durán, Gabriel C; Rada, Orlando C; Hernández, Licet C; Linero, Juan-Carlos G; Muelle, Igor M; Sorgeloos, Patrick

    2005-10-26

    Artemia (Crustacea, Anostraca), also known as brine shrimp, are typical inhabitants of extreme environments. These hypersaline environments vary considerably in their physicochemical composition, and even their climatic conditions and elevation. Several thalassohaline (marine) environments along the Colombian Caribbean coast were surveyed in order to contribute to the knowledge of brine shrimp biotopes in South America by determining some vital biological and physicochemical parameters for Artemia survival. Additionally, cyst quality tests, biometrical and essential fatty acids analysis were performed to evaluate the economic viability of some of these strains for the aquaculture industry. In addition to the three locations (Galerazamba, Manaure, and Pozos Colorados) reported in the literature three decades ago in the Colombian Caribbean, six new locations were registered (Salina Cero, Kangaru, Tayrona, Bahía Hondita, Warrego and Pusheo). All habitats sampled showed that chloride was the prevailing anion, as expected, because of their thalassohaline origin. There were significant differences in cyst diameter grouping strains in the following manner according to this parameter: 1) San Francisco Bay (SFB-Control, USA), 2) Galerazamba and Tayrona, 3) Kangarú, 4) Manaure, and 5) Salina Cero and Pozos Colorados. Chorion thickness values were smaller in Tayrona, followed by Salina Cero, Galerazamba, Manaure, SFB, Kangarú and Pozos Colorados. There were significant differences in naupliar size, grouping strains as follows (smallest to largest): 1) Galerazamba, 2) Manaure, 3) SFB, Kangarú, and Salina Cero, 4) Pozos Colorados, and 5) Tayrona. Overall, cyst quality analysis conducted on samples from Manaure, Galerazamba, and Salina Cero revealed that all sites exhibited a relatively high number of cysts.g-1. Essential fatty acids (EFA) analysis performed on nauplii from cyst samples from Manaure, Galerazamba, Salina Cero and Tayrona revealed that cysts from all sites

  11. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Based Typing: Employment of Bioinformatics in a Multicenter Study.

    Science.gov (United States)

    Oberle, Michael; Wohlwend, Nadia; Jonas, Daniel; Maurer, Florian P; Jost, Geraldine; Tschudin-Sutter, Sarah; Vranckx, Katleen; Egli, Adrian

    2016-01-01

    The technical, biological, and inter-center reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS) typing data has not yet been explored. The aim of this study is to compare typing data from multiple centers employing bioinformatics using bacterial strains from two past outbreaks and non-related strains. Participants received twelve extended spectrum betalactamase-producing E. coli isolates and followed the same standard operating procedure (SOP) including a full-protein extraction protocol. All laboratories provided visually read spectra via flexAnalysis (Bruker, Germany). Raw data from each laboratory allowed calculating the technical and biological reproducibility between centers using BioNumerics (Applied Maths NV, Belgium). Technical and biological reproducibility ranged between 96.8-99.4% and 47.6-94.4%, respectively. The inter-center reproducibility showed a comparable clustering among identical isolates. Principal component analysis indicated a higher tendency to cluster within the same center. Therefore, we used a discriminant analysis, which completely separated the clusters. Next, we defined a reference center and performed a statistical analysis to identify specific peaks to identify the outbreak clusters. Finally, we used a classifier algorithm and a linear support vector machine on the determined peaks as classifier. A validation showed that within the set of the reference center, the identification of the cluster was 100% correct with a large contrast between the score with the correct cluster and the next best scoring cluster. Based on the sufficient technical and biological reproducibility of MALDI-TOF MS based spectra, detection of specific clusters is possible from spectra obtained from different centers. However, we believe that a shared SOP and a bioinformatics approach are required to make the analysis robust and reliable.

  12. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS Based Typing: Employment of Bioinformatics in a Multicenter Study.

    Directory of Open Access Journals (Sweden)

    Michael Oberle

    Full Text Available The technical, biological, and inter-center reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS typing data has not yet been explored. The aim of this study is to compare typing data from multiple centers employing bioinformatics using bacterial strains from two past outbreaks and non-related strains.Participants received twelve extended spectrum betalactamase-producing E. coli isolates and followed the same standard operating procedure (SOP including a full-protein extraction protocol. All laboratories provided visually read spectra via flexAnalysis (Bruker, Germany. Raw data from each laboratory allowed calculating the technical and biological reproducibility between centers using BioNumerics (Applied Maths NV, Belgium.Technical and biological reproducibility ranged between 96.8-99.4% and 47.6-94.4%, respectively. The inter-center reproducibility showed a comparable clustering among identical isolates. Principal component analysis indicated a higher tendency to cluster within the same center. Therefore, we used a discriminant analysis, which completely separated the clusters. Next, we defined a reference center and performed a statistical analysis to identify specific peaks to identify the outbreak clusters. Finally, we used a classifier algorithm and a linear support vector machine on the determined peaks as classifier. A validation showed that within the set of the reference center, the identification of the cluster was 100% correct with a large contrast between the score with the correct cluster and the next best scoring cluster.Based on the sufficient technical and biological reproducibility of MALDI-TOF MS based spectra, detection of specific clusters is possible from spectra obtained from different centers. However, we believe that a shared SOP and a bioinformatics approach are required to make the analysis robust and reliable.

  13. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    Science.gov (United States)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  15. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  16. Radiation Biomarker Research Using Mass Spectrometry

    National Research Council Canada - National Science Library

    Bach, Stephan B; Hubert, Walter

    2007-01-01

    .... This review is intended to give an overview of mass spectrometry and its application to biological systems and biomarker discovery and how that might relate to relevant radiation dosimetry studies...

  17. Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry.

    Science.gov (United States)

    Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio

    2010-07-01

    In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.

  18. Evaluation of the impact of sulfobutylether7 -β-cyclodextrin on the liquid chromatography-mass spectrometry analysis of biological samples arising from in vivo pharmacokinetic studies.

    Science.gov (United States)

    Leong, Nathania J; Prankerd, Richard J; Shackleford, David M; Mcintosh, Michelle P

    2015-04-01

    The utility of cyclodextrin (CD) complexation in improving apparent solubility of drugs in parenteral formulations is well established. Administration of these formulations delivers CD directly into the systemic circulation, and it may be necessary to demonstrate unaltered in vivo disposition of a drug coadministered with a CD. Crucial to the undertaking of such a study is the need for bioanalytical assays in which CD presence does not impact drug quantitation. This is of particular importance when assessing the potential impact of in vivo CD complexation on the urinary excretion of a drug, as CDs are predominantly eliminated via glomerular filtration, and hence are present in urine at significantly higher concentration than would be present in blood and plasma. Of 23 publications (in the past 30 years) describing preclinical and clinical assessment of drug pharmacokinetics after i.v. administration of CD-enabled formulations, only two reports clearly stated that the presence of CD had no impact on assay performance. In this work, we describe the simple process involved in (1) predicting the maximum concentrations of a modified CD, sulfobutylether7 -β-CD (SBE7 -β-CD), in plasma and urine samples from preclinical studies, and (2) evaluating the impact of SBE7 -β-CD on the quantitative liquid chromatography-mass spectrometry analysis of rimantadine. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. X-ray fluorescence spectrometry used to assess the dispersion of metals within mining environments; Aplicacion de la tecnica de espectrometria de fluorescencia de rayos-X en el estudio de la dispersion de metales en areas mineras

    Energy Technology Data Exchange (ETDEWEB)

    Margui, E.; Gonzalez-Fernandez, O.; Hidalgo, M.; Pardini, G.; Queralt, I.

    2011-07-01

    One critical factor for success in characterizing metals polluting mining environments so as to be able to eliminate them and subsequently recover these areas depends upon a speedy and correct response in the analysis of samples. Rapid, simultaneous, multi-element analysis can be undertaken using X-ray fluorescence spectrometry, a versatile, non-destructive analytical technique commonly employed to identify both major and minor elements in samples related to environmental studies. An additional advantage of this technique is the possibility of conducting the analysis directly on solid samples, which is extremely convenient when dealing with environmental samples that are difficult to dissolve, such as soils, sediments and mining wastes. Moreover, in recent years the development of spectrometers equipped with digital-signal processors combined with enlarged X-ray production, using better designs for excitation-detection, has contributed to an improvement in instrumental sensitivity, thus allowing us to detect important polluting elements such as Cd and Pb at trace levels. In this paper the authors describe, on the basis of their own experience, some interesting applications of XRF spectrometry for the analysis of several types of environmental samples related to the study of the dispersion of metals within mining environments: (A) analysis of mining wastes, soils and sediments; (B) analysis of samples of vegetation used as bio indicators or related to phyto remediation studies; and (C) analysis of water samples related to mining operations. (Author) 26 refs.

  20. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Applicability study of using in-situ gamma-ray spectrometry technique for 137Cs and 210Pbex inventories measurement in grassland environments

    International Nuclear Information System (INIS)

    Li Junjie; Li Yong; Wang Yanglin; Wu Jiansheng

    2010-01-01

    In-situ measurement of fallout radionuclides 137 Cs and 210 Pb ex has the potential to assess soil erosion and sedimentation rapidly. In this study, inventories of 137 Cs and 210 Pb ex in the soil of Inner Mongolia grassland were measured using an In-situ Object Counting System (ISOCS). The results from the field study indicate that in-situ gamma-ray spectrometry has the following advantages over traditional laboratory measurements: no extra time is required for sample collection, no reference inventories are required, more economic, prompt availability of the results, the ability to average radionuclide inventory over a large area, and high precision.

  2. An improved hollow fiber solvent-stir bar microextraction for the preconcentration of anabolic steroids in biological matrix with determination by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Liu, Wei; Zhang, Lan; Fan, Liangbiao; Lin, Zian; Cai, Yimin; Wei, Zhenyi; Chen, Guonan

    2012-04-13

    In this paper, a convenient and self-assembled hollow fiber solvent-stir bar microextraction (HF-SSBME) device was developed, which could stir by itself. In the extraction process, the proposed device made the solvent "bar" not floating at the sample solution and exposing to air while organic solvents outside hollow fiber always wrapped with donor phase solvent, which reduced the vaporization of organic solvents. This design could improve the precisions and recoveries of experiments. For evaluating the device, seven anabolic steroids (prasterone, 5α-androstane-3α, 17β-diol, methandriol, 19-norandrostenediol, androstenediol, methyltestosterone and methandienone) were used as model analytes and extraction conditions such as type and volume of organic solvents, agitation speed, extraction time, extraction temperature and salt addition were studied in detail. Under the optimum conditions (15 μL toluene, 40 °C, stirring at 750 rpm for 30 min with 1.5 g sodium chloride addition in 20.0 mL donor phase), the linear ranges of anabolic steroids were 0.25-200 ng mL(-1) with gas chromatography-mass spectrometry. The limits of detection were lower than 0.10 ng mL(-1). The recoveries and precisions in spiked urine and hair samples were between 73.97-93.56% and 2.18-4.47% (n=5). HF-SSBME method combined the intrinsical merits of hollow fiber with the superiority of the proposed self-stirring device which can be developed to two-phase, three-phase and in situ derivatization modes with wide prospect of application. Besides, the pedestal of this proposed device can be converted to fix stir bar in stir bar sorptive extraction (SBSE) method. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Nabarlek evaporation and storage ponds: possible role of biological activity in the escape of toxic substances to the general environment

    International Nuclear Information System (INIS)

    Martinick, W.

    1982-01-01

    An investigation was undertaken to determine whether or not game birds might become contaminated with radionuclides while visiting the evaporating ponds at the Nabarlek uranium mine. The level of biological community development in the ponds and water bird activity were low. It is concluded that at present escape of radionuclides or toxic elements from the ponds as a result of biological activity is not a problem

  4. Lead ultra-trace on-line preconcentration and determination using selective solid phase extraction and electrothermal atomic absorption spectrometry: applications in seawaters and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Vereda Alonso, E.; Siles Cordero, M.T.; Garcia de Torres, A.; Cano Pavon, J.M. [University of Malaga, Department of Analytical Chemistry Faculty of Sciences, Malaga (Spain)

    2006-08-15

    In this work, a new chelating resin [1,5-bis (2-pyridyl)-3-sulphophenyl methylene] thiocarbonohydrazide immobilised on aminopropyl-controlled pore glass (550 Aa; PSTH-cpg) was synthesised and packed in a microcolumn which replaced the sample tip of the autosampler arm. The system was applied to the preconcentration of lead. When microliters of 10% HNO{sub 3}, which acts as elution agent, pass through the microcolumn, the preconcentrated Pb(II) is eluted and directly deposited in a tungsten-rhodium coated graphite tube. With the use of the separation and preconcentration step and the permanent modifiers, the analytical characteristics of the technique were improved. The proposed method has a linear calibration range from 0.012 to 10 ng ml{sup -1} of lead. At a sample frequency of 36 h{sup -1} with a 90 s preconcentration time, the enrichment factor was 20.5, the detection and determination limits were 0.012 and 0.14 ng ml{sup -1}, respectively and the precision, expressed as relative standard deviation, was 3.2% (at 1 ng ml{sup -1}). Results from the determination of Pb in biological certified reference materials were in agreement with the certified values. Seawaters and other biological samples were analysed too. (orig.)

  5. Systematic approach to optimize a pretreatment method for ultrasensitive liquid chromatography with tandem mass spectrometry analysis of multiple target compounds in biological samples.

    Science.gov (United States)

    Togashi, Kazutaka; Mutaguchi, Kuninori; Komuro, Setsuko; Kataoka, Makoto; Yamazaki, Hiroshi; Yamashita, Shinji

    2016-08-01

    In current approaches for new drug development, highly sensitive and robust analytical methods for the determination of test compounds in biological samples are essential. These analytical methods should be optimized for every target compound. However, for biological samples that contain multiple compounds as new drug candidates obtained by cassette dosing tests, it would be preferable to develop a single method that allows the determination of all compounds at once. This study aims to establish a systematic approach that enables a selection of the most appropriate pretreatment method for multiple target compounds without the use of their chemical information. We investigated the retention times of 27 known compounds under different mobile phase conditions and determined the required pretreatment of human plasma samples using several solid-phase and liquid-liquid extractions. From the relationship between retention time and recovery in a principal component analysis, appropriate pretreatments were categorized into several types. Based on the category, we have optimized a pretreatment method for the identification of three calcium channel blockers in human plasma. Plasma concentrations of these drugs in a cassette-dose clinical study at microdose level were successfully determined with a lower limit of quantitation of 0.2 pg/mL for diltiazem, 1 pg/mL for nicardipine, and 2 pg/mL for nifedipine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Applied research and development of neutron activation analysis - The study on human health and environment by neutron activation analysis of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Yoo, Jong Ik; Lee, Jae Kwang; Lee, Sung Jun; Lee, Sang Sun; Jeon, Ki Hong; Na, Kyung Won; Kang, Sang Hun [Yonsei University, Seoul (Korea)

    2000-04-01

    With the development of the precise quantitative analytical method for the analysis of trace elements in the various biological samples such as hair and food, evaluation in view of health and environment to the trace elements in various sources which can be introduced inside human body was done. The trace elemental distribution in Korean total diet and representative food stuff was identified first. With the project the elemental distributions in supplemental healthy food and Korean and Chinese origin oriental medicine were identified. The amount of trace elements ingested with the hair analysis of oriental medicine takers were also estimated. The amounts of trace elements inhaled with the analysis of foundry air, blood and hair of foundry workers were also estimated. The basic estimation method in view of health and environment with the neutron activation analysis of biological samples such as foods and hair was established with the result. Nationwide usage system of the NAA facility in Hanaro in many different and important areas of biological area can be initiated with the results. The output of the project can support public heath, environment, and medical research area. The results can be applied for the process of micronutrients enhanced health food production and for the health safety and health status enhancement with the additional necessary data expansion and the development of various evaluation technique. 19 refs., 7 figs., 23 tabs. (Author)

  7. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches.

    Science.gov (United States)

    Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele

    2008-11-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.

  8. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tsutsui, Haruhito; Maeda, Toshio; Min, Jun Zhe; Inagaki, Shinsuke; Higashi, Tatsuya; Kagawa, Yoshiyuki; Toyo'oka, Toshimasa

    2011-05-12

    The number of diabetic patients has recently been increasing worldwide. Diabetes is a multifactorial disorder based on environmental factors and genetic background. In many cases, diabetes is asymptomatic for a long period and the patient is not aware of the disease. Therefore, the potential biomarker(s), leading to the early detection and/or prevention of diabetes mellitus, are strongly required. However, the diagnosis of the prediabetic state in humans is a very difficult issue, because the lifestyle is variable in each person. Although the development of a diagnosis method in humans is the goal of our research, the extraction and structural identification of biomarker candidates in several biological specimens (i.e., plasma, hair, liver and kidney) of ddY strain mice, which undergo naturally occurring diabetes along with aging, were carried out based upon a metabolite profiling study. The low-molecular-mass compounds including metabolites in the biological specimens of diabetic mice (ddY-H) and normal mice (ddY-L) were globally separated by ultra-performance liquid chromatography (UPLC) using different reversed-phase columns (i.e., T3-C18 and HS-F5) and detected by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The biomarker candidates related to diabetes mellitus were extracted from a multivariate statistical analysis, such as an orthogonal partial least-squares-discriminant analysis (OPLS-DA), followed by a database search, such as ChemSpider, KEGG and HMDB. Many metabolites and unknown compounds in each biological specimen were detected as the biomarker candidates related to diabetic mellitus. Among them, the elucidation of the chemical structures of several possible metabolites, including more than two biological specimens, was carried out along with the comparison of the tandem MS/MS analyses using authentic compounds. One metabolite was clearly identified as N-acetyl-L-leucine based upon the MS/MS spectra and the retention time on

  9. Ammonium chloride salting out extraction/cleanup for trace-level quantitative analysis in food and biological matrices by flow injection tandem mass spectrometry.

    Science.gov (United States)

    Nanita, Sergio C; Padivitage, Nilusha L T

    2013-03-20

    A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while limits of detection

  10. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  11. Beta spectrometry

    International Nuclear Information System (INIS)

    Dryak, P.; Zderadicka, J.; Plch, J.; Kokta, L.; Novotna, P.

    1977-01-01

    For the purpose of beta spectrometry, a semiconductor spectrometer with one Si(Li) detector cooled with liquid nitrogen was designed. Geometrical detection efficiency is about 10% 4 sr. The achieved resolution for 624 keV conversion electrons of sup(137m)Ba is 2.6 keV (FWHM). A program was written in the FORTRAN language for the correction of the deformation of the measured spectra by backscattering in the analysis of continuous beta spectra. The method permits the determination of the maximum energy of the beta spectrum with an accuracy of +-5 keV. (author)

  12. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry

    Science.gov (United States)

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-01-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs. PMID:27713682

  13. A liquid chromatography-mass spectrometry method based on class characteristic fragmentation pathways to detect the class of indole-derivative synthetic cannabinoids in biological samples.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Botrè, Francesco

    2014-07-21

    This article describes a liquid chromatographic/tandem mass spectrometric method, based on the use of precursor ion scan as the acquisition mode, specifically developed to detect indole-derived cannabinoids (phenylacetylindoles, naphthoylindoles and benzoylindoles) in biological fluids (saliva, urine and blood). The method is designed to recognize one or more common "structural markers", corresponding to mass spectral fragments originating from the specific portion of the molecular structure that is common to the aminoalkylindole analogues and that is fundamental for their pharmacological classification. As such, the method is also suitable for detecting unknown substances, provided they contain the targeted portion of the molecular structure. The pre-treatment procedure consists in a liquid/liquid extraction step carried out at neutral pH: this is the only pretreatment in the case of analyses carried out in saliva, while it follows an enzymatic hydrolysis procedure in the case of urine samples, or a protein precipitation step in the case of blood samples. The chromatographic separation is achieved using an octadecyl reverse-phase 5 μm fused-core particle column; while the mass spectrometric detection is carried out by a triple-quadrupole instrument in positive electrospray ionization and precursor ion scan as acquisition mode, selecting, as mass spectral fragments, the indole (m/z 144), the carbonylnaphthalenyl (m/z 155) and the naphthalenyl (m/z 127) moieties. Once developed and optimized, the analytical procedure was validated in term of sensitivity (lower limits of detection in the range of 0.1-0.5 ng mL(-1)), specificity (no interference was detected at the retention times of the analytes under investigation), recovery (higher than 65% with a satisfactory repeatability: CV% lower than 10), matrix effect (lower than 30% for all the biological specimens tested), repeatability of the retention times (CV% lower than 0.1), robustness, and carry over (the positive

  14. Determination of trace aluminum concentration and homogeneity in biological material TORT-1 by instrumental neutron activation and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kratochvil, B.; Motkosky, N.; Duke, M.J.M.; Ng, D.

    1987-01-01

    The biological reference material TORT-1, lobster hepatopancreas, was analyzed for aluminum by instrumental neutron activation analysis (INAA) and graphite furnace atomic absorption spectroscopy (GFAAS). After correction of the INAA results for interferences from 28 Al produced by 31 P(n,α) 28 Al and 28 (n,p) 28 Al reactions, and use of HNO 3 plus HF for sample dissolution for the GFAAS analyses, the methods gave similar results of 43 ± 3 and 42 ± 2 μg/g respectively for 200 to 300-mg test portions. Analysis of six portions from each of six bottles of TORT-1 showed no statistical difference at the 95% confidence level for the between and within bottle variances. Therefore, The material can be considered homogeneous for aluminum if 200- to 300-mg test portions are taken. The variance was greater and the average lower when 30-mg test portions were analyzed for aluminum by GFAAS. The pattern of the results, together with the need for HF in the dissolution procedure, suggests the presence of aluminum-containing microparticulate mineral matter, perhaps silicate material, in the material

  15. Determination of trace aluminum concentration and homogeneity in biological material TORT-1 by instrumental neutron activation and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, B; Motkosky, N; Duke, M J.M.; Ng, D

    1987-05-01

    The biological reference material TORT-1, lobster hepatopancreas, was analyzed for aluminum by instrumental neutron activation analysis (INAA) and graphite furnace atomic absorption spectroscopy (GFAAS). After correction of the INAA results for interferences from /sup 28/Al produced by /sup 31/P(n,..cap alpha..)/sup 28/Al and /sup 28/(n,p)/sup 28/Al reactions, and use of HNO/sub 3/ plus HF for sample dissolution for the GFAAS analyses, the methods gave similar results of 43 +- 3 and 42 +- 2 ..mu..g/g respectively for 200 to 300-mg test portions. Analysis of six portions from each of six bottles of TORT-1 showed no statistical difference at the 95% confidence level for the between and within bottle variances. Therefore, The material can be considered homogeneous for aluminum if 200- to 300-mg test portions are taken. The variance was greater and the average lower when 30-mg test portions were analyzed for aluminum by GFAAS. The pattern of the results, together with the need for HF in the dissolution procedure, suggests the presence of aluminum-containing microparticulate mineral matter, perhaps silicate material, in the material.

  16. A fluorogenic molecular nanoprobe with an engineered internal environment for sensitive and selective detection of biological hydrogen sulfide.

    Science.gov (United States)

    Kim, Myung; Seo, Young Hun; Kim, Youngsun; Heo, Jeongyun; Jang, Woo-Dong; Sim, Sang Jun; Kim, Sehoon

    2017-02-14

    A nanoreactor approach based on the amphiphilic assembly of various molecules offers a chance to finely engineer the internal reaction medium to enable highly selective and sensitive detection of H 2 S in biological media, being useful for microscopic imaging of cellular processes and in vitro diagnostics with blood samples.

  17. Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Costas, M.; Lavilla, I.; Gil, S.; Pena, F.; Calle, I.; Cabaleiro, N. de la; Bendicho, C.

    2010-01-01

    In this work, the determination of rare earth elements (REEs), i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in marine biological tissues by inductively coupled-mass spectrometry (ICP-MS) after a sample preparation method based on ultrasound-assisted extraction (UAE) is described. The suitability of the extracts for ICP-MS measurements was evaluated. For that, studies were focused on the following issues: (i) use of clean up of extracts with a C18 cartridge for non-polar solid phase extraction; (ii) use of different internal standards; (iii) signal drift caused by changes in the nebulization efficiency and salt deposition on the cones during the analysis. The signal drift produced by direct introduction of biological extracts in the instrument was evaluated using a calibration verification standard for bracketing (standard-sample bracketing, SSB) and cumulative sum (CUSUM) control charts. Parameters influencing extraction such as extractant composition, mass-to-volume ratio, particle size, sonication time and sonication amplitude were optimized. Diluted single acids (HNO 3 and HCl) and mixtures (HNO 3 + HCl) were evaluated for improving the extraction efficiency. Quantitative recoveries for REEs were achieved using 5 mL of 3% (v/v) HNO 3 + 2% (v/v) HCl, particle size <200 μm, 3 min of sonication time and 50% of sonication amplitude. Precision, expressed as relative standard deviation from three independent extractions, ranged from 0.1 to 8%. In general, LODs were improved by a factor of 5 in comparison with those obtained after microwave-assisted digestion (MAD). The accuracy of the method was evaluated using the CRM BCR-668 (mussel tissue). Different seafood samples of common consumption were analyzed by ICP-MS after UAE and MAD.

  18. The biological assessment of flora and fauna as standards for changes in the near-shore ocean environment: a study of Barbers Point Harbor.

    Science.gov (United States)

    Hokama, Y; Wachi, K M; Shiraki, A; Goo, C; Ebesu, J S

    2001-02-01

    The biological assessments of the flora and fauna in the near-shore ocean environment, specifically Barbers Point Harbor (BPH), demonstrate the usefulness of these biological analyses for evaluation of the changes occurring following man-made excavation for expansion of the harbor. The study included identification and enumeration of macroalgae and dinoflagellates and analyses of herbivores and carnivores in four areas within the perimeter of the harbor and the north and south entrances into the harbor. Numbers of macroalgae varied between 1994 and 1999 surveys, with significant decrease in numbers in stations C, D and E. Stations A and B were similar between 1994 and 1999 with a slight increase in 1999. The significant differences were shown with the appearance of Gambierdiscus toxicus (G toxicus) in 1999 among the algae in stations A and B. Assessment of herbivores and carnivores with the immunological membrane immunobead assay using monoclonal antibody to ciguatoxin and related polyethers demonstrated an increase in fish toxicity among the herbivore from 1994-1999 (22% increase) with a decrease (22%) in non-toxic fish. This was also demonstrated in the carnivores, but to a lesser degree. It is suggested that the biological analyses of the flora and the fauna of the near-shore ocean environment are appropriate to assess the changes that occur from natural and man-made alterations.

  19. A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanmin; Qiu, Jianhua; Yang, Limin [College of Chemistry and Chemical Engineering, Xiamen University, Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen (China); Wang, Qiuquan [College of Chemistry and Chemical Engineering, Xiamen University, Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen (China); Xiamen University, State Key Laboratory of Marine Environmental Science, Xiamen (China)

    2007-06-15

    A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC-MS and FT-IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL{sup -1}, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH{sub 4}/NaOH-acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME-AFS. (orig.)

  20. Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry.

    Science.gov (United States)

    Stasulli, Nikolas M; Shank, Elizabeth A

    2016-11-01

    The ability of microbes to secrete bioactive chemical signals into their environment has been known for over a century. However, it is only in the last decade that imaging mass spectrometry has provided us with the ability to directly visualize the spatial distributions of these microbial metabolites. This technology involves collecting mass spectra from multiple discrete locations across a biological sample, yielding chemical ‘maps’ that simultaneously reveal the distributions of hundreds of metabolites in two dimensions. Advances in microbial imaging mass spectrometry summarized here have included the identification of novel strain- or coculture-specific compounds, the visualization of biotransformation events (where one metabolite is converted into another by a neighboring microbe), and the implementation of a method to reconstruct the 3D subsurface distributions of metabolites, among others. Here we review the recent literature and discuss how imaging mass spectrometry has spurred novel insights regarding the chemical consequences of microbial interactions.

  1. Gamma and X 93 spectrometry

    International Nuclear Information System (INIS)

    1994-05-01

    The Meetings of Gamma and X 93 Spectrometry were held on 12-14 October 1993. The symposium was organized into six sessions: Instrumentation development, Nuclear matter measurement, Method and calibration, Medical applications, Environment survey (radioactive traces measurement), other applications (spent fuels analysis, various techniques). Separate abstracts were prepared for all the papers in this volume. (TEC)

  2. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Beddows, D.C.S.; Telle, H.H.

    2005-01-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (∼ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made

  3. Availability of mollusks as ''biological monitor'' to monitoring of the long-lived silver isotope released into the marine environment

    International Nuclear Information System (INIS)

    Watabe, Teruhisa; Yokosuka, Setsuko; Kurosawa, Akiko

    2003-01-01

    The species of mollusks often show unique physiological properties and the elemental composition different from those of fishes as observed in the blood constituents. Much higher concentrations of metal elements such as cupper, zinc, cadmium and so on have been reported for squids and bivalves than other organisms. The present study reports the results of gamma spectrometry analyses for two species of gastropods (Buccinum isaotakii and Buccinum striatissimum), one of the important species of mollusks, inhabiting on the sea bottom at the depth of some hundreds meters off the coast and for squids (Todarodes pacificus, Thysanoteuthis rhombus, etc.) landed at several fishing ports in Japan. It would be noted that 108m Ag (half-life time: 418.21y) was commonly detected in the viscera of both gastropods and squids usually at the radioactivity level higher than 137 Cs. A discussion on the distribution and inventory of 108m Ag in the water column was attempted on the basis of the data on its specific activity, which was derived from the data on stable silver for the samples of interest obtained by analyses using ICP-AES. Special attention was directed to the efficacy and applicability of the mollusks having an affinity for this element to the environmental monitoring as indices. (author)

  4. A review of biological studies sponsored by the Department of the Environment to assist feasibility studies of the disposal of heat generating radioactive waste in the deep ocean

    International Nuclear Information System (INIS)

    Allen, J.A.; Gale, G.

    1985-04-01

    The report review recent biological studies on the organisms of the deep sea and takes into account the physical and chemical parameters that influence them. Particular attention is devoted to studies funded by the Department of the Environment to determine the technical feasibility of disposing of high level radioactive wastes in the deep sea. Such quantitative information that exists concerning the input and output of organic material into the abyss is given. This information is related to the diversity, growth, size, and reproductive biology of the abyssal infauna and epifauna and to the organisms within the water column above. Life processes, under the influence of high pressure are discussed and related to the uptake by and release from organisms of radiochemicals. Gaps in our present knowledge of the total ecosystem are identified and recommendations for future studies made. (author)

  5. Hydrologic and geochemical controls on the transport of radionuclides in natural undisturbed arid environments as determined by accelerator mass spectrometry measurements. 1997 annual progress report

    International Nuclear Information System (INIS)

    Caffee, M.W.; Finkel, R.C.; McAninch, J.E.; Nimz, G.J.

    1997-01-01

    'During FY97 this study has developed unique accelerator mass spectrometry (AMS) analytical techniques for measurement of 99 Tc and 129 I, which compliments an improved capability for measurement of 36 Cl. The ability to measure these nuclides in natural soil samples has been demonstrated through analytical results obtained during FY97. Methods to determine the distribution of these nuclides in their natural setting, which will vary depending on site-specific chemical conditions, have also been developed. Spatially well-characterized soil samples have been collected from the vadose zone to a depth of -5 meters at the Nevada Test Site. To do this, a deep trench has been excavated and the geological setting for the soils has been well documented. Physical, chemical, and isotopic analysis of these soil samples during the course of this research project will result in a numerical computer model for moisture and radionuclide migration in arid soils that is valuable to nuclear waste storage, site remediation, and groundwater recharge concerns.'

  6. Use of MALDI-TOF Mass Spectrometry and a Custom Database to Characterize Bacteria Indigenous to a Unique Cave Environment (Kartchner Caverns, AZ, USA)

    Science.gov (United States)

    Zhang, Lin; Vranckx, Katleen; Janssens, Koen; Sandrin, Todd R.

    2015-01-01

    MALDI-TOF mass spectrometry has been shown to be a rapid and reliable tool for identification of bacteria at the genus and species, and in some cases, strain levels. Commercially available and open source software tools have been developed to facilitate identification; however, no universal/standardized data analysis pipeline has been described in the literature. Here, we provide a comprehensive and detailed demonstration of bacterial identification procedures using a MALDI-TOF mass spectrometer. Mass spectra were collected from 15 diverse bacteria isolated from Kartchner Caverns, AZ, USA, and identified by 16S rDNA sequencing. Databases were constructed in BioNumerics 7.1. Follow-up analyses of mass spectra were performed, including cluster analyses, peak matching, and statistical analyses. Identification was performed using blind-coded samples randomly selected from these 15 bacteria. Two identification methods are presented: similarity coefficient-based and biomarker-based methods. Results show that both identification methods can identify the bacteria to the species level. PMID:25590854

  7. Organic environments on Saturn's moon, Titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry.

    Science.gov (United States)

    Somogyi, Arpad; Oh, Chu-Ha; Smith, Mark A; Lunine, Jonathan I

    2005-06-01

    Laboratory simulations have been carried out to model chemical reactions that possibly take place in the stratosphere of Saturn's moon, Titan. The aerosol products of these reactions (tholin samples) have been systematically analyzed by mass spectrometry using electrospray ionization (ESI) and laser desorption (LD). A wide variety of ions with a general formula C(x)H(y)N(z) detected by ultrahigh resolution and accurate mass measurements in a Fourier transform/ion cyclotron resonance (FT-ICR) cell reflect the complexity of these polymeric products, both in chemical compositions and isomeric distributions. As a common feature, however, tandem mass spectral (MS/MS) data and H/D exchange products in the solution phase support the presence of amino and nitrile functionalities in these (highly unsaturated) "tholin" compounds. The present work demonstrates that ESI-MS coupled with FT-ICR is a suitable and "intact" method to analyze tholin components formed under anaerobic conditions; only species with C(x)H(y)N(z) are detected for freshly prepared and harvested samples. However, when intentionally exposed to water, oxygen-containing compounds are unambiguously detected.

  8. Concentration levels of rare-earth elements and thorium on plants from the Morro de Ferro environment as an indicator for the biological availability of transuranium elements

    International Nuclear Information System (INIS)

    Miekeley, N.; Casartelli, E.A.; Dotto, R.M.

    1994-01-01

    Plants and soils from a natural thorium and rare-earth element occurrence (Morro do Ferro, Brazil) were analyzed by alpha spectrometry (Th) and ICP-AES (REE), after pre-concentration of the elements by solvent extraction, co-precipitation and ion exchange procedures. Leaching experiments with humic acid solutions and different soils were performed to estimate the fraction of elements biologically available. High concentrations of the light rare-earth elements (LREE) and of Th, reaching some hundreds of μg/g-ash, were measured in plant leaves from the areas of the highest concentration of these elements in soil and in near-surface waters. Chondrite normalized REE plots of plant leaves and corresponding soils are very similar, suggesting that there is no significant fractionation between the REE during uptake from the soil solution and incorporation into the leaves. However, Ce-depletion was observed for some plant species, increasing for Solanum ciliatum in the sequence: leaves -3 to 10 -2 . Leaching experiments confirmed the importance of humic acid complexation for the bio-uptake of Th and REE and further showed that only a very small fraction of these elements in soil is leachable. The implications of these results on the calculated CR's will be discussed. (author) 26 refs.; 5 figs.; 5 tabs

  9. The use of Sphagnum recurvum Pal. Beauv. as biological tests for determination of the level of pollution with fluorine compounds and sulphur dioxide in the environment

    Directory of Open Access Journals (Sweden)

    Maria Świeboda

    2014-01-01

    Full Text Available The green parts of the peat moss Sphagnum recurvum Pal. Beauv. were used as a biological test to evaluate the pollution level of the natural environment in the region of the aluminium works "Skawina" (Southern Poland with fluorine compounds and sulphur dioxide. The moss samples were placed in nylon nets and exposed to the polluted air for 6 weeks, then the fluorine and sulphur content in them was determined. The results demonstrated the usefulness of this method for the purpose of establishing the range of influence of the emitted industrial pollution.

  10. Protecting America's economy, environment, health, and security against invasive species requires a strong federal program in systematic biology

    Science.gov (United States)

    Hilda Diaz-Soltero; Amy Y. Rossman

    2011-01-01

    Systematics is the science that identifies and groups organisms by understanding their origins, relationships, and distributions. It is fundamental to understanding life on earth, our crops, wildlife, and diseases, and it provides the scientific foundation to recognize and manage invasive species. Protecting America's economy, environment, health, and security...

  11. To What Extent Do Biology Textbooks Contribute to Scientific Literacy? Criteria for Analysing Science-Technology-Society-Environment Issues

    Science.gov (United States)

    Calado, Florbela M.; Scharfenberg, Franz-Josef; Bogner, Franz X.

    2015-01-01

    Our article proposes a set of six criteria for analysing science-technology-society-environment (STSE) issues in regular textbooks as to how they are expected to contribute to students' scientific literacy. We chose genetics and gene technology as fields prolific in STSE issues. We derived our criteria (including 26 sub-criteria) from a literature…

  12. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a

  13. Effects of grade control structures on fish passage, biological assemblages, and hydraulic environments in western Iowa streams: a multidisciplinary review

    Science.gov (United States)

    Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.

    2011-01-01

    Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.

  14. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.; Villani, M.; Coluccio, M. L.; Majewska, R.; Alabastri, A.; Battista, E.; Schirato, A.; Calestani, D.; Coppedé , N.; Cesarelli, M.; Amato, F.; Di Fabrizio, Enzo M.; Gentile, F.

    2018-01-01

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  15. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.

    2018-04-19

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  16. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.

    Science.gov (United States)

    Cresswell, A J; Sanderson, D C W

    2012-10-15

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq (137)Cs within large areas (10-20 km(2)h(-1)), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15m whilst maintaining speeds covering 1-2 km(2) h(-1) can detect buried (137)Cs sources of 0.5MBq or greater activity. A survey design to detect 100 kBq (137)Cs sources at 10 cm depth has also been defined, requiring surveys at <15m ground clearance and <2 ms(-1) ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment.

    Science.gov (United States)

    Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sonntag, Frank; Centola, Fabio; Occhicone, Agostino; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco

    2017-08-17

    We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.

  18. Adolescent Learning in the Zoo: Embedding a Non-Formal Learning Environment to Teach Formal Aspects of Vertebrate Biology

    Science.gov (United States)

    Randler, Christoph; Kummer, Barbara; Wilhelm, Christian

    2012-06-01

    The aim of this study was to assess the outcome of a zoo visit in terms of learning and retention of knowledge concerning the adaptations and behavior of vertebrate species. Basis of the work was the concept of implementing zoo visits as an out-of-school setting for formal, curriculum based learning. Our theoretical framework centers on the self-determination theory, therefore, we used a group-based, hands-on learning environment. To address this questions, we used a treatment—control design (BACI) with different treatments and a control group. Pre-, post- and retention tests were applied. All treatments led to a substantial increase of learning and retention knowledge compared to the control group. Immediately after the zoo visit, the zoo-guide tour provided the highest scores, while after a delay of 6 weeks, the learner-centered environment combined with a teacher-guided summarizing scored best. We suggest incorporating the zoo as an out-of-school environment into formal school learning, and we propose different methods to improve learning in zoo settings.

  19. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  20. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  1. Concentrations and biological availability of 238U and 230Th in the environs of a uranium milling operation

    International Nuclear Information System (INIS)

    Ibrahim, S.; Flot, S.; Whicker, F.W.

    1982-01-01

    This paper reports on a study whose objectives were to determine 238 U and 230 Th concentrations in soil and native plants from various sites around a conventional acid leach uranium milling operation in the Western US, and to estimate plant/soil concentration factors. Soil and vegetation samples were collected from exposed, weathered tailings; near the edge of a tailings pond; from a reclamation area; and at several native range background (control) locations. The results indicate that mean plant/soil concentration factors varied significantly among sites and between radionuclides, but no significant differences between plant groups were found. Concentration factors for 230 Th were greater than for 238 U for plants growing at the edge of the tailings pond. It is speculated that the lower concentration factors for uranium relative to thorium at this site may be due to the proportion of their contents in soil that is biologically available for plant uptake

  2. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  3. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  4. A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices.

    Science.gov (United States)

    Zhu, Peijuan; Ding, Wei; Tong, Wei; Ghosal, Anima; Alton, Kevin; Chowdhury, Swapan

    2009-06-01

    A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) is implemented using the statistical programming language R to remove non-drug-related ion signals from accurate mass liquid chromatography/mass spectrometry (LC/MS) data. The background-subtraction part of the algorithm is similar to a previously published procedure (Zhang H and Yang Y. J. Mass Spectrom. 2008, 43: 1181-1190). The noise reduction algorithm (NoRA) is an add-on feature to help further clean up the residual matrix ion noises after background subtraction. It functions by removing ion signals that are not consistent across many adjacent scans. The effectiveness of BgS-NoRA was examined in biological matrices by spiking blank plasma extract, bile and urine with diclofenac and ibuprofen that have been pre-metabolized by microsomal incubation. Efficient removal of background ions permitted the detection of drug-related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with (14)C-loratadine with minimal interference. Results from these experiments demonstrate that BgS-NoRA is more effective in removing analyte-unrelated ions than background subtraction alone. NoRA is shown to be particularly effective in the early retention region for urine samples and middle retention region for bile samples, where the matrix ion signals still dominate the total ion chromatograms (TICs) after background subtraction. In most cases, the TICs after BgS-NoRA are in excellent qualitative correlation to the radiochromatograms. BgS-NoRA will be a very useful tool in metabolite detection and identification work, especially in first-in-human (FIH) studies and multiple dose toxicology studies where non-radio-labeled drugs are administered. Data from these types of studies are critical to meet the latest FDA guidance on Metabolite in Safety Testing (MIST). Copyright (c) 2009 John Wiley & Sons, Ltd.

  5. Contribution to the development of new analytical methods by the coupling between capillary electrophoresis and mass spectrometry (ICP-MS and ESI-MS): applications to the nuclear and biological fields

    International Nuclear Information System (INIS)

    Pitois, A.

    2006-04-01

    The coupling between chromatographic and electrophoretic separation techniques and mass spectrometry is used to combine the efficiency of the separation technique to the selectivity and sensitivity of the detectors. In this work, the number of applications of the CE-MS couplings has been increased. New analytical methods have been set up in the nuclear and biological fields. New analytical methods for the determination of fission products (cesium and lanthanides) have been developed by CE-ICP-MS. They enable to determine both concentration and isotopic composition of the fission products for very low detection limits (ng/mL by CE-Q-ICPMS, pg/mL by CE-HR-ICP-MS), since all the isobaric interferences are resolved. Moreover, only some nano-liters of sample are necessary to perform the analysis. These method have been applied with success to a simulated sample of spent fuel, to a nuclear sample from PUREX process and to a leaching of MOX fuel. Then, lanthanides have been analysed by CE-ESI-MS and the capability of ESI-MS to provide structural information has been studied. Elementary information has been obtained for strong potentials. Structural information has been obtained for low potentials. Finally, a new analytical method by CE-ESI-MS for the determination of 10B-boronophenylalanine (10B-BPA) has been developed for Boron Neutron Capture Therapy (BNCT). It has been applied to the cellular lines F98 and HUVEC. This CE-ESI-MS method has been validated by HR-ICP-MS. It enables a direct quantification of the chemical form 10B-BPA in samples of limited size (some nano-liters) and for low concentrations (ng/mL). As a consequence, this CE-ESI-MS method has enabled the study of the kinetics of 10B-BPA release and uptake for the F98 cells. (author)

  6. Liposomes as potential masking agents in sport doping. Part 1: analysis of phospholipids and sphingomyelins in drugs and biological fluids by aqueous normal-phase liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Esposito, Simone; Colicchia, Sonia; de la Torre, Xavier; Mazzarino, Monica; Botrè, Francesco

    2017-01-01

    In the present work, aqueous normal-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in different acquisition modes, was employed for the direct analysis and profiling of nine phospholipid classes (phosphatidic acids, phosphatidylserines, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylglycerols, phosphatidylinositols, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins) in biological and pharmaceutical matrices. After chromatographic separation by a diol column, detection and elucidation of phospholipid and sphingomyelin classes and molecular species were performed by different scan acquisition modes. For screening analysis, molecular ions [M + H] + were detected in positive precursor ion scan of m/z 184 for the classes of phosphatidylcholines, lyso-phosphatidylcholines and sphingomyelins; while phosphatidylethanolamines and lyso-phosphatidylethanolamines were detected monitoring neutral loss scan of 141 Da; and phosphatidylserines detected using neutral loss scan of 184 Da. Molecular ions [M-H] - were instead acquired in negative precursor ion scan of m/z 153 for the classes of phosphatidic acids and phosphatidylglycerols; and of m/z 241 for the phosphatidylinositols. For the identification of the single molecular species, product ion scan mass spectra of the [M + HCOO] - ions for phosphatidylcholines and [M + H] + ions for the other phospholipids considered were determined for each class and compared with the fragmentation pattern of model phospholipid reference standard. By this approach, nearly 100 phospholipids and sphingomyelins were detected and identified. The optimized method was then used to characterize the phospholipid and sphingomyelin profiles in human plasma and urine samples and in two phospholipid-based pharmaceutical formulations, proving that it also allows to discriminate compounds of endogenous origin from those resulting from the intake of pharmaceutical products

  7. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  8. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  9. Evaluation of V, Ir, Ru, V-Ir, V-Ru, and W-V as permanent chemical modifiers for the determination of cadmium, lead, and zinc in botanic and biological slurries by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Acar, Orhan

    2005-01-01

    Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO 3 ) 2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO 3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g -1 ) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g -1 for Cd, 18 pg and 17 ng g -1 for Pb, and 0.7 pg and 4 ng g -1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials

  10. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  11. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Directory of Open Access Journals (Sweden)

    Tim D Williams

    2011-08-01

    Full Text Available The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  12. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Science.gov (United States)

    Williams, Tim D; Turan, Nil; Diab, Amer M; Wu, Huifeng; Mackenzie, Carolynn; Bartie, Katie L; Hrydziuszko, Olga; Lyons, Brett P; Stentiford, Grant D; Herbert, John M; Abraham, Joseph K; Katsiadaki, Ioanna; Leaver, Michael J; Taggart, John B; George, Stephen G; Viant, Mark R; Chipman, Kevin J; Falciani, Francesco

    2011-08-01

    The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  13. In vitro and in vivo measurements of the dissolution parameters of uranium and plutonium mixed oxides in biological environment

    International Nuclear Information System (INIS)

    Matton, S.

    1999-01-01

    During the mixed-oxide fuel fabrication process, inhalation is potentially the main route of internal contamination. The International Commission on Radiological Protection recommends experimental measurement of parameters such as size and dissolution rate for specific industrial compounds. First, we validated the use of PERALS (Photon Electron Rejecting Alpha Liquid Scintillation) for alpha measurement in biological samples which, in some cases, could improve detection limit. We characterised physical chemical properties in terms of size, specific area and activity of 3 different powders: MOX made according to either the MIMAS process, which showed heterogeneous chemical composition, or the SOLGEL, which showed homogeneous chemical composition and industrial PuO 2 . Their dissolution parameters, f r and s s , as defined in the simplest model proposed by ICRP 66 were measured in vivo, after inhalation in the rat, and in vitro. The statistical variation of these values were expressed as standard deviation. Moreover, in vitro studies demonstrated variation of the s s value depending on the duration of the incubation. We also developed methods to characterise interactions between UO 2 particles and phosphate ions which could be involved in the actinide toxicity. (author) [fr

  14. Contents of toxic elements in biological environment of pregnant women of all reproductive age give birth first time

    Directory of Open Access Journals (Sweden)

    Markevych V.V.

    2016-09-01

    Full Text Available Purpose — to investigate the toxic contents of microelements in serum and erythrocytes of pregnant women in the early, middle and old reproductive age in the case of the first delivery. Patients and methods. The study was conducted in the third trimester of pregnancy on 36.08±0.59 weeks of gestation. Reproductive age of pregnant women was 16.33±0.21, 24.67±0.37 and 36.14±0.77 years respectively. The content of toxic ME (chromium, nickel, lead and cobalt in the biological substrates was determined by atomic absorption spectrophotometer C — 115 MI. Results. We found that pregnant women regardless of reproductive age who gave birth for the first time had high level of nickel both in serum and in red blood cells. With the growth of reproductive age we saw accumulation of toxic chromium in serum. Much less content of cadmium in red blood cells and possibly other tissues in pregnant women of older reproductive age apparently linked to the more conscious and responsible attitude to their health condition, the process of pregnancy and a healthy lifestyle and above except the main source of cadmium — smoking. The lowest content of lead in red blood cells is determined in the women of middle reproductive age. At the same time serum and erythrocytic content of lead in any group was not higher its level in healthy pregnant women. Conclusion. Nowadays very actual is researching of placenta as a body that provides trace element balance in system «mother—placenta—fetus». To determine the role of placenta in protecting the fetus from exposure of toxic elements reasonable is investigation of their content in the placenta and its functions — barrier penetration, depositing of essential and toxic elements.

  15. Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization-mass spectrometry.

    Science.gov (United States)

    Gilbert-López, Bienvenida; García-Reyes, Juan F; Meyer, Cordula; Michels, Antje; Franzke, Joachim; Molina-Díaz, Antonio; Hayen, Heiko

    2012-11-21

    A Dielectric Barrier Discharge Ionization (DBDI) LC/MS interface is based on the use of a low-temperature helium plasma, which features the possibility of simultaneous ionization of species with a wide variety of physicochemical properties. In this work, the performance of LC/DBDI-MS for trace analysis of highly relevant species in food and environment has been examined. Over 75 relevant species including multiclass priority organic contaminants and residues such as pesticides, polycyclic aromatic hydrocarbons, organochlorine species, pharmaceuticals, personal care products, and drugs of abuse were tested. LC/DBDI-MS performance for this application was assessed and compared with standard LC/MS sources (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)). The used benchtop Orbitrap mass spectrometer features a 10 Hz polarity switching mode, so that both positive and negative ion mode acquisitions are possible with acquisition cycles matching the requirements of fast liquid chromatography. Both polar and nonpolar species (including those typically analyzed by GC/electron ionization-MS) can be tested in a single run using polarity switching mode. The methodology was found to be effective in detecting a wide array of organic compounds at concentration levels in the low ng L(-1) to μg kg(-1) range in wastewater and food matrices, respectively. The linearity was evaluated in an olive oil extract, obtaining good correlation coefficients in the studied range. Additionally, minor matrix effects (≤15% of signal suppression or enhancement) were observed for most of the studied analytes in this complex fatty matrix. The results obtained were compared with data from both ESI and APCI sources, obtaining a merged coverage between ESI and APCI in terms of analyte ionization and higher overall sensitivity for the proposed ion source based on the DBD principle. The use of this approach further extends the coverage of current LC/MS methods towards

  16. Marine protected area restricts demographic connectivity: Dissimilarity in a marine environment can function as a biological barrier.

    Science.gov (United States)

    Sato, Masaaki; Honda, Kentaro; Uy, Wilfredo H; Baslot, Darwin I; Genovia, Tom G; Nakamura, Yohei; Bernardo, Lawrence Patrick C; Kurokochi, Hiroyuki; Pantallano, Allyn Duvin S; Lian, Chunlan; Nadaoka, Kazuo; Nakaoka, Masahiro

    2017-10-01

    The establishment of marine protected areas (MPAs) can often lead to environmental differences between MPAs and fishing zones. To determine the effects on marine dispersal of environmental dissimilarity between an MPA and fishing zone, we examined the abundance and recruitment patterns of two anemonefishes ( Amphiprion frenatus and A. perideraion ) that inhabit sea anemones in different management zones (i.e., an MPA and two fishing zones) by performing a field survey and a genetic parentage analysis. We found lower levels of abundance per anemone in the MPA compared to the fishing zones for both species ( n  = 1,525 anemones, p  = .032). The parentage analysis also showed that lower numbers of fishes were recruited from the fishing zones and outside of the study area into each anemone in the MPA than into each anemone in the fishing zones ( n  = 1,525 anemones, p  fishing zones ( n  = 384 females, p  = .516). Because the ocean currents around the study site were unlikely to cause a lower settlement intensity of larvae in the MPA, the ocean circulation was not considered crucial to the observed abundance and recruitment patterns. Instead, stronger top-down control and/or a lower density of host anemones in the MPA were potential factors for such patterns. Our results highlight the importance of dissimilarity in a marine environment as a factor that affects connectivity.

  17. Multifinality in the Development of Personality Disorders: A Biology × Sex × Environment Interaction Model of Antisocial and Borderline Traits

    Science.gov (United States)

    Beauchaine, Theodore P.; Klein, Daniel N.; Crowell, Sheila E.; Derbidge, Christina; Gatzke-Kopp, Lisa

    2009-01-01

    Although antisocial personality disorder (ASPD) is more common among males and borderline personality disorder (BPD) is more common among females, some (e.g., Paris, 1997) have suggested that the two disorders reflect multifinal outcomes of a single etiology. This assertion is based on several overlapping symptoms and features, including trait impulsivity, emotional lability, high rates of depression and suicide, and a high likelihood of childhood abuse and/or neglect. Furthermore, rates of ASPD are elevated in the first degree relatives of those with BPD, and concurrent comorbidity rates for the two disorders are high. In this article, we present a common model of antisocial and borderline personality development. We begin by reviewing issues and problems with diagnosing and studying personality disorders in children and adolescents. Next, we discuss dopaminergic and serotonergic mechanisms of trait impulsivity as predisposing vulnerabilities to ASPD and BPD. Finally, we extend shared risk models for ASPD and BPD by specifying genetic loci that may confer differential vulnerability to impulsive aggression and mood dysregulation among males and impulsive self-injury and mood dysregulation among females. Although the precise mechanisms of these sex-moderated genetic vulnerabilities remain poorly understood, they appear to interact with environmental risk factors including adverse rearing environments to potentiate the development of ASPD and BPD. PMID:19583882

  18. Development of an operational neutron spectrometry system dedicated to the characterization of the natural atmospheric radiative environment, implemented at the Pic du Midi

    International Nuclear Information System (INIS)

    Cheminet, Adrien

    2013-01-01

    This PhD Thesis has been achieved thanks to the joint effort between two French organizations, the French Institute for Radiological Protection and Nuclear Safety (IRSN/LMDN, Cadarache) and the French Aerospace Lab (ONERA/ DESP, Toulouse). The aim was to develop an operational neutron spectrometer extended to high energies in order to measure the dynamics of the spectral variations of the natural radiative environment at the summit of the Pic du Midi Observatory in the French Pyrenees. Thereby, the fluence responses of each detector were calculated thanks to Monte Carlo simulations. Afterwards, they were validated by means of experimental campaigns up to high energies (≥20 MeV) nearby reference neutron fields. The systematic uncertainties were deduced after detailed studies of the mathematic reconstruction of the spectra (i.e. unfolding procedure). Then, the system was tested under rocks at the LSBB of Rustrel before being installed at respectively +500 m and +1000 m above sea level for the first environmental campaigns. Finally, the spectrometer has been operating for two years after its deployment at the summit of the Pic du Midi (+2885 m). The continuous data were analysed thanks to an innovative method. Some seasonal and spectral variations were observed. Some Forbush decreases were also recorded after strong solar flares. These data were further analysed thanks to Monte Carlo simulations. The data were made more attractive thanks to several practical applications with personnel dosimetry or reliability of submicron electronics components. (author)

  19. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  20. Cancer and non-cancer risk at low doses of radiation: biological basis of radiation-environment interplay

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2013-01-01

    Cancer and non-cancer risk at low doses of ionizing radiation remains poorly defined due to ambiguity at low doses caused by limitations in statistical power and information available on interplay with environment. To deal with these problems, a novel non-parametric statistics was developed based on artificial neural networks theorem and applied to cancer and non-cancer risk in A-bomb survivors. The analysis revealed several unique features at low doses that could not be accounted for by nominal radiation dose alone. They include (1) threshold that varies with organ, gender and age, including cardiovascular diseases, (2) prevalence of infectious diseases, and (3) suppression of pathogenesis of HTLV1. The threshold is unique as it is manifested as negative excess relative risk, a reduction of spontaneous rate at low doses. The response is consistent with currently emerging laboratory data on DNA double-strand break (DSB) repair pathway choice and its sustainability as epigenetic memory in accordance with histone code theory. In response to DSB, of radiation or DNA replication arrest origin, distinct and competitively operating repair pathways are instigated. Activation by low doses of restitution-directed canonical non-homologous end-joining (C-NHEJ) suppresses both error-prone alternative end-joining (Alt-NHEJ) and homologous recombination (HR). The latter two present major pathways to mutagenesis at stalled replication folk associated with endogenous and exogenous genotoxin such as tobacco smoke metabolites and AID-associated somatic hypermutation and class switch recombination in Ig gene. Suppression of these error-prone pathways by low doses of low LET radiation is consistent with the reduction of cancer occurrence by environmental genotoxin, immunodiversity and stable integration of retrovirus DNA, providing a significant modulator of dose linearity at low doses. Whole picture may bring about a new landscape of cancer and non-cancer molecular epidemiology which

  1. A biological model for construction of meaning to serve as an interface between an intelligent system and its environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, W.J. [Univ of California, Berkeley, CA (United States)

    1996-12-31

    There are two main levels of neural function to be modeled with appropriate state variables and operations. Microscopic activity is seen in the fraction of the variance of single neuron pulse trains (>99.9%) that is largely random and uncorrelated with pulse trains of other neurons in the neuropil. Macroscopic activity is revealed in the >0.1% of the total variance of each neuron that is covariant with all other neurons in neuropil comprising a population. It is observed in dendritic potentials recorded as surface EEGs. The {open_quotes}spontaneous{close_quotes} background activity of neuropil at both levels arises from mutual excitation within a population of excitatory neurons. Its governing point attractor is set by the macroscopic state, which acts as an order parameter to regulate the contributing neurons. The point attractor manifests a homogeneous field of white noise, which can be modeled by a continuous time state variable for pulse density. Neuropil comprises both excitatory and inhibitory neurons Their interactions at the macroscopic level give oscillations, manifesting a limit cycle attractor. Multiple areas of neuropil comprising a sensory system interact. Due to their incommensurate characteristic frequencies and the long axonal delays between them, the system maintains a global chaotic attractor having multiple wings, one for each discriminable class of stimuli. Access to each wing is by stimulus- induced state transitions, causing construction of macroscopic chaotic patterns, that are carried to targets of cortical transmission by axon tracts. AM patterns of the carrier are extracted by the targets by spatiotemporal integration, thereby retrieving the covariance comprising the chaotic signal. In digital models, noise serves to stabilize the chaotic attractors. An example will be given of the model operating as an interface between the environment and a pattern classifier, which learns to form its own feature detectors.

  2. Public health challenges for the 21st century: Convergence of demography, economics, environment and biology: Nalanda distinguished lecture.

    Science.gov (United States)

    Narayan, K M Venkat

    2017-01-01

    The rapidly changing and interdependent world under the mega-force of globalization presents unique challenges and opportunities for public health. Focusing on the example of type 2 diabetes, I argue that an appreciation for the evolution of demographic and economic contexts is essential to appropriately address today's dynamic and complex health challenges. For the vast majority of the past 2000 years, India and China were the world's largest economies until the rise of western European nations in the 18th century and later the USA. In the case of India, inflation-adjusted per capita income remained flat between 1700 and 1950, while in the same period that of the UK grew more than 7-fold, although the population of the UK relatively grew 3-times faster than that of India in the same period. This 250-year gap in industrial and economic development may be central to understanding the large burden of diabetes among individuals of Indian descent, and should be taken into account in a wider context to understand the divergence in health development between India and parts of the world which benefited from early industrial progress and accompanying improvements in food supply, hygiene and living conditions. Lessons from high-income countries support a strong emphasis on public health to achieve important populationwide health gains, and offer insights into the broader determinants of health such as economic and food security, equity, urban infrastructure, health-promoting environments, and access to high-quality health systems. Critical to contemporary public health is also strong data systems and evidence-based decision-making.

  3. Interactions among genes, tumor biology and the environment in cancer health disparities: examining the evidence on a national and global scale.

    Science.gov (United States)

    Wallace, Tiffany A; Martin, Damali N; Ambs, Stefan

    2011-08-01

    Cancer incidence and mortality rates show great variations across nations and between population groups. These variations are largely explained by differences in age distribution, diet and lifestyle, access to health care, cultural barriers and exposure to carcinogens and pathogens. Cancers caused by infections are significantly more common in developing than developed countries, and they overproportionally affect immigrant populations in the USA and other countries. The global pattern of cancer is not stagnant. Instead, it is dynamic because of fluctuations in the age distribution of populations, improvements in cancer prevention and early detection in affluent countries and rapid changes in diet and lifestyle in parts of the world. For example, increased smoking rates have caused tobacco-induced cancers to rise in various Asian countries, whereas reduced smoking rates have caused these cancers to plateau or even begin to decline in Western Europe and North America. Some population groups experience a disproportionally high cancer burden. In the USA and the Caribbean, cancer incidence and mortality rates are excessively high in populations of African ancestry when compared with other population groups. The causes of this disparity are multifaceted and may include tumor biological and genetic factors and their interaction with the environment. In this review, we will discuss the magnitude and causes of global cancer health disparities and will, with a focus on African-Americans and selected cancer sites, evaluate the evidence that genetic and tumor biological factors contribute to existing cancer incidence and outcome differences among population groups in the USA.

  4. Cutaneous water loss and sphingolipids in the stratum corneum of house sparrows, Passer domesticus L., from desert and mesic environments as determined by reversed phase high-performance liquid chromatography coupled with atmospheric pressure photospray ionization mass spectrometry.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Ro, Jennifer; Brown, Johnie C; Williams, Joseph B

    2008-02-01

    Because cutaneous water loss (CWL) represents half of total water loss in birds, selection to reduce CWL may be strong in desert birds. We previously found that CWL of house sparrows from a desert population was about 25% lower than that of individuals from a mesic environment. The stratum corneum (SC), the outer layer of the epidermis, serves as the primary barrier to water vapor diffusion through the skin. The avian SC is formed by layers of corneocytes embedded in a lipid matrix consisting of cholesterol, free fatty acids and two classes of sphingolipids, ceramides and cerebrosides. The SC of birds also serves a thermoregulatory function; high rates of CWL keep body temperatures under lethal limits in episodes of heat stress. In this study, we used high-performance liquid chromatography coupled with atmospheric pressure photoionization-mass spectrometry (HPLC/APPI-MS) to identify and quantify over 200 sphingolipids in the SC of house sparrows from desert and mesic populations. Principal components analysis (PCA) led to the hypotheses that sphingolipids in the SC of desert sparrows have longer carbon chains in the fatty acid moiety and are more polar than those found in mesic sparrows. We also tested the association between principal components and CWL in both populations. Our study suggested that a reduction in CWL found in desert sparrows was, in part, the result of modifications in chain length and polarity of the sphingolipids, changes that apparently determine the interactions of the lipid molecules within the SC.

  5. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  6. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Schaumann, Gabriele E.; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra

    2015-01-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO 2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag 2 S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO 2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO 2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of

  7. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  8. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Directory of Open Access Journals (Sweden)

    Tilton Susan C

    2012-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single

  9. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs. Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis

  10. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    Science.gov (United States)

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  11. Imaging Mass Spectrometry in Neuroscience

    Science.gov (United States)

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  12. Statistical methods for mass spectrometry-based clinical proteomics

    NARCIS (Netherlands)

    Kakourou, A.

    2018-01-01

    The work presented in this thesis focuses on methods for the construction of diagnostic rules based on clinical mass spectrometry proteomic data. Mass spectrometry has become one of the key technologies for jointly measuring the expression of thousands of proteins in biological samples.

  13. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  15. Biological diversity in urban environments

    OpenAIRE

    Gyllin, Mats

    2004-01-01

    The thesis approaches the concept of urban biodiversity from different angles in an attempt to explain its significance. In a study from the constructed Toftanäs wetland park, methods of affecting local biodi-versity are demonstrated as integrated with other functions, such as water quality and stormwater detention. Vegetation analyses are provided to show the rapid and sometimes unexpected change in species composition. Both spontaneous and introduced species were followed in a five-year pro...

  16. Functional genomics by mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Mann, M

    2000-01-01

    Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene f...... numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes....

  17. Geospatial characteristics of Florida's coastal and offshore environments: Distribution of important habitats for coastal and offshore biological resources and offshore sand resources

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, and locations of important habitats (for example, Essential Fish Habitats (EFH), nesting areas, strandings) for marine invertebrates, fish, reptiles, birds, and marine mammals. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map can be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are

  18. Mass spectrometry a versatile aid to inorganic analysis

    International Nuclear Information System (INIS)

    Stefani, Rene

    1976-01-01

    Several hundred publications have appeared in the last three years that deal with applications of Mass Spectrometry to inorganic analysis. Bulk and localized trace analysis, surface and thin film characterization and microstructure examination are currently performed by Secondary Ion Mass Spectrometry, Spark Source Mass Spectrometry and the newly developed Laser Probe Mass Spectrometry. Suitable experimental procedures allow insulators, biologic materials and microsamples to be analysed. In spite of the classification by techniques this review is essentially devoted to the most significant papers in analytical applications but instrumental and basic features are sometimes introduced to support the discussions

  19. Surface analysis of lipids by mass spectrometry: more than just imaging.

    Science.gov (United States)

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The CLEM Model: Path Analysis of the Mediating Effects of Attitudes and Motivational Beliefs on the Relationship between Perceived Learning Environment and Course Performance in an Undergraduate Non-Major Biology Course

    Science.gov (United States)

    Partin, Matthew L.; Haney, Jodi J.

    2012-01-01

    In this study, the following questions were addressed in an undergraduate non-major biology course using a large lecture format: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? The purpose of this study was to…

  1. X-ray spectrometry for preventive conservation of cultural heritage

    Indian Academy of Sciences (India)

    Analytical chemistry does play a key role in the chemical characterization of the environment and it appears that X-ray spectrometry, in its many forms, is one of the most relevant analytical techniques in preventive conservation, as it is in cultural heritage research in general. X-ray spectrometry has indeed been the method ...

  2. Lipidomic mass spectrometry and its application in neuroscience

    Institute of Scientific and Technical Information of China (English)

    Mabel; Enriquez-Algeciras; Sanjoy; K; Bhattacharya

    2013-01-01

    Central and peripheral nervous systems are lipid rich tissues. Lipids, in the context of lipid-protein complexes, surround neurons and provide electrical insulation for transmission of signals allowing neurons to remain embedded within a conducting environment. Lipids play a key role in vesicle formation and fusion in synapses. They provide means of rapid signaling, cell motility and migration for astrocytes and other cell types that surround and play supporting roles neurons. Unlike many other signaling molecules, lipids are capable of multiple signaling events based on the different fragments generated from a single precursor during each event. Lipidomics, until recently suffered from two major disadvantages:(1) level of expertise required an overwhelming amount of chemical detail to correctly identify a vast number of different lipids which could be close in their chemical reactivity; and(2) high amount of purified compounds needed by analytical techniques to determine their structures. Advances in mass spectrometry have enabled overcoming these two limitations. Mass spectrometry offers a great degree of simplicity in identification and quantification of lipids directly extracted from complex biological mixtures. Mass spectrometers can be regarded to as mass analyzers. There are those that separate and analyze the product ion fragments in space(spatial) and those which separate product ions in time in the same space(temporal). Databases and standardized instrument parameters have further aided the capabilities of the spatial instruments while recent advances in bioinformatics have made the identification and quantification possible using temporal instruments.

  3. Methods of neutron spectrometry

    International Nuclear Information System (INIS)

    Doerschel, B.

    1981-01-01

    The different methods of neutron spectrometry are based on the direct measurement of neutron velocity or on the use of suitable energy-dependent interaction processes. In the latter case the measuring effect of a detector is connected with the searched neutron spectrum by an integral equation. The solution needs suitable unfolding procedures. The most important methods of neutron spectrometry are the time-of-flight method, the crystal spectrometry, the neutron spectrometry by use of elastic collisions with hydrogen nuclei, and neutron spectrometry with the aid of nuclear reactions, especially of the neutron-induced activation. The advantages and disadvantages of these methods are contrasted considering the resolution, the measurable energy range, the sensitivity, and the experimental and computational efforts. (author)

  4. [Imaging Mass Spectrometry in Histopathologic Analysis].

    Science.gov (United States)

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  5. Elements in biological AMS

    International Nuclear Information System (INIS)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14 C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  6. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  7. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  8. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  9. [Sample preparation and bioanalysis in mass spectrometry].

    Science.gov (United States)

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  10. Emerging Contaminants in the Environment

    Science.gov (United States)

    This chapter explores the use of mass spectrometry and its application to emerging contaminants (ECs) in the environment; such classes of compounds as organometallics, pharmaceuticals/drugs, nanomaterials, and dispersants (surfactants). Table 1 shows the variety of ECs that are...

  11. Urban gamma spectrometry. Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Aage, H.K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Kuukankorpi, S.; Moring, M.; Smolander, P.; Toivonen, H. (Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    Urban gamma spectrometry has been given only minor attention with the focus being on rural gamma spectrometry. However, in recent years the Nordic emergency management authorities have turned focus towards border control and lost or stolen sources. Gamma spectra measured in urban areas are characterized by a wide variety of spectrum shapes and very fast changes in environmental background. In 2004 a Danish CGS (Carborne Gamma Spectrometry) survey took place in Copenhagen. It was found that gamma spectrometry in urban areas is far more complicated to interpret than had previously been thought and a new method 'Fitting with Spectral Components', FSC, based on NASVD, was tested with some success. In Finland, a database 'LINSSI' has been developed for spectral data management. In CGS search mode a 'peak hypothesis test' is applied to the measured spectra. This system was tested during the Helsinki 2005 Athletics World Championship and it provides fast and reliable automated alarms for intermediate and high level signals. In Sweden mobile detector systems are used for border controls and problems are encountered when making measurement in harbour, container areas. The methods for handling data and for interpretation of urban gamma spectrometry measurements were compared and tested on the same data sets from Copenhagen and Helsinki. Software tools were developed for converting data between the Finnish LINSSI database and the binary file formats used in Denmark and Sweden. The Processing methods used at DTU and STUK have different goals. The ASSS and FSC methods are designed to optimize the overall detection capability of the system, while sacrificing speed, usability and to a certain level robustness. These methods cannot always be used for real time analysis. The Peak Significance method is designed to give robust alarms in real time, while sacrificing some of the detection capability. Thus these methods are not interchangeable, but rather

  12. Urban gamma spectrometry. Report 2

    International Nuclear Information System (INIS)

    Aage, H.K.; Kuukankorpi, S.; Moring, M.; Smolander, P.; Toivonen, H.

    2009-06-01

    Urban gamma spectrometry has been given only minor attention with the focus being on rural gamma spectrometry. However, in recent years the Nordic emergency management authorities have turned focus towards border control and lost or stolen sources. Gamma spectra measured in urban areas are characterized by a wide variety of spectrum shapes and very fast changes in environmental background. In 2004 a Danish CGS (Carborne Gamma Spectrometry) survey took place in Copenhagen. It was found that gamma spectrometry in urban areas is far more complicated to interpret than had previously been thought and a new method 'Fitting with Spectral Components', FSC, based on NASVD, was tested with some success. In Finland, a database 'LINSSI' has been developed for spectral data management. In CGS search mode a 'peak hypothesis test' is applied to the measured spectra. This system was tested during the Helsinki 2005 Athletics World Championship and it provides fast and reliable automated alarms for intermediate and high level signals. In Sweden mobile detector systems are used for border controls and problems are encountered when making measurement in harbour, container areas. The methods for handling data and for interpretation of urban gamma spectrometry measurements were compared and tested on the same data sets from Copenhagen and Helsinki. Software tools were developed for converting data between the Finnish LINSSI database and the binary file formats used in Denmark and Sweden. The Processing methods used at DTU and STUK have different goals. The ASSS and FSC methods are designed to optimize the overall detection capability of the system, while sacrificing speed, usability and to a certain level robustness. These methods cannot always be used for real time analysis. The Peak Significance method is designed to give robust alarms in real time, while sacrificing some of the detection capability. Thus these methods are not interchangeable, but rather complementary. An ideal system

  13. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    Science.gov (United States)

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Software for nuclear spectrometry

    International Nuclear Information System (INIS)

    1998-10-01

    The Advisory Group Meeting (AGM) on Software for Nuclear Spectrometry was dedicated to review the present status of software for nuclear spectrometry and to advise on future activities in this field. Because similar AGM and consultant's meetings had been held in the past; together with an attempt to get more streamlined, this AGM was devoted to the specific field of software for gamma ray spectrometry. Nevertheless, many of the issues discussed and the recommendations made are of general concern for any software on nuclear spectrometry. The report is organized by sections. The 'Summary' gives conclusions and recommendations adopted at the AGM. These conclusions and recommendations resulted from the discussions held during and after presentations of the scientific and technical papers. These papers are reported here in their integral form in the following Sections

  15. Glycomics using mass spectrometry

    OpenAIRE

    Wuhrer, Manfred

    2013-01-01

    Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage di...

  16. Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. Report of a Consultants Group Meeting. Working Material

    International Nuclear Information System (INIS)

    1999-01-01

    High-priority opportunities are proposed for use of nuclear techniques to effect improved production and shipping of augmentative biological control agents. Proposed subprojects include use of ionizing radiation to improve the production of insect natural enemies on natural hosts/prey or on artificial diets. Other subprojects pertain to improving the ability to move beneficial organisms in international trade, and in using them in the field. Additional high priority activities were identified proposing use of nuclear techniques to produce sterile and/or substerile F-1 weed biological control agents to help evaluate potential impact on non-target species in the pre-release phase, integration of augmentative releases and F-1 sterility in IPM and area-wide pest management programmes, and utilization of by-products from SIT mass-rearing facilities in augmentative biological control programmes. (author)

  17. Ultratrace analysis of plutonium in environmental samples by resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Trautmann, N.; Erdmann, N.; Gruening, C.; Kratz, J. V.; Waldek, A.; Huber, G.; Nunnemann, M.; Passler, G.

    2000-01-01

    Plutonium is present in the environment mainly as a result of global fallout from nuclear weapons tests, satellite and reactor accidents as well as releases from nuclear facilities. Sensitive and fast detection methods are required for risk assessment, low-level surveillance of the environment, personnel dose monitoring, studies of biological effects and investigations of the migration behavior of plutonium. Furthermore, the isotopic composition is of interest to get information from what source the plutonium contamination originated. Alpha-spectroscopy is most frequently used for the determination of trace amounts of plutonium in the environment with the disadvantage that the detection sensitivity depends on the half-life of the isotope to be measured and that there are limitations in the isotopic resolution. Conventional mass spectrometry may suffer from isobaric interferences. Therefore, in the last years resonant laser ionization mass spectrometry (RIMS) has been explored as an alternative for ultratrace analysis of plutonium. This method provides a high element and isotope selectivity and a good overall efficiency, resulting in a detection limit of ∼10 6 atoms (∼0.4 fg). RIMS meets also the requirements of a low background and a short measuring time (1-2 h)

  18. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  19. The use of lasers as sources for Raman spectrometry, resonance Raman spectrometry, and light scattering

    International Nuclear Information System (INIS)

    Capitini, R.; Ceccaldi, M.; Leicknam, J.P.; Plus, R.

    1975-01-01

    The activity of the laboratory is principally centred on the determination of molecular structures and the study of molecular interactions in solution by infrared and Raman spectrometry. With the development of work on relatively large molecules, particularly biological molecules, it became necessary to complete information on the molecular weight and on the intra and intermolecular geometry and interactions of these bodies. In order to obtain these informations Rayleigh scattering and resonance Raman spectrometry were used. The advantages of using vibrational spectrometry, particularly Raman, in conjunction with the diffusion of light for these structural and molecular interaction studies is emphasized. It is shown that these two techniques could not have developed as they have done in the last few years without the use of lasers as light source [fr

  20. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  1. Development of marine flyash concrete and evaluation of its performance with respect to physico-chemical and biological factors in marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; VijayKumar, V.; Kundaikar, T.J.; Venugopal, C.; Sawant, S.S.

    The aim of the research was to develop flyash concrete and assess various factors controlling its durability in the marine environment. Hence the research was planned with the following objectives in mind: (1) Development of flyash concrete...

  2. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.

  3. Determination of inorganic mercury and total mercury in biological and environmental samples by flow injection-cold vapor-atomic absorption spectrometry using sodium borohydride as the sole reducing agent

    International Nuclear Information System (INIS)

    Rio Segade, Susana; Tyson, Julian F.

    2003-01-01

    A simple, fast, precise and accurate method to determine inorganic mercury and total mercury in biological and environmental samples was developed. The optimized flow-injection mercury system permitted the separate determination of inorganic mercury and total mercury using sodium borohydride as reducing agent. Inorganic mercury was selectively determined after reduction with 10 -4 % w/v sodium borohydride, while total mercury was determined after reduction with 0.75% w/v sodium borohydride. The calibration graphs were linear up to 30 ng ml -1 . The detection limits of the method based on three times the standard deviation of the blank were 24 and 3.9 ng l -1 for total mercury and inorganic mercury determination, respectively. The relative standard deviation was less than 1.5% for a 10 ng ml -1 mercury standard. As a means of checking method performance, deionized water and pond water samples were spiked with methylmercury and inorganic mercury; quantitative recovery for total mercury and inorganic mercury was obtained. The accuracy of the method was verified by analyzing alkaline and acid extracts of five biological and sediment reference materials. Microwave-assisted extraction procedures resulted in higher concentrations of recovered mercury species, lower matrix interference with mercury determination and less time involved in sample treatment than conventional extraction procedures. The standard addition method was only needed for calibration when biological samples were analyzed. The detection limits were in the range of 1.2-19 and 6.6-18 ng g -1 in biological and sediment samples for inorganic mercury and total mercury determination, respectively

  4. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection

    Science.gov (United States)

    Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin

    2018-05-01

    In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.

  5. Contribution to the development of new analytical methods by the coupling between capillary electrophoresis and mass spectrometry (ICP-MS and ESI-MS): applications to the nuclear and biological fields; Contribution au developpement de nouvelles methodes analytiques par le couplage entre l'electrophorese capillaire et la spectrometrie de masse (ICP-MS et ESI-MS): applications dans les domaines nucleaires et biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Pitois, A

    2006-04-15

    The coupling between chromatographic and electrophoretic separation techniques and mass spectrometry is used to combine the efficiency of the separation technique to the selectivity and sensitivity of the detectors. In this work, the number of applications of the CE-MS couplings has been increased. New analytical methods have been set up in the nuclear and biological fields. New analytical methods for the determination of fission products (cesium and lanthanides) have been developed by CE-ICP-MS. They enable to determine both concentration and isotopic composition of the fission products for very low detection limits (ng/mL by CE-Q-ICPMS, pg/mL by CE-HR-ICP-MS), since all the isobaric interferences are resolved. Moreover, only some nano-liters of sample are necessary to perform the analysis. These method have been applied with success to a simulated sample of spent fuel, to a nuclear sample from PUREX process and to a leaching of MOX fuel. Then, lanthanides have been analysed by CE-ESI-MS and the capability of ESI-MS to provide structural information has been studied. Elementary information has been obtained for strong potentials. Structural information has been obtained for low potentials. Finally, a new analytical method by CE-ESI-MS for the determination of 10B-boronophenylalanine (10B-BPA) has been developed for Boron Neutron Capture Therapy (BNCT). It has been applied to the cellular lines F98 and HUVEC. This CE-ESI-MS method has been validated by HR-ICP-MS. It enables a direct quantification of the chemical form 10B-BPA in samples of limited size (some nano-liters) and for low concentrations (ng/mL). As a consequence, this CE-ESI-MS method has enabled the study of the kinetics of 10B-BPA release and uptake for the F98 cells. (author)

  6. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  7. The CLEM model: Path analysis of the mediating effects of attitudes and motivational beliefs on the relationship between perceived learning environment and course performance in an undergraduate nonmajor biology course

    Science.gov (United States)

    Partin, Matthew L.

    The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to

  8. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry

    CERN Document Server

    Mertens, Bart

    2017-01-01

    This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass ...

  9. Environment and Medical Sciences Division Progress Report

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1980-06-01

    The 1979 annual progress report of the UKAEA Environmental and Medical Sciences Division covers both radiological and non-nuclear research programmes in the environmental and toxicological fields. The specific topics were 1) 'atmospheric pollution' which included the analysis of atmospheric trace gases by gas chromatography/mass spectrometry, the life cycle of atmospheric sulphur compounds, photochemical pollution, studies on stratospheric reactions, stratospheric ozone and the effects of pollutants, upper air sampling and monitoring gaseous atmospheric pollutants with passive samplers; 2) miscellaneous 'environmental safety projects'; 3) 'radiation physics' projects concerning a) radioactive fallout, b) studies of stable trace elements in the atmospheric environment and studies of radioactivity in the environment, c) various aspects of dosimetry research including radiation biophysics, d) personnel dosimetry, e) applied radiation spectrometry and f) data systems; 5) 'aerosol and metabolic studies' including whole body counting studies; 6) 'inhalation toxicology and radionuclide analysis' studies including actinide inhalation, cytotoxicity and fibrogenicity of non-radioactive dusts, asbestos and glass fibre research, a Qauntimet 720 image analysis service and radionuclide analysis in biological materials; and 7) 'analytical services' used in relation to 'environmental safety and chemical analysis' projects. (U.K.)

  10. Mass spectrometry imaging: Towards a lipid microscope?

    Science.gov (United States)

    Touboul, David; Brunelle, Alain; Laprévote, Olivier

    2011-01-01

    Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition. Copyright © 2010

  11. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    Science.gov (United States)

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  12. Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    le Gac, S.; le Gac, Severine; van den Berg, Albert; van den Berg, A.; Unknown, [Unknown

    2009-01-01

    With this book we want to illustrate how two quickly growing fields of instrumentation and technology, both applied to life sciences, mass spectrometry and microfluidics (or microfabrication) naturally came to meet at the end of the last century and how this marriage impacts on several types of

  13. Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  14. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  15. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  16. Search for the evidence of endocrine disruption in the aquatic environment: Lessons to be learned from joint biological and chemical monitoring in the European Project COMPREHEND

    NARCIS (Netherlands)

    Eggen, R.I.L.; Bengtsson, B.E.; Bowmer, C.T.; Gerritsen, A.A.M.; Gibert, M.; Hylland, K.; Johnson, A.C.; Leonards, P.E.G.; Nakari, T.; Norrgren, L.; Sumpter, J.P.; Suter, M.J.F.; Svenson, A.; Pickering, A.D.

    2003-01-01

    Between January 1999 and December 2001, the European Community project COMPREHEND was performed. The overall aim of COMPREHEND was to assess endocrine disruption in the aquatic environment in Europe, consequent to effluent discharge, with emphasis on estrogenic activity. COMPREHEND demonstrated the

  17. Phylogenetic Analysis Using Protein Mass Spectrometry.

    Science.gov (United States)

    Ma, Shiyong; Downard, Kevin M; Wong, Jason W H

    2017-01-01

    Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

  18. The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tormen, Luciano, E-mail: lucianotormen@hotmail.com [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Universidade Federal da Fronteira Sul - UFFS, Campus Laranjeiras do Sul, 85303-775 Laranjeiras do Sul, PR (Brazil); Gil, Raul A. [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Frescura, Vera L.A. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Martinez, Luis Dante [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Simple sample treatment of biologic samples with formic acid is proposed. Black-Right-Pointing-Pointer The treatment with formic acid is easy, rapid, less expensive and environmental friendly allowing a high sample throughput. Black-Right-Pointing-Pointer External calibration with aqueous standard allows the simultaneous determination of As, Co, Cu, Fe, Mn, Ni, Se and V. Black-Right-Pointing-Pointer The use of ETV avoids plasma instability, carbon deposit on the cones and does not require sample digestion. - Abstract: A fast method for the determination of As, Co, Cu, Fe, Mn, Ni, Se and V in biological samples by ETV-ICP-MS, after a simple sample treatment with formic acid, is proposed. Approximately 75 mg of each sample is mixed with 5 mL of formic acid, kept at 90 Degree-Sign C for 1 h and then diluted with nitric acid aqueous solution to a 5% (v/v) formic acid and 1% (v/v) nitric acid final concentrations. A palladium solution was used as a chemical modifier. The instrumental conditions, such as carrier gas flow rate, RF power, pyrolysis and vaporization temperatures and argon internal flow rate during vaporization were optimized. The formic acid causes a slight decrease of the analytes signal intensities, but does not increase the signal of the mainly polyatomic ions ({sup 14}N{sup 35}Cl{sup +}, {sup 14}N{sup 12}C{sup +}, {sup 40}Ar{sup 12}C{sup +}, {sup 13}C{sup 37}Cl{sup +}, {sup 40}Ar{sup 36}Ar{sup +}, {sup 40}Ar{sup 35}Cl{sup +}, {sup 35}Cl{sup 16}O{sup +}, {sup 40}Ar{sup 18}O{sup +}) that affect the analytes signals. The effect of charge transfer reactions, that could increase the ionization efficiency of some elements with high ionization potentials was not observed due to the elimination of most of the organic compounds during the pyrolysis step. External calibration with aqueous standard solutions containing 5% (v/v) formic acid allows the simultaneous determination of all analytes with high accuracy. The

  19. Ultra-trace monitoring of copper in environmental and biological samples by inductively coupled plasma atomic emission spectrometry after separation and preconcentration by using octadecyl silica membrane disks modified by a new schiff's base

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2004-04-01

    Full Text Available Ultra-trace amounts of Cu(II were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone -2,2-dimethyl-1,3-propanediimine (SBTD followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.

  20. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  1. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    Science.gov (United States)

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  3. Integrative Mass Spectrometry Approaches to Monitor Protein Structures, Modifications, and Interactions

    NARCIS (Netherlands)

    Lössl, P.

    2017-01-01

    This thesis illustrates the current standing of mass spectrometry (MS) in molecular and structural biology. The primary aim of the herein described research is to facilitate protein characterization by combining mass spectrometric methods among each other and with complementary analytical

  4. Computational and statistical methods for high-throughput mass spectrometry-based PTM analysis

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Vaudel, Marc

    2017-01-01

    Cell signaling and functions heavily rely on post-translational modifications (PTMs) of proteins. Their high-throughput characterization is thus of utmost interest for multiple biological and medical investigations. In combination with efficient enrichment methods, peptide mass spectrometry analy...

  5. Ion-molecule interactions of biological importance. A vibrational spectroscopic study of magnesium complexes with hydroxylated quinones; Interactions ions-molecules d'interet biologique. Etude par spectrometrie de vibrations de la complexation du magnesium avec des molecules quinoniques hydroxylees

    Energy Technology Data Exchange (ETDEWEB)

    Kirszenbaum, Marek

    1976-06-14

    Luteoskyrin and rugulosin are two naturally occurring yellow pigments with hydroxylated bis-anthraquinonic structures. They cause serious liver disorders in man due to the formation of complexes of the type pigment-Mg{sup 2+}-DNA. In order to elucidate the structure of these complexes we have studied the vibrational spectra of some model systems, namely 1-hydroxy- and 1,4-dihydroxyanthraquinone, their magnesium chelate complexes, and a series of simpler complexes as the acetylacetonates of some divalent metals. Complete vibrational assignment are proposed for anthraquinone-9,10, the two hydroxylated and deureroxylated derivatives and their magnesium complexes. The substitution of {sup 26}Mg in place of {sup 24}Mg in these complexes enabled us to assign the Mg-O vibrations; their number corresponds to a hexa-coordinated metal in the acetylacetonate case and to a tetra-coordinated structure in the anthraquinone-olates complexes. The position of the ν C=0 and ν C-0 vibrations bands in the complexes shows that the bonds in the chelated ring of Mg(1-O-AQ){sub 2} retains their single and double bond characteristic whereas in the CMg(1,4-O{sub 2},-AQ){sub n} a resonating structure appears in the ring. The study of the IR and R spectra of the complexes enabled a tetrahedral structure to be proposed for the oxygens around the magnesium. Finally it was noted that the Mg-O bonds possessed a high degree of covalent character. (author) [French] La luteoskyrine et la rugulosine, deux pigments jaunes de structure de bis-anthraquinones hydroxylees, provoquent des troubles hepatiques graves par la formation des complexes pigment-Mg{sup 2+}-ADN. Dans le but d'eclaircir la structure de ces complexes nous avons etudie, par spectrometrie de vibrations, les systemes-modeles suivants: la 1-hydroxy- et la 1,4-dihydroxyanthraquinones, leurs complexes magnesies et une serie des complexes plus simples, tels que les acetylacetonates. de metaux divalents. Nous avons propose une attribution

  6. Identification of Secreted Candida Proteins Using Mass Spectrometry

    NARCIS (Netherlands)

    Gómez-Molero, E.; Dekker, H.L.; de Boer, A.D.; de Groot, P.W.; Calderone, R.; Cihlar, R.

    2016-01-01

    Analysis of fungal secretomes using mass spectrometry is a useful technique in cell biology. Knowledge of the secretome of a human fungal pathogen may yield important information of host-pathogen interactions and may be useful for identifying vaccines candidates or diagnostic markers for antifungal

  7. Discovery based and targeted Mass Spectrometry in farm animal proteomics

    DEFF Research Database (Denmark)

    Bendixen, Emøke

    2013-01-01

    for investigating farm animal biology. SRM is particularly important for validation biomarker candidates This talk will introduce the use of different mass spectrometry approaches through examples related to food quality and animal welfare, including studies of gut health in pigs, host pathogen interactions...

  8. Thermal ionisation mass spectrometry: recent developments and future prospects

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    1996-01-01

    This paper presents the current state of art of thermal ionization mass spectrometry (TIMS) instrumentation and highlights some of the recent applications of TIMS in geological, biological and nuclear sciences with special emphasis on some of the recent work undertaken in the area of nuclear science and technology. A few examples from the published literature are also discussed here

  9. Current medical research with the application of coupled techniques with mass spectrometry

    OpenAIRE

    Ka?u?na-Czapli?ska, Joanna

    2011-01-01

    Summary The most effective methods of analysis of organic compounds in biological fluids are coupled chromatographic techniques. Capillary gas chromatography/mass spectrometry (GC-MS) allows the most efficient separation, identification and quantification of volatile metabolites in biological fluids. Liquid chromatography-mass spectrometry (LC-MS) is especially suitable for the analysis of non-volatile and/or thermally unstable compounds. A major drawback of liquid chromatography-mass spectro...

  10. Correlation studies between the results of workplace monitoring and biological parameters

    International Nuclear Information System (INIS)

    Khan, A.H.

    1987-10-01

    Some nuclear-based and non-nuclear analytical techniques have been used to look for correlations between the results of workplace monitoring and biological parameters of exposed workers in various workplace environments. The analytical competence of the external beam thick and thin target particle-induced X-ray emission (PIXE) analysis has been established for elemental analysis of air particulates and biological materials. The capability of low-energy photon spectrometry (LEPS) has also been demonstrated. Using the methods of PIXE and flame AAS, some studies have been performed on the elemental composition of air particulates, human head hair, nail and urine collected in different workplace environments in Dhaka. This report contains a brief account of this research along with an outline of future research projects to be carried out in this and other related areas. 13 refs, 5 figs, 7 tabs

  11. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  12. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  13. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology.

    Science.gov (United States)

    Galano, Jean-Marie; Lee, Yiu Yiu; Oger, Camille; Vigor, Claire; Vercauteren, Joseph; Durand, Thierry; Giera, Martin; Lee, Jetty Chung-Yung

    2017-10-01

    Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Paleoreconstruction by biological markers

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, W K; Moldowan, J M

    1981-06-01

    During diagenesis and conversion of the original lipid fraction of biological systems to petroleum hydrocarbons, the following four basic events needed for paleoreconstruction may be monitored by biological markers: (1) sourcing, (2) maturation, (3) migration and (4) biodegradation. Actual cases of applying biological markers to petroleum exploration problems in different parts of the world are demonstrated. Cretaceous- and Phosphoria-sourced oils in the Wyoming Thrust Belt can be distinguished from one another by high quality source fingerprinting of biomarker terpanes using gas chromatography mass spectrometry. Identification of recently discovered biological markers, head-to-head isoprenoids, allows source differentiation between some oils from Sumatra. The degree of crude oil maturation in basins from California, Alaska, Russia, Wyoming and Louisiana can be assessed by specific biomarker ratios (20S/20R sterane epimers). Field evidence from such interpretation is augmented by laboratory pyrolysis of the rock. Extensive migration is documented by biomarkers in several oils. Biological marker results are consistent with the geological setting and add a dimension in assisting the petroleum explorationist towar paleoreconstruction.

  15. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations.

    Science.gov (United States)

    Boggio-Pasqua, Martial; Burmeister, Carl F; Robb, Michael A; Groenhof, Gerrit

    2012-06-14

    Organisms have evolved a wide variety of mechanisms to utilize and respond to light. In many cases, the biological response is mediated by structural changes that follow photon absorption in a protein complex. The initial step in such cases is normally the photoisomerization of a highly conjugated prosthetic group. To understand better the factors controlling the isomerization, we perform atomistic molecular dynamics simulations. In this perspective article we briefly review the key theoretical concepts of photochemical reactions and present a practical simulation scheme for simulating photochemical reactions in biomolecular systems. In our scheme, a multi-configurational quantum mechanical description is used to model the electronic rearrangement for those parts of the system that are involved in the photon absorption. For the remainder, typically consisting of the apo-protein and the solvent, a simple force field model is used. The interactions in the systems are thus computed within a hybrid quantum/classical framework. Forces are calculated on-the-fly, and a diabatic surface hopping procedure is used to model the excited-state decay. To demonstrate how this method is used we review our studies on photoactivation of the photoactive yellow protein, a bacterial photoreceptor. We will show what information can be obtained from the simulations, and, by comparing to recent experimental findings, what the limitations of our simulations are.

  16. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    Science.gov (United States)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  17. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  18. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.

    Science.gov (United States)

    Anderson, J C; Dubetz, C; Palace, V P

    2015-02-01

    Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines

  19. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  20. Adapting mass spectrometry-based platforms for clinical proteomics applications: The capillary electrophoresis coupled mass spectrometry paradigm

    Science.gov (United States)

    Metzger, Jochen; Luppa, Peter B.; Good, David M.; Mischak, Harald

    2018-01-01

    Single biomarker detection is common in clinical laboratories due to the currently available method spectrum. For various diseases, however, no specific single biomarker could be identified. A strategy to overcome this diagnostic void is to shift from single analyte detection to multiplexed biomarker profiling. Mass spectrometric methods were employed for biomarker discovery in body fluids. The enormous complexity of biofluidic proteome compartments implies upstream fractionation. For this reason, mass spectrometry (MS) was coupled to two-dimensional gel electrophoresis, liquid chromatography, surface-enhanced laser desorption/ionization, or capillary electrophoresis (CE). Differences in performance and operating characteristics make them differentially suited for routine laboratory applications. Progress in the field of clinical proteomics relies not only on the use of an adequate technological platform, but also on a fast and efficient proteomic workflow including standardized sample preparation, proteomic data processing, statistical validation of biomarker selection, and sample classification. Based on CE-MS analysis, we describe how proteomic technology can be implemented in a clinical laboratory environment. In the last part of this review, we give an overview of CE-MS-based clinical studies and present information on identity and biological significance of the identified peptide biomarkers providing evidence of disease-induced changes in proteolytic processing and posttranslational modification. PMID:19404829

  1. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  2. Mass spectrometry in clinical chemistry

    International Nuclear Information System (INIS)

    Pettersen, J.E.

    1977-01-01

    A brief description is given of the functional elements of a mass spectrometer and of some currently employed mass spectrometric techniques, such as combined gas chromatography-mass spectrometry, mass chromatography, and selected ion monitoring. Various areas of application of mass spectrometry in clinical chemistry are discussed, such as inborn errors of metabolism and other metabolic disorders, intoxications, quantitative determinations of drugs, hormones, gases, and trace elements, and the use of isotope dilution mass spectrometry as a definitive method for the establishment of true values for concentrations of various compounds in reference sera. It is concluded that mass spectrometry is of great value in clinical chemistry. (Auth.)

  3. Sample Preprocessing For Atomic Spectrometry

    International Nuclear Information System (INIS)

    Kim, Sun Tae

    2004-08-01

    This book gives descriptions of atomic spectrometry, which deals with atomic absorption spectrometry such as Maxwell-Boltzmann equation and Beer-Lambert law, atomic absorption spectrometry for solvent extraction, HGAAS, ETASS, and CVAAS and inductively coupled plasma emission spectrometer, such as basic principle, generative principle of plasma and device and equipment, and interferences, and inductively coupled plasma mass spectrometry like device, pros and cons of ICP/MS, sample analysis, reagent, water, acid, flux, materials of experiments, sample and sampling and disassembling of sample and pollution and loss in open system and closed system.

  4. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    Doerfler, D.L.; Rosenblum, E.R.; Malloy, J.M.; Naworal, J.D.; McManus, I.R.; Campbell, I.M.

    1980-01-01

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[ 14 C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  5. Lipid imaging by mass spectrometry - a review.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-03-07

    Mass spectrometry imaging (MSI) has proven to be extremely useful for applications such as the spatial analysis of peptides and proteins in biological tissue, the performance assessment of drugs in vivo or the measurement of protein or metabolite expression as tissue classifiers or biomarkers from disease versus control tissue comparisons. The most popular MSI technique is MALDI mass spectrometry. First invented by Richard Caprioli in the mid-1990s, it is the highest performing MSI technique in terms of spatial resolution, sensitivity for intact biomolecules and application range today. The unique ability to identify and spatially resolve numerous compounds simultaneously, based on m/z values has inter alia been applied to untargeted and targeted chemical mapping of biological compartments, revealing changes of physiological states, disease pathologies and metabolic faith and distribution of xenobiotics. Many MSI applications focus on lipid species because of the lipids' diverse roles as structural components of cell membranes, their function in the surfactant cycle, and their involvement as second messengers in signalling cascades of tissues and cells. This article gives a comprehensive overview of lipid imaging techniques and applications using established MALDI and SIMS methods but also other promising MSI techniques such as DESI.

  6. Elephant logging and environment

    International Nuclear Information System (INIS)

    Tin-Aung-Hla

    1995-01-01

    The natural environment comprises non-biological elements such as air, water, light, heat and biological elements of animal and plant life; all interact with each other to create an ecosystem. Human activities like over-exploitation of forest results in deforestation and desertification. This consequently changes ecological balance. Topics on: (1) history of elephants utilization; (2) elephant logging; (3) classification of elephants; (4) dragging gear; (5) elephant power; (6) elephant logging and environment, are discussed

  7. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  8. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  9. Nanoscience, nanotechnology and spectrometry

    International Nuclear Information System (INIS)

    Adams, Freddy C.; Barbante, Carlo

    2013-01-01

    Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues. - Highlights: • We review the analysis of nano-structured materials. • Nano-structured materials can be used as new tools for analysis. • Use of nano electro mechanical systems, of quantum dots and of mass spectrometry • Nanotechnologies are among the most promising tools in analytical science

  10. Nanoscience, nanotechnology and spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Freddy C. [Department of Chemistry, University of Antwerp, B-2610 Wilrijk (Belgium); Barbante, Carlo, E-mail: barbante@unive.it [Institute for the Dynamics of Environmental Processes — CNR, Venice (Italy); Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Venice (Italy)

    2013-08-01

    Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues. - Highlights: • We review the analysis of nano-structured materials. • Nano-structured materials can be used as new tools for analysis. • Use of nano electro mechanical systems, of quantum dots and of mass spectrometry • Nanotechnologies are among the most promising tools in analytical science.

  11. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  12. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  13. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review.

    Science.gov (United States)

    Rzagalinski, Ignacy; Volmer, Dietrich A

    2017-07-01

    Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) permits label-free in situ analysis of chemical compounds directly from the surface of two-dimensional biological tissue slices. It links qualitative molecular information of compounds to their spatial coordinates and distribution within the investigated tissue. MALDI-MSI can also provide the quantitative amounts of target compounds in the tissue, if proper calibration techniques are performed. Obviously, as the target molecules are embedded within the biological tissue environment and analysis must be performed at their precise locations, there is no possibility for extensive sample clean-up routines or chromatographic separations as usually performed with homogenized biological materials; ion suppression phenomena therefore become a critical side effect of MALDI-MSI. Absolute quantification by MALDI-MSI should provide an accurate value of the concentration/amount of the compound of interest in relatively small, well-defined region of interest of the examined tissue, ideally in a single pixel. This goal is extremely challenging and will not only depend on the technical possibilities and limitations of the MSI instrument hardware, but equally on the chosen calibration/standardization strategy. These strategies are the main focus of this article and are discussed and contrasted in detail in this tutorial review. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  15. Laboratory of acceleration mass spectrometry

    International Nuclear Information System (INIS)

    Hybler, P.; Chrapan, J.

    2002-01-01

    In this paper authors describe the principle of the method of acceleration mass spectrometry and the construction plans of this instrument at the Faculty of ecology and environmental sciences in Banska Stiavnica. Using of this instrument for radiocarbon dating is discussed. A review of laboratories with acceleration mass spectrometry is presented

  16. In Cell Footprinting Coupled with Mass Spectrometry for the Structural Analysis of Proteins in Live Cells.

    Science.gov (United States)

    Espino, Jessica A; Mali, Vishaal S; Jones, Lisa M

    2015-08-04

    Protein footprinting coupled with mass spectrometry has become a widely used tool for the study of protein-protein and protein-ligand interactions and protein conformational change. These methods provide residue-level analysis on protein interaction sites and have been successful in studying proteins in vitro. The extension of these methods for in cell footprinting would open an avenue to study proteins that are not amenable for in vitro studies and would probe proteins in their native environment. Here we describe the application of an oxidative-based footprinting approach inside cells in which hydroxyl radicals are used to oxidatively modify proteins. Mass spectrometry is used to detect modification sites and to calculate modification levels. The method is probing biologically relevant proteins in live cells, and proteins in various cellular compartments can be oxdiatively modified. Several different amino acid residues are modified making the method a general labeling strategy for the study of a variety of proteins. Further, comparison of the extent of oxidative modification with solvent accessible surface area reveals the method successfully probes solvent accessibility. This marks the first time protein footprinting has been performed in live cells.

  17. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  18. Recent research and progress of laser mass spectrometry

    International Nuclear Information System (INIS)

    Li Jinying; Wang Fan; Zhao Yonggang; Xiao Guoping; Guo Dongfa; Cui Haiping

    2012-01-01

    The progress of laser mass spectrometry (LMS) was introduced. Its history and principle characteristics were reviewed. The research and applications of LMS in geology, mining, organics, biochemistry, environment and nuclear industry were given. The trend of LMS in the future was outlined, and the main issue and the available solutions were discussed. (authors)

  19. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    International Nuclear Information System (INIS)

    Necemer, Marijan; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina

    2008-01-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  20. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  1. Convivência e aprendizagem em ambientes virtuais: uma reflexão a partir da biologia do conhecer Coexistence and learning in virtual environments: a reflection from the biology of cognition's point of view

    Directory of Open Access Journals (Sweden)

    Eliana Maria do Sacramento Soares

    2011-12-01

    Full Text Available Pensar a dimensão complexa e sistêmica do processo educativo é um dos desafios da contemporaneidade. Para tanto, partimos do pressuposto de que ambientes virtuais de aprendizagem podem se constituir em domínios de ações que levem à autorregulação e a transformações estruturais. Para verificar essa pressuposição, este artigo apresenta resultados de um estudo empírico que busca compreender, a partir da Biologia do Conhecer, como um ambiente virtual pode se constituir num domínio de convivência capaz de propiciar a aprendizagem. Os resultados indicam possibilidades de gestão e de intervenção pedagógica nos ambientes de aprendizagem, que possibilitem a emergência de fluxos de interações que contribuam para que se estabeleça a convivência, nos moldes estudados.Thinking the complex and systemic dimension of the educative process is one of the nowadays' challenges. To this end, we start from the assumption that virtual learning environments can be constituded in action domains that lead to selfregulation and structural transformations. To verify this assumption, this paper presents results of an empirical study that seeks to understand, from the Biology of cognition, how a virtual environment can constitute a coexistence domain, able to propitiate learning. The results suggest possibilities of management and pedagogical intervention in the learning environments that make possible the emergence of interaction flows and contribute to establishing the coexistence, along the lines studied.

  2. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  3. Bacterial colonization of metallic surfaces exposed in marine environment. Use of bacterial lipids

    International Nuclear Information System (INIS)

    Guezennec, Jean

    1986-01-01

    Addressing fouling and more particularly biofouling phenomena occurring notably on structures in marine environment, this research thesis first describes the fouling phenomenon (components, sequences of biofouling development, bio-film chemical composition). The author reports the study of the composition of the biological veil (microbiological methods, presentation of the different components), addresses the various types of lipids (bacterial markers and others). Then, after a presentation of the experimental equipment and methods (test cells, sample preparation, gas phase chromatography, hydrogenation and bromination, mass spectrometry), the author discusses the influence of different parameters such as the substrate type, speed, season, chlorination, and correlation with thermal transfer [fr

  4. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  5. Mass Spectrometry Imaging of Drugs of Abuse in Hair.

    Science.gov (United States)

    Flinders, Bryn; Cuypers, Eva; Porta, Tiffany; Varesio, Emmanuel; Hopfgartner, Gérard; Heeren, Ron M A

    2017-01-01

    Hair testing is a powerful tool routinely used for the detection of drugs of abuse. The analysis of hair is highly advantageous as it can provide prolonged drug detectability versus that in biological fluids and chronological information about drug intake based on the average growth of hair. However, current methodology requires large amounts of hair samples and involves complex time-consuming sample preparation followed by gas or liquid chromatography coupled with mass spectrometry. Mass spectrometry imaging is increasingly being used for the analysis of single hair samples, as it provides more accurate and visual chronological information in single hair samples.Here, two methods for the preparation of single hair samples for mass spectrometry imaging are presented.The first uses an in-house built cutting apparatus to prepare longitudinal sections, the second is a method for embedding and cryo-sectioning hair samples in order to prepare cross-sections all along the hair sample.

  6. New approaches for metabolomics by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos [George Washington Univ., Washington, DC (United States)

    2017-07-10

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites do not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  7. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  8. The Biology of Cancer Health Disparities

    Science.gov (United States)

    These examples show how biology contributes to health disparities (differences in disease incidence and outcomes among distinct racial and ethnic groups, ), and how biological factors interact with other relevant factors, such as diet and the environment.

  9. Biological applications of the Moessbauer effect

    International Nuclear Information System (INIS)

    Boulay, P.

    1968-12-01

    The applications of Moessbauer spectrometry in the fields of physics and chemistry have been increasing steadily since its discovery in 1958. Attempts have been made to find applications in biology. Two possibilities of investigation exist in this field: the study of mechanical or vibrational movements in certain animal organs, and the determination of the organic molecular structure in a biological context. An example is given of each of these possibilities. (author) [fr

  10. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    Science.gov (United States)

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  11. Spectrometry techniques for radioactivity measurements

    International Nuclear Information System (INIS)

    Anilkumar, S.

    2016-01-01

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  12. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  13. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    Science.gov (United States)

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  14. Interfacing DNA nanodevices with biology

    DEFF Research Database (Denmark)

    Vinther, Mathias; Kjems, Jørgen

    2016-01-01

    in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of DNA nanotechnology for such use. We summarize which requirements DNA nanostructures must fulfil to function in cellular...... environments and inside living organisms. In addition, we highlight recent advances in interfacing DNA nanostructures with biology....

  15. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  16. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  17. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  18. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  19. Collection and preparation of samples for gamma spectrometry

    International Nuclear Information System (INIS)

    Pan Jingquan

    1994-01-01

    The paper presents the basic principles of sample collection and preparation: setting up unified sampling program, methods and procedures, sample packing, transportation and storage, determination of sample quantity, sample pretreatment and preparation of samples to be analysed, etc. for gamma spectrometry. And the paper also describes briefly the main methods and special issues of sampling and preparation for the same environmental and biological samples, such as, air, water, grass, soil and foods

  20. Mass spectrometry with ionization induced by 252Cf fission fragments

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Artaev, V.B.

    1991-01-01

    The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface

  1. Myofiber metabolic type determination by mass spectrometry imaging

    OpenAIRE

    Théron, Laetitia; Vénien, Annie; Pujos-Guillot, Estelle; Astruc, Thierry; Chambon, Christophe

    2017-01-01

    In muscle imaging, myofiber type determination is of great importance to better understand biological mechanisms related to skeletal muscle changes associated with pathologies. However, reference methods (histo-enzymology and immunohistochemistry) require serial-cross sections, and several days from the sampling to the results of image analysis. In this work, a strategy based on MALDI-Mass Spectrometry Imaging was developed as an alternative to the classical methods for myofiber metabolic typ...

  2. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  3. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  4. Fast neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    Blaize, S.; Ailloud, J.; Mariani, J.; Millot, J.P.

    1958-01-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author) [fr

  5. Mass Spectrometry of Halopyrazolium Salts

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Pande, U. C.

    1983-01-01

    Eleven halogen substituted 1-methyl-2-phenylpyrazolium bromides or chlorides were investigated by field desorption, field ionization, and electron impact mass spectrometry. Dealkylation was found to be the predominant thermal decomposition. An exchange between covalent and ionic halogen prior...

  6. Investigations on a global environment improving technology utilizing biological functions. 2. Structuring a ligno-bioprocess; Seibutsu kino wo riyoshita chikyu kankyo kaizen gijutsu ni kansuru chosa. 2. Riguno bio process no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Discussions were given to reserve global environments on reducing dependence on fossil resources and more effectively utilizing wood resources. Economically utilizable amount of wastes from lumbering factories reaches about five million tons annually. Discussions were made on a ligno-bioprocess that uses these wastes. The current quantitative production efficiency of cellulase by means of bacterial breeding is very high. A problem is production of ligninolytic enzymes, to which application of the recombinant DNA method is indispensable. Combination of steam explosion with biological decomposition or the organosolv process is an effective method for lignin decomposition. Decomposition of cellulose by using the ultra critical water method is worth noticing. With respect to hemicellulose utilization, production of cellulose derivatives, biodegradable polymers and oligosaccharides would be conceivable by means of esterification and etherification. Vanillinic acid, adhesives, resins and lignin-based polymer materials could be manufactured from lignin. Material cost for these products accounts for about 35% of the product price, thus making the lignochemicals promising commercial products. 301 refs., 71 figs., 39 tabs.

  7. Recent development in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Platzner, I.

    1992-01-01

    Within the limited of this review the following topics will be briefly discussed: a) Accuracy, precision, internal relative standard deviation (RISD) and external relative standard deviation (RESD) of isotope ratio measurements. With advanced instrumentation and use of standard reference materials, high accuracy and RESD = 0.002% (or better) may be achieved; b) The advantages of modern automatic isotope ratio mass spectrometer are briefly described. Computer controlled operation and data acquisition, and multiple ion collection are the recent important improvement; c) The isotopic fractionation during the course of isotope ratio measurement is considered as a major source of errors in thermal ionization of metallic elements. The phenomenon in strontium, neodymium, uranium, lead and calcium and methods to correct the measured data are discussed; d) Applications of isotope ratio mass spectrometry in atomic weight determinations, the isotope dilution technique, isotope geology, and isotope effects in biological systems are described together with specific applications in various research and technology area. (author)

  8. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  9. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  10. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  11. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  12. Radioactive food and environment contamination

    International Nuclear Information System (INIS)

    Yousif, A.M.

    2001-01-01

    The Food and Environment Control Centre of Abu Dhabi Municipality with the help of IAEA has established facilities for regular monitoring of food and environmental samples for radioactive contamination. The Centre is now capable of measuring gamma, beta as well as alpha activity in different types of samples. The main activities in the area of food monitoring are as follows: General monitoring of food gamma radionuclides in foodstuffs by high resolution gamma spectrometry; Determination of specific gamma radionuclides in foodstuffs by high resolution gamma spectrometry; Radiochemical determination of Sr-90 using liquid scintillation analyzer or by gas flow proportional counter; Measurement of gross alpha activity in drinking water

  13. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  15. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  16. Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control

    Science.gov (United States)

    Kirwan, Jennifer A; Weber, Ralf J M; Broadhurst, David I; Viant, Mark R

    2014-01-01

    Direct-infusion mass spectrometry (DIMS) metabolomics is an important approach for characterising molecular responses of organisms to disease, drugs and the environment. Increasingly large-scale metabolomics studies are being conducted, necessitating improvements in both bioanalytical and computational workflows to maintain data quality. This dataset represents a systematic evaluation of the reproducibility of a multi-batch DIMS metabolomics study of cardiac tissue extracts. It comprises of twenty biological samples (cow vs. sheep) that were analysed repeatedly, in 8 batches across 7 days, together with a concurrent set of quality control (QC) samples. Data are presented from each step of the workflow and are available in MetaboLights. The strength of the dataset is that intra- and inter-batch variation can be corrected using QC spectra and the quality of this correction assessed independently using the repeatedly-measured biological samples. Originally designed to test the efficacy of a batch-correction algorithm, it will enable others to evaluate novel data processing algorithms. Furthermore, this dataset serves as a benchmark for DIMS metabolomics, derived using best-practice workflows and rigorous quality assessment. PMID:25977770

  17. [Novel Hyphenated Techniques of Atomic Spectrometry for Metal Species Interaction with Biomolecules].

    Science.gov (United States)

    Li, Yan; Yan, Xiu-ping

    2015-09-01

    Trace metals may be adopted by biological systems to assist in the syntheses and metabolic functions of genes (DNA and RNA) and proteins in the environment. These metals may be beneficial or may pose a risk to humans and other life forms. Novel hybrid techniques are required for studies on the interaction between different metal species and biomolecules, which is significant for biology, biochemistry, nutrition, agriculture, medicine, pharmacy, and environmental science. In recent years, our group dwells on new hyphenated techniques based on capillary electrophoresis (CE), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma mass spectroscopy (ICP-MS), and their application for different metal species interaction with biomolecules such as DNA, HSA, and GSH. The CE-ETAAS assay and CE-ICP-MS assay allow sensitively probing the level of biomolecules such as DNA damage by different metal species and extracting the kinetic and thermodynamic information on the interactions of different metal species with biomolecules, provides direct evidences for the formation of different metal species--biomolecule adducts. In addition, the consequent structural information were extracted from circular dichroism (CD) and X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The present works represent the most complete and extensive study to date on the interactions between different metal species with biomolecules, and also provide new evidences for and insights into the interactions of different metal species with biomolecules for further understanding of the toxicological effects of metal species.

  18. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology

    International Nuclear Information System (INIS)

    Jia, Guogang; Jia, Jing

    2012-01-01

    Radium (Ra) isotopes are important from the viewpoints of radiation protection and environmental protection. Their high toxicity has stimulated the continuing interest in methodology research for determination of Ra isotopes in various media. In this paper, the three most routinely used analytical techniques for Ra isotope determination in biological and environmental samples, i.e. low-background γ-spectrometry, liquid scintillation counting and α-spectrometry, were reviewed, with emphasis on new methodological developments in sample preparation, preconcentration, separation, purification, source preparation and measurement techniques. The accuracy, selectivity, traceability, applicability and minimum detectable activity (MDA) of the three techniques were discussed. It was concluded that the MDA (0.1 mBq L −1 ) of the α-spectrometry technique coupled with chemical separation is about two orders of magnitude lower than that of low-background HPGe γ-spectrometry and LSC techniques. Therefore, when maximum sensitivity is required, the α-spectrometry technique remains the first choice. - Highlights: ► A review is made for determination of Ra isotopes in environmental samples. ► Gamma spectrometry, LSC and a-spectrometry are the main concerned radiometric approach. ► Sample preparation, preconcentration, separation and source preparation are discussed. ► The methods can analyse air, water, seawater, soil, sediment and foodstuffs samples. ► Some new data obtained recently from our laboratory for Ra method study are included.

  19. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  20. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by