WorldWideScience

Sample records for spectrometer 2d ir

  1. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  2. MEOS Microsatellite Earth Observation using Miniature Integrated-Optic IR Spectrometers

    Science.gov (United States)

    Kruzelecky, Roman

    ±0.1 kPa from measurements of the 0.76 mm O2 A band with 0.02 nm resolution and will contain an imager for surface observations at 25×40 m2 resolution within a 100×160 km2 view. This will assist with cloud detection, measurement geolocation and determination of land-cover status. The MEOS payload encompasses groundbreaking innovation in miniaturized infrared (IR) spectrometers based on MPBC's patented technologies (US 7,034,935 B1) for high performance guided-wave spectrometers. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk-optic spectrometers, with a net mass under 2 kg, while also providing significant performance advantages; including an optically immersed master grating for minimal aberrations, robust optical alignment using a low-loss dielectric IR waveguide, and simultaneous broad-band spectral acquisition. Output integrated optics facilitate miniaturization of the detector pixels for high measurement sensitivity. Patented, binary-coded smart signal processing of IR detector arrays iteratively compensates for both random and non-random noise to yield over 60 dB of signal dynamic range. The following paper discusses the breadboarding of the miniature high-resolution FP-IOSPEC spectrometer in support of the MEOS payload requirements. This innovatively combines a tunable Fabry-Perot filter with a guided-wave spectrometer to simultaneously provide multiple microchannels with a spectral resolution to below 0.03 nm FWHM, broad spectral range of operation from 1500 to 2450 nm, and a large optical input aperture. The spectrometer miniaturization is a significant and original advance that facilitates the use of multiple dedicated spectrometers on the same microsat platform to allow simultaneous and coordinated measurements as described above. Acknowledgements The financial assistance of the Canadian Space Agency is greatly appreciated. The constructive suggestions of Guennadi

  3. Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS

    Science.gov (United States)

    Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.

    1996-11-01

    The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.

  4. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

    Science.gov (United States)

    Reuter, D. C.; Simon-Miller, A. A.

    2012-01-01

    The OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) Mission is a planetary science mission to study, and return a sample from, the carbonaceous asteroid 1999 RQ-36. The third mission selected under NASA's New Frontiers Program, it is scheduled to be launched in 2016. It is led by PI Dante Lauretta at the University of Arizona and managed by NASA's Goddard Space Flight Center. The spacecraft and the asteroid sampling mechanism, TAGSAM (Touch-And-Go Sample Acquisition Mechanism) will be provided by Lockheed Martin Space Systems. Instrumentation for studying the asteroid include: OCAMS (the OSIRIS-REx Camera Suite), OLA (the OSIRIS-REx Laser Altimeter, a scanning LIDAR), OTES (The OSIRIS-REx Thermal Emission Spectrometer, a 4-50 micron point spectrometer) and OVIRS (the OSIRIS-REx Visible and IR Spectrometer, a 0.4 to 4.3 micron point spectrometer). The payload also includes REXIS (the Regolith X-ray Imaging Spectrometer) a student provided experiment. This paper presents a description of the OVIRS instrument.

  5. Experimental bandstructure of the 5 d transition metal oxide IrO2

    Science.gov (United States)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  6. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  7. Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers

    International Nuclear Information System (INIS)

    Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

    2000-01-01

    Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design

  8. Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR

    Science.gov (United States)

    Korablev, O. I.; Bertaux, J. L.; Kalinnikov, Yu. K.; Fedorova, A. A.; Moroz, V. I.; Kiselev, A. V.; Stepanov, A. V.; Grigoriev, A. V.; Zhegulev, V. S.; Rodin, A. V.; Dimarellis, E.; Dubois, J. P.; Reberac, A.; van Ransbeeck, E.; Gondet, B.

    2006-07-01

    The acousto-optic spectrometer of the near infrared range, which is a part of the spectrometer SPICAM onboard the Mars-Express spacecraft, began to operate in the orbit of Mars in January 2004. In the SPICAM experiment, a spectrometer on the basis of an acousto-optic filter was used for the first time to investigate other planets. During one and a half years of operation, the IR channel of SPICAM obtained more than half a million spectra in the 1-1.7 μm range with a resolving power of more than 1500 in different modes of observation: limb, nadir, and solar eclipses. The main goal of the experiment is to study the content of water vapor in the Martian atmosphere by measuring the absorption spectrum in the 1.38 μm band. Characteristics of the instrument (high spectral resolution and signal-to-noise ratio) allow one to solve a number of additional scientific problems including the study of ozone distribution by emission of singlet oxygen (O2 1Δg), detection of the water and carbonic dioxide ices, and also the study of the vertical distribution and optical characteristics of aerosol in the Martian atmosphere. We present a description of the instrument, the results of its ground and in-flight calibrations, and a brief survey of the basic scientific results obtained by the SPICAM spectrometer during a year-and-half of operation.

  9. Adding a dimension to the infrared spectra of interfaces: 2D SFG spectroscopy via mid-IR pulse shaping

    Science.gov (United States)

    Zanni, Martin

    2012-02-01

    Sum-frequency generation spectroscopy provides an infrared spectrum of interfaces and thus has widespread use in the materials and chemical sciences. In this presentation, I will present our recent work in developing a 2D pulse sequence to generate 2D SFG spectra of interfaces, in analogy to 2D infrared spectra used to measure bulk species. To develop this spectroscopy, we have utilized many of the tricks-of-the-trade developed in the 2D IR and 2D Vis communities in the last decade, including mid-IR pulse shaping. With mid-IR pulse shaping, the 2D pulse sequence is manipulated by computer programming in the desired frequency resolution, rotating frame, and signal pathway. We believe that 2D SFG will become an important tool in the interfacial sciences in an analogous way that 2D IR is now being used in many disciplines.

  10. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy.

    Science.gov (United States)

    Xiong, Wei; Laaser, Jennifer E; Mehlenbacher, Randy D; Zanni, Martin T

    2011-12-27

    In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple "atop" configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces.

  11. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  12. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Science.gov (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  13. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  14. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    Science.gov (United States)

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  15. Mid IR-fiber spectroscopy in the 2-17μm range

    Science.gov (United States)

    Artyushenko, Viatcheslav G.; Bocharnikov, A.; Colquhoun, Gary; Leach, Clive A.; Lobachov, Vladimir; Pirogova, Lyudmila; Sakharova, Tatjana; Savitskij, Dmitrij; Ezhevskaya, Tatjana; Bublikov, Alexandr

    2007-10-01

    The latest development in IR-fibre optics enables us to expand the spectral range of process spectroscopy from 2μm out to 17μm (5000 to 600cm-1) i.e. into the most informative "finger-print" part of the spectrum. Mid-IR wavelength ranges from 2 to 6-10μm may be covered by Chalcogenide IR-glass CIR-fibres while Polycrystalline PIR-fibres made of Silver Halides solid solutions transmit 4-17 μm wavelength radiation. PIR-fibre immersion ATR probes and Transmission/Reflection probes had been manufactured and successfully tested with different FTIR spectrometers in the field of remote spectroscopy for forensic substances identification, chemical reaction control, and monitoring of exhaust or exhalation gases. Using these techniques no sample preparation is necessary for fibre probes to measure evanescent, reflection and transmission spectra, in situ and in real time. QCL spectrometer may be used as a portable device for multispectral gas analysis at 1ppb level of detectivity for various applications in environmental pollution monitoring.

  16. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    Science.gov (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  17. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2004-01-01

    Thermal infrared spectrometry in the range 6-40 μm with spectral resolution of 4.5-6.5 cm -1 was realized onboard of Venera 15 for the middle atmosphere of Venus investigations. The 3-D temperature and zonal wind fields ( h, ϕ, LT) in the range 55-100 km and the 3-D aerosol field ( h, ϕ, LT) in the range 55-70 km were retrieved and analyzed. The solar related waves at isobaric levels, generated by the absorbed solar energy, were investigated. In the thermal IR spectral range the, ν1, ν2 and ν3 SO 2 and the H 2O rotational (40 μm) and vibro-rotational (6.3 μm) absorption bands are observed and used for minor compounds retrieval. An advantage of the thermal infrared spectrometry method is that both the temperature and aerosol profiles, which need for retrieval of the vertical profiles of minor compounds, are evaluated from the same spectrum. The Fourier spectrometer on Venera-15 may be considered as a precursor of the Planetary Fourier Spectrometer (PI Prof. V. Formisano), which is included in the payload of the planned Venus Express mission. It has a spectral range 0.9-45 μm, separated into two channels: a short wavelength channel (SWC) in the range 0.9-5 μm and a long wavelength channel (LWC) from 6 to 45 μm, and spectral resolution of 1-2 cm -1. In the history of planetary Fourier spectrometry the PFS is a unique instrument, which possesses a short wavelength channel. A functioning of this instrument on the polar orbit with a good spatial and local time coverage will advance our knowledge in the fundamental problems of the Venus atmosphere.

  18. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments.

    Science.gov (United States)

    Bloem, Robbert; Garrett-Roe, Sean; Strzalka, Halina; Hamm, Peter; Donaldson, Paul

    2010-12-20

    We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis.

  19. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    Science.gov (United States)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  20. Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations

    Science.gov (United States)

    Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.

    2017-09-01

    We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.

  1. Relationship between HOMA-IR and serum vitamin D in Chinese children and adolescents.

    Science.gov (United States)

    Wang, Lingli; Wang, Huiyan; Wen, Huaikai; Tao, Hongqun; Zhao, Xiaowei

    2016-07-01

    The objective of this study was to examine the cross-sectional relationship between homeostasis model assessment for insulin resistance (HOMA-IR) and serum 25-hydroxyvitamin D (25-OHD) level in Chinese children and adolescents. Anthropometric indices, lipid metabolic profile, and serum levels of glucose, insulin and 25-OHD were determined among 278 healthy prepubertal and pubertal, normal and overweight/obese children and adolescents aged 8-18 years between March 2014 and February 2015. HOMA-IR was significantly different across vitamin D statuses (pHOMA-IR negatively correlated with serum 25-OHD level for all subjects (R2=0.148, pHOMA-IR and BMI and serum 25-OHD level (R2=0.654, pHOMA-IR. Our findings supported that lower vitamin D status is strongly associated with worse HOMA-IR.

  2. Thin film encapsulated 1D thermoelectric detector in an IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    A thermopile-based detector array for use in a miniaturized Infrared (IR) spectrometer has been designed and fabricated using CMOS compatible MEMS technology. The emphasis is on the optimal of the detector array at the system level, while considering the thermal design, the dimensional constraints

  3. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  4. Updates in the IR responsivity of VIR, the spectrometer of the Dawn mission.

    Science.gov (United States)

    Ammannito, Eleonora; Mc Cord, Thomas B.; De Sanctis, Maria Cristina.; Combe, Jean-Philippe

    VIR-MS (Visual and Infrared Mapping Spectrometer) is the imaging spectrometer of the Dawn mission (1,2). Here, first we describe the computation of a new instrument responsivity based on the internal calibration data acquired during the operations at Vesta, and then we describe its effect on the dataset and on the results published so far. VIR-MS was built in Italy by a scientific-industrial (IAPS/INAF in Rome (Italy) and Selex ES in Campi Bisenzio (Fi, Italy)) consortium financially supported by the Italian Space Agency. VIR-MS is an high spatial resolution spectrometer (FOV of 64mrad, IFOV of 250 µrad) in the 0.25-5 µm range with an IFOV of 250 µrad and a spectral sampling of about 2 nm in the visible range and 10 nm in the IR range. The results of the on-ground calibration held in the Selex calibration facility in September 2005 were already presented and discussed in a paper (2). This version has been used to calibrate the data available on the Planetary Data System (PDS) Small Bodies Node, dataset used in all the papers published so far. However, after the operations at the asteroid Vesta, we have identified some artifacts in the instrument responsivity in the 2.5-3.5 µm region, which is where several absorption bands of OH and H2O occur. Those artifacts were systematic, and therefore they did not prevent the detection of relative spectral variations associated to OH and H2O. Actually, the only paper published in which are discussed spectra in this range (3) used a different calibration method described in the paper itself. This method used a simple correction of the response function based on an empirical calibration correction that is appropriate to recover the signal in that specific range. However, the absolute absorption band depth of OH and H2O could not be calculated. To compute a new instrument responsivity we used the internal lamp of the spectrometer. This lamp, made of a tungsten filament, is characterized by a blackbody-like emission at about

  5. Structure, magnetism and electronic properties in 3d-5d based double perovskite (Sr1-xYx)2FeIrO6.

    Science.gov (United States)

    Kharkwal, Kishor Chandra; Pramanik, Ashim Kumar

    2017-10-17

    The 3$d$-5$d$ based double perovskites are of current interest as they provide model system to study the interplay between electronic correlation ($U$) and spin-orbit coupling (SOC). Here we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr$_{1-x}$Y$_x$)$_2$FeIrO$_6$ with $x$ $\\leq$ 0.2. With substitution of Y, system retains its original crystal structure but structural parameters modify with $x$ in nonmonotonic fashion. The magnetization data for Sr$_2$FeIrO$_6$ show antiferromagnetic type magnetic transition around 45 K, however, a close inspection in data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr$_2$FeIrO$_6$ shows an insulating behavior over the whole temperature range which yet does not change with Y substitution. Nature of charge conduction is found to follow thermally activated Mott's variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr$_{1-x}$Y$_x$)$_2$FeIrO$_6$ is observed to reverse with $x$ $>$ 0.1 which is believed to arise due to change in transition metal ionic state. © 2017 IOP Publishing Ltd.

  6. Mid-IR spectrometer for mobile, real-time urban NO2 measurements

    Science.gov (United States)

    Morten Hundt, P.; Müller, Michael; Mangold, Markus; Tuzson, Béla; Scheidegger, Philipp; Looser, Herbert; Hüglin, Christoph; Emmenegger, Lukas

    2018-05-01

    Detailed knowledge about the urban NO2 concentration field is a key element for obtaining accurate pollution maps and individual exposure estimates. These are required for improving the understanding of the impact of ambient NO2 on human health and for related air quality measures. However, city-scale NO2 concentration maps with high spatio-temporal resolution are still lacking, mainly due to the difficulty of accurate measurement of NO2 at the required sub-ppb level precision. We contribute to close this gap through the development of a compact instrument based on mid-infrared laser absorption spectroscopy. Leveraging recent advances in infrared laser and detection technology and a novel circular absorption cell, we demonstrate the feasibility and robustness of this technique for demanding mobile applications. A fully autonomous quantum cascade laser absorption spectrometer (QCLAS) has been successfully deployed on a tram, performing long-term and real-time concentration measurements of NO2 in the city of Zurich (Switzerland). For ambient NO2 concentrations, the instrument demonstrated a precision of 0.23 ppb at one second time resolution and of 0.03 ppb after 200 s averaging. Whilst the combined uncertainty estimated for the retrieved spectroscopic values was less than 5 %, laboratory intercomparison measurements with standard CLD instruments revealed a systematic NO2 wall loss of about 10 % within the laser spectrometer. For the field campaign, the QCLAS has been referenced to a CLD using urban atmospheric air, despite the potential cross sensitivity of CLD to other nitrogen containing compounds. However, this approach allowed a direct comparison and continuous validation of the spectroscopic data to measurements at regulatory air quality monitoring (AQM) stations along the tram-line. The analysis of the recorded high-resolution time series allowed us to gain more detailed insights into the spatio-temporal concentration distribution of NO2 in an urban

  7. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  8. First results from a 1-D imaging spectrometer using Ir TESs

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.J.Stephen J. E-mail: sts@star.le.ac.uk; Whitford, Chris; Fraser, George W.; Holland, Andrew D.; Goldie, David; Ashton, Terence J.R.; Limpenny, Robert J.; Stevenson, Tim

    2004-03-11

    We are investigating Transition-Edge Sensors (TESs) for future X-ray Astronomy missions. In this paper, we report the first X-ray results from a one-dimensional imaging spectrometer or Distributed Read-Out Imaging Device (DROID). The DROID consists of two Iridium TESs with transitions temperatures of {approx}172 mK, at the ends of a 250 {mu}m by 4.7 mm Gold absorber. The event position can be determined from pulse height and rise/fall time information. Initial results were obtained by reading one end of the DROID only.

  9. First results from a 1-D imaging spectrometer using Ir TESs

    International Nuclear Information System (INIS)

    Smith, S.J.Stephen J.; Whitford, Chris; Fraser, George W.; Holland, Andrew D.; Goldie, David; Ashton, Terence J.R.; Limpenny, Robert J.; Stevenson, Tim

    2004-01-01

    We are investigating Transition-Edge Sensors (TESs) for future X-ray Astronomy missions. In this paper, we report the first X-ray results from a one-dimensional imaging spectrometer or Distributed Read-Out Imaging Device (DROID). The DROID consists of two Iridium TESs with transitions temperatures of ∼172 mK, at the ends of a 250 μm by 4.7 mm Gold absorber. The event position can be determined from pulse height and rise/fall time information. Initial results were obtained by reading one end of the DROID only

  10. Structure, magnetism and electronic properties in 3d-5d based double perovskite ({Sr_{1-x}} Y x )2FeIrO6

    Science.gov (United States)

    Kharkwal, K. C.; Pramanik, A. K.

    2017-12-01

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr1-x Y x )2FeIrO6 with x ≤slant 0.2 . With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr2FeIrO6 show antiferromagnetic type magnetic transition around 45 K however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr2FeIrO6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott’s variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr1-x Y x )2FeIrO6 is observed to reverse with x > 0.1 , which is believed to arise due to a change in the transition metal ionic state.

  11. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Two-dimensional sum-frequency generation (2D SFG) reveals structure and dynamics of a surface-bound peptide

    Science.gov (United States)

    Laaser, Jennifer E.; Skoff, David R.; Ho, Jia-Jung; Joo, Yongho; Serrano, Arnaldo L.; Steinkruger, Jay D.; Gopalan, Padma; Gellman, Samuel H.; Zanni, Martin T.

    2014-01-01

    Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which is collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D lineshapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins. PMID:24372101

  13. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    Science.gov (United States)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-07

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  14. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  15. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    International Nuclear Information System (INIS)

    Ghosh, Ayanjeet; Gai, Feng; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs

  16. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ayanjeet, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Gai, Feng, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Wang, Jun; DeGrado, William F. [Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143 (United States); Moroz, Yurii S.; Korendovych, Ivan V. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zanni, Martin [Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  17. Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2

    International Nuclear Information System (INIS)

    Jennings, D.E.; Weber, A.; Brault, J.W.

    1986-01-01

    A high-resolution Fourier transform spectrometer (FTS) has been used to record spontaneous incoherent laser Raman spectra of gases. The resolution, sensitivity, calibration accuracy, and spectral coverage achieved in these spectra demonstrate the viability of the FTS for Raman spectroscopy. Measurements from a spectrum of D 2 containing both v = 0-0 and v = 1-0 transitions were fitted to the Dunham expansion of the vibration--rotation energy levels. The coefficients are (in cm -1 ) Y 10 = 2993.6060(67), Y 01 = 30.4401 (89), Y 11 = -1.0538(17), Y 02 = -0.011590(41), Y 12 = 2.02(80) x 10 -4 , and Y 03 = 5.83(11) x 10 -6 . Errors in parentheses are one standard deviation

  18. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  19. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  20. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  1. Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U

    Science.gov (United States)

    Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team

    2017-10-01

    A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  2. OH/H2O Detection Capability Evaluation on Chang'e-5 Lunar Mineralogical Spectrometer (LMS)

    Science.gov (United States)

    Liu, Bin; Ren, Xin; Liu, Jianjun; Li, Chunlai; Mu, Lingli; Deng, Liyan

    2016-10-01

    The Chang'e-5 (CE-5) lunar sample return mission is scheduled to launch in 2017 to bring back lunar regolith and drill samples. The Chang'e-5 Lunar Mineralogical Spectrometer (LMS), as one of the three sets of scientific payload installed on the lander, is used to collect in-situ spectrum and analyze the mineralogical composition of the samplingsite. It can also help to select the sampling site, and to compare the measured laboratory spectrum of returned sample with in-situ data. LMS employs acousto-optic tunable filters (AOTFs) and is composed of a VIS/NIR module (0.48μm-1.45μm) and an IR module (1.4μm -3.2μm). It has spectral resolution ranging from 3 to 25 nm, with a field of view (FOV) of 4.24°×4.24°. Unlike Chang'e-3 VIS/NIR Imaging Spectrometer (VNIS), the spectral coverage of LMS is extended from 2.4μm to 3.2μm, which has capability to identify H2O/OH absorption features around 2.7μm. An aluminum plate and an Infragold plate are fixed in the dust cover, being used as calibration targets in the VIS/NIR and IR spectral range respectively when the dust cover is open. Before launch, a ground verification test of LMS needs to be conducted in order to: 1) test and verify the detection capability of LMS through evaluation on the quality of image and spectral data collected for the simulated lunar samples; and 2) evaluate the accuracy of data processing methods by the simulation of instrument working on the moon. The ground verification test will be conducted both in the lab and field. The spectra of simulated lunar regolith/mineral samples will be collected simultaneously by the LMS and two calibrated spectrometers: a FTIR spectrometer (Model 102F) and an ASD FieldSpec 4 Hi-Res spectrometer. In this study, the results of the LMS ground verification test will be reported, and OH/H2O Detection Capability will be evaluated especially.

  3. Perspectives of 2D and 3D mapping of atmospheric pollutants over urban areas by means of airborne DOAS spectrometers

    Directory of Open Access Journals (Sweden)

    F. Ravegnani

    2006-06-01

    Full Text Available tants, offering numerous advantages over conventional networks of in situ analysers. We propose some innovative solutions in the field of DOAS (Differential Optical Absorption Spectroscopy remote systems, utilizing diffuse solar light as the radiation source. We examine the numerous potentialities of minor gas slant column calculations, applying the «off-axis» methodology for collecting the diffuse solar radiation. One of these particular approaches, using measurements along horizontal paths, has already been tested with the spectrometer installed on board the Geophysica aircraft during stratospheric flights up to altitudes of 20 km. The theoretical basis of these new measurement techniques using DOAS remote sensing systems are delineated to assess whether low altitude flights can provide 2D and 3D pollution tomography over metropolitan areas. The 2D or 3D trace gas total column mapping could be used to investigate: i transport and dispersion phenomena of air pollution, ii photochemical process rates, iii gas plume tomography, iv minor gas vertical profiles into the Planetary Boundary Layer and v minor gas flux divergence over a large area.

  4. Ekologiškų grūdų ir jų produktų pasiūlos veiksniai Lietuvoje

    OpenAIRE

    Pažemeckienė, Ligita

    2010-01-01

    Tyrimo objektas – ekologiškų grūdų ir jų produktų pasiūlos veiksniai. Tyrimo tikslas – išnagrinėjus ekologiškų grūdų ir jų produktų pasiūlos pokyčius, identifikuoti jų gamybos, perdirbimo ir realizavimo problemas bei pasiūlyti sprendimo būdus. Tyrimo uždaviniai: 1) identifikuoti ekologiškų grūdų ir jų produktų rinkų ypatumus, ištirti jų tarpusavio ryšius; 2) nustatyti ekologiškų grūdų ir jų produktų pasiūlos veiksnius; 3) išanalizuoti ekologiškų grūdų ir jų produktų pasiūlos p...

  5. Calculation of the band structure of GdCo2, GdRh2 e GdIr2 by the APW method

    International Nuclear Information System (INIS)

    Carvalho, J.A.B. de.

    1974-03-01

    The band structure of GdCo 2 , GdRh 2 , GdIr 2 has been calculated by the APW method. A histogram of the density of states is presented for each compound. The bands are transition-metal-like, with s-d hybridization near the Fermi level. The 5d character near the Fermi level increases as one goes from Co to Ir

  6. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy.

    Science.gov (United States)

    Kel, Oksana; Tamimi, Amr; Fayer, Michael D

    2015-07-23

    Phospholipid bilayers are frequently used as models for cell membranes. Here the influence of cholesterol on the structural dynamics in the interior of 1,2-dilauroyl-sn-glycero-3-phosphocholine (dilauroylphosphatidylcholine, DLPC) vesicles and DLPC planar bilayers are investigated as a function of cholesterol concentration. 2D IR vibrational echo spectroscopy was performed on the antisymmetric CO stretch of the vibrational probe molecule tungsten hexacarbonyl, which is located in the interior alkyl regions of the bilayers. The 2D IR experiments measure spectral diffusion, which is caused by the structural fluctuations of the bilayers. The 2D IR measurements show that the bilayer interior alkyl region dynamics occur on time scales ranging from a few picoseconds to many tens of picoseconds. These are the time scales of the bilayers' structural dynamics, which act as the dynamic solvent bath for chemical processes of membrane biomolecules. The results suggest that at least a significant fraction of the dynamics arise from density fluctuations. Samples are studied in which the cholesterol concentration is varied from 0% to 40% in both the vesicles (72 nm diameter) and fully hydrated planar bilayers in the form of aligned multibilayers. At all cholesterol concentrations, the structural dynamics are faster in the curved vesicle bilayers than in the planar bilayers. As the cholesterol concentration is increased, at a certain concentration there is a sudden change in the dynamics, that is, the dynamics abruptly slow down. However, this change occurs at a lower concentration in the vesicles (between 10% and 15% cholesterol) than in the planar bilayers (between 25% and 30% cholesterol). The sudden change in the dynamics, in addition to other IR observables, indicates a structural transition. However, the results show that the cholesterol concentration at which the transition occurs is influenced by the curvature of the bilayers.

  7. Cationic polyhydrido cluster complexes. Crystal and molecular structures of (Ir3(Ph2P(CH2)3PPh2)3(H)7(CO))2+ and (Ir3(Ph2P(CH2)2(2-py))3(H)7)2+

    International Nuclear Information System (INIS)

    Hsienhau Wang; Casalnuovo, A.L.; Johnson, B.J.; Mueting, A.M.; Pignolet, L.H.

    1988-01-01

    Two new cationic polyhydrido cluster complexes of iridium have been synthesized and characterized by single-crystal x-ray diffraction and by ir and 1 H and 31 P NMR spectroscopy (Ir 3 (dppp) 3 (H) 7 (CO)) 2+ (2) and (Ir3 (PN) 3 (H) 7)2+ (5), where dppp = 1,3-bis(diphenylphosphino)propane and PN = 1-(2-pyridyl)-2-(diphenylphosphino)ethane, were synthesized by the reaction of CO with (Ir 3 (dppp) 3 (H) 7 ) 2+ (1) in CH 2 Cl 2 solution and H 2 with (Ir(PN)(COD)) + (4) in CH 3 OH solution, respectively. Crystal structures for both compounds is reported. The hydride positions were not located in the crystal structure analyses but were deduced from structural and 1 H NMR data. The molecular structure of 2 consists of a bilateral triangle of three iridium atoms with a carbonyl at the vertex and a chelating dppp ligand on each iridium atom. 1 H NMR data with use of acetone-d 6 as solvent showed that 2 possesses four doubly bridging hydrides and three terminal hydrides, yielding C 1 symmetry. The molecular structure of 5 consists of an approximately equilateral triangle of three iridium atoms (average Ir-Ir distance 2.746 (1) angstrom) with one PN ligand chelated to each iridium atom. 1 H NMR analysis, with use of CD 2 Cl 2 as solvent, showed that 5 has one triply bridging hydride and six terminal hydrides, giving C 3 symmetry. (Ir 3 (dppp) 3 (H) 7 (CH 3 C 6 H 4 NC)) 2+ (3) a complex structurally analogous to 2, was synthesized from 1 and p-tolyl isocyanide in CH 2 Cl 2 solution and characterized by ir and 1 H and 31 P NMR spectroscopy. 44 refs., 3 figs., 3 tabs

  8. Users guide to the inelastic rotor spectrometer (IRS)

    International Nuclear Information System (INIS)

    Bunce, L.J.

    1987-11-01

    The paper is a users guide to the inelastic rotor spectrometer installed on the Harwell 136 Mev electron linear accelerator HELIOS. The spectrometer is designed to measure neutron inelastic scattering for energy transfers from 50 meV to 400 meV and covering a range of Q values from 1 to 15 A 0-1 . The guide contains a description of:- time-of-flight scales, run and sample changer control units, sample environment, detectors, rotor system, 600 Hz operation of rotor, a run, and data processing. (U.K.)

  9. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  10. Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-COS IR

    Science.gov (United States)

    Chen, Nai-Dong; Chen, Nai-Fu; Li, Jun; Cao, Cai-Yun; Wang, Jin-Mei

    2015-12-01

    The accumulating of pharmaceutical chemicals in medicinal plants would greatly be affected by their ages and establishing a fast quality-identification method to evaluate the similarity of medicinal herbs at different cultivated ages is a critical step for assurance of quality and safety in the TCM industry. In this work, tri-step IR macro-fingerprinting and 2D-COS IR spectrum techniques combined with statistical pattern recognition were applied for discrimination and similarity evaluation of different ages of tissue-cultured and wild Dendrobium huoshanense C. Z. Tang et S. J. Cheng as well as Dendrobium henanense J.L.Lu et L.X Gao. Both tissue-cultured and wild D. huoshanense were easily differentiated from D. henanense by FTIR and SD-IR spectra, while it's quite difficult to discriminate different cultivated years of the three investigated Dendrobiums. In 2D-COS IR spectra, 1-5 auto-peaks with different indensity and positions were located in the region 1160-1030 cm-1 of the twelve Dendrobium samples and thus could be used to identify Dendrobium samples at different ages. Principle component analysis (PCA) of synchronous 2D-COS data showed that the twelve samples were effectively identified and evaluated. The results indicated that the tri-step infrared macro-fingerprinting combined with PCA method was suitable to differentiate the cultivated ages of Dendrobiums with species and orgins rapidly and nondestructively.

  11. From 3 d duality to 2 d duality

    Science.gov (United States)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  12. Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.

    1993-10-01

    We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.

  13. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et des rapports

  14. 2DCOS and PCMW2D analysis of FT-IR/ATR spectra measured at variable temperatures on-line to a polyurethane polymerization

    Science.gov (United States)

    Schuchardt, Patrick; Unger, Miriam; Siesler, Heinz W.

    2018-01-01

    In the present communication the potential of 2DCOS analysis and the spin-off technique perturbation-correlation moving window 2D (PCMW2D) analysis is illustrated with reference to spectroscopic changes observed in a data set recorded by in-line fiber-coupled FT-IR spectroscopy in the attenuated total reflection (ATR) mode during a polyurethane solution polymerization at different temperatures. In view of the chemical functionalities involved, hydrogen bonding plays an important role in this polymerization reaction. Based on the 2DCOS and PCMW2D analysis, the sequence of hydrogen bonding changes accompanying the progress of polymerization and precipitation of solid polymer can be determined. Complementary to the kinetic data derived from the original variable-temperature spectra in a previous publication the results provide a more detailed picture of the investigated solution polymerization.

  15. Towards a Molecular Movie: Real Time Observation of Hydrogen Bond Breaking by Transient 2D-IR Spectroscopy in a Cyclic Peptide

    Science.gov (United States)

    Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter

    Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.

  16. Overexpression of IRS2 in isolated pancreatic islets causes proliferation and protects human β-cells from hyperglycemia-induced apoptosis

    International Nuclear Information System (INIS)

    Mohanty, S.; Spinas, G.A.; Maedler, K.; Zuellig, R.A.; Lehmann, R.; Donath, M.Y.; Trueb, T.; Niessen, M.

    2005-01-01

    Studies in vivo indicate that IRS2 plays an important role in maintaining functional β-cell mass. To investigate if IRS2 autonomously affects β-cells, we have studied proliferation, apoptosis, and β-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that β-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a β-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of β-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human β-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve β-cell function. Our results indicate that IRS2 acts autonomously in β-cells in maintenance and expansion of functional β-cell mass in vivo

  17. The MIRI Medium Resolution Spectrometer calibration pipeline

    NARCIS (Netherlands)

    Labiano, A.; Azzollini, R.; Bailey, J.; Beard, S.; Dicken, D.; García-Marín, M.; Geers, V.; Glasse, A.; Glauser, A.; Gordon, K.; Justtanont, K.; Klaassen, P.; Lahuis, F.; Law, D.; Morrison, J.; Müller, M.; Rieke, G.; Vandenbussche, B.; Wright, G.

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments,

  18. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  19. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Casey [University of North Texas; Wang, Xiaoping [ORNL; Nesterov, Vladimir [University of North Texas; Richmond, Michael G. [University of North Texas

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 for 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.

  20. Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR

    International Nuclear Information System (INIS)

    Schultz, Anthony; Caspar, Thibault; Schaeffer, Mickael; Labani, Aissam; Jeung, Mi-Young; El Ghannudi, Soraya; Roy, Catherine; Ohana, Mickael

    2016-01-01

    To qualitatively and quantitatively compare different late gadolinium enhancement (LGE) sequences acquired at 3T with a parallel RF transmission technique. One hundred and sixty participants prospectively enrolled underwent a 3T cardiac MRI with 3 different LGE sequences: 3D Phase-Sensitive Inversion-Recovery (3D-PSIR) acquired 5 minutes after injection, 3D Inversion-Recovery (3D-IR) at 9 minutes and 3D-PSIR at 13 minutes. All LGE-positive patients were qualitatively evaluated both independently and blindly by two radiologists using a 4-level scale, and quantitatively assessed with measurement of contrast-to-noise ratio and LGE maximal surface. Statistical analyses were calculated under a Bayesian paradigm using MCMC methods. Fifty patients (70 % men, 56yo ± 19) exhibited LGE (62 % were post-ischemic, 30 % related to cardiomyopathy and 8 % post-myocarditis). Early and late 3D-PSIR were superior to 3D-IR sequences (global quality, estimated coefficient IR > early-PSIR: -2.37 CI = [-3.46; -1.38], prob(coef > 0) = 0 % and late-PSIR > IR: 3.12 CI = [0.62; 4.41], prob(coef > 0) = 100 %), LGE surface estimated coefficient IR > early-PSIR: -0.09 CI = [-1.11; -0.74], prob(coef > 0) = 0 % and late-PSIR > IR: 0.96 CI = [0.77; 1.15], prob(coef > 0) = 100 %. Probabilities for late PSIR being superior to early PSIR concerning global quality and CNR were over 90 %, regardless of the aetiological subgroup. In 3T cardiac MRI acquired with parallel RF transmission technique, 3D-PSIR is qualitatively and quantitatively superior to 3D-IR. (orig.)

  1. Magnetic heat transport in Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Takagi, Hidenori [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Buechner, Bernd; Hess, Christian [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2015-07-01

    The layered perovskite Sr{sub 2}IrO{sub 4} is a 5d transition metal oxide with an enhanced spin-orbit coupling leading to a Mott insulating ground state with J{sub eff}=(1)/(2). It exhibits canted antiferromagnetism below T{sub N}=240 K with an antiferromagnetic coupling constant of about J=0.1 eV. Thermal conductivity measurements along the ab plane of a Sr{sub 2}IrO{sub 4} single crystal provide evidence for a contribution of magnons (below T{sub N}) to the thermal conductivity, similar to that of the isostructural 2D S=(1)/(2) Heisenberg antiferromagnet La{sub 2}CuO{sub 4}, where a significant magnonic contribution to the heat transport is known.

  2. The 'Big Karl' magnetic spectrometer - studies of the 103Ru transition nucleus with (d,p) and (p,d) reactions

    International Nuclear Information System (INIS)

    Huerlimann, W.

    1981-04-01

    The paper describes the structure and characteristics of the spectrometer and its application in a study of the 102 Ru(d,p) 103 Ru and 104 Ru(p,d) 103 Ru reactions. The study is structured as follows: To begin with the theoretical fundamentals, ion-optical characteristics and layout of BIG KARL are described. Field measurements and analyses carried out on the magnets of the spectrometer are described as well as the functioning of the 'Ht correction coils' used here for the first time to prevent faulty imaging. Chapter IV then describes methods employed so far to optimize resolution for large aperture angles of the spectrometer. Finally, chapter V investigates the 103 Ru transition nucleons on the basis of the 102 Ru(d,p) 103 RU and 104 Ru(p,d) 103 Ru transfer reactions measured in BIG KARL. (orig./HSI) [de

  3. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    Directory of Open Access Journals (Sweden)

    Jeong In Han

    2013-12-01

    Full Text Available IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV were developed using a flexible liquid crystal (FLC lens. The FLC lens was made on a polycarbonate (PC substrate using conventional liquid crystal display (LCD processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  4. Thermalization in 2D critical quench and UV/IR mixing

    Science.gov (United States)

    Mandal, Gautam; Paranjape, Shruti; Sorokhaibam, Nilakash

    2018-01-01

    We consider quantum quenches in models of free scalars and fermions with a generic time-dependent mass m( t) that goes from m 0 to zero. We prove that, as anticipated in MSS [1], the post-quench dynamics can be described in terms of a state of the generalized Calabrese-Cardy form | ψ〉 = exp[- κ 2 H - ∑ n >2 ∞ κ n W n ]|Bd〉. The W n ( n = 2, 3, . . ., W 2 = H) here represent the conserved W ∞ charges and |Bd〉 represents a conformal boundary state. Our result holds irrespective of whether the pre-quench state is a ground state or a squeezed state, and is proved without recourse to perturbation expansion in the κ n 's as in MSS. We compute exact time-dependent correlators for some specific quench protocols m( t). The correlators explicitly show thermalization to a generalized Gibbs ensemble (GGE), with inverse temperature β = 4 κ 2, and chemical potentials μ n = 4 κ n . In case the pre-quench state is a ground state, it is possible to retrieve the exact quench protocol m( t) from the final GGE, by an application of inverse scattering techniques. Another notable result, which we interpret as a UV/IR mixing, is that the long distance and long time (IR) behaviour of some correlators depends crucially on all κ n 's, although they are highly irrelevant couplings in the usual RG parlance. This indicates subtleties in RG arguments when applied to non-equilibrium dynamics.

  5. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: summary of principles and its application to amyloid fiber monolayers.

    Science.gov (United States)

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L; Skoff, David R; Zhang, Tianqi; Zanni, Martin T

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl-4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a-) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrate the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure.

  6. The association of osteopenia with levels of serum 25-hydroxyvitamin D and HOMA-IR values.

    Science.gov (United States)

    Yoldemir, T; Yavuz, D G

    2014-06-01

    To determine the association of osteopenia with levels of serum 25-hydroxyvitamin D and HOMA-IR values in postmenopausal women. Methods One hundred healthy postmenopausal women were included in a cross-sectional study. Venous blood was collected after an overnight fast and 25-hydroxyvitamin D, glucose and insulin levels were measured. HOMA-IR was calculated. Bone mineral density was measured with a dual X-ray absorptiometer. There was no difference in serum 25-hydroxyvitamin D levels and HOMA-IR values between the two groups. A weak positive correlation between serum 25-hydroxyvitamin D levels and osteopenia was detected. Insulin resistance had a weak negative association with osteopenia. The correlations between osteopenia and serum 25-hydroxyvitamin D levels and HOMA-IR values were weak among early postmenopausal women.

  7. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D2O ice beneath a H2O ice layer

    International Nuclear Information System (INIS)

    Yang, Rui; Gudipati, Murthy S.

    2014-01-01

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D 2 O ices by novel infrared (IR) laser ablation of a layered non-absorbing D 2 O ice (spectator) containing the analytes and an ablation-active IR-absorbing H 2 O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H 2 O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D 2 O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D 2 O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H 2 O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique

  8. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  9. A zero-degree spectrometer in Celsius and the d(d,2π)4He reaction

    International Nuclear Information System (INIS)

    Thoerngren Engblom, P.

    1996-02-01

    For the realization of near threshold studies a small-size spectrometer has been developed by the Nuclear Physics Division at Stockholm University in conjunction with Institut fuer Kernphysik in Juelich. A particle telescope is mounted inside the CELSIUS vacuum chamber in the bend following the cluster-jet target. It is possible to vary the measuring position within the dipole field to cover different magnetic rigidities which makes it a versatile tool for studies of threshold reactions. The first aim has been to study two-pion production and the present paper is a report on the experimental set-up and data analysis of measurements of the reaction d+d→ 4 He+X. Detection of the 4 He-particle yields information about the missing mass, i.e. the remainder of the reaction products. Preliminary results are presented. 22 refs

  10. Signal-to-noise ratio of FT-IR CO gas spectra

    DEFF Research Database (Denmark)

    Bak, J.; Clausen, Sønnik

    1999-01-01

    in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran......The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2...... simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found...

  11. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  12. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2013-06-15

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  13. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    International Nuclear Information System (INIS)

    Popescu, Maria-Cristina; Gómez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz; Simionescu, Bogdan C.

    2013-01-01

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010–2,710, 1,530–1,170, and 1,170–625 cm −1 regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 °C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si–O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH 3 and CH 3 –N + groups take place first. With increasing temperature, the intensity variation of the CH 2 , C–N, Si–C and C–C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  14. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    Energy Technology Data Exchange (ETDEWEB)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean, E-mail: sgr@pitt.edu [Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 (United States)

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  15. FT-IR spectroscopic analyses of 2-(2-furanylmethylene) propanedinitrile

    Science.gov (United States)

    Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; El-Mansy, M. A. M.; Atef, S. M.

    2013-03-01

    In the present work, a computational study for the optimized molecular structural parameters, thermo-chemical parameters, total dipole moment, HOMO-LUMO energy gap and a combined experimental and computational study for FT-IR spectra for 2-(2-furanylmethylene) propanedinitrile have been investigated using B3LYP utilizing 6-31G and 6-311G basis set. Our calculated results showed that the investigated compound possesses a dipole moment of 7.5 D and HOMO-LUMO energy gap of 3.92 eV using B3LYP/6-311G which indicates that our investigated compound is highly applicable for photovoltaic solar cell applications.

  16. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  17. Water Vapor in the Middle Atmosphere of Venus from the Data of the Venera-15 IR Fourier Spectrometer

    Science.gov (United States)

    Ignat'ev, N. I.; Moroz, V. I.; Zasova, L. V.; Khatuntsev, I. V.

    In 1983, the Fourier spectrometer experiment onboard Venera-15 returned spectra of IR radiation (6-50 micron) of the Venusian atmosphere which contained information about temperature, aerosols, and minor constituents, including water vapor. The currently available techniques of radiation-transfer modeling and the H2O-abundance reconstruction allowed us to reanalyze these data, and the most recent results of this analysis are presented here. Most of the measurements are in the range 5-15 ppm. Temporal and spatial variations of the water-vapor abundance were measured. The estimates of H2O abundance calculated from the spectra refer to a certain altitude approximately determined by the level where the optical depth tau in the aerosol continuum near the H2O bands region is close to unity. This altitude varies from 62.5 +/- 2 km at low latitudes to 56 +/- 2 km at high altitudes, but the mean measured water-vapor abundance is found to be roughly the same for both areas, about 10 ppm. At low and middle latitudes, the H2O mixing ratio is maximum on the dayside of the planet and minimum on the nightside. Although the direct reconstruction of the H2O vertical profile from the spectra failed, its indirect estimates confirming the decrease of the mixing ratio with altitude were obtained.

  18. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2006-07-01

    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  19. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  20. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  1. Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First-principle calculations

    International Nuclear Information System (INIS)

    Zhao Wenjie; Wang Yuanxu

    2009-01-01

    First-principle calculations were performed to investigate the structural, elastic, and electronic properties of TaB 2 , TaB, IrB 2 , and IrB. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB 2 are well consistent with the available experimental data, and TaB 2 with P6/mmm space group has stronger directional bonding between ions than WB 2 , OsB 2 , IrN 2 , and PtN 2 . For TaB 2 , the hexagonal P6/mmm structure is more stable than the orthorhombic Pmmn one, while for IrB 2 the orthorhombic Pmmn structure is the most stable one. The high shear modulus of P6/mmm phase TaB 2 is mainly due to the strong covalent π-bonding of B-hexagon in the (0001) plane. Such a B-hexagon network can strongly resist against an applied [112-bar0] (0001) shear deformation. Correlation between the hardness and the elastic constants of TaB 2 was discussed. The band structure shows that P6/mmm phase TaB 2 and Pmmn phase IrB 2 are both metallic. The calculations show that both TaB and IrB are elastically stable with the hexagonal P6 3 /mmc structure. - Elastic constant c 44 of TaB 2 is calculated to be 235 GPa. This value is exceptionally high, exceeding those of WB 2 , OsB 2 , WB 4 , OsN 2 , IrN 2 , and PtN 2 .

  2. The effects of a 2 week modified high intensity interval training program on the homeostatic model of insulin resistance (HOMA-IR) in adults with type 2 diabetes.

    Science.gov (United States)

    Shaban, N; Kenno, K A; Milne, K J

    2014-04-01

    High intensity interval training (HIIT) induces similar metabolic adaptations to traditional steady state aerobic exercise training. Until recently, most HIIT studies have examined maximum efforts in healthy populations. The current study aimed to examine the effects of a 2 week modified HIIT program on the homeostatic model of insulin resistance (HOMA-IR) in individuals with type 2 diabetes (T2D). It was hypothesized that HIIT would improve HOMA-IR. Nine individuals with T2D (age=40.2±9.7 y; BMI=33.9±5.3; fasting plasma glucose [FPG]=8.7±2.9 mmol/L; HbA1C=7.3±1.2%; [mean±SD]) performed 6 individualized training sessions of HIIT (4x30 seconds at 100% of estimated maximum workload followed by 4 minutes of active rest) over 2 weeks. HOMA-IR was calculated from FPG and serum insulin and compared against a prior 2 week baseline period. Blood glucose was reduced immediately after each HIIT session (PHOMA-IR were unchanged after training. However, 6 of the 9 individuals exhibited reduced HOMA-IR values after the training period and there was a significant negative correlation between HOMA-IR value prior to training and change in HOMA-IR after HIIT. These observations tend to support the positive health benefits of HITT for individuals with T2D reported in recently published data using a modified HIIT protocol. However, they suggest that the magnitude of the disease should be assessed when examining the effects of exercise interventions in individuals with T2D.

  3. Joint Oil Analysis Program Spectrometer Standards SCP Science (Conostan) Qualification Report for D19-0, D3-100, and D12-XXX Series Standards

    Science.gov (United States)

    2015-05-20

    Joint Oil Analysis Program Spectrometer Standards SCP Science (Conostan) Qualification Report For D19-0, D3-100, and D12- XXX Series Standards NF...Candidate Type D19-0 ICP-AES Results ..................................................................... 4 Table V. Candidate Type D12- XXX ...Physical Property Results .................................................. 5 Table VI. Candidate Type D12- XXX Rotrode-AES Results

  4. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes.

    Science.gov (United States)

    Bello-Chavolla, Omar Yaxmehen; Almeda-Valdes, Paloma; Gomez-Velasco, Donaji; Viveros-Ruiz, Tannia; Cruz-Bautista, Ivette; Romo-Romo, Alonso; Sánchez-Lázaro, Daniel; Meza-Oviedo, Dushan; Vargas-Vázquez, Arsenio; Campos, Olimpia Arellano; Sevilla-González, Magdalena Del Rocío; Martagón, Alexandro J; Hernández, Liliana Muñoz; Mehta, Roopa; Caballeros-Barragán, César Rodolfo; Aguilar-Salinas, Carlos A

    2018-05-01

    We developed a novel non-insulin-based fasting score to evaluate insulin sensitivity validated against the euglycemic-hyperinsulinemic clamp (EHC). We also evaluated its correlation with ectopic fact accumulation and its capacity to predict incident type 2 diabetes mellitus (T2D). The discovery sample was composed by 125 subjects (57 without and 68 with T2D) that underwent an EHC. We defined METS-IR as Ln((2*G 0 )+TG 0 )*BMI)/(Ln(HDL-c)) (G 0 : fasting glucose, TG 0 : fasting triglycerides, BMI: body mass index, HDL-c: high-density lipoprotein cholesterol), and compared its diagnostic performance against the M-value adjusted by fat-free mass (MFFM) obtained by an EHC. METS-IR was validated in a sample with EHC data, a sample with modified frequently sampled intravenous glucose tolerance test (FSIVGTT) data and a large cohort against HOMA-IR. We evaluated the correlation of the score with intrahepatic and intrapancreatic fat measured using magnetic resonance spectroscopy. Subsequently, we evaluated its ability to predict incident T2D cases in a prospective validation cohort of 6144 subjects. METS-IR demonstrated the better correlation with the MFFM ( ρ  = -0.622, P  index obtained from the FSIVGTT (AUC: 0.67, 95% CI: 0.53-0.81). METS-IR significantly correlated with intravisceral, intrahepatic and intrapancreatic fat and fasting insulin levels ( P  50.39) had the highest adjusted risk to develop T2D (HR: 3.91, 95% CI: 2.25-6.81). Furthermore, subjects with incident T2D had higher baseline METS-IR compared to healthy controls (50.2 ± 10.2 vs 44.7 ± 9.2, P  < 0.001). METS-IR is a novel score to evaluate cardiometabolic risk in healthy and at-risk subjects and a promising tool for screening of insulin sensitivity. © 2018 European Society of Endocrinology.

  5. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  6. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov [Science Division, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-301, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and

  7. Structure, magnetism, and transport properties for Ca doping in Sr2IrO4

    Directory of Open Access Journals (Sweden)

    Guotai Zhou

    2017-05-01

    Full Text Available An immediate quenching using liquid N2 is applied for synthesizing the 5d transition-metal oxides (Sr1-xCax2IrO4 (0 ≤ x ≤ 0.15 single phase. X-ray diffraction together with Rietveld refinement shows that the lattice parameters along a and c directions and the bond angle of Ir-O2-Ir decrease with the increase of Ca content. X-ray Absorption Fine Spectroscopy measurements prove that the valence of Ir and the average Ir-O bond-length substantially remain unchanged with Ca content increasing in the phase. The effective magnetic moment μeff and Néel temperature TN decrease simultaneously with increased Ca content. Electrical resistivity shows complex temperature dependence behavior, which follows the three-dimensional variable range hopping behavior at low temperature, Arrhenius-type behavior at middle-temperature, and a weak electronic localization in quasi-two-dimensional at high temperature.

  8. Combined VIS-IR spectrometer with vertical probe beam

    Science.gov (United States)

    Protopopov, V.

    2017-12-01

    A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.

  9. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

    DEFF Research Database (Denmark)

    Rung, Johan; Cauchi, Stéphane; Albrechtsen, Anders

    2009-01-01

    sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike...... previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated...... with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies....

  10. Bond deformation paths and electronic instabilities of ultraincompressible transition metal diborides: Case study of OsB2 and IrB2

    Science.gov (United States)

    Zhang, R. F.; Legut, D.; Wen, X. D.; Veprek, S.; Rajan, K.; Lookman, T.; Mao, H. K.; Zhao, Y. S.

    2014-09-01

    The energetically most stable orthorhombic structure of OsB2 and IrB2 is dynamically stable for OsB2 but unstable for IrB2. Both diborides have substantially lower shear strength in their easy slip systems than their metal counterparts. This is attributed to an easy sliding facilitated by out-of-plane weakening of metallic Os-Os bonds in OsB2 and by an in-plane bond splitting instability in IrB2. A much higher shear resistance of Os-B and B-B bonds than Os-Os ones is found, suggesting that the strengthened Os-B and B-B bonds are responsible for hardness enhancement in OsB2. In contrast, an in-plane electronic instability in IrB2 limits its strength. The electronic structure of deformed diborides suggests that the electronic instabilities of 5d orbitals are their origin of different bond deformation paths. Neither IrB2 nor OsB2 can be intrinsically superhard.

  11. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, 466-8550, Nagoya (Japan); Aoki, Ikuo [Medical System Company, Toshiba Corporation, Tokyo (Japan)

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 ) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm{sup 3}. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in

  12. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  13. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  14. Sex-specific interactions between the IRS1 polymorphism and intakes of carbohydrates and fat on incident type 2 diabetes.

    Science.gov (United States)

    Ericson, Ulrika; Rukh, Gull; Stojkovic, Ivana; Sonestedt, Emily; Gullberg, Bo; Wirfält, Elisabet; Wallström, Peter; Orho-Melander, Marju

    2013-01-01

    The minor T allele of rs2943641 near the gene encoding for insulin receptor substrate 1 (IRS1) has been associated with decreased risk of type 2 diabetes (T2D) and adiposity in genome-wide association studies. Dietary intake can influence the regulation of IRS1, and studies have indicated sex-specific associations between IRS1 and adiposity. The objective was to examine the interaction between IRS1 rs2943641 and macronutrient intakes on incident T2D and percentage body fat in the Malmö Diet and Cancer cohort. The study included 15,227 women and 9614 men aged 45-74 y without prevalent diabetes. Dietary data were collected with a modified diet history method. During 12 y of follow-up, 1567 incident T2D cases were identified. The T allele was associated with lower incidence of T2D (P-trend = 0.003) and, in men, with higher percentage body fat (P-trend = 0.00002). We observed 3-way interactions between sex, rs2943641, and carbohydrate intake (P = 0.01) as well as between sex, rs2943641, and fat intake (P = 0.01) on incident T2D. Among women, the T allele was associated with decreased risk only in the lower tertiles of carbohydrate intake (P-trend = 0.01, P-interaction = 0.01). In contrast, among men, the T allele was associated with decreased risk in the lowest tertile of fat intake (P-trend = 0.01, P-interaction = 0.02). No interaction was observed between macronutrient intakes and rs2943641 on percentage body fat. Our results indicate that IRS1 rs2943641 interacts with carbohydrate and fat intakes on incident T2D in a sex-specific fashion. A protective association between the rs2943641 T allele and T2D was restricted to women with low carbohydrate intake and to men with low fat intake.

  15. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3.

    Science.gov (United States)

    Pearce, Paul E; Perez, Arnaud J; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M; Van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g -1 . In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li 2 IrO 3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e - per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (M n+ ) and anionic (O 2 ) n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li 2 IrO 3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir 4+ at potentials as low as 3.4 V versus Li + /Li 0 , as equivalently observed in the layered α-Li 2 IrO 3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  16. Ion beam synthesis of IrSi3 by implantation of 2 MeV Ir ions

    International Nuclear Information System (INIS)

    Sjoreen, T.P.; Chisholm, M.F.; Hinneberg, H.J.

    1992-11-01

    Formation of a buried IrSi 3 layer in (111) oriented Si by ion implantation and annealing has been studied at an implantation energy of 2 MeV for substrate temperatures of 450--550C. Rutherford backscattering (RBS), ion channeling and cross-sectional transmission electron microscopy showed that a buried epitaxial IrSi 3 layer is produced at 550C by implanting ≥ 3.4 x 10 17 Ir/cm 2 and subsequently annealing for 1 h at 1000C plus 5 h at 1100C. At a dose of 3.4 x 10 17 Ir/cm 2 , the thickness of the layer varied between 120 and 190 nm and many large IrSi 3 precipitates were present above and below the film. Increasing the dose to 4.4 x 10 17 Ir/cm 2 improved the layer uniformity at the expense of increased lattice damage in the overlying Si. RBS analysis of layer formation as a function of substrate temperature revealed the competition between the mechanisms for optimizing surface crystallinity vs. IrSi 3 layer formation. Little apparent substrate temperature dependence was evident in the as-implanted state but after annealing the crystallinity of the top Si layer was observed to deteriorate with increasing substrate temperature while the precipitate coarsening and coalescence improved

  17. Visible and infrared mapping spectrometer (VIMS) - a facility instrument for planetary missions

    International Nuclear Information System (INIS)

    Wellman, J.B.; Duval, J.; Juergens, D.; Voss, J.

    1988-01-01

    A second-generation visible and IR mapping spectrometer (VIMS), selected for both the Mars Observer and Comet Rendezvous Asteroid Flyby (CRAF) missions, is described. VIMS is a scanning spectrometer with a focal plane consisting of linear arrays of visible and IR detectors, cooled by a radiative cooler. It is noted that a wide-angle scan using a full-aperture scan mirror was implemented for the Mars Observer; a narrow-angle scan using a scanning secondary mirror within a Cassegrain foreoptic was achieved for the CRAF mission. 11 references

  18. Multi-center vs. two-center bonding within the hetero-polyanion in Eu{sub 2}GaPt{sub 2} and its prototype Ca{sub 2}SiIr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Borrmann, Horst; Grin, Yuri [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany)

    2017-11-17

    The compound Eu{sub 2}GaPt{sub 2} was synthesized from the elements in a sealed tantalum tube. Its Ca{sub 2}SiIr{sub 2}-type crystal structure was refined from single-crystal X-ray diffraction data: space group C2/c, a = 9.8775(6), b = 5.8621(6), c = 7.9677(5) Aa, β = 102.257(4) , R{sub F} = 0.039, 1344 observed reflections, and 25 variable parameters. The platinum (iridium) atoms in Eu{sub 2}GaPt{sub 2} and Ca{sub 2}SiIr{sub 2} form linear chains of dumbbells [2c(Pt-Pt) or 2c(Ir-Ir) bonds, respectively]. These chains are interconnected to 2D polyanions in Eu{sub 2}GaPt{sub 2} by the gallium atoms forming 4c(Ga-Pt-Ga-Pt) or by silicon atoms forming 2c(Si-Ir) bonds in Ca{sub 2}SiIr{sub 2}. The polyanion bonds to the europium (calcium) matrix via the pseudo lone-pairs at the gallium (silicon) atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. IR analyzer spots heavy water leaks

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A correlation spectrometer developed by Barringer Research Ltd. (in collaboration with Atomic Energy of Canada and Ontario Hydro) is used to measure HDO concentrations in DTO in the final (distillation) stage of heavy-water production. A unit has been installed at Bruce Heavy Water Plant. Previously, such spectrometers had been installed to detect heavy-water leaks in CANDU reactors. The principle on which the instrument works is explained, with illustrations. It works by comparing the absorption at 2.9 μm, due to HDO, with that at 2.6 μm, due to both HDO and D 2 O. (N.D.H.)

  20. A hemispherical photoelectron spectrometer with 2-dimensional delay-line detector and integrated spin-polarization analysis

    International Nuclear Information System (INIS)

    Plucinski, L.; Oelsner, A.; Matthes, F.; Schneider, C.M.

    2010-01-01

    Photoelectron spectrometers usually allow detection of either spin-resolved energy-distribution curves (EDCs) at single emission angle, or 2D angle-vs.-energy images without spin-resolution. We have combined the two detection schemes into one spectrometer system which permits simultaneous detection of a 1D spin-resolved EDC and a 2D angular map. A state-of-the-art hemispherical analyzer is used as an energy filter. Its original scintillator detector has been replaced by a delay-line-detector (DLD), and part of the electron beam is allowed to pass through to reach the spin-polarized low energy electron diffraction (SPLEED) spin-detector mounted subsequently. The electron-optics between DLD and SPLEED contains a 90 o deflector to feature simultaneous detection of in-plane and out-of-plane spin components. These electron-optics have been optimized for high transmission to reduce acquisition times in the spin-resolved mode.

  1. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  2. RITA-type triple axis spectrometers

    International Nuclear Information System (INIS)

    Roennow, H.M.

    2001-01-01

    The RITA spectrometer at Risoe National Laboratory was the first to incorporate a complete re-thinking of the neutron-path from source, through detector to analysis. Since then, other RITA-type spectrometers such as SPINS at NIST, RITA-II at PSI have been built, and several new spectrometers around the world are adapting the same philosophy. The main novelty of RITA was the introduction of a single back-end tank featuring both an analyser block with multiple individually turnable analyser blades and a 2D position sensitive detector. Several new triple-axis spectrometers are presently being built at existing and future sources, and almost all of them have learnt from the experience with RITA. (R.P.)

  3. Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2x·P2W15Nb3O62}6- in Ir(0)n Nanoparticle Formation From [(1,5-COD)IrI·P2W15Nb3O62]8- Plus Dihydrogen.

    Science.gov (United States)

    Özkar, Saim; Finke, Richard G

    2017-04-19

    The nucleation process yielding Ir(0) ∼300 nanoparticles from (Bu 4 N) 5 Na 3 [(1,5-COD)Ir·P 2 W 15 Nb 3 O 62 ] (abbreviated hereafter as (COD)Ir·POM 8- , where POM 9- = the polyoxometalate, P 2 W 15 Nb 3 O 62 9- ) under H 2 is investigated to learn the true molecularity, and hence the associated kinetically effective nucleus (KEN), for nanoparticle formation for the first time. Recent work with this prototype transition-metal nanoparticle formation system ( J. Am. Chem. Soc. 2014 , 136 , 17601 - 17615 ) revealed that nucleation in this system is an apparent second-order in the precatalyst, A = (COD)Ir·POM 8- , not the higher order implied by classic nucleation theory and its nA ⇌ A n , "critical nucleus", A n concept. Herein, the three most reasonable more intimate mechanisms of nucleation are tested: bimolecular nucleation, termolecular nucleation, and a mechanism termed "alternative termolecular nucleation" in which 2(COD)Ir + and 1(COD)Ir·POM 8- yield the transition state of the rate-determining step of nucleation. The results obtained definitively rule out a simple bimolecular nucleation mechanism and provide evidence for the alternative termolecular mechanism with a KEN of 3, Ir 3 . All higher molecularity nucleation mechanisms were also ruled out. Further insights into the KEN and its more detailed composition involving hydrogen, {Ir 3 H 2x POM} 6- , are also obtained from the established role of H 2 in the Ir(0) ∼300 formation balanced reaction stoichiometry, from the p(H 2 ) dependence of the kinetics, and from a D 2 /H 2 kinetic isotope effect of 1.2(±0.3). Eight insights and conclusions are presented. A section covering caveats in the current work, and thus needed future studies, is also included.

  4. Development of a gas-ionization {beta}-spectrometer; Etude et realisation d'un spectrometre {beta} a ionisation gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Le Du, R [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1968-05-15

    We intend to develop in our laboratory a {beta}-spectrometer. This apparatus will have two main objectives: 1 - the determination of the nature and the degree of purity of certain {beta}-emitting radioactive substances; 2 - the study of an activity calibration process for {beta}-emitting radioactive sources. (author) [French] Nous nous proposons d'etudier et de realiser dans notre laboratoire un spectrometre {beta}. Cet appareil aura deux buts principaux: 1 - determiner la nature et le degre de purete de certains corps radioactifs emetteurs {beta}; 2 - permettre l'etude d'un procede d'etalonnage en activite de sources radioactives emetteurs {beta}. (auteur)

  5. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  6. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  7. Optical Response of Cu1-xZnxIr2S4 Due to Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Chen, L.; Matsunami, M.; Nanba, T.; Cao, G.; Suzuki, H.; Isobe, M.; Matsumoto, T.

    2003-01-01

    The mother material CuIr 2 S 4 of the thiospinel system Cu 1-x Zn x Ir 2 S 4 undergoes a temperature-induced metal--insulator (Mi) transition. We report the temperature dependence of the optical reflection spectra of Cu 1-x Zn x Ir 2 S 4 (x ≤ 0.5) at the temperatures of 8-300 K in the energy regions of 0.005--30 eV in order to study the change in the electronic structure due to the Zn substitution for Cu. Zn substitution induced mainly the splitting of the hybridization band between the Ir-5d(t 2g ) and S-3 p states crossing the E F . Obtained optical conductivity (σ ) spectrum is discussed in relation to the change in the electronic structure close to the E F . (author)

  8. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  9. Detection Capability Evaluation on Chang'e-5 Lunar Mineralogical Spectrometer (LMS)

    Science.gov (United States)

    Liu, Bin; Ren, Xin; Yan, Wei; Xu, Xuesen; Cai, Tingni; Liu, Dawei; Liu, Jianjun; Li, Chunlai

    2016-04-01

    The Chang'e-5 (CE-5) lunar sample return mission is scheduled to launch in 2017 to bring back lunar regolith and drill samples. The Chang'e-5 Lunar Mineralogical Spectrometer (LMS), as one of the three sets of scientific payload installed on the lander, is used to collect in-situ spectrum and analyze the mineralogical composition of the sampling site. It can also help to select the sampling site , and to compare the measured laboratory spectrum of returned sample with in-situ data. LMS employs acousto-optic tunable filters (AOTFs) and is composed of a VIS/NIR module (0.48μm-1.45μm) and an IR module (1.4μm -3.2μm). It has spectral resolution ranging from 3 to 25 nm, with a field of view (FOV) of 4.24°×4.24°. Unlike Chang'e-3 VIS/NIR Imaging Spectrometer (VNIS), the spectral coverage of LMS is extended from 2.4μm to 3.2μm, which has capability to identify H2O/OH absorption features around 2.7μm. An aluminum plate and an Infragold plate are fixed in the dust cover, being used as calibration targets in the VIS/NIR and IR spectral range respectively when the dust cover is open. Before launch, a ground verification test of LMS needs to be conducted in order to: 1) test and verify the detection capability of LMS through evaluation on the quality of image and spectral data collected for the simulated lunar samples; and 2) evaluate the accuracy of data processing methods by the simulation of instrument working on the moon. The ground verification test will be conducted both in the lab and field. The spectra of simulated lunar regolith/mineral samples will be collected simultaneously by the LMS and two calibrated spectrometers: a FTIR spectrometer (Model 102F) and an ASD FieldSpec 4 Hi-Res spectrometer. In this study, the results of the LMS ground verification test will be reported including the evaluation on the LMS spectral and image data quality, mineral identification and inversion ability, accuracy of calibration and geometric positioning .

  10. Utilization of dE/dx approx E sup n /a dependence for DELTA E - E-spectrometer calibration

    CERN Document Server

    Gorpinich, O K; Jachmenov, O O

    2002-01-01

    The method of calibration of DELTA E - E-spectrometers by the use of known empiric form dE/dx approx E sup n /a which describes the specific energy loss of charge particles in the matter for energy calibration of DELTA E - E-spectrometer was designed.

  11. BIS-2 spectrometer for search and investigation of narrow resonances

    International Nuclear Information System (INIS)

    Aleev, A.N.; Aref'ev, V.A.; Balandin, V.P.

    1989-01-01

    The configuration and main characteristics of the BIS-2 spectrometer are described. The spectrometer was intended to search for and to investigate charmed particles and narrow resonances produced in neutron-nucleus interactions. It was placed on a neutron beam of the Serpukhov accelerator. The Monte-Carlo simulated and experimentally measured characteristics of individual elements and the spectrometer as a whole are described. A brief review of the principal results based on the analysis of more than 10 7 neutron-nucleus interactions registered by means of the BIS-2 spectrometer is given. 34 refs.; 8 figs.; 5 tabs

  12. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  14. NO Reactions Over Ir-Based Catalysts in the Presence of O2

    Directory of Open Access Journals (Sweden)

    Mingxin Guo

    2011-01-01

    Full Text Available The behaviour of a series of Ir-based catalysts supported on SiO2, ZSM-5 and γ-Al2O3 with various Ir loadings prepared by impregnation method was conducted by temperature programmed reaction (TPR technique. The result implies that NO is oxidized to NO2 while simultaneously being reduced to N2 or N2O in the NO reactions over iridium catalysts. The surface active phase over iridium catalysts that promote the NO reactions is IrO2. The catalytic activity increases with the increase of the Ir loading and support materials have a little effect on the catalytic activity. When the loading is less than 0.1%, the catalytic activity was found to be dependent on the nature of support materials and in order: Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2. When the loading is higher than 0.1%, the catalytic activity for NO oxidation is in order: Ir/ZSM-5>Ir/SiO2>Ir/γ -Al2O3, which is correlated with Ir dispersion on the surface of support materials and the catalytic activity for NO reduction is in sequence: Ir/γ -Al2O3>Ir/SiO2>Ir/ZSM-5, which is attributed to the adsorbed-dissociation of NO2. Compared to Pt/γ-Al2O3, Ir/γ-Al2O3 catalyst is more benefit for the NO reduction.

  15. Hybridization Gap and Dresselhaus Spin Splitting in EuIr4In2Ge4.

    Science.gov (United States)

    Calta, Nicholas P; Im, Jino; Rodriguez, Alexandra P; Fang, Lei; Bugaris, Daniel E; Chasapis, Thomas C; Freeman, Arthur J; Kanatzidis, Mercouri G

    2015-08-03

    EuIr4In2Ge4 is a new intermetallic semiconductor that adopts a non-centrosymmetric structure in the tetragonal I4̄2m space group with unit cell parameters a=6.9016(5) Å and c=8.7153(9) Å. The compound features an indirect optical band gap E(g)=0.26(2) eV, and electronic-structure calculations show that the energy gap originates primarily from hybridization of the Ir 5d orbitals, with small contributions from the Ge 4p and In 5p orbitals. The strong spin-orbit coupling arising from the Ir atoms, and the lack of inversion symmetry leads to significant spin splitting, which is described by the Dresselhaus term, at both the conduction- and valence-band edges. The magnetic Eu(2+) ions present in the structure, which do not play a role in gap formation, order antiferromagnetically at 2.5 K. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    Science.gov (United States)

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. THE STUDY OF CLINOPTILOLITE MODIFIED WITH3d METALS HALIDES BY IR AND DIFFUSE REFLECTANCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The results of investigation of natural clinoptilolite (N-CLI and that modified with 3d metal halides (MeCl2/N-CLI, where Me are Cu, Co, and Mn by IR and diffuse reflectance spectroscopy are summarized. A band at 3437 cm-1 assigned to stretching vibrations of hydroxyl groups (nOH is found in the IR spectrum of the N-CLI sample. A location of the band was practically the same as for all above MeCl2/N-CLI samples. A band of middle intensity at 1638 cm-1 in the range of deformation vibrations of zeolite water observed in the IR spectrum of N-CLI slightly displays to lower frequencies in the case of the modified samples. An intensive wide band of a complex shape in the range from 1250 to 980 cm-1 assigned to Si–O–Si and Si–O–Al vibrations appears in IR spectra of all samples. A doublet band of middle intensity at 797 and 778 cm-1 is assigned to external symmetric stretching T-O vibrations and a band at 606 cm-1-to vibrations of a double ring. A location of the above bands is the same for all listed samples but their intensity is higher for MnCl2/N-CLI and CoCl2/N-CLI samples. After the reaction with ozone, significant changes in the IR spectra are observed only for MnCl2/N-CLI. They are due to MnO2 formation on the clinoptilolite surface resulting in a high frequency displacement of some bands. Based on UV-vi spectroscopy results, it is reasonable to make conclusions about the coordination and valence state of a central atom in the MeCl2/N-CLI samples under study. A location of charge transfer bands for these samples only slightly differs from that for N-CLI however the intensity of such bands increases for the MeCl2/N-CLI samples. The UV-vis spectrum of MnCl2/N-CLI changes after the reaction with ozone: the appearance of new bands of  charge transfer at 363 and 354 nm and also the two-fold increase in intensity of a charge transfer band at 272 nm in comparison with those of N-CLI and MnCl2/N-CLI are the evidence of change in both the

  18. Study of (n,2n reaction on 191,193Ir isotopes and isomeric cross section ratios

    Directory of Open Access Journals (Sweden)

    Vlastou R.

    2017-01-01

    Full Text Available The cross section of 191Ir(n,2n190Irg+m1 and 191Ir(n,2n190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR “Demokritos”, using the activation method. The neutron beams were produced by means of the 3H(d,n4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.

  19. Analysis of ν2 of D 2S

    Science.gov (United States)

    Gillis, James R.; Blatherwick, Ronald D.; Bonomo, Francis S.

    1985-11-01

    The infrared spectrum of ν2 of D 2S was recorded from 740 to 1100 cm -1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 655 transitions from D 232S and 129 from D 234S, and have analyzed them using Watson's A-reduced Hamiltonian evaluated in the I r representation. We used the recently published D 232S and D 234S ground state Hamiltonian constants [C. Camy-Peyret, J. M. Flaud, L. Lechuga-Fossat and J. W. C. Johns, J. Mol. Spectrosc.109, 300-333 (1985)]. Upper state Hamiltonian constants were obtained from a fit of the ν2 transitions, keeping the ground state constants fixed while varying the upper state constants. The standard deviation of the D 232S ν2 fit is 0.0025 cm -1. The standard deviation of the D 234S ν2 fit is 0.0041 cm -1.

  20. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination; Metodos analiticos para la determinacion del 2,4-D (Acido diclorofenoxiacetico)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez G, M.S.M

    1999-06-01

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  1. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  2. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  3. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  4. Gamow-Teller matrix elements from the C-12(d,He-2) and Mg-24(d,He-2) reactions at 170 MeV

    NARCIS (Netherlands)

    Baumer, C; Frekers, D; Schmidt, R; van den Berg, AM; Hannen, VM; Harakeh, MN; de Huu, MA; Wörtche, HJ; De Frenne, D; Hagemann, M; Heyse, J; Jacobs, E; Fujita, Y

    The Mg-24(d,He-2)Na-24 and the C-12(d,He-2)B-12 charge-exchange reactions have been studied at an incident energy of 170 MeV. The two protons in the S-1(0)(pp) state (indicated as He-2) were both momentum analyzed and detected by the same spectrometer and detector. Background-free He-2 spectra with

  5. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  6. SU-F-T-275: A Correlation Study On 3D Fluence-Based QA and 2D Dose Measurement-Based QA

    International Nuclear Information System (INIS)

    Liu, S; Mazur, T; Li, H; Green, O; Sun, B; Mutic, S; Yang, D

    2016-01-01

    Purpose: The aim of this paper was to demonstrate the feasibility and creditability of computing and verifying 3D fluencies to assure IMRT and VMAT treatment deliveries, by correlating the passing rates of the 3D fluence-based QA (P(ά)) to the passing rates of 2D dose measurementbased QA (P(Dm)). Methods: 3D volumetric primary fluencies are calculated by forward-projecting the beam apertures and modulated by beam MU values at all gantry angles. We first introduce simulated machine parameter errors (MU, MLC positions, jaw, gantry and collimator) to the plan. Using passing rates of voxel intensity differences (P(Ir)) and 3D gamma analysis (P(γ)), calculated 3D fluencies, calculated 3D delivered dose, and measured 2D planar dose in phantom from the original plan are then compared with those from corresponding plans with errors, respectively. The correlations of these three groups of resultant passing rates, i.e. 3D fluence-based QA (P(ά,Ir) and P(ά,γ)), calculated 3D dose (P(Dc,Ir) and P(Dc,γ)), and 2D dose measurement-based QA (P(Dm,Ir) and P(Dm,γ)), will be investigated. Results: 20 treatment plans with 5 different types of errors were tested. Spearman’s correlations were found between P(ά,Ir) and P(Dc,Ir), and also between P(ά,γ) and P(Dc,γ), with averaged p-value 0.037, 0.065, and averaged correlation coefficient ρ-value 0.942, 0.871 respectively. Using Matrixx QA for IMRT plans, Spearman’s correlations were also obtained between P(ά,Ir) and P(Dm,Ir) and also between P(ά,γ) and P(Dm,γ), with p-value being 0.048, 0.071 and ρ-value being 0.897, 0.779 respectively. Conclusion: The demonstrated correlations improve the creditability of using 3D fluence-based QA for assuring treatment deliveries for IMRT/VMAT plans. Together with advantages of high detection sensitivity and better visualization of machine parameter errors, this study further demonstrates the accuracy and feasibility of 3D fluence based-QA in pre-treatment QA and daily QA. Research

  7. Thermal structure of the Martian atmosphere retrieved from the IR- spectrometry in the 15 mkm CO2 band

    Science.gov (United States)

    Zasova, L.; Formisano, V.; Grassi, D.; Igantiev, N.; Moroz, V.

    Thermal IR spectrometry is one of the methods of the Martian atmosphere investigation below 55 km. The temperature profiles retrieved from the 15 μm CO2 band may be used for MIRA database. This approach gives the vertical resolution of several kilometers and accuracy of several Kelvins. An aerosol abundance, which influences the temperature profiles, is obtained from the continuum of the same spectrum. It is taken into account in the temperature retrieval procedure in a self- consistent way. Although this method has limited vertical resolution it possesses some advantages. For example, the radio occultation method gives the temperature profiles with higher spectral resolution, but the radio observations are sparse in space and local time. Direct measurements, which give the most accurate results, enable to obtain the temperature profiles only for some chosen points (landing places). Actually, the thermal IR-spectrometry is the only method, which allows to monitor the temperature profiles with good coverage both in space and local time. The first measurements of this kind were fulfilled by IRIS, installed on board of Mariner 9. This spectrometer was characterized by rather high spectral resolution (2.4 cm-1). The temperature profiles vs. local time dependencies for different latitudes and seasons were retrieved, including dust storm conditions, North polar night, Tharsis volcanoes. The obtained temperature profiles have been compared with the temperature profiles for the same conditions, taken from Climate Data Base (European GCM). The Planetary Fourier Spectrometer onboard Mars Express (which is planned to be launched in 2003) has the spectral range 1.2-45 μm and spectral resolution of 1.5 cm- 1. Temperature retrieval is one of the main scientific goals of the experiment. It opens a possibility to get a series of temperature profiles taken for different conditions, which can later be used in MIRA producing.

  8. Progress in commercial TXRF spectrometer for semiconductors

    International Nuclear Information System (INIS)

    Nishihagi, K.

    2000-01-01

    In the scale down of ULSI devices, it is required to reduce contamination of metal or particle due to get higher yield. For the metallic contamination, we are trying to develop to get higher sensitivity in direct-TXRF method, however, VPD-TXRF is the most important method to get 10 7 to 10 8 atoms/cm 2 sensitivity. For the particle contamination, we have developed software to link TXRF spectrometer with particle counter because not only position or size but also composition analysis have got required. In semiconductor industries, there are two important changing for improvement on production management system as COO (Cost Of Ownership) or standardization. One is the size of wafer has changed from 200 mm to 300 mm. Against this, we have redesigned TXRF spectrometer for 300 mm wafer without down of sensitivity. The other is the production system has become completely automated. On this point, we have also redesigned to link TXRF spectrometer with SMIF (Standard Mechanical Interface) or FOUP (Front Opening Unified Pod) as mini-environment, and with SECS 2 (SEMI Equipment Communications Standard 2) or GEM 300 (Generic Equipment Model) as automatically standardization. We shall also introduce some applications about new materials using TXRF such as Ta 2 O 5 , ZrO 2 and HfO 2 for high-k materials, and also Ru, SRO and IrO 2 for electrode materials. Furthermore, we shall introduce our new equipment for thickness and composition analysis such as PZT, BST and MOCVD TiN thin films. (author)

  9. A neutron time of flight spectrometer appropriate for D-T plasma diagnostics

    International Nuclear Information System (INIS)

    Elevant, T.

    1984-02-01

    A neutron time-of-flight spectrometer with 2 m flight path for diagnostics of deuterium plasmas in JET is presently under construction. An upgrade of this spectrometer to make it appropriate for 14-MeV neutron spectroscopy is presented here. It is suggested to use backscattering in a deuterium based scintillator. The flight path length is 1-2 m and the efficiency is of the order of 2.10 -5 cm -5 . Results from test of principle are presented with estimates for neutron and gamma backgrounds

  10. Comparative study of potentially J{sub eff} = 0 ground state iridium(V) in SrLaNiIrO{sub 6}, SrLaMgIrO{sub 6}, and SrLaZnIrO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Klaus K.; Agrestini, Stefano; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Tanaka, Arata [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima (Japan); Jansen, Martin [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2017-12-13

    A series of polycrystalline double perovskites SrLaBIrO{sub 6} (B = Ni, Mg, Zn) containing Ir{sup 5+} (5d{sup 4}) was synthesized by solid state reactions, and structural, magnetic and electronic properties were investigated. The isotypic fully ordered double perovskites crystallize in space group P2{sub 1}/n and show semiconducting behavior with estimated bandgaps of approximately 0.2 eV for SrLaNiIrO{sub 6} and SrLaZnIrO{sub 6}, and 0.4 eV for SrLaMgIrO{sub 6}. SrLaNiIrO{sub 6} is an antiferromagnet with a Neel temperature of 74 K (μ{sub eff} = 3.3 μ{sub B}, θ{sub W} = -90 K), whereas SrLaMgIrO{sub 6} and SrLaZnIrO{sub 6} are weakly paramagnetic. All title compounds exhibit a temperature-independent contribution to the measured magnetic susceptibility, which supports the notion for a van-Vleck-type response originating from the Ir{sup 5+} (5d{sup 4}, J{sub eff} = 0) ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    Science.gov (United States)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  12. Infrared spectra and tunneling dynamics of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O.

    Science.gov (United States)

    Zhu, Yu; Zheng, Rui; Li, Song; Yang, Yu; Duan, Chuanxi

    2013-12-07

    The rovibrational spectra of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O have been measured in a supersonic slit jet expansion using a rapid-scan tunable diode laser spectrometer. Both a-type and b-type transitions were observed for these two complexes. All transitions are doubled, due to the heavy water tunneling within the complexes. Assuming the tunneling splittings are the same in K(a) = 0 and K(a) = 1, the band origins, all three rotational and several distortion constants of each tunneling state were determined for N2-D2O in the ground and excited vibrational states, and for OC-D2O in the excited vibrational state, respectively. The averaged band origin of OC-D2O is blueshifted by 2.241 cm(-1) from that of the v2 band of the D2O monomer, compared with 1.247 cm(-1) for N2-D2O. The tunneling splitting of N2-D2O in the ground state is 0.16359(28) cm(-1), which is about five times that of OC-D2O. The tunneling splittings decrease by about 26% for N2-D2O and 23% for OC-D2O, respectively, upon excitation of the D2O bending vibration, indicating an increase of the tunneling barrier in the excited vibrational state. The tunneling splittings are found to have a strong dependence on intramolecular vibrational excitation as well as a weak dependence on quantum number K(a).

  13. First report of vertically aligned (Sn,Ir)O2:F solid solution nanotubes: Highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis

    Science.gov (United States)

    Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.

    2018-07-01

    One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.

  14. Band shape of IR-absorption of complex molecules and restricted rotational diffusion

    International Nuclear Information System (INIS)

    Ivanov, E.N.; Umidulaev, Sh.U.

    1989-01-01

    The development of the theory of band shape (and Breadth) IR-absorption of complex molecules (regarding the molecules inside motions) is considered. It is supposed that a molecule fragment being responsible for IR-absorption takes part in the restricted rotational diffusion (RRD) with respect to the frame, and the molecule itself in general makes rotational motion (RM). Both kinds of motions are discussed in accordance with the theory of group motions representations. On the basis of correlative functions calculations of dipole moment a simple expression for the IR-absorption band shape have been obtained, which in itself uses to be the super position of two Lorencians with the semibreadths 2D 1 and 2D 1 +ν 2 0 (ν 2 0 +1D R accordingly (here D 1 is the coefficient of RM, D 2 is the coefficient of RRD, ν 2 0 is the well known function of RRD-cone divergence angle) in case of symmetric rotary abrasive disc. Analysis of experimental band shape of IR-absorption on the basis of the expression obtained allows to get information of MR-molecule parameters in general and RRD. It is really possible to determine the RRD-cone divergency angle from experimental weights of Lorencians. In accordance with experimental semibreadths the coefficient of RM D 1 and the coefficient of RRD D 2 are obtained. In conclusion it is noted that D 1 →0 (in the expression for the band shape of IR-absorption obtained), one of the Lorencians turns to the δ-function and finally there is an expression which describes IR-absorption band shape of molecules in polymer-mats. (author)

  15. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  16. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation

    Science.gov (United States)

    Chen, Long; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues are believed to play various regulatory roles on IRS protein function. However, studies on serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 on these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing IRS2 protein degradation. Of significance, we show that IRS2 phosphorylation is cell cycle regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. PMID:25830382

  17. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Science.gov (United States)

    Gambetta, A.; Vicentini, E.; Coluccelli, N.; Wang, Y.; Fernandez, T. T.; Maddaloni, P.; De Natale, P.; Castrillo, A.; Gianfrani, L.; Laporta, P.; Galzerano, G.

    2018-04-01

    We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL). The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ˜7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  18. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Directory of Open Access Journals (Sweden)

    A. Gambetta

    2018-04-01

    Full Text Available We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL. The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ∼7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  19. Structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7

    Science.gov (United States)

    Kumar, Harish; Chaurasia, Rachna; Kumari, Pratibha; Paramanik, A. K.

    2018-04-01

    We have studied the structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7. Structural investigation has been done using x-ray powder diffraction and Rietveld analysis. Pr2Ir2O7 crystallize in cubic crystallographic phase with Fd-3m space group. Temperature dependent magnetization data does not show magnetic bifurcation down to 2 K. Electrical resistivity data of Pr2Ir2O7 exhibits metallic behavior throughout temperature range. Below 50 K, a small rise in resistivity data of Pr2Ir2O7 is observed down to 12 K.

  20. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy.

    Science.gov (United States)

    Fayer, M D

    2009-01-01

    A wide variety of molecular systems undergo fast structural changes under thermal equilibrium conditions. Such transformations are involved in a vast array of chemical problems. Experimentally measuring equilibrium dynamics is a challenging problem that is at the forefront of chemical research. This review describes ultrafast 2D IR vibrational echo chemical exchange experiments and applies them to several types of molecular systems. The formation and dissociation of organic solute-solvent complexes are directly observed. The dissociation times of 13 complexes, ranging from 4 ps to 140 ps, are shown to obey a relationship that depends on the complex's formation enthalpy. The rate of rotational gauche-trans isomerization around a carbon-carbon single bond is determined for a substituted ethane at room temperature in a low viscosity solvent. The results are used to obtain an approximate isomerization rate for ethane. Finally, the time dependence of a well-defined single structural transformation of a protein is measured.

  1. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  2. Scalable cross-point resistive switching memory and mechanism through an understanding of H2O2/glucose sensing using an IrOx/Al2O3/W structure.

    Science.gov (United States)

    Chakrabarti, Somsubhra; Maikap, Siddheswar; Samanta, Subhranu; Jana, Surajit; Roy, Anisha; Qiu, Jian-Tai

    2017-10-04

    The resistive switching characteristics of a scalable IrO x /Al 2 O 3 /W cross-point structure and its mechanism for pH/H 2 O 2 sensing along with glucose detection have been investigated for the first time. Porous IrO x and Ir 3+ /Ir 4+ oxidation states are observed via high-resolution transmission electron microscope, field-emission scanning electron spectroscopy, and X-ray photo-electron spectroscopy. The 20 nm-thick IrO x devices in sidewall contact show consecutive long dc cycles at a low current compliance (CC) of 10 μA, multi-level operation with CC varying from 10 μA to 100 μA, and long program/erase endurance of >10 9 cycles with 100 ns pulse width. IrO x with a thickness of 2 nm in the IrO x /Al 2 O 3 /SiO 2 /p-Si structure has shown super-Nernstian pH sensitivity of 115 mV per pH, and detection of H 2 O 2 over the range of 1-100 nM is also achieved owing to the porous and reduction-oxidation (redox) characteristics of the IrO x membrane, whereas a pure Al 2 O 3 /SiO 2 membrane does not show H 2 O 2 sensing. A simulation based on Schottky, hopping, and Fowler-Nordheim tunneling conduction, and a redox reaction, is proposed. The experimental I-V curve matches very well with simulation. The resistive switching mechanism is owing to O 2- ion migration, and the redox reaction of Ir 3+ /Ir 4+ at the IrO x /Al 2 O 3 interface through H 2 O 2 sensing as well as Schottky barrier height modulation is responsible. Glucose at a low concentration of 10 pM is detected using a completely new process in the IrO x /Al 2 O 3 /W cross-point structure. Therefore, this cross-point memory shows a method for low cost, scalable, memory with low current, multi-level operation, which will be useful for future highly dense three-dimensional (3D) memory and as a bio-sensor for the future diagnosis of human diseases.

  3. A Prospective Cohort Study on IRS Gene Polymorphisms in Type 2 ...

    African Journals Online (AJOL)

    Insulin resistance status was determined using the homeostatic model assessment for insulin resistance (HOMA-IR) index. Results: IRS1 polymorphisms were associated with increased insulin resistance (X2 = 5.09, p = 0.023) in T2DM patients with severe/acute hyperglycemia. IRS2 polymorphisms were not associated with ...

  4. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination

    International Nuclear Information System (INIS)

    Martinez G, M.S.M.

    1999-01-01

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  5. Structural and magnetic properties of Sr{sub 2}Y{sub 1+x}Ir{sub 1-x}O{sub 6} materials

    Energy Technology Data Exchange (ETDEWEB)

    Aslan Cansever, Gizem; Geyer, Maximilian; Blum, Christian G.F.; Gass, Sebastian; Corredor, Laura T.; Maljuk, Andrey; Wolter, A.U.B. [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Manna, Kaustuv [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Hammerath, Franziska; Wurmehl, Sabine; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany)

    2016-07-01

    Ir-based materials have attracted a lot of attention because of the competition between the spin-orbit coupling, Coulomb interaction and crystal field. Sr{sub 2}YIrO{sub 6} double perovskites with Ir{sup +5} (5d{sup 4}) ions are generally considered to have a nonmagnetic ground state (J=0). However, Sr{sub 2}YIrO{sub 6} double perovskites have been reported to exhibit long-range magnetic order at low temperature and the distorted IrO{sub 6} octahedra were discussed to cause the magnetism in this compound [2]. In this study Sr{sub 2}Y{sub 1+x}Ir{sub 1-x}O{sub 6} materials were investigated in relation to structural and magnetic properties with varying Y and Ir concentrations. The samples were prepared by solid-state chemical reaction method. Magnetic susceptibility measurements were performed down to 0.4 K.

  6. Calculation of the structure and IR spectrum of methyl-b-D-glucopyranoside by density functional theory

    International Nuclear Information System (INIS)

    Babkov, L.M.; Korolevich, M.V.; Moisejkina, E.A.

    2010-01-01

    Structural-dynamic models of methyl-b-D-glucopyranoside have been constructed by a density functional method using a B3LYP functional in bases 6-31G(d) and 6-31+G(d,p). Energies have been minimized. Structures, dipole moments, polarizabilities, frequencies of normal modes in the harmonic approximation, and the intensity distribution in the molecular IR spectrum have been calculated. The calculation results have been compared with both the experimental spectra of methyl-b-D-glucopyranoside in the region 400-3700 cm -1 and data obtained within the framework of an approach that uses the classical valence-force method to calculate normal mode frequencies and the quantum-chemical CNDO/2 technique to calculate the electronic structure. (authors)

  7. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  8. The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Zhernenkov, K.N.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.; Lauter, H.J.; Lauter-Pasyuk, V.

    2004-01-01

    At the Laboratory of Neutron Physics (JINR, Dubna) the new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1-10 Angstroem. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2·10 -4 rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3·10 -3 - 5·10 -1 Angstroem -1 . In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4·10 -3 to 10 -1 rad and the scattering wave vector interval from 0.006-0.15 to 0.03-0.7 Angstroem -1 , respectively

  9. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    Science.gov (United States)

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  10. Įvairialyčiai lantano ir mangano oksido ir multiferoinio bismuto ferito heterodariniai

    Directory of Open Access Journals (Sweden)

    Bonifacas VENGALIS

    2011-11-01

    Full Text Available Pastaruoju metu naujų elektronikos prietaisų gamyboje buvo pasiekta didelė pažanga auginant, tyrinėjant ir pritaikant plonasluoksnes struktūras, sudarytas iš įvairių daugiakomponenčių funkcinių oksidų. Šiai oksidų grupei priklauso superlaidieji kupratai, mangano oksidai (manganitai, pasižymintys magnetovaržos reiškiniu, taip pat kiti feromagnetiniai, feroelektriniai, multiferoiniai oksidai. Manganitams (jų bendra formulė Ln1-xAxMnO3, kur Ln = La, Nd,..., o A - dvivalentis katijonas, toks kaip Ba, Sr ar Ca skiriama daug dėmesio dėl jų įdomių elektrinių savybių bei tinkamumo įvairiems spintronikos prietaisams kurti. Multiferoikai  (feroelektriniai feromagnetai pasižymi magnetoelektriniu efektu, duodančiu unikalią galimybę elektrinėms ir magnetinėms medžiagos savybėms valdyti panaudoti elektrinius ir magnetinius laukus. Bismuto feritas BiFeO3 (BFO, turintis romboedriškai deformuotą perovskito struktūrą, šiuo metu yra vienas labiausiai tyrinėjamų šios klasės junginių. Organiniai puslaidininkiai (OP taip pat atveria daug naujų galimybių elektronikai. Jų pranašumas yra didelė organinių junginių įvairovė ir palyginti paprasta ir pigi plonų sluoksnių gamybos technologija. Be to, OP pasižymi neįprastai didelėmis sukinių relaksacijos laiko vertėmis, todėl ateityje jie gali būti naudojami naujiems spintronikos prietaisams gaminti. Šiame straipsnyje apžvelgiami pastarųjų metų darbo autorių ir jų kolegų atlikti anksčiau minėtų medžiagų tyrimai. Daugiausia dėmesio skiriama magnetovaržinėmis savybėmis pasižyminčių lantano ir mangano oksidų (manganitų bei multiferoinio  BiFeO3 (BFO junginio plonųjų sluoksnių ir heterodarinių auginimui, tarpfazinių ribų tarp minėtų oksidų, laidžiojo SrTiO3 ir organinio puslaidininkio (Alq3 sudarymui, taip pat elektrinėms heterodarinių savybėms. Plonieji La2/3A1/3MnO3 (A = Ca, Sr, Ba, Ce sluoksniai, kurių storis d

  11. Evidence for coexisting magnetic order in frustrated three-dimensional honeycomb iridates Li2IrO3

    Science.gov (United States)

    Breznay, Nicholas; Ruiz, Alejandro; Frano, Alex; Analytis, James

    The search for unconventional magnetism has found a fertile hunting ground in 5d iridium oxide (iridate) materials. The competition between coulomb, spin-orbit, and crystal field energy scales in honeycomb iridates leads to a quantum magnetic system with localized spin-1/2 moments communicating through spin-anisotropic Kitaev exchange interactions. Although early and ongoing work has focused on layered two-dimensional honeycomb compounds such as Na2IrO3 and a 4d analog, RuCl3, recently discovered polytypes of Li2IrO3 take on three-dimensional honeycomb structures. Bulk thermodynamic studies, as well as recent resonant x-ray diffraction and absorption spectroscopy experiments, have uncovered a rich phase diagram for these three-dimensional honeycomb iridates. Low temperature incommensurate and commensurate magnetic orders can be stabilized by tuning the applied magnetic field, displaying a delicate coexistence that signals highly frustrated magnetism.

  12. Ar ir CO2 plazma modifikuota aktyvintoji anglis acetono ir cikloheksano adsorbcijai

    Directory of Open Access Journals (Sweden)

    Piotr PIETROWSKI

    2012-06-01

    Full Text Available Žemos temperatūros plazmos poveikis, leidžiantis valdyti daugelio rūšių medžiagų, pvz., polimerų, metalų, anglies, paviršiaus savybes, šiuo metu yra tiriamas daugelyje mokslo sričių. Aktyvintoji  anglis (AC dėl savo fizikinių ir cheminių savybių naudojama kaip struktūrinis elementas dujų filtruose, kurie adsorbuodami daugelį skirtingų garų iš užteršto oro apsaugo kvėpavimo takus. Gerai žinoma, kad įvairios AC paviršiaus funkcinės grupės lemia jų hidrofobinę / hidrofilinę elgseną. Šame straipsnyje pristatomi pirminiai tyrimai, susiję su žemos temperatūros plazmos poveikiu komercinei aktyvintajai angliai. Aktyvintoji anglis buvo granuliuojama ir dedama į žemos temperatūros plazmos  rotacinę bandymų kamerą. Kamera buvo užpildoma atitinkamomis reaktyviosiomis dujomis. Plazmos poveikis buvo tiriamas nustatant aktyvintosios anglies paviršiaus dviejų pasirinktų rūšių organinių garų adsorbcijos izotermas, taip pat stebint šių garų adsorbcijos dinamiką ant dujų filtro, pagaminto iš plazma aktyvintos anglies. Remiantis gautais rezultatais, galima daryti išvadą, kad žemos temperatūros plazmos technologija gali būti taikoma aktyvintosios anglies savybėms pagerinti užtikrinant geresnę žemos temperatūros organinių garų adsorbciją.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1919

  13. CH3D photomixing spectroscopy up to 2.5 THz: New set of rotational and dipole parameters, first THz self-broadening measurements

    Science.gov (United States)

    Bray, Cédric; Cuisset, Arnaud; Hindle, Francis; Bocquet, Robin; Mouret, Gaël; Drouin, Brian J.

    2017-03-01

    Several previously unmeasured transitions of 12CH3D have been recorded by a terahertz photomixing continuous-wave spectrometer up to QR(10) branch at 2.5 THz. An improved set of rotational constants has been obtained utilizing a THz frequency metrology based on a frequency comb that achieved an averaged frequency position better than 150 kHz on more than fifty ground-state transitions. A detailed analysis of the measured line intensities was undertaken using the multispectrum fitting program and has resulted in a determination of new dipole moment parameters. Measurements at different pressures of the QR(7) transitions provide the first determination of self-broadening coefficients from pure rotational CH3D lines. The THz rotational measurements are consistent with IR rovibrational data but no significant vibrational dependence of self-broadening coefficient may be observed by comparison.

  14. Synthesis, Crystal and Electronic Structure of the Quaternary Magnetic EuTAl4Si2 (T = Rh and Ir) Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Arvind [Tata Institute of Fundamental Research; Thamizhavel, Arumugam [Tata Institute of Fundamental Research; Provino, Alessia [University of Genova; Pani, Marcella [University of Genova; Manfrinetti, Pietro [University of Genova; Paudyal, Durga [Ames Laboratory; Dhar, Sudesh Kumar [Tata Institute of Fundamental Research

    2014-01-22

    Single crystals of the quaternary europium compounds EuRhAl4Si2 and EuIrAl4Si2 were synthesized by using the Al–Si binary eutectic as a flux. The structure of the two quaternary compounds has been refined by single crystal X-ray diffraction. Both compounds are stoichiometric and adopt an ordered derivative of the ternary KCu4S3 structure type (tetragonal tP8, P4/mmm). The two compounds reported here represent the first example of a quaternary and truly stoichiometric 1:1:4:2 phase crystallizing with this structure type. In light of our present results, the structure of the BaMg4Si3 compound given in literature as representing a new prototype is actually isotypic with the KCu4S3 structure. Local spin density approximation including the Hubbard U parameter (LSDA + U) calculations show that Eu ions are in the divalent state, with a significant hybridization between the Eu 5d, Rh (Ir) 4d (5d), Si 3p and Al 3p states. Magnetic susceptibility measured along the [001] direction confirms the divalent nature of the Eu ions in EuRhAl4Si2 and EuIrAl4Si2, which order magnetically near 11 and 15 K, respectively.

  15. Magnetic spectrometer of the DEUTERON-2 set-up

    International Nuclear Information System (INIS)

    Ajvazyan, R.V.; Alanakyan, K.V.; Amaryan, M.J.

    1989-01-01

    A magnetic spectrometer of the two-arm DEUTERON-2 set-up of the Erevan Physical Institute is described. It is shown that the rejection factor for electrons and pions is 10 -2 - 10 -3 . The positively charged particles in the momentum range up to 1.5 GeV/c are identified by momentum and time-of-flight measurements. The main characteristics of the spectrometer are: momentum and angular acceptance δp/p = 46%, Δθ = 4 deg, solid angle ΔΩ = 2.75 msr, momentum resolution δp/p = 1.5%, angular resolutions δθ = 0.6 deg, δφ = 2 deg. The intervals of measured momentum and the polar scattering anlge are 0.5-3 GeV/c and 10-30 deg, 68-90 deg respectively. 7 refs.; 11 figs

  16. Žieminių kviečių grūdų užterštumo mikromicetais ir mikotoksinais priklausomumas nuo tręšimo lygio

    OpenAIRE

    Mankevičienė, Audronė; Dabkevičius, Zenonas; Mačkinaitė, Rimutė; Cesevičienė, Jurgita

    2006-01-01

    Žieminių kviečių (Triticum aestivum L.) grūdų užsiteršimo mikroskopiniais grybais ir mikotoksinais tyrimai atlikti 2002-2004 m. Lietuvos žemdirbystės institute. Žieminiai kviečiai 'Ada' ir 'Zentos' tyrimų laikotarpiu buvo tręšiami 3 lygiais: netręšta (N0P0K0), vidutinis tręšimo lygis (N90P80K120S6), didžiausias tręšimo lygis (N180P80K140S13). Grūdų mikrobiologinės ir užterštumo mikotoksinais deoksinivalenoliu (DON), zearalenonu (ZEN) ir T-2 toksinu analizės atliktos tuoj po derliaus nuėmimo. ...

  17. What Happened with Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The spectrometer solenoid is supposed to be the first magnets installed in MICE (1)-(4). This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A (5), magnet 2A (6), and magnet 2B (7). Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  18. Development of the 2nd generation z(Redshift) and early universe spectrometer & the study of far-IR fine structure emission in high-z galaxies

    Science.gov (United States)

    Ferkinhoff, Carl

    The 2nd generation z (Redshift) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle-grating spectrometer (R~1000) for observations at submillimeter wavelengths from 200 to 850 microm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combining exquisite sensitivity, broad wavelength coverage, and large (˜2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between z˜0.2 and 5---spanning the peaks in both the star formation rate and number of AGN in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the Spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) in November 2012. Here we detail the design and performance of ZEUS-2, first however we discuss important science results that are examples of the science enabled by ZEUS-2. Using the first generation z (Redshift) and Early Universe Spectrometer (ZEUS-1) we made the first high-z detections of the [NII] 122 microm and [OIII] 88 microm lines. We detect these lines from starburst galaxies between z ˜2.5 and 4 demonstrating the utility of these lines for characterizing the properties of early galaxies. Specifically we are able to determine the most massive star still on the main sequence, the number of those stars and a lower limit on the mass of ionized gas in the source. Next we present ZEUS-2's first science result. Using ZEUS-2 on APEX we have detected the [CII] 158 microm line from the z = 1.78 galaxy H-ATLAS J091043.1-000322 with a line flux of (6.44 +/- 0.42) ˜ 10-18 W m-2. Combined with its far-infrared luminosity and a new Herschel-PACS detection of the [OI] 63 microm line we are able to conclude that H-ATLAS J091043.1-000322 is a high redshift analogue of a local ultra-luminous infrared galaxy, i.e. it is likely the site of a compact starburst due to a major merger. This detection, combined with the ZEUS-1 observations of the [NII

  19. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    Science.gov (United States)

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  20. Feasibility study of 2D thick-slice MR digital subtraction angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Takeuchi, Miho; Higashimura, Kyouji; Komuro, Hiroyuki

    2000-01-01

    Conditions required to perform contrast MR digital subtraction angiography using a two-dimensional thick-slice high-speed gradient echo were investigated. The conditions in the phantom experiment included: slice profile, flip angle, imaging matrix, fat suppression, duration of IR pulse and frequency selectivity, flip angle of IR pulse and inversion time. Based on the results of the experiment, 2D thick-slice MRDSA was performed in volunteers. Under TR/TE=5.3-9/1.3-1.8 ms conditions, the requirements were a slice thick enough to include the target region, a flip angle of 10 degrees, and a phase matrix of 96 or more. Fat suppression was required for adipose-tissue-rich regions, such as the abdomen. The optimal conditions for applying the IR preparation pulse of the IR prepped fast gradient recalled echo as spectrally selective inversion recovery appeared to be: duration of IR pulse =20 ms, flip angle =100 degrees, and inversion time =40 ms. The authors concluded that it was feasible to perform 2D thick-slice MRDSA with time resolution within 1 second. (K.H.)

  1. Study and development of a spectrometer with Compton suppression and gamma coincidence counting

    International Nuclear Information System (INIS)

    Masse, D.

    1990-10-01

    This paper presents the characteristics of a spectrometer consisting of a Ge detector surrounded by a NaI(T1) detector that can operate in Compton-suppression and gamma-gamma coincidence modes. The criteria that led to this measurement configuration are discussed and the spectrometer performances are shown for 60 Co and 137 Cs gamma-ray sources. The results for the measurement of 189 Ir (Compton suppression) and for the measurement of 101 Rh (gamma-gamma coincidence) in the presence of other radioisotopes are given. 83 Rb and 105 Ag isotopes are also measured with this spectrometer [fr

  2. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm.

    Science.gov (United States)

    Batagini, Nayara Cioffi; Ventura, Carlos Augusto Pinto; Raghavan, Madhavan L; Chammas, Maria Cristina; Tachibana, Adriano; da Silva, Erasmo Simão

    2016-06-01

    The objective was to demonstrate the ability of ultrasound (US) with 3D properties to evaluate volumetry and biomechanical parameters of the aorta in patients with and without abdominal aortic aneurysm (AAA). Thirty-one patients with normal aortas (group 1), 46 patients with AAA measuring 3.0-5.5 cm (group 2) and 31 patients with AAA ⩾ 5.5 cm (group 3) underwent a 2D/3D-US examination of the infra-renal aorta, and the images were post-processed prior to being analyzed. In the maximum diameter, the global circumferential strain and the global maximum rotation assessed by 2D speckle-tracking algorithms were compared among the three groups. The volumetry data obtained using 3D-US from 40 AAA patients were compared with the volumetry data obtained by a contemporary computed tomography (CT) scan. The median global circumferential strain was 2.0% (interquartile range (IR): 1.0-3.0), 1.0% (IR: 1.0-2.0) and 1.0% (IR: 1.0-1.75) in groups 1, 2 and 3, respectively (p volumetry and biomechanical characteristics of AAA. © The Author(s) 2016.

  3. An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Cheng, Jie; Zhu, Chaomin; Ma, Jingyuan; Wang, Yu; Liu, Shengli

    2018-03-01

    Investigations of materials with 5d transition metal ions have opened up new paradigms in condensed-matter physics because of their large spin-orbit coupling (SOC) interactions. The typical compound is Sr2IrO4, which attracted much attention due to its similarities to the parent compound of high-Tc cuprate superconductor La2CuO4. Theoretical calculations predicted that the unconventional superconductivity can occur in carrier doped-Sr2IrO4 system. Until now, hundreds of experimental methods were devoted to investigate the carrier doping effect on Sr2IrO4. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) made great contributions to the local lattice and electronic structure, and also the intimate relationship between the local structure and physical properties induced by carrier doping. The aim of this review is a short introduction to the progress of research on Sr2IrO4-based system probed by the unique technique — XAS, including the strength of the SOC, valence changes upon doping and even local lattice structure with atomic level for this Sr2IrO4-based family.

  4. Effects of Dioscorea esculenta and Eubacterium rectale on insulin receptor substrate 1 (Irs1 Expression in skeletal muscle and homeostatic model assessment-insulin resistance (HOMA-IR in diabetic rats

    Directory of Open Access Journals (Sweden)

    . Sunarti

    2017-01-01

    Full Text Available Low expression of insulin receptor substrate 1 (Irs1 is associated with insulin resistance and type 2 diabetes mellitus (type 2 DM. This study was performed to evaluate the effects of Dioscorea esculenta and Eubacterium rectale on the Irs1 expression in the skeletal muscle and the homeostatic model assessment-insulin resistance (HOMA-IR of diabetic rats. Twenty-five male Wistar rats were divided into five groups i.e. non diabetic rats Group 1; diabetic rats as Group 2; diabetic rats + D. esculenta as Group 3; diabetic rats + E.rectale as Group 4 and diabetic rats + both E. rectale and D. esculenta as Group 5. Rats were made diabetic with induction of intraperitoneally injection of nicotinamide and streptozotocin. After four weeks of the interventions, the blood and skeletal muscles were taken. The Irs1 expression was analyzed with immunohistochemical staining, plasma glucose levels was analyzed using a spectrophotometer, and insulin was analyzed using ELISA methods. All intervention groups reduced plasma glucose levels and HOMA-IRs (p<0.001 and increased Irs1 expression. The greatest reduction of  plasma glucose levels and increase of Irs1 expression in the skeletal muscle were found in Group 4, however, the lowest of HOMA-IR was seen in Group 5. These results suggested that D.esculenta, E.rectale, and the combination reduced plasma glucose levels and HOMA-IR by increasing Irs1 expression in skeletal muscle.

  5. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    Science.gov (United States)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  6. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  7. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  8. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  9. The most reactive third-row transition metal: Guided ion beam and theoretical studies of the activation of methane by Ir+

    Science.gov (United States)

    Li, Feng-Xia; Zhang, Xiao-Guang; Armentrout, P. B.

    2006-09-01

    The potential energy surface for activation of methane by the third-row transition metal cation, Ir+, is studied experimentally by examining the kinetic energy dependence of reactions of Ir+ with methane, IrCH2+ with H2 and D2, and collision-induced dissociation of IrCH2+ with Xe using guided ion beam tandem mass spectrometry. A flow tube ion source produces Ir+ in its electronic ground state term and primarily in the ground spin-orbit level. We find that dehydrogenation to form IrCH2+ + H2 is exothermic, efficient, and the only process observed at low energies for reaction of Ir+ with methane, whereas IrH+ dominates the product spectrum at higher energies. We also observe the IrH2+ product, which provides evidence that methane activation proceeds via a dihydride (H)2IrCH2+ intermediate. The kinetic energy dependences of the cross sections for several endothermic reactions are analyzed to give 0 K bond dissociation energies (in eV) of D0(Ir+-2H) > 5.09 +/- 0.07, D0(Ir+-C) = 6.59 +/- 0.05, D0(Ir+-CH) = 6.91 +/- 0.23, and D0(Ir+-CH3) = 3.25 +/- 0.18. D0(Ir+-CH2) = 4.92 +/- 0.03 eV is determined by measuring the forward and reverse reaction rates for Ir++CH4[right harpoon over left]IrCH2++H2 at thermal energy. Ab initio calculations at the B3LYP/HW+/6-311++G(3df,3p) level performed here show reasonable agreement with the experimental bond energies and with the few previous experimental and theoretical values available. Theory also provides the electronic structures of the product species as well as intermediates and transition states along the reactive potential energy surfaces. We also compare this third-row transition metal system with the first-row and second-row congeners, Co+ and Rh+. Differences in reactivity and mechanisms can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals.

  10. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    Directory of Open Access Journals (Sweden)

    John M Tauber

    2017-11-01

    Full Text Available Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs, one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  11. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    Science.gov (United States)

    Tauber, John M; Brown, Elizabeth B; Li, Yuanyuan; Yurgel, Maria E; Masek, Pavel; Keene, Alex C

    2017-11-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  12. 2.4-197 mu m spectroscopy of OH/IR stars : the IR characteristics of circumstellar dust in O-rich environments

    NARCIS (Netherlands)

    Sylvester, RJ; Kemper, F; Barlow, MJ; de Jong, T; Waters, LBFM; Tielens, AGGM; Omont, A

    1999-01-01

    Infrared spectra of a number of evolved O-rich stars have been obtained with the Short- and Long-Wavelength spectrometers on board the Infrared Space Observatory. The very broad wavelength coverage (2.4-197 mu m) obtained by combining observations made with the two spectrometers includes practically

  13. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  14. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  15. A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface

    Science.gov (United States)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2011-06-01

    The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.

  16. Synthesis of 2-phosphaadamantane derivatives

    International Nuclear Information System (INIS)

    Zemlyanoi, V.N.; Aleksandrov, A.M.; Kukhar', V.P.

    1986-01-01

    The authors describe the synthesis and properties of 2-phosphadamantane derivatives. For the synthesis of 2-phosphaadamantane derivatives they decided to use the methodology of the synthesis of 2-thiaadamantane. The IR spectra were determined on CHCl 3 solutions with a Specord 711R spectrometer, the PMR spectra were determined on Tesla BS-467 (60 MHz) and Bruker WP-200 (200 MHz) spectrometers, external standard hexamethyldisiloxane, the 31 P NMR spectra were determined on Tesla BS-487 C (30 MHz) and Bruker WP-200 (81 MHz) spectrometers, external standard 85% phosphoric acid, and the mass spectra were determined on an MS-1302 spectrometer

  17. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  18. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  19. Rutile IrO2/TiO2 superlattices: A hyperconnected analog to the Ruddelsden-Popper structure

    Science.gov (United States)

    Kawasaki, Jason K.; Baek, David; Paik, Hanjong; Nair, Hari P.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.

    2018-05-01

    Dimensionality and connectivity among octahedra play important roles in determining the properties, electronic structure, and phase transitions of transition-metal oxides. Here we demonstrate the epitaxial growth of (110)-oriented alternating layers of IrO2 and TiO2, both of which have the rutile structure. These (IrO2)n/(TiO2)2 superlattices consist of IrO6 and TiO6 octahedra tiled in a hyperconnected, edge- and corner-sharing network. Despite the large lattice mismatch between constituent layers (Δ d∥=-2.1 % and Δ c =+6.6 % ), our reactive molecular-beam epitaxy-grown superlattices show high structural quality as determined by x-ray diffraction and sharp interfaces as observed by transmission electron microscopy. The large strain at the interface is accommodated by an ordered interfacial reconstruction. The superlattices show persistent metallicity down to n =3 atomic layers, and angle-resolved photoemission spectroscopy measurements reveal quantized sub-bands with signatures of IrO2-IrO2 interlayer coupling.

  20. Electronic Structures of Reduced and Superreduced Ir2(1,8-diisocyanomenthane)4 n+ Complexes

    Czech Academy of Sciences Publication Activity Database

    Záliš, Stanislav; Hunter, B. M.; Gray, H. B.; Vlček, Antonín

    2017-01-01

    Roč. 56, č. 5 (2017), s. 2874-2883 ISSN 0020-1669 R&D Projects: GA MŠk LD14129 Grant - others:COST(XE) CM1405; COST(XE) CM1202 Institutional support: RVO:61388955 Keywords : electronic structure * electrochemistry * Ir2(1,8-diisocyanomenthane)4 n+ Complexes Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 4.857, year: 2016

  1. Wavevector and energy resolution of the polarized diffuse scattering spectrometer D7

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, T., E-mail: tom.fennell@psi.ch [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Mangin-Thro, L., E-mail: mangin-throl@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France); Mutka, H., E-mail: mutka@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France); Nilsen, G.J., E-mail: goran.nilsen@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Wildes, A.R., E-mail: wildes@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France)

    2017-06-11

    The instrumental divergence parameters and resolution for the D7 neutron diffuse scattering spectrometer at the Institut Laue-Langevin, France, are presented. The resolution parameters are calibrated against measurements of powders, single crystals, and the incoherent scattering from vanadium. We find that the powder diffraction resolution is well described by the Cagliotti function, the single crystal resolution function can be parameterized using the Cooper-Nathans formalism, and that in time-of-flight mode the energy resolution is consistent with monochromatic focussing.

  2. Recent Advances in IR and UV/VIS Spectroscopic Characterization of the C76 and C84 Isomers of D2 Symmetry

    Directory of Open Access Journals (Sweden)

    Tamara Jovanović

    2014-01-01

    Full Text Available The stable isomers of the higher fullerenes C76 and C84 with D2 symmetry as well as the basic fullerenes C60 and C70 were isolated from carbon soot and characterized by the new and advanced methods, techniques, and processes. The validity of several semiempirical, ab initio, and DFT theoretical calculations in predicting the general pattern of IR absorption and the vibrational frequencies, as well as the molecular electronic structure of the C76 and C84 isomers of D2 symmetry, is confirmed, based on recent experimental results. An excellent correlation was found between the previously reported theoretical data and the recently obtained experimental results for these molecules over the relevant spectral range for the identification of fullerenes. These results indicate that there are no errors in the calculations in the significant spectral regions, the assumptions that were based on previous comparisons with partial experimental results. Isolated fullerenes are important for their applications in electronic and optical devices, solar cells, optical limiting, sensors, polymers, nanophotonic materials, diagnostic and therapeutic agents, health and environment protection, and so forth.

  3. ACCURATELY CALCULATING THE SOLAR ORIENTATION OF THE TIANGONG-2 ULTRAVIOLET FORWARD SPECTROMETER

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-04-01

    Full Text Available The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit, and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  4. Discussion of isomeric ratios in (p, n) and (d, 2n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshiyan, T. M., E-mail: tiruhi44@mail.ru [Yerevan State University (Armenia)

    2016-01-15

    Isomeric ratios (IR) in the (p, n) and (d, 2n) reactions are considered. The dependence of IR values on the projectile type and energy, the target- and product-nucleus spin, the spin difference between the isomeric and ground states of products, and the product mass number is discussed. The isomeric ratios for 46 product nuclei (from {sup 44m,g}Sc to {sup 127m,g}Xe) obtained in reactions where target and product nuclei have identical mass numbers were calculated at energies from the reaction threshold to 50 MeV (with a step of ΔE = 1 MeV). The calculations in question were performed with the aid of the TALYS 1.4 code package. The calculated IR values were compared with their experimental counterparts available from the literature (EXFOR database). In the majority of cases, the calculated IR values agree well with the experimental data in question. It is noteworthy that the IR values obtained in (d, 2n) reactions are substantially greater than those in (p, n) reactions.

  5. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust

    Directory of Open Access Journals (Sweden)

    Yuntao Liang

    2015-01-01

    Full Text Available Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6 when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.

  6. Facile And Reversible Co Insertion Into The Ir-ch3 Bond Of [ir4(ch3)(co)8(μ4- η3-ph2pccph)(μ-pph2)

    OpenAIRE

    Vargas M.D.; Pereira R.M.S.; Braga D.; Grepioni F.

    1993-01-01

    Reaction of [Ir4H(CO)10(mu-PPh2)) with BuLi, Ph2PC=CPh and then Mel gives [Ir4(CH3)(CO)8(mu4-eta3-Ph2PCCPh)(mu-PPh2)], which undergoes a reversible two-step CO insertion under extremely mild conditions to yield Ir4{(CH3C(O)}(CO)8-(mu4:eta3-Ph2PCCPh)(mu-PPh2)] as the final product; the structures of both species have been established by X-ray diffraction studies.

  7. Arrangement of remote control of spectrometers on IBR-2M reactor

    International Nuclear Information System (INIS)

    Kirilov, A.S.; Murashkevich, S.M.; Okulov, R.Yu.; Petukhova, T.B.; )

    2009-01-01

    The principles of arranging and design features of the WebSonix system consisting of the central web-site and interface equipment with spectrometers are considered. The system allows one to reflect the actual statuses of all spectrometer components, view the measurements protocols, display the accumulative spectra, and control the course of the experiment on the spectrometers under control of the Sonix+ software package (Windows XP operational system). The system does not depend on the spectrometer characteristics and permits simple changes of their structure and easy adaptation to special features of spectrometric data representation. The system is based on PHP and Python scripts. The GNU/Linux Debian operational system and Apache 2 web server are installed on the web-site computer [ru

  8. Yo-Yo IR2 testing of elite and sub-elite soccer players

    DEFF Research Database (Denmark)

    Ingebrigtsen, Jørgen; Bendiksen, Mads; Randers, Morten Bredsgaard

    2012-01-01

    Abstract We examined performance, heart rate response and construct validity of the Yo-Yo IR2 test by testing 111 elite and 92 sub-elite soccer players from Norway and Denmark. VO(2)max, Yo-Yo IR1 and repeated sprint tests (RSA) (n = 51) and match-analyses (n = 39) were also performed. Yo-Yo IR2...

  9. Isotope effects of reactions in quantum solids initiated by IR + UV lasers: quantum model simulations for Cl((2)P(3/2)) + X(2)(ν) → XCl + X in X(2) matrices (X = H, D).

    Science.gov (United States)

    Korolkov, M V; Manz, J; Schild, A

    2010-09-16

    Six isotope effects (i)-(vi) are discovered for the reactions Cl + H(2)(ν) → HCl + H in solid para-H(2) ( 1 ) versus Cl + D(2)(ν) → DCl + D in ortho-D(2) ( 2 ), by means of quantum reaction dynamics simulations, within the frame of our simple model ( J. Phys. Chem. A 2009 , 113 , 7630 . ). Experimentally, the reactions may be initiated for ν = 0 and ν ≥ 1, by means of "UV only" photodissociation of the matrix-isolated precursor, Cl(2), or by "IR + UV" coirradiation ( Kettwich , S. C. , Raston , P. L. , and Anderson , D. T. J. Phys. Chem. A 2009 , 113 , 7621 . ), respectively. Specifically, (i) various shape and Feshbach reaction resonances correlate with vibrational thresholds of reactants and products, due to the near-thermoneutrality and low barrier of the system. The energetic density of resonances increases as the square root of mass, from M(X) = M(H) to M(D). (ii) The state selective reaction ( 1 ), ν = 1, is supported by a shape resonance, whereas this type of resonance is absent in ( 2 ), ν = 1. As a consequence, time-resolved measurements should monitor different three-step versus direct error-function type evolutions of the formation of the products. (iii) The effective barrier is lower for reaction 1 , ν = 0, enhancing the tunneling rate, as compared to that for reaction 2 , ν = 0. (iv) For reference, the reaction probabilities P versus total energy E(tot) in the gas exhibit sharp resonance peaks or zigzag behaviors of the reaction probability P versus total energy, near the levels of resonances ( Persky , A. and Baer , M. J. Chem. Phys . 1974 , 60 , 133 . ). These features tend to be washed out and broadened for reaction 1 , and even more so for reaction 2 . For comparison, they disappear for reactions in classical solids. (v) The slopes of P versus E(tot) below the potential barrier increase more steeply for reaction 1 , ν = 0, than for reaction 2 , ν = 0. This enhances the tunneling rate of the heavier isotopomer, reaction 2 , ν = 0

  10. Superconductivity and magnetism in Ir-doped GdFeAsO

    International Nuclear Information System (INIS)

    Cui, Y.J.; Chen, Y.L.; Cheng, C.H.; Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y.; Zhao, Y.

    2010-01-01

    The 5d-transition metal, Ir has successfully been doped at Fe site and induced superconductivity in GdFeAsO at T c = 18.9 K and ∼20 atom%. The Ir-doping shortened the c-axis length and stretched the a-axis one, which led to enhance the coupling between the FeAs- and SmO-layer, and to weaken the bonding between Fe and As atom. Paramagnetism was observed in all of the samples, which was resulted from the magnetic Gd ion as in the F-doped GdFeAsO. An upper critical field of GdFe 0.8 Ir 0.2 AsO was extrapolated to around 24 T, much smaller than that of F-doped GdFeAsO owing to a relatively low T c and small value of dH c2 /dT.

  11. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    Science.gov (United States)

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  12. Variable filter array spectrometer of VPD PbSe

    Science.gov (United States)

    Linares-Herrero, R.; Vergara, G.; Gutiérrez-Álvarez, R.; Fernández-Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano-Ramírez, A.; Montojo, M. T.

    2012-06-01

    MWIR spectroscopy shows a large potential in the current IR devices market, due to its multiple applications (gas detection, chemical analysis, industrial monitoring, combustion and flame characterization, food packaging etc) and its outstanding performance (good sensitivity, NDT method, velocity of response, among others), opening this technique to very diverse fields of application, such as industrial monitoring and control, agriculture, medicine and environmental monitoring. However, even though a big interest on MWIR spectroscopy technique has been present in the last years, two major barriers have held it back from its widespread use outside the laboratory: the complexity and delicateness of some popular techniques such as Fourier-transform IR (FT-IR) spectrometers, and the lack of affordable specific key elements such a MWIR light sources and low cost (real uncooled) detectors. Recent developments in electrooptical components are helping to overcome these drawbacks. The need for simpler solutions for analytical measurements has prompted the development of better and more affordable uncooled MWIR detectors, electronics and optics. In this paper a new MWIR spectrometry device is presented. Based on linear arrays of different geometries (64, 128 and 256 elements), NIT has developed a MWIR Variable Filter Array Spectrometer (VFAS). This compact device, with no moving parts, based on a rugged and affordable detector, is suitable to be used in applications which demand high sensitivity, good spectral discrimination, reliability and compactness, and where an alternative to the traditional scanning instrument is desired. Some measurements carried out for several industries will be also presented.

  13. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  14. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  15. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  16. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome - Brazilian Metabolic Syndrome Study (BRAMS)

    OpenAIRE

    Geloneze, B; Vasques, ACJ; Stabe, CFC; Pareja, JC; Rosado, LEFPD; de Queiroz, EC; Tambascia, MA

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 9011 percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  17. Neutron spectrometry for D-T plasmas in JET, using a tandem annular-radiator proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Kiptily, V.; Jarvis, O.N. E-mail: onj@jet.uk; Conroy, S.W

    2002-01-01

    A selection of the 14-MeV neutron spectra obtained at the JET Joint Undertaking tokamak during the deuterium-tritium operating campaign in 1997 are presented and analyzed. While several neutron spectrometers were operational during this campaign, the present paper is concerned solely with one: the tandem annular-radiator proton-recoil spectrometer (or proton recoil telescope, for brevity). During neutral beam heating with combined d- and t-beams, analysis of the spectra can define the core fuel composition (D:T) ratio. The spectra are sensitive to the population balance of the fast ions streaming in directions parallel and opposite to that of the injected beams. During ICRF heating of minority deuterium in bulk tritium plasmas, the spectra provide measurements of the effective temperature of the fast-deuteron energy tail and of its relative strength, which vary with the deuterium concentration. This information contributes to the overall understanding of the fusion performance of the various operating scenarios.

  18. Atomic-layer deposited IrO2 nanodots for charge-trap flash-memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Cha, Young-Kwan; Seo, Bum-Seok; Park, Sangjin; Park, Ju-Hee; Shin, Sangmin; Seol, Kwang Soo; Park, Jong-Bong; Jung, Young-Soo; Park, Youngsoo; Park, Yoondong; Yoo, In-Kyeong; Choi, Suk-Ho

    2007-01-01

    Charge-trap flash- (CTF) memory structures have been fabricated by employing IrO 2 nanodots (NDs) grown by atomic-layer deposition. A band of isolated IrO 2 NDs of about 3 nm lying almost parallel to Si/SiO 2 interface is confirmed by transmission electron microscopy and x-ray photoelectron spectroscopy. The memory device with IrO 2 NDs shows much larger capacitance-voltage (C-V) hysteresis and memory window compared with the control sample without IrO 2 NDs. After annealing at 800 deg. C for 20 min, the ND device shows almost no change in the width of C-V hysteresis and the ND distribution. These results indicate that the IrO 2 NDs embedded in SiO 2 can be utilized as thermally stable, discrete charge traps, promising for metal oxide-ND-based CTF memory devices

  19. (Acetylacetonato-κ2O,O′bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Zhou

    2011-10-01

    Full Text Available In the title compound, [Ir(C18H12NO22(C5H7O2], the Ir atom is O,O′-chelated by the acetylacetonate group and C,N-chelated by the 2-arylnaphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octahedral geometry. Intramolecular C—H...O hydrogen bonds occur. In the crystal, intermolecular C—H...O hydrogen bonds link the molecules into columns parallel to the b axis.

  20. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  1. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  2. Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L. [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Gibb, E. L. [Department of Physics and Astronomy, University of Missouri, St. Louis, MO (United States)

    2017-02-20

    We conducted a deep search for deuterated water (HDO) in the Oort Cloud comet C/2014 Q2 (Lovejoy), through infrared (IR) spectroscopy with NIRSPEC at the Keck Observatory. In this Letter, we present our detections of HDO and water (H{sub 2}O) in comet Lovejoy on 2015 February 4 (post-perihelion) after 1 hr integration on source. The IR observations allowed simultaneous detection of H{sub 2}O and HDO, yielding production rates of 5.9 ± 0.13 × 10{sup 29} and 3.6 ± 1.0 × 10{sup 26} molecules s{sup −1}, respectively. The simultaneous detection permitted accurate determination of the isotopic ratio (D/H) in water of 3.02 ± 0.87 × 10{sup −4}, i.e., larger than the value for water in terrestrial oceans (or Vienna Standard Mean Ocean Water, VSMOW) by a factor of 1.94 ± 0.56. This D/H ratio in water exceeds the value obtained independently at millimeter wavelengths (0.89 ± 0.25 VSMOW; pre-perihelion). We discuss these parameters in the context of origins and emphasize the need for contemporaneous measurements of HDO and H{sub 2}O.

  3. Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths

    International Nuclear Information System (INIS)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; Gibb, E. L.

    2017-01-01

    We conducted a deep search for deuterated water (HDO) in the Oort Cloud comet C/2014 Q2 (Lovejoy), through infrared (IR) spectroscopy with NIRSPEC at the Keck Observatory. In this Letter, we present our detections of HDO and water (H 2 O) in comet Lovejoy on 2015 February 4 (post-perihelion) after 1 hr integration on source. The IR observations allowed simultaneous detection of H 2 O and HDO, yielding production rates of 5.9 ± 0.13 × 10 29 and 3.6 ± 1.0 × 10 26 molecules s −1 , respectively. The simultaneous detection permitted accurate determination of the isotopic ratio (D/H) in water of 3.02 ± 0.87 × 10 −4 , i.e., larger than the value for water in terrestrial oceans (or Vienna Standard Mean Ocean Water, VSMOW) by a factor of 1.94 ± 0.56. This D/H ratio in water exceeds the value obtained independently at millimeter wavelengths (0.89 ± 0.25 VSMOW; pre-perihelion). We discuss these parameters in the context of origins and emphasize the need for contemporaneous measurements of HDO and H 2 O.

  4. Superconductivity and magnetism in Ir-doped GdFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y.J.; Chen, Y.L. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia); Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2010-11-01

    The 5d-transition metal, Ir has successfully been doped at Fe site and induced superconductivity in GdFeAsO at T{sub c} = 18.9 K and {approx}20 atom%. The Ir-doping shortened the c-axis length and stretched the a-axis one, which led to enhance the coupling between the FeAs- and SmO-layer, and to weaken the bonding between Fe and As atom. Paramagnetism was observed in all of the samples, which was resulted from the magnetic Gd ion as in the F-doped GdFeAsO. An upper critical field of GdFe{sub 0.8}Ir{sub 0.2}AsO was extrapolated to around 24 T, much smaller than that of F-doped GdFeAsO owing to a relatively low T{sub c} and small value of dH{sub c2}/dT.

  5. Spectroscopic study of S = -2 hypernuclei with a new spectrometer S-2S

    International Nuclear Information System (INIS)

    Kanatsuki, Shunsuke; Amano, Nobuaki; Ekawa, Hiroyuki

    2015-01-01

    A spectroscopic study of Ξ hypernucleus is planned to carry out in the J-PARC E05 experiment at J-PARC K1.8 beam line. We aim to observe bound state peaks of Ξ hypernucleus through the "1"2C(K"-, K"+) reaction with an energy resolution of better than 2 MeV. For this experiment, we are constructing a new spectrometer to analyze the scattered K"+ momentum precisely. Construction of the magnets will be completed by the end of JFY2014, and most parts of detectors are almost ready. The plan of the experiment and the design and status of the new spectrometer are presented. (author)

  6. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    Science.gov (United States)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  7. Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: a population-based and inter-laboratory study.

    Science.gov (United States)

    Isokuortti, Elina; Zhou, You; Peltonen, Markku; Bugianesi, Elisabetta; Clement, Karine; Bonnefont-Rousselot, Dominique; Lacorte, Jean-Marc; Gastaldelli, Amalia; Schuppan, Detlef; Schattenberg, Jörn M; Hakkarainen, Antti; Lundbom, Nina; Jousilahti, Pekka; Männistö, Satu; Keinänen-Kiukaanniemi, Sirkka; Saltevo, Juha; Anstee, Quentin M; Yki-Järvinen, Hannele

    2017-10-01

    Recent European guidelines for non-alcoholic fatty liver disease (NAFLD) call for reference values for HOMA-IR. In this study, we aimed to determine: (1) the upper limit of normal HOMA-IR in two population-based cohorts; (2) the HOMA-IR corresponding to NAFLD; (3) the effect of sex and PNPLA3 genotype at rs738409 on HOMA-IR; and (4) inter-laboratory variations in HOMA-IR. We identified healthy individuals in two population-based cohorts (FINRISK 2007 [n = 5024] and the Programme for Prevention of Type 2 Diabetes in Finland [FIN-D2D; n = 2849]) to define the upper 95th percentile of HOMA-IR. Non-obese individuals with normal fasting glucose levels, no excessive alcohol use, no known diseases and no use of any drugs were considered healthy. The optimal HOMA-IR cut-off for NAFLD (liver fat ≥5.56%, based on the Dallas Heart Study) was determined in 368 non-diabetic individuals (35% with NAFLD), whose liver fat was measured using proton magnetic resonance spectroscopy ( 1 H-MRS). Samples from ten individuals were simultaneously analysed for HOMA-IR in seven European laboratories. The upper 95th percentiles of HOMA-IR were 1.9 and 2.0 in healthy individuals in the FINRISK (n = 1167) and FIN-D2D (n = 459) cohorts. Sex or PNPLA3 genotype did not influence these values. The optimal HOMA-IR cut-off for NAFLD was 1.9 (sensitivity 87%, specificity 79%). A HOMA-IR of 2.0 corresponded to normal liver fat (HOMA-IR measured in Helsinki corresponded to 1.3, 1.6, 1.8, 1.8, 2.0 and 2.1 in six other laboratories. The inter-laboratory CV% of HOMA-IR was 25% due to inter-assay variation in insulin (25%) rather than glucose (5%) measurements. The upper limit of HOMA-IR in population-based cohorts closely corresponds to that of normal liver fat. Standardisation of insulin assays would be the first step towards definition of normal values for HOMA-IR.

  8. Preparation and Characterization of cis- and trans-[Ir(tn)2Cl2]CF3SO3 and of [Ir(tn)3]Cl3 (tn=propane-1,3-diamine)

    DEFF Research Database (Denmark)

    Brorson, Michael; Galsbøl, Frode; Simonsen, Kim

    1998-01-01

    for the preparation of [Rh(tn)3]Cl3 in quantitative yield from Rh(thtp)3Cl3 is also given. The complexes were characterized by 1H and 13C NMR and by UV/VIS spectroscopy. The conformation of the six-membered chelate rings of [Ir(tn)3]3+ in the solid state was determined by single-crystal X-ray diffraction of [Ir(tn)3......Procedures are given for the preparation and isolation of cis- and trans-[Ir(tn)2Cl2]CF3SO3 and of [Ir(tn)3]Cl3, (tn=propane-1,3-diamine). The compounds were prepared by the use of Ir(thtp)3Cl3 (thtp=tetrahydrothiophene) as starting material, using either DMSO or neat tn as solvent. A procedure......] [Co(CN)6] x 5H2O. The three chelate rings all adopt the energetically favoured chair conformation; however, the overall idealized symmetry is C1. A comparative ligand field analysis, based on Gaussian resolution of the solution UV/VIS spectra for a number of homoleptic [M(N6)]3+ (M=CoIII, RhIII, Ir...

  9. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  10. Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1970-01-01

    We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states/atom)/Ry,......We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states....../atom)/Ry, respectively. Spin-orbit coupling is important for all four metals and the coupling parameter varies by 30% over the d bandwidth. Detailed comparisons with de Haas—van Alphen Fermi-surface dimensions have previously been presented and the agreement was very good. Comparison with measured electronic specific...

  11. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  12. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  13. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  14. High-resolution far-infrared synchrotron FTIR spectrum of the ν12 band of formamide-d1 (DCONH2)

    Science.gov (United States)

    Tan, T. L.; Wu, Q. Y.; Ng, L. L.; Appadoo, Dominique R. T.; McNaughton, Don

    2018-05-01

    The spectrum of the ν12 band of formamide-d1 (DCONH2) was recorded using a synchrotron Fourier transform infrared (FTIR) spectrometer coupled to the Australian Synchrotron THz/Far-IR beamline, with an unapodized resolution of 0.00096 cm-1 in the 350-210 cm-1 region. For the first time, rovibrational constants up to five quartic and two sextic terms were derived for the v12 = 1 state through the fitting of a total of 2072 far-infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.000073 cm-1. The band centre of the ν12 band of DCONH2 was found to be 289.3327553(47) cm-1 although the experimental uncertainty was limited to ±0.0002 cm-1. Ground state rovibrational constants of DCONH2 up to five quartic and two sextic constants were derived from a fit of 847 ground state combination differences (GSCDs) obtained from the infrared transitions of the ν12 band, together with 6 previously reported microwave transitions, with a rms deviation of 0.000108 cm-1. The ground state rotational constants (A, B, and C) of DCONH2 were improved while the ground state centrifugal distortion constants were accurately obtained for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0002 cm-1. From the ground state rotational constants, the inertial defect of DCONH2 was calculated to be 0.0169412(11) uÅ2.

  15. Two-Magnon Raman Scattering and Pseudospin-Lattice Interactions in Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}.

    Science.gov (United States)

    Gretarsson, H; Sung, N H; Höppner, M; Kim, B J; Keimer, B; Le Tacon, M

    2016-04-01

    We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, line shapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the line shapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.

  16. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  17. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  18. Combined two-photon excitation and d → f energy-transfer in Ir/lanthanide dyads with time-gated selection from a two-component emission spectrum.

    Science.gov (United States)

    Edkins, Robert M; Sykes, Daniel; Beeby, Andrew; Ward, Michael D

    2012-10-14

    In a pair of Ir/Eu and Ir/Tb dyads, two-photon excitation of the Ir-phenylpyridine chromophore at 780 nm is followed by partial d → f energy-transfer to give a combination of short-lived Ir-based (blue) and long-lived lanthanide-based (red or green) emission; these components can be selected separately by time-gated detection.

  19. Insight into regulation of emission color and photodeactivation process from heteroleptic to homoleptic Ir(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Zheng, Danning; Feng, Songyan; Wang, Li, E-mail: chemwangl@henu.edu.cn; Li, Junfeng, E-mail: jfli@theochem.kth.se; Zhang, Jinglai, E-mail: zhangjinglai@henu.edu.cn

    2017-03-15

    The phosphorescent process of two heteroleptic ((DMDPI){sub 2}Ir(tftap) and (tftap){sub 2}Ir(DMDPI)) and one homoleptic (Ir(DMDPI){sub 3}) Ir(III) complexes (See ) is theoretically investigated by density functional theory (DFT) and quadratic response (QR) time-dependent density functional theory (TDDFT) calculations including spin-orbit coupling (SOC). Two or three triplet excited states are confirmed for three complexes, respectively. On the basis of the respective optimized triplet geometry, the emissive wavelength is determined by the ΔSCF-DFT method. Furthermore, the radiative rate constant (k{sub r}) is also calculated corresponding to each triplet state. Combination of k{sub r} and emissive energy, the emission rule is determined. It is found that complex (DMDPI){sub 2}Ir(tftap) follows the dual emission scenarios, while complexes (tftap){sub 2}Ir(DMDPI) and Ir(DMDPI){sub 3} obey the Kasha rule. The nonradiative rate constant (k{sub nr}) is qualitatively evaluated by the construction of triplet potential surface via metal centered ({sup 3}MC d-d) state. Finally, the sequence of quantum yield is compared by both k{sub r} and k{sub nr}. The quantum yield of homoleptic Ir(III) complex Ir(DMDPI){sub 3} is higher than that of heteroleptic Ir(III) complexes (DMDPI){sub 2}Ir(tftap) and (tftap){sub 2}Ir(DMDPI). However, the emissive wavelength of Ir(DMDPI){sub 3} is in the red color region rather than blue color.

  20. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  1. Measurement of astrophysical S-factors and electron screening potentials for d(d,n)3He reaction in ZrD2, TiD2 and TaD0.5 targets in the ultralow energy region using plasma accelerator

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Bystritskii, Vit.M.; Dudkin, G.N.; Filipowicz, M.; Gazi, S.; Huran, J.; Kobzev, A.P.; Mesyats, G.A.; Nechaev, B.A.; Padalko, V.N.; Parzhitskii, S.S.; Pen'kov, F.M.; Philippov, A.V.; Kaminskii, V.L.; Tuleushev, Yu.Zh.; Wozniak, J.

    2012-01-01

    The present paper is devoted to the study of the electron screening effect influence on the rate of d(d,n) 3 He reaction in the ultralow deuteron collision energy range in the deuterated metals (ZrD 2 , TiD 2 and TaD 0.5 ). The ZrD 2 , TiD 2 and TaD0.5 targets were fabricated via magnetron sputtering of titanium, zirconium and tantalum in gas (deuterium) environment. The experiments have been carried out using the high-current pulsed Hall plasma accelerator (NSR TPU, Russia). The detection of neutrons with energy of 2.5 MeV from the dd reaction was done with plastic scintillation spectrometers. As a result of the experiments, the energy dependences of the astrophysical S-factor for the dd reaction in the deuteron collision energy range of 2-7 keV and the values of the electron screening potential U e of the interacting deuterons have been measured for the above targets: U e (ZrD 2 )=(205±35) eV; U e (TiD 2 )=(125±34) eV; U e (TaD 0.5 )=(313±58) eV. Our results are compared with the other published experimental and calculated data.

  2. From UV/IR mixing to closed strings

    International Nuclear Information System (INIS)

    Lopez, Esperanza

    2003-01-01

    It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)

  3. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

    Science.gov (United States)

    Muthu, S; Prasath, M; Paulraj, E Isac; Balaji, R Arun

    2014-01-01

    The Fourier Transform infrared and Fourier Transform Raman spectra of 7-chloro-5 (2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one (7C3D4B) were recorded in the regions 4000-400 and 4000-100 cm(-1), respectively. The appropriate theoretical spectrograms for the IR and Raman spectra of the title molecule were also constructed. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they supported each other. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide

    Science.gov (United States)

    Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.

    2018-07-01

    Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.

  5. Advanced mass spectrometers for hydrogen-isotope analyses

    International Nuclear Information System (INIS)

    Chastagner, P.; Daves, H.L.; Hess, W.B.

    1982-01-01

    Two advanced mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes were evaluated by Du Pont personnel at the Savannah River Laboratory. One is a large double-focusing instrument with a resolution of 2000 at mass 4 and an abundance sensitivity of >100,000 for the HT-D 2 doublet. The second is a smaller, simpler, stigmatic focusing instrument with exceptionally high ion intensities (>1 x 10 - 9 A at 600 resolution and about 1 x 10 - 10 A at 1300 resolution) for high signal-to-noise ratios. Both instruments are computer controlled. Once a scan is started, peak switching, scanning, mass discrimination control, data collection, and data reduction are done without operator intervention. Utility routines control hysteresis effects and instrument calibration. A containment facility, with dual inlet systems and a standard distribution system, permits testing with tritium mixtures. Helium flow standards and tritium activity meters provide independent verification of the mass spectrometer calibrations. A recovery system prevents the release of tritium to the environment. The performance of the mass spectrometers was essentially equal under simulated process control conditions. Precision and accuracy for the D/T ratio was <0.5% (rel 2sigma limits). Performance factors were: sample equilibration <300 ppM; linearity within +-0.3%; and gas interference <0.1%. Mass discrimination was controlled reliably by the computers

  6. Magnetic field calculations for the technical proposal of the TESLA spectrometer magnet

    International Nuclear Information System (INIS)

    Morozov, N.A.; Schreiber, H.J.

    2003-01-01

    The TESLA electron-positron linear collider is under consideration at DESY (Hamburg). The realization of the physical program at this collider requires the knowledge of the beam energy of both beams (e + and e - ) with a precision of ΔE/E ≤ 10 -4 . The magnetic spectrometer was proposed as an energy measuring device. The report describes calculations for the preliminary conceptual design of this type of the spectrometer. The 2D calculations of the magnetic field for the spectrometer magnet have been performed by POISSON SUPERFISH computer code. The basic technical parameters of the magnet have been determined. These data will serve as a basis for the technical design of the spectrometer magnet and discuss its integration in the spectrometer

  7. Structural and physical properties of new uranium and transition element ternary stannides (Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt); Proprietes structurales et physiques de nouveaux stannures ternaires a base d'uranium et d'element de transition (Fe, Co, Ni, Rh, Pd, Ir, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Mirambet, F

    1993-12-15

    This work is dedicated to the study of ternary stannides based on uranium. The author reviews the structural, magnetic and electric properties of different families of stannides. The study of the U{sub 2}M{sub 2}Sn family where M stands for Fe, Co, Ni, Ru, Rh, Pd, Ir and Pt shows that the magnetic behaviour of uranium in these compounds is strongly influenced by the transition element M, which is explained by the hybridization force 5f(U) - nd(M) that depends on the number of electrons on the d shell of the M element. For instance, for the elements whose d shell is low filled (Fe, Ru), the U{sub 2}M{sub 2}Sn stannides show no magnetic order. On the other hand, when the number of d-electrons increases, a magnetic order appears progressively.

  8. Contributions to the Data Warehouse 2 and Prospects of the IRS Program

    Science.gov (United States)

    Barner, Frithjof; Venkataraman, V. Raghu; Makiola, Jens

    2016-08-01

    During 2015 and 2016, the IRS program has significantly contributed to the CSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, data from the HR LISS-III and MR AWiFS sensors on board of Resourcesat-2 have been provided. Resourcesat-2 so far acquired cloud-free images of a vast majority of the first and second coverage of HR_IMAGE_2015 and several monthly MR coverages for MR_IMAGE_2015 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  9. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  10. Postprandial Triglyceride Is Associated with Fasting Triglyceride and HOMA-IR in Korean Subjects with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Seo Hee Lee

    2011-08-01

    Full Text Available BackgroundRecent studies indicate postprandial triglyceride (TG had a better association with cardiovascular events and metabolic syndrome than fasting TG. The authors of the present study investigated the metabolic and clinical relevance of postprandial TG.MethodsIn a cross-sectional retrospective study, the authors of the present study compared fasting and postprandial TG and analyzed the relationship between postprandial TG and various demographic and metabolic parameters in 639 Korean subjects with type 2 diabetes (T2D, group I, n=539 and impaired fasting glucose (IFG, group II, n=100 after ingestion of a standardized liquid meal (total 500 kcal, 17.5 g fat, 68.5 g carbohydrate, and 17.5 g protein.ResultsFasting and postprandial TG were significantly correlated (r=0.973, r=0.937, P<0.001 in group I and II, respectively. Of the variables, total cholesterol, waist circumference and body mass index were significantly correlated with fasting and postprandial TG in both groups. Only postprandial TG showed a significant correlation with glucose metabolic parameters (e.g., postprandial glucose, homeostatic model assessment of insulin resistance [HOMA-IR], and fasting C-peptide in subjects with T2D. Multiple regression analysis showed fasting TG and HOMA-IR could be predictable variables for postprandial TG in subjects with T2D.ConclusionPostprandial TG was very strongly correlated with fasting TG. The authors of the present study suggest insulin resistance may be more associated with postprandial TG than fasting TG in Korean T2D patients on a low-fat diet.

  11. Synthesis of iridacarborane halide complexes [(η-9-SMe2-7,8-C2B9H10)IrX2]2 (X=Cl, Br, I)

    International Nuclear Information System (INIS)

    Kudinov, A.R.; Perekalin, D.S.; Petrovskij, P.V.

    2001-01-01

    By interaction between Na[9-SMe 2 -7,8-C 2 B 9 H 10 ] and [(Cod)IrCl] 2 (Cod - cycloocta-1,5-diene) iridium complex (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(Cod), which under the action of anhydrous hydrohalogenic acids HX (X=Cl, Br, I) yields iridacarborane halide complexes [(η-9-SMe 2 -7,8-C 2 B 9 H 10 )IrX 2 ] 2 , being analogs of cyclopentadienyl complexes [(C 5 Me 5 )IrX 2 ] 2 . The complexes prepared were characterized on the basis of data of elementary analysis and 1 H, 11 B NMR spectra [ru

  12. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload ...

    Indian Academy of Sciences (India)

    Solar X-ray Spectrometer (SOXS)' mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and ...

  13. The portable micro-computerized multichannel spectrometer for geological application

    International Nuclear Information System (INIS)

    Fang Fang; Jia Wenyi; Zou Rongsheng; Ma Yingjie; Zhou Jianbin

    1999-01-01

    The portable micro-computerized multichannel spectrometer is based on the book computer and employs the A/D integrated circuit with 12 bits. It is a 2048 channel spectrometer which is consisted of hardware and software. The author analyzed the hardware circuit and software construction of the micro-computerized multichannel spectrometer which is suitable for filed geological application. The main technical specifications and application of the new multichannel spectrometer were also discussed

  14. The portable micro-computerized multichannel spectrometer for geological application

    International Nuclear Information System (INIS)

    Fang Fang; Jia Wenyi; Zhou Rongsheng; Ma Yingjie; Zhou Jianbin

    1999-01-01

    The portable micro-computerized multichannel spectrometer is based on the book computer and employs the A/D integrated circuit with 12 bits. It is a 2048 channel spectrometer which consists of hardware and software. The author analyzed the hardware circuit and software construction of the micro-computerized multichannel spectrometer which is suitable for field geological application. The main technical specifications and application of the new multichannel spectrometer were also discussed

  15. Neutron energy spectra of sup 2 sup 5 sup 2 Cf, Am-Be source and of the D(d,n) sup 3 He reaction

    CERN Document Server

    Sang Tae Park

    2003-01-01

    The neutron energy spectrum of the following sources were measured using a fast neutron spectrometer with the NE-213 liquid scintillator: sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He reaction from a 3 MeV Pelletron accelerator in Tokyo Institute of Technology. The measured proton recoil pulse height data of sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He were unfolded using the mathematical program to obtain the neutron energy spectrum. The sup 2 sup 5 sup 2 Cf and Am-Be neutron energy spectra were measured and the results obtained showed a good agreement with the spectra usually published in the literature. The neutron energy spectrum from D(d,n) sup 3 He was measured and the results obtained also showed a good agreement with the calculation by time of flight (TOF) methods. (author)

  16. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  17. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    Science.gov (United States)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0

  18. MD#2183: Calibration of the IR6 B2 diamond BLMs

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip

    2018-01-01

    In case of an asynchronous beam dump with a fully filled LHC machine, causing ~40 bunches to impact on the movable dump protection absorber (TCDQ), it is expected that all standard ionisation chamber Beam Loss Monitors (IC BLM) around the LHC dumping region in IR6 will be saturated. Diamond Beam Loss Monitors (dBLM) were therefore installed next to the TCDQ downstream of the extraction kickers. These detectors allow resolving losses at a nanosecond timescale and with a dynamic range of several orders of magnitude; thus, allowing to derive the number of nominal bunches impacting the TCDQ. After a first series of calibrations using asynchronous beam dump tests, an experiment was conducted during MD#1182 to demonstrate the possibility of resolving a nominal bunch hitting the TCDQ. During this first MD only the Beam 1 dBLM was calibrated appropriately, a second calibration MD was therefore performed in 2017 for the B2 system. Results from this MD and conclusions regarding dBLM saturation with a top energy nominal...

  19. Thermal And Gamma-Radiation Annealing Of The Iridium-192 Recoil Species In Crystalline Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Recuit Thermique et par Rayonnement Gamma de l'espece {sup 192}Ir de Recul dans des Cristaux de Na{sub 2}IrCl{sub 6} * 6H{sub 2}O; 0422 0415 041f 041b 041e 0412 041e 0419 0418 0413 0410 041c 041c 0410 - 041e 0422 0416 0418 0413 041f 0420 041e 0414 0423 041a 0422 041e 0412 041e 0422 0414 0410 0427 0418 0418 0420 0418 0414 0418 042f -192 0412 041a 0420 0418 0421 0422 0410 041b 041b 0418 0427 0415 0421 041a 041e 041c Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Regeneracion Termica y por Irradiacion Gamma de las Especies de Retroceso del Iridio-192 en Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O Cristalino

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Rita; Herr, W. [Kernforschungsanlage Juelich, Institut fuer Kernchemie der Universitaet Koeln, Cologne, Federal Republic of Germany (Germany)

    1965-04-15

    }){sup 192}lr. Si la plupart de ces composes ont un caractere anionique, deux d'entre eux se comportent comme des cations marques avec {sup 192}Ir. Les auteurs ont analyse le comportement de ces composes sans entraineur a l'egard des agents de reduction et d'oxydation et leur vieillissement en solution. Ils ont etudie separement l'hydrolyse des complexes hexachloro d'iridium, tri-et quadrivalent, qui avaient ete marques avec {sup 36}Cl et {sup 192}Ir. La comparaison entre les deux series de resultats, corroboree par d'autres donnees obtenues au moyen de l'analyse par activation neutronique, permet d'identifier les produits de recul, qui pour la plupart sont des complexes octaedriques d'iridium (III) contenant une plus ou moins grande proportion des coordinats Cl{sup -}, H{sub 2}O et OH{sup -}. Evidemment, l'eau de cristallisation joue un role important dans la formation des especes chimiques de recul. Avec le recuit thermique de ces produits a 120 Degree-Sign C, les auteurs ont observe une diminution rapide des rendements en complexes aquochloro, hydroxychloro et aquohydroxychloro en faveur de la formation de la substance mere, sauf dans le cas du complexe pentachloro. Celui-ci ne diminue qu'apres une augmentation initiale, ce qui montre qu' il fait fonction de produit intermediaire dans le recuit d'autres produits d'accompagnement. Le recuit provoque par les rayonnements gamma presente de nombreuses phases distinctes, avec tendance generale a une transition des especes chimiques moins chlorees a d'autres especes plus chlorees, aboutissant finalement a la formation du complexe hexachloro. Le processus de recuit consiste donc en un retour d es atomes (ou ions) Cl dans la sphere des coordinats et un deplacement simultane de H{sub 2}O et de OH (OH{sup -}). (author) [Spanish] Por electroforesis sobre papel resulta posible separar hasta 13 diferentes compuestos de retroceso formados como consecuencia de la reaccion nuclear {sup 192}Ir(n, {gamma}) {sup 192}Ir aplicada al Na{sub 2

  20. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C2h symmetry trans conformation (O=C-C=O dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the com...

  1. The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility

    International Nuclear Information System (INIS)

    Padmanabhan, Venkataramana Murthy V.; Palanisamy, Senthilkumar

    2012-01-01

    Highlights: ► COP of hydrocarbons mixture VCRSs increases less when compared to R134a. ► Compressor ir-reversibility of VCRSs decreases by 33% (R134a), 14% (R436A and R436B). ► Total ir-reversibility of selected VCRSs decreases. ► Exergy efficiency of R134a is exceptionally low at lower reference temperature. ► Exergy efficiency of selected VCRSs increases. - Abstract: The ir-reversibility at the process of a vapour-compression refrigeration system (VCRS) with nanoparticles in the working fluid was investigated experimentally. Mineral oil (MO) with 0.1 g L −1 TiO 2 nanoparticles mixture were used as the lubricant instead of Polyol-ester (POE) oil in the R134a, R436A (R290/R600a-56/44-wt.%) and R436B (R290/R600a-52/48-wt.%)VCRSs. The VCRS ir-reversibility at the process with the nanoparticles was investigated using second law of thermodynamics. The results indicate that R134a, R436A and R436B and MO with TiO 2 nanoparticles work normally and safely in the VCRS. The VCRSs total ir-reversibility (529, 588 and 570 W) at different process was better than the R134a, R436A and R436B and POE oil system (777, 697 and 683 W). The same tests with Al 2 O 3 nanoparticles showed that the different nanoparticles properties have little effect on the VCRS ir-reversibility. Thus, TiO 2 nanoparticles can be used in VCRS with reciprocating compressor to considerably reduce ir-reversibility at the process.

  2. Multiparticle magnetic spectrometer with dE/dx and TRD particle identification

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Longacre, R.S.

    1981-01-01

    Recent advances in detector development by BNL, CCNY and other groups have made possible new designs of fast high resolution large effective solid angle magnetic multiparticle spectrometers with excellent particle tracking, momentum measurement, and identification capability. These new spectrometers are relatively compact and relatively low cost electronics have been developed for them. Thus the cost is relatively low. These techniques are applied here primarily for design of spectrometers for low p/sub t/ and other physics (at moderate and even high p/sub t/) in the ISABELLE small angle hall. However, one should keep in mind that these techniques can be utilized in many other applications

  3. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Asanova, Tatyana I., E-mail: nti@niic.nsc.ru; Asanov, Igor P. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation); Kim, Min-Gyu [Pohang University of Science and Technology, Beamline Research Division (Korea, Republic of); Gerasimov, Evgeny Yu. [Boreskov Institute of Catalysis SB RAS (Russian Federation); Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation)

    2013-10-15

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 Degree-Sign C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.Graphical Abstract.

  4. Unidirectional spin density wave state in metallic (Sr1-xLax)2IrO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang; Schmehr, Julian L.; Islam, Zahirul; Porter, Zach; Zoghlin, Eli; Finkelstein, Kenneth; Ruff, Jacob P. C.; Wilson, Stephen D.

    2018-01-09

    Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff = 1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La2CuO4. While bulk super- conductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant X-ray scattering data reveal the presence of an incom- mensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1-xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.

  5. Forbidden optical transition in Ti-like Xe, Ba, and Ir

    International Nuclear Information System (INIS)

    Bekker, H.; Windberger, A.; Binder, M.; López-Urrutia, J. R. Crespo; Versolato, O. O.; Klawitter, R.

    2015-01-01

    We present measurements of the (3d 4 ) 5 D 2 − 5 D 3 transitions in the Ti-like ions Xe 32+ , Ba 34+ , and Ir 55+ produced and trapped in the Heidelberg electron beam ion trap. The obtained wavelengths have a precision at the few ppm-level and are thereby the most precise measurements of these transitions up to date. For Z=60−75 semi-empirical calculations have shown excellent agreement, however our measurements combined with data from other works shows that outside this range predictions quickly deviate. The value obtained for Ir 55+ 357.434(2) nm confirms the linear mismatch to ab initio calculations for Z > 70, as hypothesized in Utter et al., Phys. Rev. A 67, 012508 (2003)

  6. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ul'yanov, V.A.; Pusenkov, V.M.; Kozhevnikov, S.V.; Jernenkov, K.N.; Pleshanov, N.K.; Peskov, B.G.; Petrenko, A.V.; Proglyado, V.V.; Syromyatnikov, V.G.; Schebetov, A.F.

    2006-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 A. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2x10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam

  7. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  8. Calibration of a leak detection spectrometer; Calibration d'un spectrometre detecteur de fuites

    Energy Technology Data Exchange (ETDEWEB)

    Geller, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This paper describes a study of the possible methods for calibrating a leak detection spectrometer, and the estimation of outputs from the leaks is considered. With this in mind the question of sensitivity of leak detection is tackled on a very general level; first the sensitivity of the isolated instrument is determined, and then the sensitivity of an instrument connected to an installation where leaks may be suspected. Finally, practical solutions are proposed. (author) [French] Dans cet article, nous etudions les methodes possibles de calibration d'un spectrometre detecteur de fuites et nous envisageons l'evaluation des debits de fuites trouves. Pour cela, nous abordons la notion de sensibilite de la detection de fuite sur un plan tres general; d'abord nous determinons la sensibilite de l'appareil isole, ensuite la sensibilite d'un appareil connecte sur une installation ou l'on cherche les fuites. Enfin, nous preconisons des solutions pratiques. (auteur)

  9. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Characterization of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione by Raman and FT-IR spectroscopy and DFT calculations

    Science.gov (United States)

    de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.

    2015-07-01

    In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).

  11. Measurement of astrophysical S-factors and electron screening potentials for d(d,n){sup 3}He reaction in ZrD{sub 2}, TiD{sub 2} and TaD{sub 0.5} targets in the ultralow energy region using plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bystritsky, V.M., E-mail: bystvm@jinr.ru [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Bystritskii, Vit.M. [Department of Physics and Astronomy, University of California, Irvine (United States); Dudkin, G.N. [National Scientific Research Tomsk Polytechnical University, Tomsk (Russian Federation); Filipowicz, M. [Faculty of Energy and Fuels, AGH, University of Science and Technology, Cracow (Poland); Gazi, S.; Huran, J. [Institute of Electrical Engineering, SAS, Bratislava (Slovakia); Kobzev, A.P. [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Mesyats, G.A. [Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Nechaev, B.A.; Padalko, V.N. [National Scientific Research Tomsk Polytechnical University, Tomsk (Russian Federation); Parzhitskii, S.S. [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Pen' kov, F.M. [Institute of Nuclear Physics, NNC, Almaty (Kazakhstan); Philippov, A.V. [Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Kaminskii, V.L. [National Scientific Research Tomsk Polytechnical University, Tomsk (Russian Federation); Tuleushev, Yu.Zh. [Institute of Nuclear Physics, NNC, Almaty (Kazakhstan); Wozniak, J. [Faculty of Physics and Applied Computer Sciences, AGH, University of Science and Technology, Cracow (Poland)

    2012-09-01

    The present paper is devoted to the study of the electron screening effect influence on the rate of d(d,n){sup 3}He reaction in the ultralow deuteron collision energy range in the deuterated metals (ZrD{sub 2}, TiD{sub 2} and TaD{sub 0.5}). The ZrD{sub 2}, TiD{sub 2} and TaD0.5 targets were fabricated via magnetron sputtering of titanium, zirconium and tantalum in gas (deuterium) environment. The experiments have been carried out using the high-current pulsed Hall plasma accelerator (NSR TPU, Russia). The detection of neutrons with energy of 2.5 MeV from the dd reaction was done with plastic scintillation spectrometers. As a result of the experiments, the energy dependences of the astrophysical S-factor for the dd reaction in the deuteron collision energy range of 2-7 keV and the values of the electron screening potential U{sub e} of the interacting deuterons have been measured for the above targets: U{sub e}(ZrD{sub 2})=(205{+-}35) eV; U{sub e}(TiD{sub 2})=(125{+-}34) eV; U{sub e}(TaD{sub 0.5})=(313{+-}58) eV. Our results are compared with the other published experimental and calculated data.

  12. The yo-yo IR2 test: physiological response, reliability, and application to elite soccer

    DEFF Research Database (Denmark)

    Krustrup, Peter; Mohr, Magni; Nybo, Lars

    2006-01-01

    biopsies and blood samples were obtained, and heart rate was measured before, during, and after the Yo-Yo IR2 test. Additionally, 119 Scandinavian elite soccer players carried out the Yo-Yo IR2 test on two to four occasions. Results: Yo-Yo IR2 performance was 591 +/- 43 (320-920) m or 4.3 (2.6-7.9) min...... was better (P elite soccer players than for moderate elite players (1059 +/- 35 vs 771 +/- 26 m) and better (P elite soccer players...... turnover. Specifically, the Yo-Yo IR2 test was shown to be a sensitive tool to differentiate between intermittent exercise performance of soccer players in different seasonal periods and at different competitive levels and playing positions....

  13. Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C

    DEFF Research Database (Denmark)

    Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud

    2016-01-01

    program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical...... subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout...

  14. Spectral lines of methane measured up to 2.6 THz at sub-MHz accuracy with a CW-THz photomixing spectrometer: Line positions of rotational transitions induced by centrifugal distortion

    Science.gov (United States)

    Bray, C.; Cuisset, A.; Hindle, F.; Mouret, G.; Bocquet, R.; Boudon, V.

    2017-12-01

    Several Doppler-limited rotational transitions of methane induced by centrifugal distortion have been measured with an unprecedented frequency accuracy using a THz photomixing synthesizer based on a frequency comb. Compared to previous synchrotron based FT-Far-IR measurements of Boudon et al. (Ref. [1]), the accuracy of the line frequency measurements is improved by one order of magnitude; this yields a corresponding increase of two orders of magnitude to the weighting of these transitions in the global fit. The rotational transitions in the ν4 ←ν4 hot band are measured for the first time by the broad spectral coverage of the photomixing CW-THz spectrometer providing access up to R(5) transitions at 2.6 THz. The new global fit including the present lines has been used to update the methane line list of the HITRAN database. Some small, but significant variations of the parameter values are observed and are accompanied by a reduction of the 1-σ uncertainties on the rotational (B0) and centrifugal distortion (D0) constants.

  15. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto

    2003-09-01

    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  16. Investigation of Tropospheric Pollutants and Stratospheric Ozone Using Infrared Fourier Transform Spectrometers from the Ground, Space and Balloons

    Science.gov (United States)

    Griffin, Debora

    This thesis focusses on transport and composition of boreal fire plumes, evolution of trace gases in the Arctic, multi-year comparisons of ground-based and satellite-borne instruments, and depletion of Arctic ozone. Two similar Fourier Transform Spectrometer (FTS) instruments were utilized: (1) the ground-based and balloon-borne Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and (2) the space-borne Atmospheric Chemistry Experiment (ACE) FTS. Additional datasets, from other satellite and ground-based instruments, as well as Chemical Transport Models (CTMs) complemented the analysis. Transport and composition of boreal fire plumes were analysed with PARIS-IR measurements taken in Halifax, Nova Scotia. This study analysed the retrievals of different FTSs and investigated transport and composition of a smoke plume utilizing various models. The CO retrievals of three different FTSs (PARIS-IR, DA8, and IASI) were consistent and detected a smoke plume between 19 and 21 July 2011. These measurements were similar to the concentrations computed by GEOS-Chem ( 3% for CO and 8% for C2H6). Multi-year comparisons (2006-2013) of ground-based and satellite-borne FTSs near Eureka, Nunavut were carried out utilizing measurements from PARIS-IR, the Bruker 125HR and ACEFTS. The mean and interannual differences between the datasets were investigated for eight species (ozone, HCl, HNO3, HF, CH4, N2O, CO, and C2H6) and good agreement between these instruments was found. Furthermore, the evolution of the eight gases was investigated and increasing ozone, HCl, HF, CH4 and C2H6 were found. Springtime Arctic ozone depletion was studied, where six different methods to estimate ozone depletion were evaluated using the ACE-FTS dataset. It was shown that CH4, N2O, HF, and CCl2F2 are suitable tracers to estimate the ozone loss. The loss estimates (mixing ratio and partial column) are consistent for all six methods. Finally, PARIS-IR was prepared for a

  17. A simplification of the deuterium oxide dilution technique using FT-IR analysis of plasma, for estimating piglet milk intake

    International Nuclear Information System (INIS)

    Glencross, B.D.; Tuckey, R.C.; Hartmann, P.E.; Mullan, B.P.

    1997-01-01

    Previous studies estimating milk intake using deuterium oxide (D 2 O) as a tracer have required sublimation of the sample fluid (usually plasma) to remove solids and retrieve total water. This procedure has been simplified by directly measuring the D 2 O content of plasma with a Fourier transform-infrared (FT-IR) spectrometer, removing the requirement for sample sublimation. Comparisons of samples that were split and then analysed as water of sublimation and as total plasma were performed. It was found that the direct analysis of the plasma could be achieved without a loss in fidelity of the results (sublimated v. plasma, r 2 = 0.976; n = 26). Linearity of assay standards was very high (r 2 > 0.997). The modified technique was used to determine the milk intake by piglets from litters of 7 sows during established lactation (Days 10-15). Water turnover (WTO) was shown to be the primary point by which differences in the piglet milk intakes were influenced. Differences in the milk composition had minimal effect on the milk intake determinations. Milk intake by each piglet was shown to be strongly correlated to piglet growth (r 2 = 0.59, P 2 = 0.84, P < 0.01). Copyright (1997) CSIRO Australia

  18. Ray tracing package through a lens system and a spectrometer

    International Nuclear Information System (INIS)

    Zurro, B.; King, P.W.; Lazarus, E.A.

    1980-03-01

    To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs

  19. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  20. Line Positions of Centrifugal Distorsion Induced Rotational Transitions of Methane Measured up to 2.6 Thz at Sub-Mhz Accuracy with a Cw-Thz Photomixing Spectrometer

    Science.gov (United States)

    Bray, Cédric; Cuisset, Arnaud; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Boudon, Vincent

    2017-06-01

    Several Doppler limited rotational transitions of methane induced by centrifugal distortion have been measured with an unprecedented frequency accuracy using the THz photomixing synthesizer based on a frequency comb. Compared to previous synchrotron based FT-Far-IR measurements of Boudon et al., the accuracy of the line frequency measurements is improved by one order of magnitude, this yields a corresponding increase of two orders of magnitude to the weighting of these transitions in the global fit. The rotational transitions in the ν_4←ν_4 hot band are measured for the first time by the broad spectral coverage of the photomixing CW-THz spectrometer providing access up to R(5) transitions at 2.6 THz. The new global fit including the present lines has been used to update the methane line list of the HITRAN database. Some small, but significant variations of the parameter values are observed and are accompanied by a reduction of the 1-σ uncertainties on the rotational (B_0) and centrifugal distortion (D_0) constants. V. Boudon, O. Pirali, P. Roy, J.-B. Brubach, L. Manceron, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer, 111, 1117-1129 (2010).

  1. Design Principle of A Small Angle Neutron Scattering Spectrometer. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A [Dept. of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt)

    1996-03-01

    The design principle of a small angle neutron scattering (SANS) spectrometer is based on producing monochromatic neutron bursts using two phased rotors. The rotors have a number of slots to achieve the highly available intensity of monoenergetic neutrons at the required resolution. The design principle was applied to improve the performance of the pulsed monochromatic double rotor system at ET-RR-1 to operate as SANS spectrometer. It is shown that for rotors having 19 slots each with radius of curvature 96.8 cm, the intensity gain factor is 13. The proposed SANS spectrometer could cover the neutron wavelength range from 2 A{sup {omicron}} up to 6 A{sup {omicron}} through small angles of scattering from 5 x 10{sup -3} rad. to 0.1 rad. i.e, the scattering wavevector transfer between 0.6 A{sup {omicron}-1} and 0.01 A{sup {omicron}-1}. The maximum neutron flux density on the specimen is 5 x 10{sup 5} n cm{sup -2} s{sup -1}. 8 figs.

  2. Fabrication of 3D polymer photonic crystals for near-IR applications

    Science.gov (United States)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    occurred as we reduced the lattice constant for near-IR applications. In this work, we address this problem by employing SU8. The exposure is vertically confined by using a mismatched 220nm DUV source. Intermixing problem is eliminated due to more densely crosslinked resist molecules. Using this method, we have demonstrated 3D "woodpile" structure with 1.55μm lattice constant and a 2mm-by-2mm pattern area.

  3. What Caused the Lead burn-out in Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The spectrometer solenoids are supposed to be the first magnets installed in the MICE Cooling Channel. The results of the test of Spectrometer Magnet 2B are reported in a previous MICE Note. Magnet 2B was tested with all five coils connected in series. The magnet failed because a lead to coil M2 failed before it could be trained to its full design current of 275 A. First, this report describes the condition of the magnet when the lead failure occurred. The lead that failed was between the cold mass feed-through and the heavy lead that connected to coil M2 and the quench protection diodes. It is believed that the lead failed because the minimum propagation zone (MPZ) length was too short. The quench was probably triggered by lead motion in the field external to the magnet center coil. The effect of heat transfer on quench propagation and MPZ length is discussed. The MPZ length is compared for a number of cases that apply to the spectrometer solenoid 2B as built and as it has been repaired. The required heat transfer coefficient for cryogenic stability and the quench propagation velocity along the leads are compared for various parts of the Magnet leads inside the cold mass cryostat. The effect of the insulation on leads on heat transfer is and stability is discussed.

  4. Insulating phase in Sr{sub 2}IrO{sub 4}: An investigation using critical analysis and magnetocaloric effect

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, Imtiaz Noor; Pramanik, A.K., E-mail: akpramanik@mail.jnu.ac.in

    2017-01-15

    The nature of insulating phase in 5d based Sr{sub 2}IrO{sub 4} is quite debated as the theoretical as well as experimental investigations have put forward evidences in favor of both magnetically driven Slater-type and interaction driven Mott-type insulator. To understand this insulating behavior, we have investigated the nature of magnetic state in Sr{sub 2}IrO{sub 4} through studying critical exponents, low temperature thermal demagnetization and magnetocaloric effect. The estimated critical exponents do not exactly match with any universality class, however, the values obey the scaling behavior. The exponent values suggest that spin interaction in present material is close to mean-field model. The analysis of low temperature thermal demagnetization data, however, shows dual presence of localized- and itinerant-type of magnetic interaction. Moreover, field dependent change in magnetic entropy indicates magnetic interaction is close to mean-field type. While this material shows an insulating behavior across the magnetic transition, yet a distinct change in slope in resistivity is observed around T{sub c}. We infer that though the insulating phase in Sr{sub 2}IrO{sub 4} is more close to be Slater-type but the simultaneous presence of both Slater- and Mott-type is the likely scenario for this material. - Highlights: • Critical analysis shows Sr{sub 2}IrO{sub 4} has ferromagnetic ordering temperature T{sub c}~225 K. • Obtained critical exponents imply spin interaction is close to mean-field model. • Analysis of magneto-entropy data also supports mean-field type interaction. • However, the presence of both itinerant and localized spin interaction is evident. • Sr{sub 2}IrO{sub 4} has simultaneous presence of both Slater- and Mott-type insulating phase.

  5. QQDDQ magnet spectrometer 'BIG KARL'

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S A; Hardt, A; Meissburger, J; Berg, G P.A.; Hacker, U; Huerlimann, W; Roemer, J G.M.; Sagefka, T; Retz, A; Schult, O W.B.

    1983-09-01

    A magnet spectrometer consisting of two quadrupoles, two dipole magnets and another larger quadrupole in front of the detector was designed and installed at the nuclear research institute of the KFA Juelich. It has been used for charged-particle spectroscopy at the isochronous cyclotron since early 1979. Special features of the spectrometer are variable and high dispersion, coils for higher order field corrections in the dipole magnets and a focal plane perpendicular to the optical axis. A large mass-energy product of mE/q/sup 2/ < 540 u x MeV, an angular acceptance of d..cap omega..<12.5 msr, a high resolving power of p/..delta..p up to 3 x 10/sup 4/ and the possibility of kinematical corrections up to K=0.8 make the instrument a very versatile tool for many experiments in the fields of nuclear and atomic physics. 51 references.

  6. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    Science.gov (United States)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  7. Deletion of Irs2 causes reduced kidney size in mice: role for inhibition of GSK3beta?

    LENUS (Irish Health Repository)

    Carew, Rosemarie M.

    2010-07-06

    Abstract Background Male Irs2-\\/- mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2-\\/- mice. We identify retarded renal growth in male and female Irs2-\\/- mice, independent of diabetes. Results Kidney size and kidney:body weight ratio were reduced by approximately 20% in Irs2-\\/- mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in Irs2-\\/- kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBβ\\/Akt2, hyperphosphorylation of GSK3β and concomitant accumulation of β-catenin in Irs2-\\/- kidney. Despite this, no significant upregulation of β-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of Irs2. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in Irs2-\\/- kidney. Conclusions In summary, deletion of Irs2 causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased β-catenin and YAP levels failed to overcome this developmental defect. These data point to Irs2 as an important novel mediator of kidney size.

  8. Isomeric cross sections of neutron induced reactions on Ge and Ir isotopes

    International Nuclear Information System (INIS)

    Vlastou, R.; Papadopoulos, C.T.; Kokkoris, M.; Perdikakis, G.; Galanopoulos, S.; Patronis, N.; Serris, M.; Perdikakis, G.; Harissopulos, S.; Demetriou, P.

    2008-01-01

    The 72 Ge(n,α) 69m Zn, 74 Ge(n,α) 71m Zn, 76 Ge(n,2n) 75g+m Ge and 191 Ir(n,2n) 190 Ir g+m1 and 191 Ir(n,2n) 190 Ir m2 reaction cross sections were measured from 9.6 to 11.4 MeV relative to the 27 Al(n,α) 24 Na reference reaction via the activation method. The quasi-monoenergetic neutron beams were produced via the 2 H(d,n) 3 He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR 'Demokritos'. Statistical model calculations using the codes STAPRE-F and EMPIRE (version 2.19) and taking into account pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature. (authors)

  9. 2-Ethynylpyridine dimers: IR spectroscopic and computational study

    Science.gov (United States)

    Bakarić, Danijela; Spanget-Larsen, Jens

    2018-04-01

    2-ethynylpyridine (2-EP) presents a multifunctional system capable of participation in hydrogen-bonded complexes utilizing hydrogen bond donating (tbnd Csbnd H, Aryl-H) and hydrogen bond accepting functions (N-atom, Ctbnd C and pyridine π-systems). In this work, IR spectroscopy and theoretical calculations are used to study possible 2-EP dimer structures as well as their distribution in an inert solvent such as tetrachloroethene. Experimentally, the tbnd Csbnd H stretching vibration of the 2-EP monomer absorbs close to 3300 cm-1, whereas a broad band with maximum around 3215 cm-1 emerges as the concentration rises, indicating the formation of hydrogen-bonded complexes involving the tbnd Csbnd H moiety. The Ctbnd C stretching vibration of monomer 2-EP close to 2120 cm-1 is, using derivative spectroscopy, resolved from the signals of the dimer complexes with maximum around 2112 cm-1. Quantum chemical calculations using the B3LYP + D3 model with counterpoise correction predict that the two most stable dimers are of the π-stacked variety, closely followed by dimers with intermolecular tbnd Csbnd H⋯N hydrogen bonding; the predicted red shifts of the tbnd Csbnd H stretching wavenumbers due to hydrogen bonding are in the range 54-120 cm-1. No species with obvious hydrogen bonding involving the Ctbnd C or pyridine π-systems as acceptors are predicted. Dimerization constant at 25 °C is estimated to be K2 = 0.13 ± 0.01 mol-1 dm3.

  10. Medicare Modernization Act (MMA) IRS Medicare Part D

    Data.gov (United States)

    Social Security Administration — SSA uses the Internal Revenue Service (IRS) information in determing the eligibility of Medicare recipients to receive subsidy payments for Medicare premiums. SSA...

  11. Selective hydrogenation of furfural on Ir/TiO2 catalysts

    Directory of Open Access Journals (Sweden)

    Patricio Reyes

    2010-01-01

    Full Text Available Titania-supported Ir catalysts were used in the hydrogenation of furfural. Reactions were carried out in a stirred batch type reactor at 0.62MPa and 363K using a 0.10M solution of furfural in a 1:1 mixture n-heptane -ethanol as solvent. Catalysts containing 2 wt% of Ir were reduced in H2 flow at different temperatures in the range 473-773K. The catalysts were characterized by H2 chemisorption, TEM, TPR, TPD of NH3 and XPS. Conversion of furfural is higher at lower reduction temperatures, but leads to byproducts whereas reduction at higher temperatures shows selectivity to furfuryl alcohol close to 100%.

  12. Synthetic utility of 5-amino-6-cyano-2-phenylthieno[2,3-d] oxazole

    Directory of Open Access Journals (Sweden)

    V. R. KANETKAR

    2005-11-01

    Full Text Available This paper describes the synthesis of 5-amino-6-cyano-2-phenylthieno[2,3-d]oxazole and its utilization for the preparation of a range of azo disperse dyes. These aryl azo disperse dyes were applied on polyester fabric and their fastness properties were evaluated. The dyes were characterized by NMR and IR spectroscopy. The visible absorption spectra of these dyes were recorded.

  13. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    Science.gov (United States)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative

  14. The Effect of Radiation Timing on Patients With High-Risk Features of Parameningeal Rhabdomyosarcoma: An Analysis of IRS-IV and D9803

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Aaron C., E-mail: Aaron.Spalding@nortonhealthcare.org [Kosair Children' s Hospital and Brain Tumor Center, Louisville, Kentucky (United States); Hawkins, Douglas S. [Division of Hematology/Oncology, Seattle Children' s Hospital, and Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington (United States); Donaldson, Sarah S. [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States); Anderson, James R.; Lyden, Elizabeth [University of Nebraska Medical Center, Omaha, Nebraska (United States); Laurie, Fran [Quality Assurance Review Center, Providence, Rhode Island and Seattle, Washington (United States); Wolden, Suzanne L. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Arndt, Carola A.S. [Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2013-11-01

    Purpose: Radiation therapy remains an essential treatment for patients with parameningeal rhabdomyosarcoma (PMRMS), and early radiation therapy may improve local control for patients with intracranial extension (ICE). Methods and Materials: To address the role of radiation therapy timing in PMRMS in the current era, we reviewed the outcome from 2 recent clinical trials for intermediate-risk RMS: Intergroup Rhabdomyosarcoma Study (IRS)-IV and Children's Oncology Group (COG) D9803. The PMRMS patients on IRS-IV with any high-risk features (cranial nerve palsy [CNP], cranial base bony erosion [CBBE], or ICE) were treated immediately at day 0, and PMRMS patients without any of these 3 features received week 6-9 radiation therapy. The D9803 PMRMS patients with ICE received day 0 X-Ray Therapy (XRT) as well; however, those with either CNP or CBBE had XRT at week 12. Results: Compared with the 198 PMRMS patients from IRS-IV, the 192 PMRMS patients from D9803 had no difference (P<.05) in 5-year local failure (19% vs 19%), failure-free-survival (70% vs 67%), or overall survival (75% vs 73%) in aggregate. The 5-year local failure rates by subset did not differ when patients were classified as having no risk features (None, 15% vs 19%, P=.25), cranial nerve palsy/cranial base of skull erosion (CNP/CBBE, 15% vs 28%, P=.22), or intracranial extension (ICE, 21% vs 15%, P=.27). The D9083 patients were more likely to have received initial staging by magnetic resonance imaging (71% vs 53%). Conclusions: These data support that a delay in radiation therapy for high-risk PMRMS features of CNP/CBBE does not compromise clinical outcomes.

  15. The bent crystal diffraction spectrometer at the BR2 reactor in Mol

    Science.gov (United States)

    Kaerts, E.; Jacobs, L.; Vandenput, G.; Van Assche, P. H. M.

    1988-05-01

    The DuMond-type bent crystal diffraction spectrometer installed at the BR2 reactor in Mol is presented. The spectrometer is mainly designed to study nuclear γ-transitions following thermal neutron capture. It covers the energy interval 25 ≦ Eγ ≦ 1500 keV. Instead of the traditionally used quartz crystals, a highly perfect silicium crystal is chosen as analysing crystal. Diffraction occurs from the (220) plane. The "quasi-mosaic" width, introduced by bending the crystal, is as small as 0.2″. The integrated reflecting power R of the bent crystal stays constant up to 1.5 MeV in first, 680 keV in second and 300 keV in third diffraction order. For higher photon energies, only an E-1 energy dependence is observed in second and third diffraction order. Consequently, besides improving the energy resolution, the use of these silicium crystals substantially increases the spectrometer efficiency and extends the high energy limit of bent crystal diffraction spectrometers. The diffraction angles are measured with a symmetrical interferometer system which covers an angular range of -6° to +6° with a precision of about 0.01″. Minimum diffraction line widths of 0.9″ have been measured, corresponding to an energy resolution ΔE = 1.35 × 10 -6E2n-1 keV -1. The dominant contribution to the observed line widths arises from the finite extent of the source.

  16. Atomically resolved spectroscopic study of Sr.sub.2./sub.IrO.sub.4./sub.: Experiment and theory

    Czech Academy of Sciences Publication Activity Database

    Li, Q.; Cao, G.; Okamoto, S.; Yi, J.; Lin, W.; Sales, B.C.; Yan, J.; Arita, R.; Kuneš, Jan; Kozhevnikov, A.V.; Eguiluz, A.G.; Imada, M.; Gai, Z.; Pan, M.; Mandrus, D.G.

    2013-01-01

    Roč. 3, OCT (2013), s. 1-7 ISSN 2045-2322 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : Sr 2 IrO 4 * scanning tunneling microscopy * Mott insulator * Slater insulator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.078, year: 2013 http://www.nature.com/srep/2013/131029/srep03073/full/srep03073.html

  17. 2D electron systems viewed through an RF spectrometer

    International Nuclear Information System (INIS)

    Andrei, E.Y.

    1994-01-01

    Electrons trapped at the liquid helium-vacuum interface are an almost ideal realization of a 2D electron system. I will describe experiments probing the in-plane as well as the out-of-plane motion of the electrons. The former have emphasized the dynamics and thermodynamics of the electronic motion within the plane to understand the nature of the liquid-solid transition and to outline its phase boundary. The latter have studied the escape out of the electron layer and provided an opportunity to observe tunneling in a clean and well-characterized system as well as to measure the effects of correlations on the tunneling process. More recently experiments in the presence of a magnetic field transverse to the direction of tunneling have revealed several novel phenomena associated with the magnetic coupling between the in-plane and the out-of-plane electronic motions. Together, these experiments helped uncover the multi-faceted physics that can be found in this system. (orig.)

  18. Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Dong; Hagihala Masato; ZHENG Xu-Guang; MENG Dong-Doug; GUO Qi-Xin

    2011-01-01

    @@ Vibrational spectra(Raman 4000-95cm-1 and mid-IR 4000-400cm-1) of the atacamite-structure Ni2(OH)3Cl,including a rarely reported kind of asymmetric trimetric hydrogen bond, as a member of the geometrically frustrated material series and its deuteride Ni2(OD)3Cl are, to the best of our knowledge, reported for the first time and analyzed at room temperature.Through a comparative study of four spectra according to their crystal structural parameters, we assign OH stretching modes v(OH) in a functional group region(3700-3400 cm-1) and their deformation modes δ(NiOH/D) in the correlation peak region(900-600 cm-1)with the corresponding mode frequency ratios ωv(OD)/ωv(OH)≈73% and ωδ(NiOD)/ωδ(NiOH)≈75%, and further self-consistently suggest NiO and Ni-Cl related modes in the fingerprint region(500-200cm-1 and 200-Ocm-1, respectively) by use of the unified six-ligand NiO5Cl and NiO4Cl2 frames.This report may contribute to the spectral analysis of other hydroxyl transition-metal halides and to the understanding of the fundamental physics of their exotic magnetic geometrical frustration property from the spectral changes around the corresponding low transition temperatures.

  19. Measurement of the Ir-191,193(n,2n)Ir-190,192 Reaction Cross Section Between 9.0 and 16.5 MeV

    Science.gov (United States)

    Wildenhain, Elizabeth; Finch, Sean; Tornow, Werner; Krishichayan, F.

    2017-09-01

    Iridium is one of the elements prioritized by Nonproliferation and Homeland Security agencies. In addition, Ir-192 is being used in various medical treatments. Improved data and corresponding evaluations of neutron-induced reactions on the iridium isotopes are required to meet the demands of several applications of societal interest. This study measured the cross section of the Ir-191,193(n, 2n)Ir-190,192 reactions at energies from 9.0 to 16.5 MeV using the activation technique. Natural Ir samples [Ir-191 37.3%, Ir-193 62.7%] were sandwiched between Au-197 monitor foils and irradiated with monoenergetic neutron beams at the tandem facility of the Triangle Universities Nuclear Laboratory (TUNL). Gamma rays from the irradiated samples were counted in TUNL's low background facility using high-efficient HPGe detectors. Measured cross-section data are compared to previous data and to predictions from nuclear data libraries (e.g. ENDF). Research at TUNL funded by the NSF.

  20. Categories and inheritance of resistance to Nilaparvata lugens (Hemiptera: Delphacidae) in mutants of indica rice 'IR64'.

    Science.gov (United States)

    Sangha, Jatinder Singh; Chen, Yolanda H; Palchamy, Kadirvel; Jahn, Gary C; Maheswaran, M; Adalla, Candida B; Leung, Hei

    2008-04-01

    Varietal mutants can be useful for developing durable resistance, understanding categories of resistance, and identifying candidate genes involved in defense responses. We used mutants of rice 'IR64' to isolate new sources of resistance to the planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). We compared two mutants that showed a gain and loss of resistance to N. lugens, to determine the categories of resistance to this pest. Under choice tests, female planthoppers avoided settling and laid fewer eggs on the resistant mutant 'D518' than on the susceptible mutant D1131, susceptible check 'TN1', and wild-type IR64, indicating that antixenosis was the resistance category. Similarly, under no-choice conditions, planthoppers laid 29% fewer eggs in D518 than in IR64, but they oviposited more in 'D1131' and TN1. Honeydew excretion was greater on D1131 seedlings but slightly lower on D518 than on IR64. Nymphal survival and adult female weight did not differ among rice cultivars. D518 showed higher tolerance of N. lugens infestations than IR64. Genetic analysis of the F1, F2, and F3 populations derived from D518 x IR64 revealed that resistance in D518 is dominant and controlled by a single gene. Despite the variation in resistance to N. lugens, both mutants and IR64 performed similarly in the field. The mutant D518 is a new source of durable resistance to N. lugens, mainly due to enhanced antixenosis to female hoppers for settling and oviposition.

  1. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai V. C.; Talarico, Giovanni; Nolan, Steven P.; Cavallo, Luigi; Poater, Albert

    2015-01-01

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-09-08

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Design, construction and characterization of the acoustic-optical spectrometers for radioastromomic applications

    International Nuclear Information System (INIS)

    Garde, M.J.; Aramburu, C.; Benito, D.E.; Sebastian, J.L.

    1997-01-01

    This paper describes the study, design, construction and experimental characterization of the acoustic-optical spectrometer of 58 MHz bandwidth and effective resolution of 108 kHz that is being used with the 14 m antenna of the Centro Astronomico de Yebes (CAY). The use of the quasi-tangent interaction described in this paper increases the bandwidth by a factor of 2''1/2 with 3 dB at the center and edges of the frequency bandwidth. The greater bandwidth leads to a better bandwidth frequency resolution ratio, therefore, the system is equally well suited for the resolution of both narrow and wide spectral lines. The spectrometer presents a linear response over the full dynamic range of 20 dB. Frequency deviation from linear behaviour, due to the non-linear interaction in the Bragg modular, is corrected and a linear frequency response within one tenth of a channel (10 kHz) over the full bandwidth is obtained. The excellent stability of the spectrometer allows for longer integration times, therefore saving real observation time. (Author) 13 refs

  4. Characterization and identification of microorganisms by FT-IR microspectrometry

    Science.gov (United States)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  5. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    International Nuclear Information System (INIS)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. -- Highlights: ► IRS1 enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. ► This sensitivity is abrogated by the expression of IRS2. ► Expressing IRS1 in 32D cells increased levels of Annexin A2. ► Both IRS1 and Annexin A2 were located in cytoplasmic and membrane fractions. ► Decreasing Annexin A2 in 32D-IRS1 cells abated their sensitivity to chemotherapy.

  6. High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2IrO3

    Science.gov (United States)

    Hermann, V.; Ebad-Allah, J.; Freund, F.; Pietsch, I. M.; Jesche, A.; Tsirlin, A. A.; Deisenhofer, J.; Hanfland, M.; Gegenwart, P.; Kuntscher, C. A.

    2017-11-01

    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2IrO3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2IrO3 is discussed in terms of a Mott-insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev interactions. With increasing Li content x , (Na1 -xLix )2IrO3 moves deeper into the Mott-insulating regime, and there are indications that up to a doping level of 24% the compound comes closer to the Kitaev limit. The optical conductivity spectrum of single-crystalline α -Li2IrO3 does not follow the trends observed for the series up to x =0.24 . There are strong indications that α -Li2IrO3 is not as close to the Kitaev limit as Na2IrO3 and lies closer to the quasimolecular orbital picture instead. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2IrO3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x =0.24 and x =1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.

  7. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    Science.gov (United States)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  8. Yb{sub 6}Ir{sub 5}Ga{sub 7} - a MgZn{sub 2} superstructure

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149, Muenster (Germany)

    2017-02-15

    The gallide Yb{sub 6}Ir{sub 5}Ga{sub 7} was synthesized by high-frequency melting of the elements in a sealed niobium ampoule. The structure was refined from single-crystal X-ray diffractometer data: Nb{sub 6.4}Ir{sub 4}Al{sub 7.6} type, P6{sub 3}/mcm, a = 930.4(1), c = 843.0(1) pm, wR{sub 2} = 0.0597, 379 F{sup 2} values and 22 variables. Yb{sub 6}Ir{sub 5}Ga{sub 7} adopts a superstructure of the MgZn{sub 2} Laves phase by a complete ordering of the iridium and gallium atoms on the zinc substructure, i.e. the network consists of ordered and condensed Ir{sub 3}Ga and IrGa{sub 3} tetrahedra with Ir-Ga distances ranging from 260 to 265 pm. The crystal chemical details and the underlying group-subgroup scheme are discussed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Flushing-free film test of "1"9"2Ir accuracy of position and step distance for afterloading systems

    International Nuclear Information System (INIS)

    Lu Feng; Chen Rui; Shang Yunying; Chen Yue; Min Nan; Chen Yingmin; Deng Daping

    2014-01-01

    Objective: To study the method of measuring the position accuracy and the step distance accuracy of afterloading system with "1"9"2Ir source by using flushing-free film. Methods: The position accuracy and the step distance accuracy of a China-made afterloading system with "1"9"2Ir source was measured by using GAFCHROMIC"® EBT"3 flushing-free film. The film was scanned to proper image format, required by dose analysis software, by EPSON PREFACTION V700 PHOTO scanner. Then images are analyzed by using film dose analysis software in SNC Patient 5.2. Results: With focus on the center of active section of source, the position accuracy of this afterloading system with "1"9"2Ir source was -0.75 mm. Using film analysis could make the step point to tell apart if the step distance was 5 mm away by the method of film analysis, but couldnot make it to tell apart if the step distance was 2.5 mm away. The 2.5 mm step distance accuracy could be judged if the distance between the 1"s"t point and the 3"r"d point was 5 mm, then the 2.5 mm step distance could be deemed to no deviation. The 5 mm step distance of this afterloading system had no deviation in continuous 9 step points measured by flushing-free film. The indirect measuring results of the 2.5 mm step distance had no deviation as well. The position accuracy of this afterloading system measured with the flushing-free film accorded with the national standards. Conclusions: The method of measuring the position accuracy and the step distance accuracy of the afterloading system with "1"9"2Ir source by using flushing-free film is technically feasible. (authors)

  10. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  11. Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields

    International Nuclear Information System (INIS)

    Lv Hang; Zhang Jun-Feng; Zuo Wan-Long; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2015-01-01

    Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields. (paper)

  12. High-field magnetization studies of U2T2Sn (T=Co, Ir, Pt) compounds

    International Nuclear Information System (INIS)

    Prokes, K.; Nakotte, H.; de Boer, F.R.

    1995-01-01

    High-field magnetization measurements at 4.2 K on U 2 T 2 Sn (T = Co, Ir and Pt) compounds have been performed on free and fixed powders up to 57 T. An antiferromagnetic ground state of U 2 Pt 2 Sn is corroborated by a metamagnetic transition at 22 T with very small hysteresis going up and down with field. U 2 Co 2 Sn and U 2 Ir 2 Sn show no metamagnetic transition up to 57 T which is in agreement with the non-magnetic ground state of these compounds. In all cases, the maximum applied field is not sufficient to achieve saturation. The short-pulse measurements presented here are compared with previous results obtained in quasi-static fields up to 35 T

  13. Stratigraphy and AMS radiocarbon dates of cored sediments (IrBH-2) from the Irosin caldera, the Philippines

    International Nuclear Information System (INIS)

    Mirabueno, Ma. Hannah T.; Laguerta, Eduardo P.; Delos Reyes, Perla J.; Bariso, Ericson B.; Torii, Masayuki; Fujiki, Toshiyuki; Okuno, Mitsuru; Nakamura, Toshio; Danhara, Tohru; Saito-Kokubu, Yoko; Kobayashi, Tetsuo

    2014-01-01

    Core drilling at Site IrBH-2 within the Irosin caldera in Sorsogon Province, southern Luzon reached a depth of 50 m. Systematic logging and documentation were carried out to describe and interpret the sediments. The accelerator mass spectrometer (AMS) radiocarbon dates obtained from plant fragments at 7.02-10.40-m depth were 1000 to 1800 BP. Lahars and fluvial deposits were the predominant deposits in the core sequence. The upper 12 m consisted mostly of andesitic fluvial and minor lahar deposits. These deposits may be correlated with the reworking of eruptive products from resurgent andesitic volcanism. One pyroclastic flow and 12 fallout deposits, including five possible fallout deposits, were intercalated with reworked sediments at depths of 12-50 m. The refractive index of representative samples indicated that post-caldera eruptions involved mainly andesite to dacite, with minor rhyolite magmas. The rhyolite fallout in the core had similar petrographic characteristics to the 41 cal kBP Irosin ignimbrite, suggesting that the fallout and the ignimbrite were sourced from the same magma. (author)

  14. Pamokslo ir eseistikos sąveika Juliaus Sasnausko ir Giedrės Kazlauskaitės eseistikoje

    OpenAIRE

    Skirmantienė, Daiva

    2010-01-01

    Jaunosios kartos rašytojų kunigo pamokslininko Juliaus Sasnausko ir pasaulietės Giedrės Kazlauskaitės kūrybos semantinį ir įdėjinį lauką padeda suprasti teologinės literatūros ir literatūrinės teologijos sąveika. Teologinių prasmių paieška jų tekstuose atliepia šiuolaikinio žmogaus pastangas per literatūrą, skelbiančią gyvenamojo laikotarpio aktualijas, rasti kelią į tam tikras krikščioniškąsias tiesas ir bandyti reflektuoti savo tikėjimą bei analizuoti išganymo istoriją. Autorių kūryo...

  15. Dietary Calcium Intake May Contribute to the HOMA-IR Score in Korean Females with Vitamin D Deficiency (2008–2012 Korea National Health and Nutrition Examination Survey

    Directory of Open Access Journals (Sweden)

    Jin-Ho Kim

    2017-12-01

    Full Text Available Background : Vitamin D and calcium are important factors involved in the regulation of blood glucose and insulin secretion. The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR score is a useful variable for evaluating insulin resistance, and therefore we cross-sectionally compared HOMA-IR scores according to serum vitamin D levels and dietary calcium intake. Methods : We selected data from healthy males (n=5,163 and females (n=7,506 analyzed over 5 years (2008–2012 via the Korea National Health and Nutrition Examination Survey (KNHANES. We calculated HOMA-IR scores and compared them according to serum 25-hydroxyvitamin D (25(OHD concentration classification (30 ng/mL and dietary calcium quintile after adjustment for relevant variables using complex sample analysis. Comparisons were done after data weighting. Results : The mean dietary calcium intake in males and females was 558.1 mg/day and 445.9 mg/day, respectively. The mean serum 25(OHD concentration in males and females was 19.4 ng/mL and 16.8 ng/mL, respectively. After adjustment for relevant variables, HOMA-IR score was significantly correlated with serum 25(OHD concentration and dietary calcium intake in females, whereas it was only correlated with serum 25(OHD concentration in males. HOMA-IR was significantly lower in the top quintile of dietary calcium intake (mean, 866 mg/day within females with vitamin D deficiency (P=0.047. Conclusion : Adequate dietary calcium intake may be important for normal HOMA-IR in females with vitamin D deficiency.

  16. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  17. Homa1-ir And Homa2-ir Indexes In Identifying Insulin Resistance And Metabolic Syndrome - Brazilian Metabolic Syndrome Study (brams) [Índices Homa1-ir E Homa2-ir Para Identificação De Resistência à Insulina E Síndrome Metabólica - Estudo Brasileiro De Síndrome Metabólica (brams)

    OpenAIRE

    Geloneze B.; Vasques A.C.J.; Stabe C.F.C.; Pareja J.C.; de Lima Rosado L.E.F.P.; de Queiroz E.C.; Tambascia M.A.

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  18. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    International Nuclear Information System (INIS)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57 Co, 109 Cd, 125 I, 152 Eu and 192 Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given. (orig.)

  19. Absolute activity measurements with the windowless 4π-CsI(Tl)-sandwich spectrometer

    Science.gov (United States)

    Denecke, B.

    1994-01-01

    The windowless 4π-CsI(Tl)-sandwich spectrometer consists of two scintillation crystals sandwiching radioactive sources deposited on thin plastic foils. This configuration has a solid angle very close to 4π sr. The detectors are sensitive to charged particles with energies > 15 keV and measure photons of 15-200 keV with a probability > 98%. Disintegration rates of samples of radionuclides with complex decay modes can be determined directly from the measured count rates with uncertainties below 0.3%. Radionuclide solutions of 57Co, 109Cd, 125I, 152Eu and 192Ir were standardised, partly in the framework of international comparisons. A detailed description of the spectrometer and the measurement procedure is given.

  20. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present the first results from the 'Low Energy Detector' payload of 'Solar X-ray Spectrometer (SOXS)' mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed ...

  1. Photodetachment of free hexahalogenometallate doubly charged anions in the gas phase: [ML6]2-, (M=Re, Os, Ir, Pt; L=Cl and Br)

    International Nuclear Information System (INIS)

    Wang, X.; Wang, L.

    1999-01-01

    We report the first observation and photodetachment photoelectron spectroscopic study of a series of hexahalogenometallates dianions MCl 6 2- (M=Re, Os, Ir, and Pt) and MBr 6 2- (M=Re, Ir, and Pt) in the gas phase. All of these species were found to be stable as free gaseous doubly charged anions. Photoelectron spectra of all the dianions were obtained at several detachment photon energies. The photon-energy-dependent spectra clearly revealed the dianion nature of these species and allowed the repulsive Coulomb barriers to be estimated. The binding energies of the second excess electron in MCl 6 2- (M=Re, Os, Ir, Pt) were determined to be 0.46 (5), 0.46 (5), 0.82 (5), and 1.58 (5) eV, respectively, and those in MBr 6 2- (M=Re, Ir, Pt) to be 0.76 (6), 0.96 (6), and 1.52 (6) eV, respectively. A wealth of electronic structure information about these metal complexes were obtained and low-lying and highly-excited electronic states of the corresponding singly charged anions were observed. Detachment from metal d orbitals or ligand orbitals were observed and could be clearly distinguished; detachments from the metal d-orbitals all occur at low binding energies whereas those from the ligand-dominated orbitals all take place at rather high binding energies. We also found a remarkable correlation between electron affinities measured in vacuo and the redox potentials obtained in the solution phase of these species. copyright 1999 American Institute of Physics

  2. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  3. Vartotojų lojalumas : formavimas ir valdymas

    OpenAIRE

    Zikienė, Kristina

    2010-01-01

    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  4. Currency verification by a 2D infrared barcode

    International Nuclear Information System (INIS)

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Simonetti, Carla

    2010-01-01

    Nowadays all the National Central Banks are continuously studying innovative anti-counterfeiting systems for banknotes. In this note, an innovative solution is proposed, which combines the potentiality of a hylemetric approach (methodology conceptually similar to biometry), based on notes' intrinsic characteristics, with a well-known and consolidated 2D barcode identification system. In particular, in this note we propose to extract from the banknotes a univocal binary control sequence (template) and insert an encrypted version of it in a barcode printed on the same banknote. For a more acceptable look and feel of a banknote, the superposed barcode can be stamped using IR ink that is visible to near-IR image sensors. This makes the banknote verification simpler. (technical design note)

  5. Equipment and performance of the Q3D spectrometer installed at the tandem laboratory of Saclay

    International Nuclear Information System (INIS)

    Berthier, B.

    1979-01-01

    A quadrupole - dipole - dipole - dipole (Q3D) magnetic spectrometer with proportional gas counter which has been installed at the tandem laboratory of Saclay is described. Typical results are given indicating the performance of the apparatus in studies of heavy ion reactions at tandem energies for which good energy resolution and large solid angles are required. Improvements to allow the detection of heavier masses and less energetic ions with better energy resolution are planned. (U.K.)

  6. Implantation of energetic D{sup +} ions into carbon dioxide ices and implications for our solar system: formation of D{sub 2}O and D{sub 2}CO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawai' i at Mānoa, Honolulu, HI 96822 (United States)

    2014-10-10

    Carbon dioxide (CO{sub 2}) ices were irradiated with energetic D{sup +} ions to simulate the exposure of oxygen-bearing solar system ices to energetic protons from the solar wind and magnetospheric sources. The formation of species was observed online and in situ by exploiting FTIR spectroscopy. Molecular products include ozone (O{sub 3}), carbon oxides (CO{sub 3}(C {sub 2v}, D {sub 3h}), CO{sub 4}, CO{sub 5}, CO{sub 6}), D2-water (D{sub 2}O), and D2-carbonic acid (D{sub 2}CO{sub 3}). Species released into the gas phase were sampled via a quadrupole mass spectrometer, and possible minor contributions from D2-formaldehyde (D{sub 2}CO), D4-methanol (CD{sub 3}OD), and D2-formic acid (DCOOD) were additionally identified. The feasibility of several reaction networks was investigated by determining their ability to fit the observed temporal column densities of 10 key species that were quantified during the irradiation period. Directly relevant to the CO{sub 2}-bearing ices of comets, icy satellites in the outer solar system, and the ice caps on Mars, this work illustrates for the first time that D2-water is formed as a product of the exposure of CO{sub 2} ices to D{sup +} ions. These findings provide strong support for water formation from oxygen-bearing materials via non-thermal hydrogen atoms, and predict reaction pathways that are likely to be unfolding on the surfaces of asteroids and the Moon.

  7. X-ray magnetic circular dichroism at IrL2,3 edges in Fe100−xIrx and ...

    Indian Academy of Sciences (India)

    2Japan Synchrotron Radiation Institute, SPring8, 1-1-1 Kouto, Mikazuki,. Hyogo 679-5198, Japan. ∗. Email: krishna@postman.riken.go.jp. Abstract. The formation of induced 5d magnetic moment on Ir in Fe100−x Irx (x=3, 10 and 17) and. Co100−x Irx (x =5, 17, 25 and 32) alloys has been investigated by X-ray magnetic ...

  8. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    International Nuclear Information System (INIS)

    Yang, Su; Deng, Yanqing; Ge, Xulei; Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min; Liao, Guoqian; Li, Yutong; Zhao, Li; Ma, Yanyun

    2017-01-01

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  9. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Su [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Deng, Yanqing [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Ge, Xulei [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Liao, Guoqian; Li, Yutong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Li [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Ma, Yanyun [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); and others

    2017-07-11

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  10. Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y_{2}Ir_{2}O_{7}.

    Science.gov (United States)

    Juyal, Abhishek; Agarwal, Amit; Mukhopadhyay, Soumik

    2018-03-02

    The ground state of nanowires of single-crystalline pyrochlore Y_{2}Ir_{2}O_{7} is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y_{2}Ir_{2}O_{7}.

  11. Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y2Ir2O7

    Science.gov (United States)

    Juyal, Abhishek; Agarwal, Amit; Mukhopadhyay, Soumik

    2018-03-01

    The ground state of nanowires of single-crystalline pyrochlore Y2Ir2O7 is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y2Ir2O7 .

  12. A novel ferrimagnetic irido-cuprate: IrSr2GdCu2O8

    International Nuclear Information System (INIS)

    Dos Santos-Garcia, A.J.; Aguirre, Myriam H.; Moran, E.; Saez Puche, R.; Alario-Franco, M.A.

    2006-01-01

    We have performed an investigation of the structural, microstructural and magnetic properties of the new compound IrSr 2 GdCu 2 O 8 . The sample was prepared under high temperature (∼1393K) and high-pressure conditions (∼60Kbars) in a Belt type apparatus. X-ray diffraction (XRD) analysis shows that this irido-cuprate is isostructural with the corresponding Ru-1212 phase. Structurally, this material shows an interesting hierarchy of ordering phenomena, whose observation actually depends on the technique used to analyze the material: from a 'simple' cell a p xa p x3a p which is supported by XRD, through a 'diagonal' one, ∼2a p x2a p x3a p as seen by SAED, to a microdomain texture of this last one cell supported by HREM. A ferrimagnetic Ir IV -Gd III spin ordering is observed below 15K. The iridium oxidation state seems to be +4

  13. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    Science.gov (United States)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453

  14. Innovative optical spectrometers for ice core sciences and atmospheric monitoring at polar regions

    Science.gov (United States)

    Grilli, Roberto; Alemany, Olivier; Chappellaz, Jérôme; Desbois, Thibault; Faïn, Xavier; Kassi, Samir; Kerstel, Erik; Legrand, Michel; Marrocco, Nicola; Méjean, Guillaume; Preunkert, Suzanne; Romanini, Daniele; Triest, Jack; Ventrillard, Irene

    2015-04-01

    In this talk recent developments accomplished from a collaboration between the Laboratoire Interdisciplinaire de Physique (LIPhy) and the Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) both in Grenoble (France), are discussed, covering atmospheric chemistry of high reactive species in polar regions and employing optical spectrometers for both in situ and laboratory measurements of glacial archives. In the framework of an ANR project, a transportable spectrometer based on the injection of a broadband frequency comb laser into a high-finesse optical cavity for the detection of IO, BrO, NO2 and H2CO has been realized.[1] The robust spectrometer provides shot-noise limited measurements for as long as 10 minutes, reaching detection limits of 0.04, 2, 10 and 200 ppt (2σ) for the four species, respectively. During the austral summer of 2011/12 the instrument has been used for monitoring, for the first time, NO2, IO and BrO at Dumont d'Urville Station at East of Antarctica. The measurements highlighted a different chemistry between East and West coast, with the halogen chemistry being promoted to the West and the OH and NOx chemistry on the East.[2] In the framework of a SUBGLACIOR project, an innovative drilling probe has been realized. The instrument is capable of retrieving in situ real-time vertical profiles of CH4 and δD of H2O trapped inside the ice sheet down to more than 3 km of depth within a single Antarctic season. The drilling probe containing an embedded OFCEAS (optical-feedback cavity-enhanced absorption spectroscopy) spectrometer will be extremely useful for (i) identify potential sites for investigating the oldest ice (aiming 1.5 Myrs BP records for resolving a major climate reorganization called the Mid-Pleistocene transition occurred around 1 Myrs ago) and (ii) providing direct access to past temperatures and climate cycles thanks to the vertical distribution of two key climatic signatures.[3] The spectrometer provides detection

  15. Electron multiplier for the measurement of an ion current on a mass spectrometer; Multiplicateur d'electrons pour la mesure de courant d'ions sur un spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Lohez, P; Nief, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The apparatus described is designed to measure weak ion currents received at the collector of a mass spectrometer. The report describes successively the study of electron paths in the multiplier by the method of analogy, using rubber membranes, and the practical details of construction of the apparatus. The variation with surface treatment of the secondary emission coefficient of the alloy CuBe containing 2 per cent Be, which makes up the dynodes, and the influence of the voltage on the gain per stage, are discussed. Results of tests regarding: the influence of the ion mass on the gain, the background of the instrument and the energy distribution of the impulses coming out on a high gain multiplier (q.q. 10{sup 7}) are given. Finally the performances of the multiplier are reported. 1- For a low gain (10{sup 4}), precision and reproducibility comparable to the electrometer valve, sensitivity 100 times greater, currents capable of detection 10{sup -17} Ampere. 2- For a high gain (10{sup 7}) and measurement by impulse counting, currents capable of detection 10{sup -19} Ampere. Mounting difficult to use on a mass spectrometer. (author) [French] L'appareil decrit est destine a la mesure des faibles courants d'ions re s au collecteur d'un spectrometre de masse. Le rapport decrit successivement l'etude des trajectoires des electrons dans le multiplicateur, par la methode analogique de la menbrane en caoutchouc, et la realisation pratique de l'appareil. La variation du coefficient d'emission secondaire de l'alliage CuBe a 2 pour cent de Be, constituant les dynodes suivant le traitement des surfaces, et l'influence de la tension sur le gain par etage sont discutees. Des resultats d'essais concernant: l'influence de la masse des ions sur le gain, le bruit de fond de l'appareil et la repartition en energie des impulsions de sortie sur un multiplicateur a gain eleve (q.q. 10{sup 7}) sont donnes. Enfin, sont rapportees les performances du multiplicateur. 1- pour un gain faible

  16. ynthesis and Characterization of 1-Aryl-5-hepta-O-acetyl-β-D-maltosyl-2-S-benzyl-2,4-isodithiobiurets

    Directory of Open Access Journals (Sweden)

    R. D. Ghuge

    2012-01-01

    Full Text Available The facile synthesis of 1-aryl-5-hepta-o-acetyl-β-D-maltosyl-2-S-benzyl-2,4-isodithiobiurets (IIIa-g has been achieved by the interaction of 1-hepta-O-acetyl-β–D-maltosyl isothiocyanate (I with various1-aryl-S-benzyl isothiocarbamides (IIa-g. All the newly synthesized N-maltosylated compounds characterized by elemental analysis, IR, NMR and Mass spectral studies.

  17. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    Sen Zhou

    2017-10-01

    Full Text Available Analogs of the high-T_{c} cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5d perovskite iridates Sr_{2}IrO_{4} exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d-wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating J_{eff}=1/2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  18. The Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Pedersen, Anders Filsøe; Paoli, Elisa Antares

    2018-01-01

    consisting of RuO2 thin films with sub-monolayer (1, 2 and 4 Å) amounts of IrOx deposited on top. Operando extended X-ray absorption fine structure (EXAFS) on the Ir L-3 edge revealed a rutile type IrO2 structure with some Ir sites occupied by Ru, IrOx being at the surface of the RuO2 thin film. We monitor...... corrosion on IrOx/RuO2 thin films by combining electrochemical quartz crystal microbalance (EQCM) with inductively coupled mass spectrometry (ICP-MS). We elucidate the importance of sub-monolayer surface IrOx in minimizing Ru dissolution. Our work shows that we can tune the surface properties of active OER...

  19. The second-generation z (redshift) and early universe spectrometer. I. First-light observation of a highly lensed local-ulirg analog at high-z

    Energy Technology Data Exchange (ETDEWEB)

    Ferkinhoff, Carl; Brisbin, Drew; Parshley, Stephen; Nikola, Thomas; Stacey, Gordon J.; Schoenwald, Justin; Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Higdon, James L.; Higdon, Sarah J. U. [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Verma, Aprajita [Department of Physics, University of Oxford, Oxford, OX1 3RH (United Kingdom); Hailey-Dunsheath, Steven [California Institute of Technology, Pasadena, CA 91125 (United States); Menten, Karl M.; Güsten, Rolf; Weiß, Axel [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Irwin, Kent; Cho, Hsiao M. [NIST Boulder, Boulder, CO 80305 (United States); Niemack, Michael [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Halpern, Mark; Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Hasselfield, Matthew, E-mail: carl.ferkinhoff@cornell.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others

    2014-01-10

    We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ∼ 1.8 from H-ATLAS J091043.1–000322 with a line flux of (6.44 ± 0.42) × 10{sup –18} W m{sup –2}. Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ∼ 2 × 10{sup 4} G {sub 0}, gas density, n ∼ 1 × 10{sup 3} cm{sup –3} and size between ∼0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1–000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models.

  20. The Second-generation z (Redshift) and Early Universe Spectrometer. I. First-light Observation of a Highly Lensed Local-ulirg Analog at High-z

    Science.gov (United States)

    Ferkinhoff, Carl; Brisbin, Drew; Parshley, Stephen; Nikola, Thomas; Stacey, Gordon J.; Schoenwald, Justin; Higdon, James L.; Higdon, Sarah J. U.; Verma, Aprajita; Riechers, Dominik; Hailey-Dunsheath, Steven; Menten, Karl M.; Güsten, Rolf; Weiß, Axel; Irwin, Kent; Cho, Hsiao M.; Niemack, Michael; Halpern, Mark; Amiri, Mandana; Hasselfield, Matthew; Wiebe, D. V.; Ade, Peter A. R.; Tucker, Carol E.

    2014-01-01

    We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ~ 1.8 from H-ATLAS J091043.1-000322 with a line flux of (6.44 ± 0.42) × 10-18 W m-2. Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ~ 2 × 104 G 0, gas density, n ~ 1 × 103 cm-3 and size between ~0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1-000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models.

  1. The second-generation z (redshift) and early universe spectrometer. I. First-light observation of a highly lensed local-ulirg analog at high-z

    International Nuclear Information System (INIS)

    Ferkinhoff, Carl; Brisbin, Drew; Parshley, Stephen; Nikola, Thomas; Stacey, Gordon J.; Schoenwald, Justin; Riechers, Dominik; Higdon, James L.; Higdon, Sarah J. U.; Verma, Aprajita; Hailey-Dunsheath, Steven; Menten, Karl M.; Güsten, Rolf; Weiß, Axel; Irwin, Kent; Cho, Hsiao M.; Niemack, Michael; Halpern, Mark; Amiri, Mandana; Hasselfield, Matthew

    2014-01-01

    We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ∼ 1.8 from H-ATLAS J091043.1–000322 with a line flux of (6.44 ± 0.42) × 10 –18 W m –2 . Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ∼ 2 × 10 4 G 0 , gas density, n ∼ 1 × 10 3 cm –3 and size between ∼0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1–000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models.

  2. Application of IRS-1D data in water erosion features detection (case study: Nour roud catchment, Iran).

    Science.gov (United States)

    Solaimani, K; Amri, M A Hadian

    2008-08-01

    The aim of this study was capability of Indian Remote Sensing (IRS) data of 1D to detecting erosion features which were created from run-off. In this study, ability of PAN digital data of IRS-1D satellite was evaluated for extraction of erosion features in Nour-roud catchment located in Mazandaran province, Iran, using GIS techniques. Research method has based on supervised digital classification, using MLC algorithm and also visual interpretation, using PMU analysis and then these were evaluated and compared. Results indicated that opposite of digital classification, with overall accuracy 40.02% and kappa coefficient 31.35%, due to low spectral resolution; visual interpretation and classification, due to high spatial resolution (5.8 m), prepared classifying erosion features from this data, so that these features corresponded with the lithology, slope and hydrograph lines using GIS, so closely that one can consider their boundaries overlapped. Also field control showed that this data is relatively fit for using this method in investigation of erosion features and specially, can be applied to identify large erosion features.

  3. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  4. Deuterium trapping in the carbon-silicon co-deposition layers prepared by RF sputtering in D2 atmosphere

    Science.gov (United States)

    Zhang, Hongliang; Zhang, Weiyuan; Su, Ranran; Tu, Hanjun; Shi, Liqun; Hu, Jiansheng

    2018-04-01

    Deuterated carbon-silicon layers co-deposited on graphite and silicon substrates by radio frequency magnetron sputtering in pure D2 plasma were produced to study deuterium trapping and characteristics of the C-Si layers. The C-Si co-deposited layers were examined by ion beam analysis (IBA), Raman spectroscopy (RS), infrared absorption (IR) spectroscopy, thermal desorption spectroscopy (TDS) and scanning electron microscopy (SEM). It was found that the growth rate of the C-Si co-deposition layer decreased with increasing temperature from 350 K to 800 K, the D concentration and C/Si ratios increased differently on graphite and silicon substrates. TDS shows that D desorption is mainly as D2, HD, HDO, CD4, and C2D4 and release peaks occurred at temperatures of less than 900 K. RS and IR analysis reveal that the structure of the C-Si layers became more disordered with increasing temperatures. Rounded areas of peeling with 1-2 μm diameters were observed on the surface.

  5. Emergence of non-Fermi liquid behaviors in 5d perovskite SrIrO3 thin films: Interplay between correlation, disorder, and spin-orbit coupling

    Science.gov (United States)

    Biswas, Abhijit; Kim, Ki-Seok; Jeong, Yoon H.

    2016-02-01

    We investigate the effects of compressive strain on the electrical resistivity of 5d iridium based perovskite SrIrO3 by depositing epitaxial films of thickness 35 nm on various substrates such as GdScO3 (110), DyScO3 (110), and SrTiO3 (001). Surprisingly, we find anomalous transport behaviors as expressed by ρ∝Tε in the temperature dependent resistivity, where the temperature exponent ε evolves continuously from 4/5 to 1 and to 3/2 with an increase of compressive strain. Furthermore, magnetoresistance always remains positive irrespective of resistivity upturns at low temperatures. These observations imply that the delicate interplay between correlation and disorder in the presence of strong spin-orbit coupling is responsible for the emergence of the non-Fermi liquid behaviors in 5d perovskite SrIrO3 thin films. We offer a theoretical framework for the interpretation of the experimental results.

  6. R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Maksym [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Swiss Federal Laboratories for Materials Science and Technology (EMPA), Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Zaremba, Oksana; Gladyshevskii, Roman [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany); Faessler, Thomas F. [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany)

    2012-12-15

    The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800

  7. Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus

    International Nuclear Information System (INIS)

    Kovářová, Zuzana; Chmelař, Jindřich; Šanda, Miloslav; Brynda, Jiří; Mareš, Michael; Řezáčová, Pavlína

    2010-01-01

    Cleavage of the serpin IRS-2 from the hard tick I. ricinus by contaminating proteolytic activity mimicked the specific processing of the serpin by its target protease and resulted in a more stable form of the serpin which produced crystals that diffracted to 1.8 Å resolution. IRS-2 from the hard tick Ixodes ricinus belongs to the serpin family of protease inhibitors. It is produced in the salivary glands of the tick and its anti-inflammatory activity suggests that it plays a role in parasite–host interaction. Recombinant IRS-2 prepared by heterologous expression in a bacterial system was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the primitive tetragonal space group P4 3 and diffracted to 1.8 Å resolution. Mass-spectrometric and electrophoretic analyses revealed that IRS-2 was cleaved by contaminating proteases during crystallization. This processing of IRS-2 mimicked the specific cleavage of the serpin by its target protease and resulted in a more stable form (the so-called relaxed conformation), which produced well diffracting crystals. Activity profiling with specific substrates and inhibitors demonstrated traces of serine and cysteine proteases in the protein stock solution

  8. Study of fluorine doped (Nb,Ir)O_2 solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    International Nuclear Information System (INIS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Patel, Prasad; Chung, Sung Jae; Park, Sung Kyoo; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2016-01-01

    Graphical abstract: High surface area (∼300 m"2/g) nanostructured powders of nominal composition (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb_1_−_xIr_x)O_2 with an optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb_1_−_xIr_x)O_2:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb_0_._7_5Ir_0_._2_5)O_2:10F exhibits superior electrochemical activity than pure IrO_2. • Stability of the (Nb,Ir)O_2:10F nanomaterials is comparable to pure (Nb,Ir)O_2. • High surface area F doped (Nb,Ir)O_2 are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m"2/g) nanostructured powders of (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F (∼100 m"2/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb_2O_5 and 10 wt.% F doped Nb_2O_5 powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O_2 and 10 wt.% F doped (Nb,Ir)O_2 [(NbIr)O_2:10F] electro-catalysts by soaking in IrCl_4 followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F with ∼75 at.% reduction in noble metal content exhibited comparable OER activity to commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2

  9. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    Science.gov (United States)

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  10. Prediction of the oversulphated chondroitin sulphate contamination of unfractionated heparin by ATR-IR spectrophotometry.

    Science.gov (United States)

    Norwig, J; Beyer, T; Brinz, D; Holzgrabe, U; Diller, M; Manns, D

    2009-03-01

    The detection of a contamination of heparin with oversulphated chondroitin sulphate (OSCS) was first analysed in an unfractionated heparin batch supplied to the US API-market in April 2006. OSCS is a semi-synthetic derivative of the natural occuring glycosaminoglycan chondroitin sulphate. Moreover some spectroscopic characteristics of the substance overlap with those of heparin, so that the infrared (IR) spectra are visually difficult to distinguish whereas (1)H-NMR (Nuclear Magnetic Resonance) spectroscopy or capillary electrophoresis (CE) provides identification by a simple visual inspection of either the spectrum or the electropherogram respectively. However, applying special tools of Multivariate Data Analysis (MVA) to the IR spectra an identification of the contaminated samples is possible. In detail a rapid Attenuation Total Reflectance-Infrared (ATR-IR) measurement was selected, which does not require any sample preparation. The result (contaminated or not contaminated) is predicted within a few minutes. A method transfer to mobile ATR-IR spectrometers seems to be possible. The analysis is based on the fact that the fingerprint of the OSCS IR spectrum (1st derivative) complies with a theoretically calculated principal component in the MVA.

  11. MO-F-CAMPUS-J-03: Sorting 2D Dynamic MR Images Using Internal Respiratory Signal for 4D MRI

    International Nuclear Information System (INIS)

    Wen, Z; Hui, C; Beddar, S; Stemkens, B; Tijssen, R; Berg, C van den

    2015-01-01

    Purpose: To develop a novel algorithm to extract internal respiratory signal (IRS) for sorting dynamic magnetic resonance (MR) images in order to achieve four-dimensional (4D) MR imaging. Methods: Dynamic MR images were obtained with the balanced steady state free precession by acquiring each two-dimensional sagittal slice repeatedly for more than one breathing cycle. To generate a robust IRS, we used 5 different representative internal respiratory surrogates in both the image space (body area) and the Fourier space (the first two low-frequency phase components in the anterior-posterior direction, and the first two low-frequency phase components in the superior-inferior direction). A clustering algorithm was then used to search for a group of similar individual internal signals, which was then used to formulate the final IRS. A phantom study and a volunteer study were performed to demonstrate the effectiveness of this algorithm. The IRS was compared to the signal from the respiratory bellows. Results: The IRS computed by our algorithm matched well with the bellows signal in both the phantom and the volunteer studies. On average, the normalized cross correlation between the IRS and the bellows signal was 0.97 in the phantom study and 0.87 in the volunteer study, respectively. The average difference between the end inspiration times in the IRS and bellows signal was 0.18 s in the phantom study and 0.14 s in the volunteer study, respectively. 4D images sorted based on the IRS showed minimal mismatched artifacts, and the motion of the anatomy was coherent with the respiratory phases. Conclusion: A novel algorithm was developed to generate IRS from dynamic MR images to achieve 4D MR imaging. The performance of the IRS was comparable to that of the bellows signal. It can be easily implemented into the clinic and potentially could replace the use of external respiratory surrogates. This research was partially funded by the the Center for Radiation Oncology Research from

  12. Fiber optic lasers with emission to the region 2-3 μm of IR medium

    International Nuclear Information System (INIS)

    Anzuelo Sanchez, G.; Osuna Galan, I.; Camas Anzueto, J.; Martinez Rios, A.; Selvas Aguilar, R.

    2009-01-01

    We present recent advances in laser emission in the 2-2-5 μm mid-IR, using a chalcogenide fiber with low loss and a high Raman gain in the region 2-10 μm. We present a review of fiber lasers operating in 2-3 μm of the mid IR. (Author)

  13. First operations of the SOIR occultation infrared spectrometer in Venus orbit.

    Science.gov (United States)

    Nevejans, D.; Neefs, E.; Vandaele, A. C.; Muller, C.; Fussen, D.; Berkenbosch, S.; Clairquin, R.; Korablev, O.; Federova, A.; Bertaux, J. L.

    Since May 2006, the Venus-Express spacecraft is in its nominal orbit around VENUS and the SPICAV optical package has begun to acquire spectra. The SOIR extension to SPICAV is an echelle spectrometer associated to an AOTF (Acousto-Optical Tunable Filter) for the order selection, which performs solar occultation measurements in the IR region (2.2-4.3 µm) at a resolution of 0.1 cm-1 . The detailed optical study and design as well as the manufacturing were performed at the BIRA/IASB in collaboration with its industrial partners OIP and PEDEO. It was funded by the Belgian Federal Science Policy Office under the ESA PRODEX programme. The wavelength range allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of gases. The first results look promising and will be qualitatively presented.

  14. Thermal structure of the Martian atmosphere retrieved from the IR spectrometry in the 15 μm CO2 band: input to MIRA

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Grassi, D.; Igantiev, N. I.; Moroz, V. I.

    This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm-1 and a high spectral resolution of about 2 cm-1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.

  15. Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements

    Science.gov (United States)

    Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.

    2017-11-01

    A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude <10 km), or observing solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.

  16. Technique for comparing AES signals from different spectrometers using common materials

    International Nuclear Information System (INIS)

    Baer, D.R.; Thomas, M.T.

    1985-10-01

    A simple procedure is outlined to obtain relative sensitivity curves that allow data collected on one Auger electron spectrometer to be related to data collected on a different spectrometer or to a standard data set. Data collected on three CMA systems demonstrates that dN/dE peak to peak amplitude ratios for pure elements can vary considerably but in a systematic manner for different systems. Such differences can be produced by variations in system design, by specimen or electron gun alignment, spectrometer contamination or other problems. However if the differences in relative sensitivity are considered in the data analysis, data sets from different systems can be interrelated with reasonable accuracy

  17. V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), the first quaternary metal-rich -boride adopting the Mo{sub 2}IrB{sub 2}-type structure: Synthesis, crystal and electronic structure and bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian; Fokwa, Boniface P.T. [Institute of Inorganic Chemistry, RWTH Aachen University (Germany)

    2013-02-15

    Polycrystalline samples and single crystals of the new metal-rich boride V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-ray diffraction and EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase adopts the Mo{sub 2}IrB{sub 2}-type structure (space group Pnnm, no. 58) with the lattice parameters a = 7.301(7) Aa, b = 9.388(9) Aa and c = 3.206(5) Aa. It is the first quaternary representative of Mo{sub 2}IrB{sub 2}-type structure. The structure contains zigzag B{sub 4}-fragments with boron-boron distances of 1.83-1.85 Aa. The electronic density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the zigzag B{sub 4}-fragment and two significantly different Ir-B interactions are observed in the new phase and the prototype Mo{sub 2}IrB{sub 2}. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Monte Carlo evaluation of a CZT 3D spectrometer suitable for a Hard X- and soft-γ rays polarimetry balloon borne experiment

    DEFF Research Database (Denmark)

    Caroli, E.; De Cesare, G.; Curado da Silva, R. M.

    2015-01-01

    will be to provide high sensitivity for polarimetric measurements. In this framework, we have presented the concept of a small high-performance imaging spectrometer optimized for polarimetry between 100 and 600 keV suitable for a stratospheric balloon-borne payload and as a pathfinder for a future satellite mission....... The detector with 3D spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate simultaneously as a high performance scattering polarimeter. Herein, we report results of a Monte Carlo study devoted to optimize the configuration of the detector for polarimetry...

  19. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    Science.gov (United States)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  20. Intracavity Laser Photoacoustic Spectrometer with High Sensitivity

    International Nuclear Information System (INIS)

    Mitrayana; Muslim; Wasono, M.A.J.

    2002-01-01

    A photo acoustic spectrometer set-up has been upgraded from an extra cavity into an intracavity configuration using a sealed-off CO 2 laser as the spectrometer's radiation source. The detection level of the upgrade Intracavity Photoacoustic Spectrometer (IPS) reached (200 ± 50) ppt for C 2 H 4 and (20 ± 5) ppt for SF 6 with response time (6.6 ± 0.2) s. (author)

  1. Emergence of non-Fermi liquid behaviors in 5d perovskite SrIrO{sub 3} thin films: Interplay between correlation, disorder, and spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abhijit [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Ki-Seok [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Institute of Edge of Theoretical Science (IES), POSTECH, Pohang 790-784 (Korea, Republic of); Jeong, Yoon H., E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)

    2016-02-15

    We investigate the effects of compressive strain on the electrical resistivity of 5d iridium based perovskite SrIrO{sub 3} by depositing epitaxial films of thickness 35 nm on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), and SrTiO{sub 3} (001). Surprisingly, we find anomalous transport behaviors as expressed by ρ∝T{sup ε} in the temperature dependent resistivity, where the temperature exponent ε evolves continuously from 4/5 to 1 and to 3/2 with an increase of compressive strain. Furthermore, magnetoresistance always remains positive irrespective of resistivity upturns at low temperatures. These observations imply that the delicate interplay between correlation and disorder in the presence of strong spin-orbit coupling is responsible for the emergence of the non-Fermi liquid behaviors in 5d perovskite SrIrO{sub 3} thin films. We offer a theoretical framework for the interpretation of the experimental results. - Highlights: • We studied the effect of compressive strain on the perovskite SrIrO{sub 3} thin films. • We revealed non-Fermi liquid behaviors in the transport properties. • Irrespective of weak localization effects, magnetoresistance remains positive. • Mott-Anderson-Griffiths scenario is proposed to account for the NFL behaviors.

  2. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  3. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  4. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  5. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  6. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro; Psaro, Rinaldo; Guidotti, Matteo; Dal Santo, Vladimiro; Pergola, Roberto Della; Masih, Dilshad; Izumi, Yasuo

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre

  7. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    Science.gov (United States)

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  8. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  9. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  10. Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.

    Science.gov (United States)

    Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen

    2018-06-07

    Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  12. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  13. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  14. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    Science.gov (United States)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  15. Electron volt neutron spectrometers

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2011-01-01

    The advent of pulsed neutron sources has made available intense fluxes of epithermal neutrons (500 meV ≤E≤100 eV ). The possibility to open new investigations on condensed matter with eV neutron scattering techniques, is related to the development of methods, concepts and devices that drive, or are inspired by, emerging studies at this energy scale. Electron volt spectrometers have undergone continuous improvements since the construction of the first prototype instruments, but in the last decade major breakthroughs have been accomplished in terms of resolution and counting statistics, leading, for example, to the direct measurement of the proton 3-D Born–Oppenheimer potential in any material, or to quantitatively probe nuclear quantum effects in hydrogen bonded systems. This paper reports on the most effective methods and concepts for energy analysis and detection, as well as devices for the optimization of electron volt spectrometers for different applications. This is set in the context of the progress made up to date in instrument development. Starting from early stages of development of the technique, particular emphasis will be given to the Vesuvio eV spectrometer at the ISIS neutron source, the first spectrometer where extensive scientific, as well as research and development programmes have been carried out. The potential offered by this type of instrumentation, from single particle excitations to momentum distribution studies, is then put in perspective into the emerging fields of eV spectroscopy applied to cultural heritages and neutron irradiation effects in electronics. - Highlights: ► Neutron spectrometers at eV energies. ► Methods and techniques for eV neutrons counting at spallation sources. ► Scattering, imaging and radiation hardness tests with multi-eV neutrons.

  16. An X-ray photoelectron spectroscopy study of the products of the interaction of gaseous IrF6 with fine UO2F2

    Directory of Open Access Journals (Sweden)

    Prusakov Vladimir N.

    2007-01-01

    Full Text Available Nuclear fuel reprocessing by fluorination, a dry method of regeneration of spent nuclear fuel, uses UO2F2 for the separation of plutonium from gaseous mixtures. Since plutonium requires special treatment, IrF6 was used as a thermodynamic model of PuF6. The model reaction of the interaction of gaseous IrF6 with fine UO2F2 in the sorption column revealed a change of color of the sorption column contents from pale-yellow to gray and black, indicating the formation of products of such an interaction. The X-ray photoelectron spectroscopy study showed that the interaction of gaseous IrF6 with fine UO2F2 at 125 °C results in the formation of stable iridium compounds where the iridium oxidation state is close to Ir3+. The dependence of the elemental compositions of the layers in the sorption column on the penetration depth of IrF6 was established.

  17. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  18. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  19. Resequencing IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children

    Science.gov (United States)

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (approx. 14.5 kb), were bidirectionally sequenced for single nucleotide...

  20. ZnIr2O4: An efficient photocatalyst with Rashba splitting

    KAUST Repository

    Singh, Nirpendra

    2013-11-01

    Semiconductor-based photocatalysts nowadays are of central interest for the splitting of water into hydrogen and oxygen. However, the efficiency of the known materials is small for direct utilization of the solar energy. Using first-principles calculations, we show that ZnIr2O4 can overcome this shortage. Modified Becke-Johnson calculations give an indirect band of 2.25 eV, which can be reduced to the visible energy range by S doping. For 25% S doping we find a direct band gap of 1.25 eV and a Rashba spin splitting of 220 meV Å. The valence band edge potential is 2.89 V against the standard hydrogen electrode, which is sufficient for photocatalytic water oxidation and pollutant degradation. The optical absorption of S-doped ZnIr2O4 is strongly enhanced, making the material an efficient photocatalyst for visible light. © 2013 EPLA.

  1. Methane measurement by the Pioneer Venus large probe neutral mass spectrometer

    Science.gov (United States)

    Donahue, T. M.; Hodges, R. R., Jr.

    1992-12-01

    The Pioneer Venus Large Probe Mass Spectrometer detected a large quantity of methane as it descended below 20 km in the atmosphere of Venus. Terrestrial methane and Xe-136, both originating in the same container and flowing through the same plumbing, were deliberately released inside the mass spectrometer for instrumental reasons. However, the Xe-136 did not exhibit behavior similar to methane during Venus entry, nor did CH4 in laboratory simulations. The CH4 was deuterium poor compared to Venus water and hydrogen. While the inlet to the mass spectrometer was clogged with sulfuric acid droplets, significant deuteration of CH4 and its H2 progeny was observed. Since the only source of deuterium identifiable was water from sulfuric acid, we have concluded that we should correct the HDO/H2O ratio in Venus water from 3.2 x 10-2 to (5 plus or minus 0.7) x 10-2. When the probe was in the lower atmosphere, transfer of deuterium from Venus HDO and HD to CH4 can account quantitatively for the deficiencies recorded in HDO and HD below 10 km, and consequently, the mysterious gradients in water vapor and hydrogen mixing ratios we have reported. The revision in the D/H ratio reduces the mixing ratio of water vapor (and H2) reported previously by a factor of 3.2/5. We are not yet able to say whether the methane detected was atmospheric or an instrumental artifact. If it was atmospheric, its release must have been episodic and highly localized. Otherwise, the large D/H ratio in Venus water and hydrogen could not be maintained.

  2. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    Science.gov (United States)

    Pitt, Joseph; Le Breton, Michael; Allen, Grant; Percival, Carl; Gallagher, Martin; Bauguitte, Stephane; O'Shea, Sebastian; Muller, Jennifer; Zahniser, Mark; Pyle, John; Palmer, Paul

    2016-04-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  3. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim Lütken; Dubash, Taronish; Drainas, Alexandros P

    2017-01-01

    overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate...... intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer....

  4. Magnetocaloric effect in Sr2CrIrO6 double perovskite: Monte Carlo simulation

    Science.gov (United States)

    El Rhazouani, O.; Slassi, A.; Ziat, Y.; Benyoussef, A.

    2017-05-01

    Monte Carlo simulation (MCS) combined with the Metropolis algorithm has been performed to study the magnetocaloric effect (MCE) in the promising double perovskite (DP) Sr2CrIrO6 that has not so far been synthetized. This paper presents the global magneto-thermodynamic behavior of Sr2CrIrO6 compound in term of MCE and discusses the behavior in comparison to other DPs. Thermal dependence of the magnetization has been investigated for different values of reduced external magnetic field. Thermal magnetic entropy and its change have been obtained. The adiabatic temperature change and the relative cooling power have been established. Through the obtained results, Sr2CrIrO6 DP could have some potential applications for magnetic refrigeration over a wide temperature range above room temperature and at large magnetic fields.

  5. Study of fluorine doped (Nb,Ir)O{sub 2} solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadakia, Karan Sandeep [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Park, Sung Kyoo [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-10-15

    Graphical abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of nominal composition (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb{sub 1−x}Ir{sub x})O{sub 2} with an optimal composition (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO{sub 2} and nanostructured in-house chemically synthesized IrO{sub 2}. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F exhibits superior electrochemical activity than pure IrO{sub 2}. • Stability of the (Nb,Ir)O{sub 2}:10F nanomaterials is comparable to pure (Nb,Ir)O{sub 2}. • High surface area F doped (Nb,Ir)O{sub 2} are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F (∼100 m{sup 2}/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb{sub 2}O{sub 5} and 10 wt.% F doped Nb{sub 2}O{sub 5} powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O{sub 2} and 10 wt.% F doped (Nb,Ir)O{sub 2} [(NbIr)O{sub 2}:10F] electro-catalysts by soaking in IrCl{sub 4} followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb{sub 0.75}Ir

  6. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre-formed Ir metal particles. These solids possess promising properties, in terms of selectivity, as catalysts for propane dehydrogenation to propene. Detailed CO-adsorption DRIFTS, XANES and EXAFS characterization studies have been performed on these systems in order to compare the structural and electronic evolution of systems in relation to the nature of the Ir-Sn bonds present in the precursor compounds and to propose a structural model of the Ir-Sn species present at the silica surface of the final catalyst. © 2013 The Royal Society of Chemistry.

  7. Keramzito gamyba naudojant nesipučiantį molį, sapropelį ir glicerolį

    Directory of Open Access Journals (Sweden)

    Giedrius VAICKELIONIS

    2011-09-01

    Full Text Available Šio darbo tikslas - ištirti keraminių plytų ir čerpių gamybai netinkančio, silpnai pučiančiosi (išsipūtimo koeficientas Kp = 2 - 2,5 ir nesipučiančio (Kp < 2 molio panaudojimo keramzito gamybai galimybes, molio pūtimuisi gerinti dedant šių organinių priedų: biodyzelino gamybos atliekos - glicerolio, medienos drožlių plokščių pjuvenų ir organinio sapropelio. Keramzito izoliacinės savybės gerėja didėjant išdegto molio šukės akytumui. Kad molis pūstųsi geriau, į jį dažnai įmaišoma organinių priedų. Tirtas Krūnos telkinio III sluoksnio karbonatingasis molis be priedų netinka keramzito gamybai dėl per mažo išsipūtimo koeficiento (Kp = 1,25. Tam tikslui į išdžiovintą smulkiai maltą molį buvo įmaišoma įvairūs kiekiai (0 %, 1 %, 2 %, 3 %, 5 %, 7 % ir 10 % organinių atliekų. Granulės gamintos su vienu arba keliais pasirinktais degimo metu dujas išskiriančiais priedais. Suformuotos irdžiovintos granulės degtos skirtingose temperatūrose iki jų apsilydimo temperatūros - nuo 1090 °C iki 1170 °C. Nustatytas išdegtų granulių pūtimasis ir vandens įmirkis. Tyrimų metu nustatyta, kad organinės atliekos yra efektyvus priedas, didinantis molio struktūros akytumą. Be to, molyje neturi būti daugiau kaip 5 % sapropelio, rekomenduojamas glicerolio kiekis yra 1 % - 3 %, optimalus pjuvenų kiekis - 3 %. Bandinių, pagamintų su nurodytais priedų kiekiais ir išdegtų skirtingose temperatūrose, vandens įmirkis neviršija 15 %.http://dx.doi.org/10.5755/j01.ms.17.3.600

  8. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    Science.gov (United States)

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  9. Ground based THz Spectroscopy of Obscured Starbursts in the Early Universe enabled by the 2nd generation Redshift (z) & Early Universe Spectrometer (ZEUS-2)

    Science.gov (United States)

    Vishwas, Amit; Stacey, Gordon; Nikola, Thomas; Ferkinhoff, Carl; Parshley, Stephen; Schoenwald, Justin; Lamarche, Cody James; Higdon, James; Higdon, Sarah; Brisbin, Drew; Güesten, Rolf; Weiss, Axel; Menten, Karl; Irwin, Kent; Cho, Hsiao-Mei; Niemack, Michael; Hilton, Gene; Hubmayr, Johannes; Amiri, Mandana; Halpern, Mark; Wiebe, Donald; Hasselfield, Matthew; Ade, Peter; Tucker, Carole

    2018-01-01

    Galaxies were surprisingly dusty in the early Universe, with more than half of the light emitted from stars being absorbed by dust within the system and re-radiated into far infrared (FIR, ~50-150μm) wavelengths. Dusty star forming galaxies (DSFGs) dominate the co-moving star formation rate density of the Universe that peaks around redshift, z~2, making it compelling to study them in rest frame FIR bands. From galaxies at z > 1, the FIR line emission from abundant ions like [O III], [C II] and [N II], are redshifted into the short sub-mm telluric windows. My thesis work is based on building and deploying the 2nd Generation Redshift (z) and Early Universe Spectrometer (ZEUS-2), a long-slit, echelle grating spectrometer optimized to study broad (Δv = 300km/s) spectral lines from galaxies in the 200-650µm telluric windows using TES bolometers. These far-IR lines being extinction free and major coolants of the gas heated by (young) massive stars, are powerful probes of the physical conditions of the gas and the stellar radiation field. I present results from our survey of the [O III] 88µm line in galaxies at redshift, z ~ 2.8 to 4.6, with ZEUS-2 at the Atacama Pathfinder Experiment (APEX) Telescope. To interpret our observations along with ancillary data from optical to radio facilities, we apply photoionization models for HII regions and Photo Dissociation Region (PDR) models and confirm that the galaxies host substantial ongoing obscured star formation. The presence of doubly ionized oxygen suggests hard radiation fields and hence, elevated ionization parameters that can only be accounted for by a large population of massive stars formed during the ongoing starburst, that contribute a large fraction of the infrared luminosity. This study highlights the use of FIR line emission to trace the assembly of current day massive galaxies, conditions of star formation and details of their stellar populations. The construction and operation of ZEUS-2 were funded by NSF ATI

  10. ZnIr2O4: An efficient photocatalyst with Rashba splitting

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2013-01-01

    spin splitting of 220 meV Å. The valence band edge potential is 2.89 V against the standard hydrogen electrode, which is sufficient for photocatalytic water oxidation and pollutant degradation. The optical absorption of S-doped ZnIr2O4 is strongly

  11. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    Science.gov (United States)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  12. Platinum Activated IrO2/SnO2 Nanocatalysts and Their Electrode Structures for High Performance Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2013-01-01

    of the introduction of Pt on the properties of the composites was explored by X-ray diffraction (XRD) and electrochemical test. Interaction between the introduced Pt nanoparticles and the bulk IrO2/SnO2 was evidenced in XRD. Electrochemical characterization showed the enhanced activitiy for the Pt activated IrO2/SnO2...

  13. Study of preshower in the PANDA target spectrometer

    International Nuclear Information System (INIS)

    Dutta, Kamal; Kalita, Kushal; Suzuki, K.; Steinschaden, D.; Roy, B.J.

    2015-01-01

    PANDA (antiProton ANnihilation at DArmstdt) is one of the major projects at FAIR, GSI, Germany. The main objective of this experiment is to study the fundamental questions of hadron physics and QCD in pp¯ annihilation using high intensity cooled anti-proton beams with momenta between 1.5 GeV/c and 15 GeV/c. To achieve high momentum resolution and full solid angle coverage, the PANDA detector is split in to two parts: target spectrometer and forward spectrometer. The target spectrometer is a complex detector consisting of several subsystems surrounding the interaction point. It is surrounded by a 2 T superconducting solenoid magnet. A Micro Vertex Detector (MVD), close to interaction point, detects secondary vertices of D and Hyperon decays. The Straw Tube Tracker (STT) is the central tracking system around the MVD. A cherenkov counter named DIRC (Detection of Internally Reflected Cherenkov light), provides π/K separation for particle momenta up to 3.5 GeV/c. The barrel Time-of-Flight (TOF) detector, consists of plastic scintillator tiles with a time resolution of 100 ps. It is used to identify particles of momentum below cherenkov threshold

  14. UNTANGLING THE NEAR-IR SPECTRAL FEATURES IN THE PROTOPLANETARY ENVIRONMENT OF KH 15D

    Energy Technology Data Exchange (ETDEWEB)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.; Cauley, P. Wilson [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Leggett, S. K., E-mail: nicole.arulanantham@colorado.edu [Gemini Observatory (North), Hilo, HI 96720 (United States)

    2017-01-10

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H{sub 2} emission features associated with the inner part of the jet show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μ m size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 M {sub J}, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.

  15. Detector system of the first focal plane of the spectrometer SMART at RIKEN

    International Nuclear Information System (INIS)

    Okamura, H.; Izshida, S.; Sakamoto, N.; Otsu, H.; Uesaka, T.; Wakasa, T.; Satou, Y.; Sakai, H.; Ichihara, T.

    1998-01-01

    A detector system of the first focal plane of SMART, the 135 MeV/u high-resolution spectrometer at RIKEN accelerator research facility, is described. It consists of a pair of multi-wire drift chambers and a trigger scintillator hodoscope contained in a He-filled detector box. A major subject using this system is the measurement of the (d, 2 He) reaction making the most of its large angular and momentum acceptances. Without seriously sacrificing the detection efficiency, reasonably good energy and angular resolutions for 2 He, 460 keV and 9 mrad (FWHM), respectively, have been achieved after optimizing the optics property of the spectrometer. (orig.)

  16. The new JET 2.5-MeV neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Belle, P.v.; Grosshoeg, G.; Hoek, M.; Jarvis, O.N.; Olsson, M.; Sadler, G.

    1992-01-01

    A major upgrade of the JET 2.5-MeV neutron time-of-flight spectrometer has been completed. The improvement has permitted ion temperature measurements for Maxwellian deuterium plasmas with T i >4 keV to be obtained in 0.5-s intervals. By combining observations of neutron and x-ray energy spectra with studies of γ-ray emission from reactions between fast deuterons and impurities, the effects of ICRF heating on the deuterium energy distribution have been studied. The time evolution of neutron energy spectra from deuterium-beam heated deuterium plasmas is illustrated and a method for evaluating the ion temperature from such sequences is indicated. Furthermore, the spectrometer has shown stable performance during high neutron fluxes

  17. Identifying Residual Structure in Intrinsically Disordered Systems : A 2D IR Spectroscopic Study of the GVGXPGVG Peptide

    NARCIS (Netherlands)

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-01-01

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides.

  18. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    NARCIS (Netherlands)

    Lessing, J.; Roy, S.; Reppert, M.; Baer, M.; Marx, D.; Jansen, T.L.Th.A.; Knoester, J.; Tokmakoff, A.

    2012-01-01

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides.

  19. 2-D and 3-D phosphotungstate-based TM-Ln heterometallic derivatives constructed from dimeric [Ln({alpha}-PW{sub 11}O{sub 39}){sub 2}]{sup 11-} fragments and copper-organic complex linkers

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Sensen [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhao, Junwei, E-mail: zhaojunwei@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen, Lijuan [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Basic Experiment Teaching Center, Henan University, Kaifeng, Henan 475004 (China); Li, Yuye; Zhang, Jingli; Li, Yanzhou [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Niu, Jingyang, E-mail: jyniu@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2012-12-15

    Three organic-inorganic hybrid TM-Ln heterometallic phosphotungstates [Cu(dap){sub 2}(H{sub 2}O)][Cu(dap){sub 2}]{sub 3.5}[La({alpha}-HPW{sub 11}O{sub 39}){sub 2}]{center_dot}6H{sub 2}O (1) [Cu(dap){sub 2}(H{sub 2}O)]{sub 0.5}[Cu(dap){sub 2}]{sub 4}[Nd({alpha}-HPW{sub 11}O{sub 39}){sub 2}]{center_dot}4H{sub 2}O (2) and [Cu(dap){sub 2}(H{sub 2}O)]{sub 2}[Cu(dap){sub 2}]{sub 3.5}[Eu({alpha}-PW{sub 11}O{sub 39}){sub 2}]{center_dot}6H{sub 2}O (3) (dap=1,2-diaminopropane) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR spectra, optical diffuse reflectance spectra, powder X-ray diffraction (PXRD), thermogravimetric (TG) analyses and single-crystal X-ray diffraction. Their common features are that 1-3 all consist of asymmetric sandwich-type subunits [Ln({alpha}-PW{sub 11}O{sub 39}){sub 2}]{sup 11-} and [Cu(dap){sub 2}]{sup 2+} bridges. Both 1 and 2 display the 2-D (4,4)-topological sheets whereas 3 exhibits the 3-D 5-connected (4{sup 6}{center_dot}6{sup 4}) topological framework. The magnetic properties of 2 and 3 and the luminescence performance of 3 have been measured. - Graphical Abstract: Three TM-Ln heterometallic phosphotungstates 1-3 have been synthesized and characterized by elemental analyses, IR spectra, optical diffuse reflectance spectra, X-ray diffraction, thermogravimetric analyses magnetic susceptibility and luminescent properties. Highlights: Black-Right-Pointing-Pointer Cu{sup II}-Ln{sup III} heterometallic polyoxometalates. Black-Right-Pointing-Pointer 2-D and 3-D organic-inorganic hybrid phosphotungstates. Black-Right-Pointing-Pointer 2-D and 3-D structures consisting of Cu{sup II}-Ln{sup III} heterometals.

  20. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  1. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  2. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  3. Ultimate realistic losses of ZrF/sub 4/ based IR fibres

    International Nuclear Information System (INIS)

    France, P.W.; Carter, S.F.; Moore, M.W.; Williams, J.R.

    1986-01-01

    An estimation has been made of the minimum loss that might be expected in ZrF/sub 4/ based IR fibre taking into account extrinsic absorption losses as well as the intrinsic loss mechanisms associated with the IR edge and Rayleigh scattering. The results suggest that an overall loss of approximately 0.03 dB/km might be expected at 2.56 μm, a factor of three higher than the intrinsic loss and a factor of seven lower than overall loss in a typical silica fibre

  4. New infrared observations of IRS 1, IRS 3, and the adjacent nebula in the OMC-2 cluster

    International Nuclear Information System (INIS)

    Pendelton, Y.; Werner, M.; Dinerstein, H.

    1984-01-01

    Recent reports show that near infrared reflection nebulae are often observed around embedded protostellar objects. New observations are here reported of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2). It has been determined that the asymmetric distribution of the extended emission seen about IRS1 is in fact another infrared reflection nebula. Observations of near infrared polarimetry, photometry, and spectrophotometry were carried out at the NASA Infrared Telescope Facility October 1982 and January 1983. (author)

  5. Competing reaction channels in IR-laser-induced unimolecular reactions

    International Nuclear Information System (INIS)

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO 2 laser was used as the excitation source in all experiments. The dissociation of D 2 CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D 2 CO. MPD yield shows a near cubic dependence in pure D 2 CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 μm ir fluorescence from D 2 CO is proportional to the square of the D 2 CO pressure in pure D 2 CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D 2 CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm 2 at 946.0 cm -1 . The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D 2 CO. In H 2 CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF 4 - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel

  6. Synthesis, molecular structure, FT-IR and XRD investigations of 2-(4-chlorophenyl)-2-oxoethyl 2-chlorobenzoate: a comparative DFT study.

    Science.gov (United States)

    Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal

    2014-04-24

    2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Science.gov (United States)

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  8. Intensity calibrations of the broadband VUV impurity survey spectrometer - KT2

    International Nuclear Information System (INIS)

    Hawkes, N.; Peacock, N.; Lawson, K.

    1991-08-01

    Since first becoming operational in 1984 the survey spectrometer, KT2, has undergone slight modifications on the Joint European Torus Joint Undertaking (JET), and following a failure at one point the original spectrometer-'A', was exchanged for an almost identical instrument-'B'. Periodically, calibrations have been performed on the diagnostic using the diverse techniques of charge exchange branching ratios, deuterium lamp transfer irradiance standard, branching ratios from visible transitions, VUV transfer radiance standard and model calculations of line intensities in low Z ions from JET. Comparisons have been made with the theoretical instrument performance and with the prototype instruments of similar construction. This report summarises these various calibrations, carried out by the Culham Task Agreement team, until the end of 1990 when the responsability for the operation of the diagnostic was handed over to JET staff. (author)

  9. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  10. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    International Nuclear Information System (INIS)

    Homayoon, Zahra

    2014-01-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO + (H 2 O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO + (H 2 O) and NO + (D 2 O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO + (H 2 O) and NO + (D 2 O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO + (H 2 O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing

  11. New solar broad-band hard X-ray spectrometer: first results

    Czech Academy of Sciences Publication Activity Database

    Fárník, František; Garcia, H.; Karlický, Marian

    2001-01-01

    Roč. 201, č. 2 (2001), s. 357-372 ISSN 0038-0938 R&D Projects: GA ČR GA205/00/1726; GA AV ČR IAA3003003; GA AV ČR IBS1003006; GA AV ČR KSK2043105; GA AV ČR IAA303108 Institutional research plan: CEZ:AV0Z1003909 Keywords : X-ray * spectrometer * solar flare * radio emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  12. Electrocatalytic properties of Ti/Pt–IrO2 anode for oxygen evolution in PEM water electrolysis

    DEFF Research Database (Denmark)

    Ye, Feng; Li, Jianling; Wang, Xindong

    2010-01-01

    A novel Pt–IrO2 electrocatalyst was prepared using the dip-coating/calcinations method on titanium substrates. Titanium electrodes coated with oxides were investigated for oxygen evolution. Experimental results showed that Ti/Pt–IrO2 electrode containing 30mol% Pt in the coating exhibited signifi...

  13. Charge partitioning and anomalous hole doping in Rh-doped Sr2IrO4

    Energy Technology Data Exchange (ETDEWEB)

    Chikara, S.; Fabbris, G.; Terzic, J.; Cao, G.; Khomskii, D.; Haskel, D.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2IrO4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J(eff) = 1/2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1-x Rh-x O-4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.

  14. Synthesis and Structural Characterization of [Ir4(m-CO(CO7{m4-h3-Ph2PC(HC(PhPCBut}(m-PPh2]: Alkyne-Phosphaalkyne Coupling and Formation of a Novel 2-phosphabutadienylphosphine Ligand

    Directory of Open Access Journals (Sweden)

    Araujo Maria Helena

    1998-01-01

    Full Text Available Reaction of [Ir4(mu-H(CO9(Ph2PCºCPh(mu-PPh2] 1 with PºCBu t in CH2Cl2, at 35 °C, for 4 h yields the novel compound [Ir4(mu-CO(CO7{mu4-eta³-Ph2PC(HC(PhPCBu t}(mu-PPh2] 2, which contains the 2-phosphabutadienylphosphine chain. Compound 2 is also formed upon thermolysis of [Ir4(CO10(Ph2PCºCPh(PPh2H] 3 in the presence of PºCBu t in thf, at 40 °C, for 48 h. Small amounts of [Ir4(mu-CO(CO7(mu3-eta²-HCCPh(mu-PPh22] 4 are always obtained from both reactions, because of the competing rates of the transformations of 1 and 3 into 4 and of their reactions with PºCBu t. Compound 2 was characterized by analytical and spectroscopic studies such as FAB ms, ¹H, 31P,13C, 2D31P-¹H HETCOR, nOe difference and DEPT NMR experiments, which led to its formulation and established the coupling between the coordinated Ph2PCºCPh and PºCBu t and the migration of the hydride to the Calpha of the Ph2PCºCPh ligand. However, it was impossible to establish unambiguously if cleavage of the P-Csp bond of the Ph2PCºCPh ligand had occurred and the mode of interaction of the organophosphorus chain. An X-ray diffraction study of compound 2 established a butterfly arrangement of iridium atoms with the new ligand interacting with the metal framework via four sigma bonds and the PPh2 phosphorus lone pair.

  15. TECHNICAL DESIGN NOTE: Currency verification by a 2D infrared barcode

    Science.gov (United States)

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Simonetti, Carla

    2010-10-01

    Nowadays all the National Central Banks are continuously studying innovative anti-counterfeiting systems for banknotes. In this note, an innovative solution is proposed, which combines the potentiality of a hylemetric approach (methodology conceptually similar to biometry), based on notes' intrinsic characteristics, with a well-known and consolidated 2D barcode identification system. In particular, in this note we propose to extract from the banknotes a univocal binary control sequence (template) and insert an encrypted version of it in a barcode printed on the same banknote. For a more acceptable look and feel of a banknote, the superposed barcode can be stamped using IR ink that is visible to near-IR image sensors. This makes the banknote verification simpler.

  16. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.

    2005-01-01

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported

  17. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)]. E-mail: music@mch.rwth-aachen.de; Schneider, Jochen M. [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)

    2005-01-15

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported.

  18. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  19. Control and ad ustment system of the BIS-2 spectrometer by means of a minicomputer

    International Nuclear Information System (INIS)

    Eichner, G.; Aleev, A.N.; Aref'ev, V.A.

    1980-01-01

    Control and adjustment system of the BIS-2 spectrometer apparatus is desribed. The work was intented to adjust time losses during the apparatus preparation and obtaing detailed information on the operation of basic parts of the spectrometer. To solve this problem the program-controlled electronic circuits working on-line with the TPA-1001/i computer were used and corresponding software was created. The flexibility and comparative simplicity of program designing was achieved by using the combination of FOKAL and SLAG1 programming languages. The examples of programs serving for the apparatus adjustment are given. The use of this control and adjustment system allows one to accelerate the preparation of the spectrometer for operation. The hardware-software complex can be used for various setups of experimental apparatus

  20. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  1. Is HOMA-IR a potential screening test for non-alcoholic fatty liver disease in adults with type 2 diabetes?

    Science.gov (United States)

    Gutierrez-Buey, Gala; Núñez-Córdoba, Jorge M; Llavero-Valero, María; Gargallo, Javier; Salvador, Javier; Escalada, Javier

    2017-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the commonest hepatic disease in many parts of the World, with particularly high prevalence in patients with type 2 diabetes (T2DM). However, a good screening test for NAFLD in T2DM has not been established. Insulin resistance (IR) has been associated with NAFLD, and homeostatic model assessment of insulin resistance (HOMA-IR), a good proxy for IR, may represent an affordable predictive test which could be easily applied in routine clinical practice. We aimed to evaluate the diagnostic accuracy of HOMA-IR for NAFLD in T2DM and sought to estimate an optimal cut-off value for discriminating NAFLD from non-NAFLD cases. We conducted a retrospective analysis of 56 well-controlled patients with T2DM (HbAc1HOMA-IR and NAFLD was found (OR 1.5; 95% CI: 1.03-2.1; p=0.033), independently of transaminases, fat percentage, BMI and triglyceride levels. The AUROC curve of HOMA-IR for identifying NAFLD was 80.7% (95% CI: 68.9-92.5). A value of HOMA-IR of 4.5 was estimated to be an optimal threshold for discriminating NAFLD from non-NAFLD cases. HOMA-IR is independently associated with the presence of NAFLD in adults with T2DM, and might potentially be applied in clinical practice as a screen for this condition. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  2. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    Science.gov (United States)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  3. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.

    2007-08-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  4. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.; Kaellne, J.; Weiszflog, M.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Hellesen, C.; Ronchi, E.; Sjoestrand, H.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Sousa, J.; Popovichev, S.

    2008-01-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  5. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A. (and others)

    2007-08-15

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.

  6. Kinetic study of formic acid oxidation on Ti/IrO{sub 2} electrodes prepared using the spin coating deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, Stephane, E-mail: stephane.fierro@epfl.c [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, ISIC-EPFL, CH-1015 Lausanne (Switzerland); Comninellis, Christos [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, ISIC-EPFL, CH-1015 Lausanne (Switzerland)

    2010-09-30

    In the first part of this paper, IrO{sub 2} electrodes produced by thermal decomposition of H{sub 2}IrCl{sub 6} precursor were manufactured using the spin coating deposition technique, where centrifugal forces spread the precursor solution with simultaneous evaporation of the solvent on the rotating Ti substrate. It was found using this technique, that it is possible to obtain thin and uniform IrO{sub 2} coatings with controlled loadings. The influence of the concentration of iridium salt in the precursor solution (c{sub 0}) as well as the influence of the rotation speed at which the substrate spins ({omega}) on the IrO{sub 2} loading have been studied using voltammetric charge measurements. From these results, a simple relation has been proposed for the estimation of the IrO{sub 2} loading for a given c{sub 0} and {omega}. In the second part of this paper and from measurements performed using different IrO{sub 2} loadings and formic acid concentrations, the kinetic parameters of the oxidation of formic acid have been quantitatively determined using a model that involves the redox couple IrO{sub 3}/IrO{sub 2} as mediator of this reaction. Furthermore, using the kinetic parameters obtained together with the Nernst equation and the I-V curves of the supporting electrolyte (1 M HClO{sub 4}), theoretical I-V curves could be constructed for different concentrations of formic acid and different IrO{sub 2} loadings.

  7. Theoretical study, and construction, of a spherical electrostatic beta spectrometer; Etude theorique et realisation d'un spectrometre beta electrostatique spherique

    Energy Technology Data Exchange (ETDEWEB)

    Moret, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-03-15

    After a literature survey showing the importance of an electrostatic spectrometer with spherical electrodes for studying disintegration processes, the theoretical characteristics of such an apparatus are derived (determination of the trajectory equations calculation of the transmission and of the resolving power the case of a point source and of an extended source). The apparatus built as a result of these calculations is described. The electrostatic field distribution outside the electrodes is derived. As well as giving electron spectra ({beta} disintegration and conversion electrons) the apparatus make s it possible to study e-{gamma}, e-{beta}, e-e-{gamma} and e-e-{beta} coincidences. In the last part are given experimental characteristics and the results of the first measurements made on conversion electron spectra ({sup 161}Tb, {sup 151}Pm, {sup 155}Eu) and on coincidences ({sup 170}Tm) using this spectrometer. (author) [French] Apres une etude bibliographique montrant l'interet que presente un spectrometre electrostatique a electrodes spheriques pour l'etude des schemas de desintegration, l'auteur etablit les caracteristiques theoriques d'un tel appareil (determination de l'equation des trajectoires calcul de la transmission et du pouvoir de resolution cas d'une source ponctuelle et d'une source etendue). On decrit l'appareil realise d'apres ces calculs. On etablit la repartition du champ electrostatique a l'exterieur des electrodes. Outre le trace des spectres d'electrons (desintegration {beta} et electrons de conversion), l'appareil permet l'etude de coincidences e-{gamma}, e-{beta}, e-e-{gamma} and e-e-{beta}. Dans la derniere partie, sont donnees les caracteristiques experimentales et les premieres etudes de spectres d'electrons de conversion ({sup 161}Tb, {sup 151}Pm, {sup 155}Eu) et de coincidences ({sup 170}Tm) faites a l'aide de ce spectrometre. (auteur)

  8. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    Science.gov (United States)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  9. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  10. Absolute linestrengths in the H2O2 nu6 band

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  11. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  12. On the separation of enantiomers of 1,1,1,2-tetrafluoroiodoethane by IR multiphoton excitation

    International Nuclear Information System (INIS)

    Pochert, J.; Quack, M.; Seyfang, G.

    2002-01-01

    The first attempt to separate enantiomers of chiral molecules using IR-multiphoton excitation with circularly polarized light is reported. 1,1,1,2-Tetrafuoroiodoethane CF 3 CHFI has been chosen as its IR-spectroscopy and its IR-photochemistry is well characterized by our previous work. A theoretical model based on a master equation is presented to predict the enrichment factor. The experimental results show that the experimental sensitivity must be improved to reach the limit of the theoretical prediction. (author)

  13. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  14. Electrooxidation as the anaerobic pre-treatment of fats: oleate conversion using RuO2 and IrO2 based anodes.

    Science.gov (United States)

    Gonçalves, M; Alves, M M; Correia, J P; Marques, I P

    2008-11-01

    Electrochemical treatment of oleate using RuO2 and IrO2 type dimensionally stable anodes in alkaline medium was performed to develop a feasible anaerobic pre-treatment of fatty effluents. The results showed that the pre-treated solutions over RuO2 were faster degraded by anaerobic consortium than the raw oleate solutions or the electrolysed solutions using IrO2. In batch experiments carried out with pre-treated solutions over RuO2 (100-500mg/L), no lag phases were observed before the methane production onset. On the other hand, raw oleate and pre-treated oleate over IrO2 had originated lag phases of 0-140 and 0-210h, respectively. This study demonstrated that it is advantageous to apply the electrochemical treatment carried out on the RuO2 type DSA in order to achieve a faster biodegradation of lipid-containing effluent and consequently to obtain a faster methane production.

  15. Neutron time-of-flight counters and spectrometers for diagnostics of burning fusion plasmas

    International Nuclear Information System (INIS)

    Elevant, T.; Olsson, M.

    1991-02-01

    Experiment with burning fusion plasmas in tokamaks will place particular requirements on neutron measurements from radiation resistance-, physics-, burn control- and reliability considerations. The possibility to meet these needs by measurements of neutron fluxes and energy spectra by means of time-of-flight techniques are described. Reference counters and spectrometers are proposed and characterized with respect to efficiency, count-rate capabilities, energy resolution and tolerable neutron and γ-radiation background levels. The instruments can be used in a neutron camera and are capable to operate in collimated neutron fluxes up to levels corresponding to full nuclear output power in the next generation of experiments. Energy resolutions of the spectrometers enables determination of ion temperatures from 3 (keV) through analysis of the Doppler broadening. Primarily, the instruments are aimed for studies of 14 (MeV) neutrons produced in (d,t)-plasmas but can, after minor modifications, be used for analysis of 2.45 (MeV) neutrons produced in (d,d)-plasma. (au) (33 refs.)

  16. Pulsed coherent spectrometer of nuclear magnetic and nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Karnachev, A.S.; Solov'ev, E.E.

    1996-01-01

    The spectrometer intended for studies on solid bodies was created on the basis of the X1-48 device for investigation of amplitude-frequency characteristics with the frequency range of 5-100 MHz, the receiver sensitivity by the signal-noise ratio at the outlet of 12 dB not worse than 0.5 μV and the feed-up capacity up to 80 W. The X1-48 minimal remodeling made it possible to use it in the spectrometer system as a signal feed-up source and measurer of the amplitude-frequency characteristic of the spectrometer receiver tract. 12 refs., 11 figs

  17. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    Science.gov (United States)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  18. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Directory of Open Access Journals (Sweden)

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  19. Healthy Chilean Adolescents with HOMA-IR2.6 Have Increased Cardiometabolic Risk: Association with Genetic, Biological, and Environmental Factors

    Directory of Open Access Journals (Sweden)

    R. Burrows

    2015-01-01

    Full Text Available Objective. To determine the optimal cutoff of the homeostasis model assessment-insulin resistance (HOMA-IR for diagnosis of the metabolic syndrome (MetS in adolescents and examine whether insulin resistance (IR, determined by this method, was related to genetic, biological, and environmental factors. Methods. In 667 adolescents (16.8 ± 0.3 y, BMI, waist circumference, glucose, insulin, adiponectin, diet, and physical activity were measured. Fat and fat-free mass were assessed by dual-energy X-ray absorptiometry. Family history of type 2 diabetes (FHDM was reported. We determined the optimal cutoff of HOMA-IR to diagnose MetS (IDF criteria using ROC analysis. IR was defined as HOMA-IR values above the cutoff. We tested the influence of genetic, biological, and environmental factors on IR using logistic regression analyses. Results. Of the participants, 16% were obese and 9.4 % met criteria for MetS. The optimal cutoff for MetS diagnosis was a HOMA-IR value of 2.6. Based on this value, 16.3% of participants had IR. Adolescents with IR had a significantly higher prevalence of obesity, abdominal obesity, fasting hyperglycemia, and MetS compared to those who were not IR. FHDM, sarcopenia, obesity, and low adiponectin significantly increased the risk of IR. Conclusions. In adolescents, HOMA-IR2.6 was associated with greater cardiometabolic risk.

  20. Healthy Chilean Adolescents with HOMA-IR2.6 Have Increased Cardiometabolic Risk: Association with Genetic, Biological, and Environmental Factors.

    Science.gov (United States)

    Burrows, R; Correa-Burrows, P; Reyes, M; Blanco, E; Albala, C; Gahagan, S

    2015-01-01

    To determine the optimal cutoff of the homeostasis model assessment-insulin resistance (HOMA-IR) for diagnosis of the metabolic syndrome (MetS) in adolescents and examine whether insulin resistance (IR), determined by this method, was related to genetic, biological, and environmental factors. In 667 adolescents (16.8 ± 0.3 y), BMI, waist circumference, glucose, insulin, adiponectin, diet, and physical activity were measured. Fat and fat-free mass were assessed by dual-energy X-ray absorptiometry. Family history of type 2 diabetes (FHDM) was reported. We determined the optimal cutoff of HOMA-IR to diagnose MetS (IDF criteria) using ROC analysis. IR was defined as HOMA-IR values above the cutoff. We tested the influence of genetic, biological, and environmental factors on IR using logistic regression analyses. Of the participants, 16% were obese and 9.4 % met criteria for MetS. The optimal cutoff for MetS diagnosis was a HOMA-IR value of 2.6. Based on this value, 16.3% of participants had IR. Adolescents with IR had a significantly higher prevalence of obesity, abdominal obesity, fasting hyperglycemia, and MetS compared to those who were not IR. FHDM, sarcopenia, obesity, and low adiponectin significantly increased the risk of IR. In adolescents, HOMA-IR2.6 was associated with greater cardiometabolic risk.

  1. Coevaporation of Y, BaF2, and Cu utilizing a quadrupole mass spectrometer as a rate measuring probe

    International Nuclear Information System (INIS)

    Hudner, J.; Oestling, M.; Ohlsen, H.; Stolt, L.

    1991-01-01

    An ultrahigh vacuum coevaporator equipped with three sources for preparation of Y--BaF 2 --Cu--O thin films is described. Evaporation rates of Y, BaF 2 , and Cu were controlled using a quadrupole mass spectrometer operating in a multiplexed mode. To evaluate the method depositions have been performed using different source configurations and evaporation rates. Utilizing Rutherford backscattering spectrometry absolute values of the actual evaporation rates were determined. It was observed that the mass-spectrometer sensitivity is highest for Y, followed by BaF 2 (BaF + is the measured ion) and Cu. A partial pressure of oxygen during evaporation of Y, BaF 2 , and Cu affected mainly the rate of Y. It is shown that the mass spectrometer can be utilized to precisely control the film composition

  2. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  3. PFS: the Planetary Fourier Spectrometer for Mars Express

    Science.gov (United States)

    Formisano, V.; Grassi, D.; Orfei, R.; Biondi, D.; Mencarelli, E.; Mattana, A.; Nespoli, F.; Maturilli, A.; Giuranna, M.; Rossi, M.; Maggi, M.; Baldetti, P.; Chionchio, G.; Saggin, B.; Angrilli, F.; Bianchini, G.; Piccioni, G.; di Lellis, A.; Cerroni, P.; Capaccioni, F.; Capria, M. T.; Coradini, A.; Fonti, S.; Orofino, V.; Blanco, A.; Colangeli, L.; Palomba, E.; Esposito, F.; Patsaev, D.; Moroz, V.; Zasova, L.; Ignatiev, N.; Khatuntsev, I.; Moshkin, B.; Ekonomov, A.; Grigoriev, A.; Nechaev, V.; Kiselev, A.; Nikolsky, Y.; Gnedykh, V.; Titov, D.; Orleanski, P.; Rataj, M.; Malgoska, M.; Jurewicz, A.; Blecka, M. I.; Hirsh, H.; Arnold, G.; Lellouch, E.; Marten, A.; Encrenaz, T.; Lopez Moreno, J.; Atreya, S., Gobbi, P.

    2004-08-01

    The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is optimised for atmospheric studies, covering the IR range of 1.2-45 μm in two channels. The apodised spectral resolution is 2 cm-1, while the sampling is 1 cm-1. The FOV is about 2° for the short wavelength (SW) channel and 4° for the long wavelength (LW) channel, corresponding to spatial resolutions of 10 km and 20 km, respectively, from an altitude of 300 km. PFS will also provide unique data on the surface-atmosphere interaction and the mineralogical composition of the surface. It will be the first Fourier spectrometer covering 1-5 μm to orbit the Earth or Mars. The experiment has real-time onboard Fast Fourier Transform (FFT) in order to select the spectral range of interest for data transmission to ground. Measurement of the 15-μm CO2 band is very important. Its profile gives, via a complex temperature-profile retrieval technique, the vertical pressure temperature relation, which is the basis of the global atmospheric study. The SW channel uses a PbSe detector cooled to 200-220K, while the LW channel is based on a pyroelectric (LiTaO3) device working at room temperature. The interferogram is measured at every 150 nm displacement step of the corner cube retroreflectors (corresponding to 600 nm optical path difference) via a laser diode monochromatic interferogram (a sine wave), with the zero crossings controlling the double pendulum motion. PFS will operate for about 1.5 h around the pericentre of the orbit. With a measurement every 10 s, 600 measurements per orbit will be acquired, corresponding to 224 Mbit. Onboard compression will reduce it to 125 Mbit or less, depending on the allocated data volume per day. An important requirement is to observe at all local times in order to include night-side vertical temperature profiles. Total instrument mass is 31.2 kg.

  4. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  5. Application of laboratory and portable attenuated total reflectance infrared spectroscopic approaches for rapid quantification of alpaca serum immunoglobulin G.

    Directory of Open Access Journals (Sweden)

    Ibrahim Elsohaby

    Full Text Available The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR spectroscopic approaches in combination with partial least squares regression (PLSR for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL, which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI in neonates. Serum samples (n = 175 collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set. Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for

  6. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra

  7. Compact Spectrometers Based on Linear Variable Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate a linear-variable spectrometer with an H2RG array. Linear Variable Filter (LVF) spectrometers provide attractive resource benefits – high optical...

  8. Study of charm production mechanisms at the Fermilab Tagged Photon Spectrometer: γBe yields D anti D x and γA yields psi x

    International Nuclear Information System (INIS)

    Nash, T.

    1987-03-01

    This paper describes recent work on charm photoproduction mechanisms based on data from Experiment 691 at the Fermilab Tagged Photon Spectrometer. Preliminary results on open charm production in the energy range 80 to 190 GeV are reported based on a preliminary analysis of 3000 charm events, comprising 30% of the data sample. These results include fits to P perpendicular and X/sub F/ distributions, a measurement of the total charm production cross section on Be and its increase with energy from 100 to 200 GeV, as well as a measurement of the relative fraction of anti D, D, and D* production. Also reported is data based on a special closed geometry run to study the A dependence of psi photoproduction. For the first time in a single experiment, relative cross sections on H, Be, Fe and Pb for both the coherent and incoherent components of the signal have been measured with reduced systematic errors and these results are reported here

  9. Near IR Photolysis of HO2NO2: Supplemental Material

    Science.gov (United States)

    2002-01-01

    MkIV measurements of the volume mixing ratio (VMR) of HO2NO2 at 35 deg N, sunset on Sept. 25, 1993 are given. Measurements of HO2NO2 made between approx. 65 and 70 deg N, sunrise on May 8, 1997 are listed. The uncertainties given are 1 sigma estimates of the measurement precision. Uncertainty in the HO2NO2 line strengths is estimated to be 20%; this is the dominant contribution to the systematic error of the HO2NO2 measurement. Model inputs for the simulations are given. The albedos were obtained from Total Ozone Mapping Spectrometer reflectively data (raw data at ftp://jwocky.gsfc.nasa.gov) for the time and place of observation. Profiles of sulfate aerosol surface area ("Surf. Area") were obtained from monthly, zonal mean profiles measured by SAGE II [Thomason et al., 1997 updated via private communication]. The profile of Be(y) is based on the Wamsley et al. relation with N2O, using MkIV measurements of N20O. All other model inputs given are based on direct MkIV measurements. Finally, we note the latitude of the MkIV tangent point varied considerably during sunrise on May 8, 1997. The simulations shown here were obtained using different latitudes for each altitude.

  10. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  11. Beta-spectrometer with magnetic filter of mini orange type

    International Nuclear Information System (INIS)

    Gorozhankin, V.M.; Gromov, K.Ya.; Kalinnikov, V.G.; Sereeter, Z.; Fominykh, V.I.; Malikov, Sh.R.; Yuldashev, M.B.

    1997-01-01

    At the ISOL facility YASNAPP-2 a β-spectrometer with a magnetic filter of the miniorange type is constructed to measure γ-ray internal conversion coefficients. The magnetic filter of the mini orange type is an assemblage of permanent magnets creating a toroidal magnetic field perpendicular to the electron trajectories from the source to the Si(Li) detector. The chosen profile of the permanent magnets allowed electron registration in the defined energy energy interval with some transmission increase. There are two sets of permanent magnets of the different thickness. Varying the type and number of permanent magnets one can set the detected electron energy intervals in a 50-2500 keV range. The efficiency of the spectrometer was investigated for different assemblages of the mini orange magnet. The facility can be used for the e-γ coincidence investigation. (A.A.D.)

  12. Application of laboratory and portable attenuated total reflectance infrared spectroscopic approaches for rapid quantification of alpaca serum immunoglobulin G

    Science.gov (United States)

    Burns, Jennifer B.; Riley, Christopher B.; Shaw, R. Anthony; McClure, J. Trenton

    2017-01-01

    The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field. PMID:28651006

  13. High-pressure synthesis and structural, physical properties of CaIr1-xPtxO3 and CaIr1-xRhxO3

    Science.gov (United States)

    Hirai, S.; Bromiley, G. D.; Klemme, S.; Irifune, T.; Ohfuji, H.; Attfield, P.; Nishiyama, N.

    2010-12-01

    Since the discovery of the perovskite to post-perovskite transition in MgSiO3 in a laser-heated DAC, wide attention has been focussed on the post-perovskite phase of MgSiO3. This is because the post-perovskite phase is likely to play a key role in Earth’s lowermost mantle, and because the perovskite to post-perovskite transition can explain many features of the D” seismic discontinuity. While it is meaningful to conduct further studies of MgSiO3, the post-perovskite phase of MgSiO3 cannot be quenched to ambient pressure/temperature conditions. Thus, further studies must be conducted using analogue compounds of MgSiO3 post-perovskite, which are quenchable to ambient pressure/temperature conditions. The post-perovskite phase of MgSiO3 crystallizes in a layered structure with CaIrO3-structure. Therefore, it is useful to investigate compounds with CaIrO3-structure. There are only four quenchable oxides with CaIrO3-structure reported to date: CaIrO3, CaPtO3, CaRhO3 and CaRuO3. CaIrO3 can be synthesized at ambient pressure, whilst the other three oxides can only be obtained at high pressure/temperature conditions using a multi-anvil apparatus. Further studies on these materials have revealed structural phase transitions at high P-T and a metal-insulator transition by hole doping. In the case of CaIrO3, The post-perovskite phase of CaIrO3 synthesized at 2GPa, 1373K transforms into a perovskite phase at 2GPa, 1673K. In other words, the perovskite phase can be synthesized at temperatures higher than those needed for synthesizing the post-perovskite phase. This is also the case for CaRhO3 (6GPa, 1873K) and CaRuO3 (23GPa, 1343K), while CaPtO3 remained post-perovskite at higher temperatures. We have succeeded in synthesizing solid solutions between CaIrO3, CaPtO3 and CaRhO3. We have found the systematic change in structural and physical properties of post-perovskite oxides, with composition and P-T, which broadens the future opportunity for studying post-perovskite systems

  14. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    Science.gov (United States)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  15. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  16. PENDIDIKAN AKHLAK MUSLIMAT MELALUISYA’IR : ANALISIS GENDER ATAS AJARAN SYI’IR MUSLIMAT KARYA NYAI WANIFAH KUDUS

    Directory of Open Access Journals (Sweden)

    Nur Said

    2016-03-01

    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  17. Serum 25-Hydroxyvitamin D associated with indicators of body fat and insulin resistance in prepubertal chilean children.

    Science.gov (United States)

    Cediel, G; Corvalán, C; Aguirre, C; de Romaña, D L; Uauy, R

    2016-01-01

    Consistent data on the relation between vitamin D, body fat and insulin resistance (IR) in children are lacking. (1) To evaluate the association between serum 25-Hydroxyvitamin D [25(OH)D] and key indicators of: adiposity (total and central), IR, and (2) to estimate serum 25(OH)D cut-offs that best reflect IR and total and central adiposity in children. Prepubertal children (n=435, ~53% girls; ~age 7 years) from the Growth and Obesity Chilean Cohort Study were evaluated for potential associations between serum 25(OH)D and indicators of: (1) total adiposity (body mass index by age (BAZ), body fat (including three-component model)), central adiposity (waist circumference and trunk fatness); (2) IR (homeostasis model assessment of IR) and insulin sensitive (quantitative insulin sensitivity check index) using standardized multiple regression models with standardized coefficients and receiver operating characteristic curves. Overall, mean serum 25(OH)D was 32.1±9.2 ng ml(-1), while 19.4% of children were obese (BAZ⩾2 s.d.). Serum 25(OH)D was inversely associated with indicators of total and central adiposity and with IR indicators. Effect sizes were moderate in girls (~0.3 for adiposity and IR indicators), while, weaker values were found in boys. Serum 25(OH)D estimated cut-offs that best predicted total, central adiposity and IR were~30 ng ml(-1). Children with suboptimal serum 25(OH)D (risk (two to three times) of being obese (high BAZ, body fat percent and/or central adiposity); and three to four times greater risk for IR. Serum 25(OH)D was inversely associated with adiposity (total and central) and IR indicators in prepubertal Chilean children. The conventional cut-off of vitamin D sufficiency (⩾30 ng ml(-1)) was adequate to assess obesity and IR risk in this age group.

  18. Simultaneous IR and optical light curves of 2A0311-227

    International Nuclear Information System (INIS)

    Bailey, J.; Hough, J.H.; Axon, D.J.

    1983-01-01

    It is reported that the optical and IR flickering of the AM Herculis type binary 2A0311 - 227 are highly correlated indicating that in this object the dominant source of cyclotron radiation at both wavelengths is the same accretion column. (U.K.)

  19. Hidrogenación de p-nitrofenol mediante el uso de catalizadores de Ir, Ni e Ir-Ni soportados en TiO2

    Directory of Open Access Journals (Sweden)

    Hugo Alfonso Rojas Sarmiento

    2012-06-01

    Full Text Available Los catalizadores de Ir/TiO2,Ni/TiO2 e Ir-Ni/TiO2 fueron obtenidos mediante impregnación húmeda, a una concentración de 1% en peso del metal. Los catalizadores resultantes se caracterizaron mediante análisis de difracción de rayos X (DRX, fisisorción con nitrógeno a 77K, quimisorción de hidrógeno y temperatura programada de reducción (TPR. Los sólidos sintetizados fueron empleados como catalizadores en la reacción de hidrogenación de pnitrofenol para la obtención de p-aminofenol, importante intermediario para la síntesis de diversos analgésicos y antipiréticos. Los ensayos catalíticos se llevaron a cabo en un reactor tipo Batch a 0,62 MPa, 363K y etanol como disolvente. El progreso de la reacción fuemonitoreado por cromatografía de gases. El catalizador Ir/TiO2 exhibió el mayor nivel de conversión de p-nitrofenol (95,6% en 9 horas de reacción, lo cual fue atribuido a la presencia de sitios activos originados por el iridio y al efecto SMSI (interacción fuerte metal soporte por parte del iridio y níquel.Todos los catalizadores exhibieron una selectividad hacia el p- aminofenol del 100%.

  20. Hidrogenación de p-nitrofenol mediante el uso de catalizadores de Ir, Ni e Ir-Ni soportados en TiO2

    Directory of Open Access Journals (Sweden)

    Hugo Alfonso Rojas Sarmiento

    2013-02-01

    Full Text Available Los catalizadores de Ir/TiO2,Ni/TiO2 e Ir-Ni/TiO2 fueron obtenidos mediante impregnación húmeda, a una concentración de 1% en peso del metal. Los catalizadores resultantes se caracterizaron mediante análisis de difracción de rayos X (DRX, fisisorción con nitrógeno a 77K, quimisorción de hidrógeno y temperatura programada de reducción (TPR. Los sólidos sintetizados fueron empleados como catalizadores en la reacción de hidrogenación de pnitrofenol para la obtención de p-aminofenol, importante intermediario para la síntesis de diversos analgésicos y antipiréticos. Los ensayos catalíticos se llevaron a cabo en un reactor tipo Batch a 0,62 MPa, 363K y etanol como disolvente. El progreso de la reacción fuemonitoreado por cromatografía de gases. El catalizador Ir/TiO2 exhibió el mayor nivel de conversión de p-nitrofenol (95,6% en 9 horas de reacción, lo cual fue atribuido a la presencia de sitios activos originados por el iridio y al efecto SMSI (interacción fuertemetal soporte por parte del iridio y níquel.Todos los catalizadores exhibieron una selectividad hacia el p- aminofenol del 100%.

  1. Variable-Temperature IR Spectroscopic and Theoretical Studies on CO2 Adsorbed in Zeolite K-FER

    Czech Academy of Sciences Publication Activity Database

    Areán, C. O.; Delgado, M. R.; Bibiloni, G. F.; Bludský, Ota; Nachtigall, P.

    2011-01-01

    Roč. 12, č. 8 (2011), s. 1435-1443 ISSN 1439-4235 R&D Projects: GA MŠk(CZ) ME10032; GA MŠk LC512; GA ČR GA203/09/0143 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * carbon dioxide * density functional calculations * IR spectroscopy * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  2. X-ray-phase and IR-spectral study of clay rocks mineral content of the Caspian Sea Gulf depression

    International Nuclear Information System (INIS)

    Zakonov, A.N.; Mukhanova, M.U.

    2000-01-01

    Samples of clays selected from different oil fields (Sazankurak, Kemerkol, Kozha and others) and deposition depths are examined on both the X-ray diffractometers (Dron-2 and Dron-4) and the infrared-spectrometers (IR-20). In this diagnostic the American file with different minerals X-ray systematized data is used. The X-ray reflections, which are in compliance with suitable inter-plane distances and clay impurities reflex intensities are determined. With confirmation purpose for mineral content correctness obtained according X-ray-phase analysis the infrared-spectrometric method is used, in which principal attention was paid to absorption field (3,400-3,700 cm -1 ) of H 2 O and OH valency frequency vibrations

  3. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    Science.gov (United States)

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  4. Automatic device for compensating the earths, magnetic field around a {beta} spectrometer; Ensemble automatique de compensation du champ terrestre autour d'un spectrometre

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, Ch [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-02-15

    This paper shows how the earth magnetic field inside a double focusing, {pi}{radical}2, iron free, beta ray spectrometer (radius 50 cm ) has been compensated. Three orthogonal magnetic fields are generated by three square coils sets. Each stabilized power supply is regulated through its own magnetometer (of the fluxgate type) and the earth field inside the spectrometer is compensated to 10{sup -4} Oe whatever the earth field or power supply oscillation could be. (author) [French] Cette etude a pour but de compenser le champ magnetique terrestre autour d'un spectrometre beta {pi}{radical}2 a double focalisation, a bobines sans fer et de rayon moyen des trajectoires de 50 cm. Le champ magnetique terrestre est compense par superposition de trois champs orthogonaux, chacun cree par un ensemble de cadres carres. Chacune de ces composantes est mesuree par un magnetometre. Cet ensemble permet de travailler en regulation de courant ou en regulation de champ. En regulation de courant, l'operation est manuelle. En regulation de champ, pour chaque groupe de cadres, l'alimentation stabilisee est asservie par son magnetometre et malgre les variations du champ terrestre ou de la tension secteur, la compensation du champ terrestre se fait toujours correctement au niveau du spectrometre, a 10{sup -4} Oe pres. (auteur)

  5. Spectrometer requirements for (e,e'2N) studies

    International Nuclear Information System (INIS)

    Lightbody, J.W. Jr.

    1981-01-01

    One specific experiment that may be performed with a future CW accelerator is a study of (e,e'2N) reactions through which we may learn details of the short range interaction of two nucleons within nuclear matter. It is suspected that the only mechanism which can lead to the observed high momentum components in the single nucleon momentum distribution (above approx. 400 MeV/c) inferred from (e,e'p) and (γ,p) measurements is the presence of short-range few-body correlations in the many-body nuclear wave function. It is expected that the explicit pair correlation function may be inferred from relative two-nucleon momentum distributions measured in (e,e'2N) experiments. It is therefore interesting to estimate counting rates using measured one-body momentum distributions to see what types of spectrometers are required

  6. GHGSat-D: Greenhouse gas plume imaging and quantification from space using a Fabry-Perot imaging spectrometer

    Science.gov (United States)

    McKeever, J.; Durak, B. O. A.; Gains, D.; Jervis, D.; Varon, D. J.; Germain, S.; Sloan, J. J.

    2017-12-01

    GHGSat, Inc. has launched the first satellite designed to detect and quantify greenhouse gas emissions from individual industrial sites. Our demonstration satellite GHGSat-D or "CLAIRE" was launched in June 2016. It weighs less than 15 kg and its primary instrument is a miniaturized Fabry-Perot imaging spectrometer with spectral resolution on the order of 0.1 nm. The spectral bandpass is 1635-1670 nm, giving the instrument access to absorption bands of both CO2 and CH4. Our system is based on targeted observations rather than global coverage, and our spatial imaging resolution is a key differentiator. Specifically, with a ground sampling distance of effect of the Fabry-Perot resonator and the scrolling scene gives a different spectral sampling of each surface location in every image. While our data processing toolchain does not produce a conventional hyperspectral dataset, it does yield a spectral decomposition of the spatially resolved signal that is compared to a model that includes atmospheric radiative transfer and the instrument's pixel-dependent spectral responsivity. Our presentation will describe the instrument design, concept of operations and retrievals approach. We will also present images and results from GHGSat-D at different processing levels, including high-resolution column density retrievals. An observation of the degassing flux of methane from the outlet of a recently impounded hydroelectric reservoir will be shown as an example. Finally we discuss some performance limitations of GHGSat-D and our plans to overcome them as we update the instrument design for the next satellites.

  7. Simulations for a compact electron-positron spectrometer

    International Nuclear Information System (INIS)

    Filep, T.; Krasznahorkay, A.; Csatlos, M.; Gulyas, J.

    2011-01-01

    Complete text of publication follows. In the frame of the ENSAR (FP7) project, we are constructing a Compact Positron- Electron spectrometer (COPE) using toroidal magnetic field. It will be used for studying the internal pair creation process in nuclear transitions. It will look like a miniaturized model of the ATLAS spectrometer at CERN at a scale of 1:100. The mean design parameters are high efficiency, good energy resolution and precise angle reconstruction. By our plans the size of this spectrometer would be limited to a diameter of about 30 cm and length about 20 cm, having 1 % energy- and 2deg angular resolutions. The solid angle of the planned spectrometer will be 2π. It is necessary to develop a geometry in which the inhomogeneity of the field can be easily handled. Prior to the construction it was necessary to perform computer simulations in order to avoid rough construction mistakes. The better approach of the reality with simulations is very important. The problem what we have to solve is very complicated. We need to simulate the magnetic field and trajectory of the particle moving in that field. We started our simulations using the PerMag software package. >From the result we learned the followings: 1) It has no meaning to cover the magnets with iron coat because it complicates the magnetic field. 2) It is not a good idea to form the magnetic one-segment from a big magnet and 12 smaller magnets. The fringing field of the small magnets significantly modifies the magnetic field distribution around the segment. On the other hand the construction of one segment from pieces is very difficult in reality. 3) The best shape for a segment which can easily be constructed is simple box. The PerMag package could simulate the magnetic field only in 2D, but we wanted to do more precise simulation in 3D. The free package developed by the European Synchrotron Radiation Facility (ESRF) was used for the simulation of the magnetic field applying the finite element method

  8. Synthesis and Structural Characterisation of [Ir4(CO8(CH3(m4-h3-Ph2PCCPh(m-PPh2] and of the Carbonylation Product [Ir4(CO8{C(OCH3}(m4-h3-Ph2PCCPh(m-PPh2]; First Evidence for the Formation of a CO Cluster Adduct before CO Insertion

    Directory of Open Access Journals (Sweden)

    Braga Dario

    1999-01-01

    Full Text Available Deprotonation of [(mu-HIr4(CO10(mu-PPh2], 1, gives [Ir4(CO10(mu-PPh2]- that reacts with Ph2PCCPh and CH3I to afford [Ir4(CO8(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2], 2 (34%, besides [Ir4(CO9(mu3-eta³-Ph2PC(HCPh(mu-PPh2] and [(mu-HIr4(CO9(Ph2PCºCPh(mu-PPh2]. Compound 2 was characterised by a single crystal X-ray diffraction analysis and exhibits a flat butterfly of metal atoms, with the Ph2PCCPh ligand interacting with all four Ir atoms and the methyl group bonded terminally to a wingtip Ir atom. Carbonylation of 2 yields initially (25 °C, 20 min a CO addition product that, according to VT 31P{¹H} and 13C{¹H} studies, exists in solution in the form of two isomers 4A and 4B (8:1, and then (40 °C, 7 h, the CO insertion product [Ir4(CO8{C(OCH3}(mu4-eta³-Ph2PCCPh(mu-PPh2], 5. The molecular structure of 5, established by an X-ray analysis, is similar to that of 2, except for the acyl group that remains bound to the same Ir atom. The process is reversible at both stages. Treatment of 2 with PPh3 and P(OMe3 affords the CO substitution products [Ir4(CO7L(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2] (L = PPh3, 6 and P(OMe3, 7, instead of the expected CO inserted products. According to the ¹H and 31P{¹H} NMR studies, the PPh3 derivative 6 exists in the form of two isomers (1:1 that differ with respect to the position of this ligand.

  9. New mass spectrometers for hydrogen isotope analyses

    International Nuclear Information System (INIS)

    Chastagner, P.; Daves, H.L.; Hess, W.B.

    1981-01-01

    Two advanced mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes are being evaluated by Du Pont personnel at the Savannah River Laboratory. One is a large double-focusing instrument with a resolution of 2000 at mass 4, an abundance sensitivity of > 100,000 for the HT-D 2 doublet, and a sophisticated electronic control and data collection system. The second is a smaller, simpler, stigmatic-focusing instrument in which exceptionally high ion intensities (> 1 x 10 -9 A) result in high signal to noise ratios. A containment facility with sample inlet systems and a standard distribution system was built to permit testing with tritium mixtures. The characteristics of the mass spectrometers under a variety of operating conditions will be presented. Factors to be discussed include: sample equilibration and its elimination; linearity; trimer formation; gas interference; stability; signal to noise ratio; mass discrimination; and anticipated precision and accu sublimed molybdenum collector of Converter No. 262; and (3) demonstration of tungsten CVD onto molybdenum flange using a reuseable graphite mandrel

  10. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland)]. E-mail: czapkiew@agh.edu.pl; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Rak, R. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Zoladz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Dijken, S. van [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2007-09-15

    The magnetization reversal process in perpendicularly biased [Pt/Co]{sub 3}/d{sub Pt} Pt/IrMn and in-plane biased Co/d{sub Pt} Pt/IrMn multilayers with 0nm=<d{sub Pt}=<1.2nm was investigated using Kerr magnetometry and Kerr microscopy. For the system with in-plane magnetic anisotropy, the exchange bias field decreases monotonically with Pt insertion layer thickness, while its coercivity remains constant. The samples with perpendicular magnetic anisotropy, on the other hand, exhibit maximum exchange bias and minimum coercivity for d{sub Pt}=0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers.

  11. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  12. JCSC_129_09_1449_1459_SI.docx

    Indian Academy of Sciences (India)

    So

    Melting points were determined with a MEL-TEMP model 1202D and are uncorrected. FT-IR spectra were recorded on a Bruker Tensor 27 spectrometer as KBr disks. The 1H NMR spectra were recorded with a Bruker Spectrospin Avance 400 spectrometer with DMSO-d6 as solvent and TMS as internal standard. 13C NMR ...

  13. Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA

    Science.gov (United States)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2018-04-01

    External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.

  14. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  15. 4D MR imaging using robust internal respiratory signal

    International Nuclear Information System (INIS)

    Hui, CheukKai; Wen, Zhifei; Beddar, Sam; Stemkens, Bjorn; Tijssen, R H N; Van den Berg, C A T; Hwang, Ken-Pin

    2016-01-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D. (paper)

  16. Spectrometer for neutron inelastic scattering investigations of microsamples

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Kozlenko, D.P.; Platonov, S.L.; Savenko, B.N.; Glazkov, V.P.; Krasnikov, Yu.M.; Naumov, I.V.; Pukhov, A.V.; Somenkov, V.A.; Syrykh, G.F.

    1997-01-01

    A new neutron spectrometer for investigation of inelastic neutron scattering on polycrystal microsamples under high pressure in sapphire and diamond anvils cells is described. The spectrometer is operating at the IBR-2 pulsed reactor in JINR. Parameters and methodical peculiarities of the spectrometer and the examples of experimental studies are given. (author)

  17. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  18. Editorial. Kultūros reiškiniai šiuolaikinių informacijos ir komunikacijos technologijų sąlygomis: nuo meno ir televizijos iki politikos

    Directory of Open Access Journals (Sweden)

    Jovilė Barevičiūtė

    2015-10-01

    Full Text Available Šiame žurnalo numeryje aptariami kai kurie daugiaaspekčiai šiuolaikinės kultūros reiškiniai, apimant tokius jų, kaip menas, televizija, politika ir kt. Medijos ir komunikacija nūdien intensyviai skverbiasi kone į visas darbo ir laisvalaikio veiklos, viešojo ir privataus sektorių sritis, reprezentuodamos dinamišką ir netolygią gyvenamojo pasaulio tikrovę. Medijuotoji komunikacija vis labiau tampa dominuojančia socializacijos forma, ji išstumia gyvąją komunikaciją: kuo toliau, tuo labiau šis reiškinys nusako ne tik jaunimo, bet ir brandaus amžiaus žmonių šiandienį bendravimo būdą. Tad akivaizdu, kad XXI a. žmogus vis labiau pasineria į įvairių medijų tinklus, apraizgančius jo gyvenimą ir tampančius pagrindine socialios ir visavertės eg zistencijos sąlyga. Tokios socialinės institucijos, kaip menas, televizija, politika, religija, šeima ir daugelis kitų, nūdien jau nebėra tokios savarankiškos, kaip, tarkime, prieš dešimt, dvidešimt ar daugiau metų. Jų suverenitetą daugiausia transformuoja būtent medijos, šioms institucijoms diktuojančios savas sąlygas ir primetančios savas taisykles. Kitaip tariant, medijos tampa tokios galingos, kad ima steigti savuosius dėsnius, kuriems vis labiau paklūsta tradicinė gyvosios socializacijos aplinka. Taip kyla daugybė diskutuotinų ir ginčytinų klausimų, paliečiančių socialinių institucijų apibrėžties, autonomijos ir suvereniteto aspektus. Šiuos aspektus iš įvairių perspektyvų gvildena ir šio numerio autoriai. Eugenija Krukauskienė ir Viktorija Žilinskaitė-Vytienė savo straipsnyje aptaria kultūros vartojimo klausimus tirdamos, kaip šiuolaikinio lietuviškojo kino meno pavyzdžius suvokia ir vertina tam tikrų amžiaus kategorijų jaunimas. Algis Mickūnas gilinasi į filosofinius šiuolaikinių diskursų klausimus, pasirinkdamas kūniškumo, lytėjimo ir taktilikos aspektus, glaudžiai susijusius su medijuotosios komunikacijos tema

  19. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  20. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  1. Feeding of the 1 1/2- isomers in stable Ir and Au isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fotiadis, Nikolaos [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; Devlin, Matthew [Los Alamos National Laboratory; Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Chadwick, Mark B [Los Alamos National Laboratory; Becker, John A [LLNL; Garrett, Paul E [U GUELPH, CANADA

    2008-01-01

    Excited states were studied and absolute partial {gamma}-ray cross sections were measured using the ({eta}, {eta}'{gamma}) reaction in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. A Compton-suppressed germanium-detector array (GEANIE) for {gamma}-ray spectroscopy and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial {gamma}-ray cross sections were measured up to incident neutron energy of 20 MeV for several transitions feeding directly the 1 1/2- isomers and ground states in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. The feeding of the 1 1/2- isomers, which originate from the odd proton occupying the h{sub 1 1/2} orbital, was found for the three targets to be very similar and increasing relative to the feeding of the corresponding ground state with increasing neutron energy up to E{sub n} {approx} 10 MeV. Above this neutron energy the opening of the (n, 2{sub n}) reaction channel strongly affects the population of the isomers and leads to a decrease of their relative population compared to the population of the ground states. The experimental results are compared with theoretical predictions from the GNASH reaction model calculation implementing a version of the spin distribution for the pre-equilibrium reaction piece with either a compound nucleus spin distribution (CN-GNASH) or a Feshbach-Kerman-Koonin (FKK-GNASH) quantum mechanical spin distribution. The effects of the spin cutoff parameter values on the population of states are examined. Evidence is presented that FKK-GNASH provides a description of the experimental data that mitigates the need for adjustment of the level density parameter to fit the data.

  2. Study of the performance of the Micromegas chambers for the ATLAS Muon Spectrometer upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237763; The ATLAS Muon collaboration

    2017-01-01

    Micromegas (MICRO MEsh GAseous Structure) chambers are Micro-Pattern Gaseous Detectors designed to provide a high spatial resolution in highly irradiated environments. In 2007 an ambitious long-term R&D activity was started in the context of the ATLAS experiment, at CERN: the Muon ATLAS Micromegas Activity (MAMMA). After years of tests on prototypes and technology breakthroughs, Micromegas chambers were chosen as tracking detectors for an upgrade of the ATLAS Muon Spectrometer. These novel detectors will be installed in 2018 and 2019 during the second long shutdown of the Large Hadron Collider, and will serve as precision detectors in the innermost part of the ATLAS Muon Spectrometer. Eight layers of Micromegas modules of unprecedented size, up to 3 $\\rm{{m^2}}$, will cover a surface of 150 $\\rm{{m^2}}$ for a total active area of about 1200 $\\rm{{m^2}}$. This upgrade will be crucial to ensure high quality performance for the ATLAS Muon Spectrometer in view of the third run of the Large Hadron Collider and...

  3. IrSr2TbCu2O8, a high-pressure metamagnetic cuprate: Structure, microstructure and properties

    International Nuclear Information System (INIS)

    Dos Santos-Garcia, A.J.; Duijn, J. van; Saez-Puche, R.; Heymann, G.; Huppertz, H.; Alario-Franco, M.A.

    2008-01-01

    The synthesis, structure and microstructure of the IrSr 2 TbCu 2 O 8 cuprate showing metamagnetic properties are described. The sample was prepared at high temperatures and pressures up to 9.2 GPa. The structure is tetragonal, showing a 1212 type structure, that derives from the classical YBaCuO superconductor structure, replacing the tetracoordinated square planar copper [Cu-O 4 ] in the 'chains' by octahedral [Ir-O 6 ] groups that form a perovskite-like layer in the basal plane of the unit cell. A 'simple' cell, ∼a p xa p x3a p , where a p is the basic perovskite unit cell parameter (a p ∼3.8 A), is supported by X-ray powder diffraction (XRD) and a so-called 'diagonal' one, ∼√2a p x√2a p x3a p , by SAED; a microdomain texture of latter cell and a series of very interesting extended defects have been observed by HREM. Magnetic susceptibility measurements show a magnetic transition, T N ∼6 K, with negative Weiss temperature, that indicates antiferromagnetic interactions among the Tb moments. The magnetic structure has been determined by neutron diffraction. A detailed magnetic study has revealed a metamagnetic behavior, something not previously observed in this type of cuprates. Specific heat and resistivity measurements have also been performed to characterize the transition. - Graphical abstract: Reconstructed image from the SAED of the long c tetragonal axis (3a p ) of a IrSr 2 TbCu 2 O 8 crystal. A unit cell picture is included for comparison. Display Omitted

  4. Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential

    Directory of Open Access Journals (Sweden)

    Apostolos Pilaftsis

    2016-05-01

    Full Text Available The effective potential of the Standard Model (SM, from three loop order and higher, suffers from infrared (IR divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W± and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially breaking effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained with other methods presented in the literature.

  5. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  6. Eletroxidação do etanol em eletrodos de Ti/IrO2 Electro-oxidation of ethanol in Ti/IrO2

    Directory of Open Access Journals (Sweden)

    Carlos H.V. Fidelis

    2001-02-01

    Full Text Available It has been carried out an investigation of ethanol electro-oxidation on Ti/IrO2 electrodes. The experimental results show a high selectivity towards acetaldehyde formation thus, offering potential advantages in cost and availability of raw material. It has been observed that the electrode is partially blocked by a film formed after the oxidation of the starting material which can be removed by pulse technique between RDO and RDH onset. The mechanism and the selectivity of the product formed is presented.

  7. 2H{ 19F} REDOR for distance measurements in biological solids using a double resonance spectrometer

    Science.gov (United States)

    Grage, Stephan L.; Watts, Jude A.; Watts, Anthony

    2004-01-01

    A new approach for distance measurements in biological solids employing 2H{ 19F} rotational echo double resonance was developed and validated on 2H, 19F- D-alanine and an imidazopyridine based inhibitor of the gastric H +/K +-ATPase. The 2H- 19F double resonance experiments presented here were performed without 1H decoupling using a double resonance NMR spectrometer. In this way, it was possible to benefit from the relatively longer distance range of fluorine without the need of specialized fluorine equipment. A distance of 2.5 ± 0.3 Å was measured in the alanine derivative, indicating a gauche conformation of the two labels. In the case of the imidazopyridine compound a lower distance limit of 5.2 Å was determined and is in agreement with an extended conformation of the inhibitor. Several REDOR variants were compared, and their advantages and limitations discussed. Composite fluorine dephasing pulses were found to enhance the frequency bandwidth significantly, and to reduce the dependence of the performance of the experiment on the exact choice of the transmitter frequency.

  8. First-principles study of molecular NO dissociation on Ir(100) surface

    Science.gov (United States)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2014-02-01

    The dissociation of NO on Ir(100) surface is investigated using density functional theory (DFT). The pathway and transition state (TS) of the dissociation of NO molecule are determined using climbing image nudge elastic band (CI-NEB). The prerequisite state of NO dissociation is determining the most stable sites of the reactant and products. We found that the most energetically stable sites are the hollow for N atom and the bridge for NO molecule as well as O atom. We found that the bending of NO is the first step of the dissociation reaction due to the increase of the back-donation from the d-band of Ir to 2 π ∗ orbital of NO, which causes the weakening of NO bond. The dissociation energy barrier of NO molecule on Ir(100) surface is 0.49 eV.

  9. Kinetics of physical adsorption of ethane on Ir(110)-(1×2): Molecular beam reflectivity measurements and Monte Carlo simulations

    OpenAIRE

    Kang, H. C.; Mullins, C. B.; Weinberg, W. H.

    1990-01-01

    Experimental results, obtained using a reflectivity method, for the probability of physical adsorption of ethane on the Ir(110)-(1×2) surface are presented. We analyze these results using Monte Carlo simulations and show that physical adsorption can occur either directly or through a precursor state in which an ethane molecule is trapped in a second layer above a first layer of physically adsorbed ethane. From the Monte Carlo simulations, we are able to establish that the energy barrier for d...

  10. A GPU-Based Wide-Band Radio Spectrometer

    Science.gov (United States)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  11. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  12. Efficient red organic light-emitting diode sensitized by a phosphorescent Ir compound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.R. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); You, H. [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Tang, H. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); Ding, G.H. [Institute of Advanced Materials and Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Ma, D.G. [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Tian, H. [Institute of Advanced Materials and Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Sun, R.G. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China)], E-mail: runguangsun@126.com

    2008-01-15

    The efficiencies of red organic light-emitting diode (OLED) using tris-(8-hydroxy-quinoline)aluminum (Alq{sub 3}) as host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyra n (DCJTB) as dopant were greatly increased by adding a small amount (0.3 wt%) of Ir compound, iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N',C{sup 4}) (acetyl acetonate) (Ir(C6){sub 2}(acac)), as a sensitizer. The device has a sandwiched structure of indium tin oxide (ITO)/4,4',4''-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine (T-NATA) (40 nm)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4' diamine (NPB) (40 nm)/Alq{sub 3}:DCJTB (0.7 wt%):Ir(C6){sub 2}(acac) (0.3 wt%) (40 nm)/Alq{sub 3} (40 nm)/LiF (1 nm)/Al (120 nm). It can be seen that the current efficiencies of this device remained almost (13.8{+-}1) cd/A from 0.1 to 20,000 cd/m{sup 2} and the Commission International d'Eclairage (CIE) coordinates at (0.60, 0.37) in the range of wide brightness. The significant improvement was attributed to the sensitization effect of the doped Ir(C6){sub 2}(acac), thus the energy of singlet and triplet excitons is simultaneously transferred to the DCJTB.

  13. Cold, Gas-Phase UV and IR Spectroscopy of Protonated Leucine Enkephalin and its Analogues

    Science.gov (United States)

    Burke, Nicole L.; Redwine, James; Dean, Jacob C.; McLuckey, Scott A.; Zwier, Timothy S.

    2014-06-01

    The conformational preferences of peptide backbones and the resulting hydrogen bonding patterns provide critical biochemical information regarding the structure-function relationship of peptides and proteins. The spectroscopic study of cryogenically-cooled peptide ions in a mass spectrometer probes these H-bonding arrangements and provides information regarding the influence of a charge site. Leucine enkephalin, a biologically active endogenous opiod peptide, has been extensively studied as a model peptide in mass spectrometry. This talk will present a study of the UV and IR spectroscopy of protonated leucine enkephalin [YGGFL+H]+ and two of its analogues: the sodiated [YGGFL+Na]+ and C-terminally methyl esterified [YGGFL-OMe+H]+ forms. All experiments were performed in a recently completed multi-stage mass spectrometer outfitted with a cryocooled ion trap. Ions are generated via nano-electrospray ionization and the analyte of interest is isolated in a linear ion trap. The analyte ions are trapped in a 22-pole ion trap held at 5 K by a closed cycle helium cryostat and interrogated via UV and IR lasers. Photofragments are trapped and isolated in a second LIT and mass analyzed. Double-resonance UV and IR methods were used to assign the conformation of [YGGFL+H]+, using the NH/OH stretch, Amide I, and Amide II regions of the infrared spectrum. The assigned structure contains a single backbone conformation at vibrational/rotational temperatures of 10 K held together with multiple H-bonds that self-solvate the NH3+ site. A "proton wire" between the N and C termini reinforces the H-bonding activity of the COO-H group to the F-L peptide bond, whose cleavage results in formation of the b4 ion, which is a prevalent, low-energy fragmentation pathway for [YGGFL+H]+. The reinforced H-bonding network in conjunction with the mobile proton theory may help explain the prevalence of the b4 pathway. In order to elucidate structural changes caused by modifying this H-bonding activity

  14. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    International Nuclear Information System (INIS)

    Kim, Seong K.; Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-01-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: → We examine the functional domains of IR2P that mediates negative regulation. → IR2P inhibits at the transcriptional level. → DNA-binding mutant or TFIIB-binding mutant fails to inhibit. → C-terminal aa 707 to 1116 are required for full inhibition. → Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  15. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  16. Physico-chemical and electrochemical characterization of Ti/RhO{sub x}-IrO{sub 2} electrodes using sol-gel technology

    Energy Technology Data Exchange (ETDEWEB)

    Klink, M.J.; Makgae, M.E. [Institute of Molecular Sciences, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Jorrissen Street, Johannesburg 2050 (South Africa); Crouch, A.M., E-mail: Andrew.Crouch@wits.ac.za [Institute of Molecular Sciences, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Jorrissen Street, Johannesburg 2050 (South Africa)

    2010-11-01

    Sol-gel technology has been successfully used for the incorporation of RhO{sub x}-IrO{sub 2} on a Ti substrate. RhO{sub x}-IrO{sub 2} was prepared from chloride precursors of Rh and Ir, for surface studies. These metal oxides were then immobilised on solid Ti substrates via dip withdrawal coating methods to form thin films. The Ti/RhO{sub x}-IrO{sub 2} thin films were extensively characterized in terms of surface characterization and chemical composition and used in the oxidation of phenol. Thermo-gravimetric analysis (TGA) determined the calcination temperature at 700 deg. C where no further structural changes occurred due to mass loss. The rhodium oxide showed two-phase formations, RhO{sub 2} and Rh{sub 2}O{sub 3}, which were attributed to high calcinated temperatures compare to one phase IrO{sub 2} which was stable at lower temperatures. The scanning electron microscopy (SEM) showed that the morphology of the film was found to be rough with a grain-like appearance in the 150-nm range. The phase composition of these metal oxides was determined by X-ray diffraction (XRD) technique and found to have crystalline structures. The results obtained from Rutherford backscattering spectrometry (RBS) revealed information regarding the chemical composition of the metal oxides and confirmed the diffusion of Rh and Ir into the Ti substrate. Electrochemical characterization of the Ti/RhO{sub x}-IrO{sub 2} electrode, via cyclic voltammetry (CV), showed distinctive redox peaks: anodic and cathodic peaks associated with the oxidation and reduction of the ferricyanide-ferrocyanide couple was seen at 250 and 100 mV respectively; the peak observed at 1000 mV was associated with oxygen evolution and a broad reductive wave at -600 mV can be ascribed to the Ti/RuO{sub x}-IrO{sub 2} reduction, which proved that the Ti/RhO{sub x}-IrO{sub 2} electrode were electroactive and exhibit fast electrochemistry.

  17. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhen; Nie, Lei; Chen, Ying; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  18. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  19. Optical properties of reduced graphene oxide and CuFe2O4 composites in the IR region

    Science.gov (United States)

    Ma, De-yue; Li, Xiao-xia; Guo, Yu-xiang; Zeng, Yu-run

    2018-01-01

    The complex refractive index of reduced graphene oxide and CuFe2O4 composites prepared by hydrothermal method was calculated using infrared Micro-reflective spectra and K-K relation, and the calculation errors were analyzed according to its IR transmission and spectral reflectivity calculated by Fresnel formula. And then normal emissivity of the composite in IR atmospheric window was calculated by means of Fresnel formula and modified refraction angle formula. The calculation accuracy was verified by comparing measured normal total emissivity with the calculated one. The results show that complex refractive index and normal emissivity calculated by the formulas have a high accuracy. It has been found that the composite has a good absorption and radiation characteristics in IR atmospheric window and a strong scattering ability in middle IR region by analyzing its extinction, absorption and radiation properties in IR region. Therefore, it may be used as IR absorption, extinction and radiation materials in some special fields.

  20. Experimental study and nuclear model calculations on the $^{192}Os (p, n)^{192}$Ir reaction Comparison of reactor and cyclotron production of the therapeutic radionuclide $^{192}$Ir

    CERN Document Server

    Hilgers, K; Sudar, S; 10.1016/j.apradiso.2004.12.010

    2005-01-01

    In a search for an alternative route of production of the important therapeutic radionuclide /sup 192/Ir (T/sub 1/2/=78.83 d), the excitation function of the reaction /sup 192/Os(p, n)/sup 192/Ir was investigated from its threshold up to 20MeV. Thin samples of enriched /sup 192/Os were obtained by electrodeposition on Ni, and the conventional stacked-foil technique was used for cross section measurements. The experimental data were compared with the results of theoretical calculations using the codes EMPIRE-II and ALICE-IPPE. Good agreement was found with EMPIRE-II, but slightly less with the ALICE-IPPE calculations. The theoretical thick target yield of /sup 192/Ir over the energy range E/sub p/=16 to 8MeV amounts to only 0.16MBq/ mu A.h. A comparison of the reactor and cyclotron production methods is given. In terms of yield and radionuclidic purity of /sup 192/Ir the reactor method appears to be superior; the only advantage of the cyclotron method could be the higher specific activity of the product.

  1. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  2. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  3. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  4. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α -Li2IrO3 under pressure

    Science.gov (United States)

    Hermann, V.; Altmeyer, M.; Ebad-Allah, J.; Freund, F.; Jesche, A.; Tsirlin, A. A.; Hanfland, M.; Gegenwart, P.; Mazin, I. I.; Khomskii, D. I.; Valentí, R.; Kuntscher, C. A.

    2018-02-01

    Single-crystal x-ray diffraction studies with synchrotron radiation on the honeycomb iridate α -Li2IrO3 reveal a pressure-induced structural phase transition with symmetry lowering from monoclinic to triclinic at a critical pressure of Pc=3.8 GPa. According to the evolution of the lattice parameters with pressure, the transition mainly affects the a b plane and thereby the Ir hexagon network, leading to the formation of Ir-Ir dimers. These observations are independently predicted and corroborated by our ab initio density functional theory calculations where we find that the appearance of Ir-Ir dimers at finite pressure is a consequence of a subtle interplay between magnetism, correlation, spin-orbit coupling, and covalent bonding. Our results further suggest that at Pc the system undergoes a magnetic collapse. Finally we provide a general picture of competing interactions for the honeycomb lattices A2M O3 with A =Li , Na and M =Ir , Ru.

  5. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  6. At the European Hybrid Spectrometer (EHS) for the experiment NA27

    CERN Multimedia

    1983-01-01

    The experiment NA27 was intended to measure accurately the lifetime of Charm particles and to study their hadronic production and decay particles. The vertex detector was the hydrogen bubble chamber LEBC. The aim was to collect several hundreths of fully reconstructed D0 and D+-, and several tens of F+- and Lambda_c decays as produced by 360 GeV/c negative pions and 400 GeV/c protons. The photo gives a side view of a section of the spectrometer, with a 12 m long gas Cerenkov counter at the centre. The spectrometer axis enters the photo at bottom, left corner. See photo 8311661, 8311662X, 8311660X.

  7. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    Science.gov (United States)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  8. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve; Cavallo, Luigi; Poater, Albert; Vummaleti, Sai V. C.; Talarico, Giovanni

    2015-01-01

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  9. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve

    2015-11-27

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  10. Gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  11. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    Science.gov (United States)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  12. Comments on global symmetries, anomalies, and duality in (2+1)d

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); SISSA & INFN,via Bonomea 265, 34136 Trieste (Italy); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-04-21

    We analyze in detail the global symmetries of various (2+1)d quantum field theories and couple them to classical background gauge fields. A proper identification of the global symmetries allows us to consider all non-trivial bundles of those background fields, thus finding more subtle observables. The global symmetries exhibit interesting ’t Hooft anomalies. These allow us to constrain the IR behavior of the theories and provide powerful constraints on conjectured dualities.

  13. MCBIS2 - Monte-Carlo package for preparing and analyzing experiments with the BIS-2 spectrometer

    International Nuclear Information System (INIS)

    Nowak, H.; Nowak, V.-D.

    1978-01-01

    The MCBIS2 user package is designed to simulate the diffraction dissociation reaction np→K 0 Λp and related background reactions. The MCBIS2 user package is written in JINR for the BIS-2 spectrometer consisting of multiwire proportional chambers, multichannel Cherenkov counter and scintillator hodoscopes. The MCBIS2 user package is divided into three sections: initial, working and final. Each section is a group of subprograms belonging to the corresponding GEANT stage. The generation of all primary vertex kinematics for the reaction np→K 0 Λp and tracking in space is considered in detail. Problems of the preparation of necessary information about detectors are discussed

  14. Magnetic Excitations across the Metal-Insulator Transition in the Pyrochlore Iridate Eu2Ir2O7

    Science.gov (United States)

    Chun, Sae Hwan; Yuan, Bo; Casa, Diego; Kim, Jungho; Kim, Chang-Yong; Tian, Zhaoming; Qiu, Yang; Nakatsuji, Satoru; Kim, Young-June

    2018-04-01

    We report a resonant inelastic x-ray scattering study of the magnetic excitation spectrum in a highly insulating Eu2 Ir2 O7 single crystal that exhibits a metal-insulator transition at TMI=111 (7 ) K . A propagating magnon mode with a 20 meV bandwidth and a 28 meV magnon gap is found in the excitation spectrum at 7 K, which is expected in the all-in-all-out magnetically ordered state. This magnetic excitation exhibits substantial softening as the temperature is raised towards TMI and turns into a highly damped excitation in the paramagnetic phase. Remarkably, the softening occurs throughout the whole Brillouin zone including the zone boundary. This observation is inconsistent with the magnon renormalization expected in a local moment system and indicates that the strength of the electron correlation in Eu2 Ir2 O7 is only moderate, so that electron itinerancy should be taken into account in describing its magnetism.

  15. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  16. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sung Il

    2006-04-01

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  17. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  18. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  19. Some conceptual designs for a LASSY spectrometer magnet

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-09-01

    The LASSY spectrometer is a gas filled spectrometer (hydrogen or helium at a pressure of about 1 torr). The design bending power for the primary bending magnet for the spectrometer will have an induction bend radius product of 2.5 tesla-meters. In order to increase the acceptance of the spectrometer, the bending magnet system must be located close to the target where the desired nuclei are created. The spectrometer magnet system must consist of both bending and focusing elements so that the wide acceptance of particles can be brought to a focus at the analysis point that is down stream from the last magnet element. In order improve the spectrometer resolution and to catch the shortest lived nuclei, the length of the magnet system must be as short as possible. The length for the LASSY spectrometer magnet system from the target to the analysis point has been set at 2.5 meters or less. To improve the resolution of the spectrometer, the bending angle for bending magnet system must be increased to close to 180 degrees. In order to achieve a large bending angle and a short magnet system length, the bending induction must be above 3 tesla and the focusing elements must be combined with the bending elements. As a result, a LASSY spectrometer will have bending magnet with a bending angle from 140 to 170 degrees. This magnet win be combined with one or more focusing magnets (a straight dipole in some places and a combined function dipole in other places). The result is a single superconducting bending magnet with one or more quadrupoles incorporated within the large angle bending magnet

  20. 1D and 2D Cobalt(II) Coordination Polymers, Co(ox)(en):Synthesis, Structures and Magnetic Properties

    International Nuclear Information System (INIS)

    Kang, Jae Un; Lee, Yu Mi; Kim, Seung Joo; Yun, Ho Seop; Do, Jung Hwan

    2014-01-01

    Two ethylenediamine cobalt(II) oxalate complexes Co(ox)(en), 1 and Co(ox)(en)·2H 2 O, 2 have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, TG analysis, and magnetic measurements. In 1, Co atoms are coordinated by two bis-bidentate oxalate ions in transconfiguration to form Co(ox) chains, which are further bridged by ethylenediamine molecules to produce 2D grid layers, Co(ox)(en). In 2, Co atoms are coordinated by bridging oxalate ions in cis - configuration to form Co(ox) chains, and the additional chelation of ethylenediamine to Co atoms completes 1D zigzag chain, Co(en)(ox). Two lattice water molecules stabilize the chains through hydrogen bonding. Magnetic susceptibility measurements indicate that both complexes exhibit weak antiferromagnetic coupling between cobalt(II) ions with the susceptibility maxima at 23 K for 1 and 20 K for 2, respectively. In 1 and 2, the oxalate ligands afford a much shorter and more effective pathway for the magnetic interaction between cobalt ions compared to the ethylenediamine ligands, so the magnetic behaviors of both complexes could be well described with 1D infinite magnetic chain model