WorldWideScience

Sample records for spectral weight functions

  1. Real photon spectral weight functions, imaginary part of vacuum polarization and electromagnetic vertices

    International Nuclear Information System (INIS)

    Chahine, C.; College de France, 75 - Paris. Lab. de Physique Corpusculaire)

    1978-02-01

    The concept of a real photon spectral weight function for any cross-section involving charged particles is introduced as a simple approximation taking into account the soft part of photon emission to all orders in perturbation theory. The spectral weight function replaces the energy-momentum conservation delta function in the elastic cross-section. The spectral weight function is computed in closed form in space-time and in the peaking approximation in momentum space. The spectral weight function description is applied to the imaginary part of vacuum polarization ImPI and to electron-proton scattering. A spectral representation for ImPI is derived and its content compared with the known fourth order result, showing in particular the identity of the soft and peaking approximations in lowest order. The virtual photon radiative corrections are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic generalization of the electric non-relativistic vertex function is given, whose asymptotic behavior is approppriate to use in conjuction with the spectral weight function

  2. Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors

    Science.gov (United States)

    He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team

    2014-03-01

    Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.

  3. A Weighted Spatial-Spectral Kernel RX Algorithm and Efficient Implementation on GPUs

    Directory of Open Access Journals (Sweden)

    Chunhui Zhao

    2017-02-01

    Full Text Available The kernel RX (KRX detector proposed by Kwon and Nasrabadi exploits a kernel function to obtain a better detection performance. However, it still has two limits that can be improved. On the one hand, reasonable integration of spatial-spectral information can be used to further improve its detection accuracy. On the other hand, parallel computing can be used to reduce the processing time in available KRX detectors. Accordingly, this paper presents a novel weighted spatial-spectral kernel RX (WSSKRX detector and its parallel implementation on graphics processing units (GPUs. The WSSKRX utilizes the spatial neighborhood resources to reconstruct the testing pixels by introducing a spectral factor and a spatial window, thereby effectively reducing the interference of background noise. Then, the kernel function is redesigned as a mapping trick in a KRX detector to implement the anomaly detection. In addition, a powerful architecture based on the GPU technique is designed to accelerate WSSKRX. To substantiate the performance of the proposed algorithm, both synthetic and real data are conducted for experiments.

  4. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  5. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2002-01-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature

  6. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S

    2002-03-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.

  7. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  8. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  9. Spectral function from Reduced Density Matrix Functional Theory

    Science.gov (United States)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  10. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  11. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  12. Spectral functions from hadronic τ decays

    International Nuclear Information System (INIS)

    Davier, Michel

    2002-01-01

    Hadronic decays of the τ lepton provide a clean environment to study hadron dynamics in an energy regime dominated by romances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonpertubative contributions. the τ vector spectral functions for the 2π and 4π final states are used together with e p+ e p- data in order to compute vacuum polarization integrals occurring in the calculations of the anomalous magnetic moment of the muon and the running of the electromagnetic coupling

  13. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  14. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  15. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  16. Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Dessau, D.S.; Wells, B.O.; Shen, Z.; Spicer, W.E.; Arko, A.J.; List, R.S.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    Anomalous spectral weight transfer at the superconducting transition of single-crystalline Bi 2 Sr 2 CaCu 2 O 8+δ was observed by high-resolution angle-resolved photoemission spectroscopy. As the sample goes superconducting, not only is there spectral weight transfer from the gap region to the pileup peak as in BCS theory, but along the Γ-bar M direction there is also some spectral weight transfer from higher binding energies in the form of a dip. In addition, we note that at the superconducting transition there is a decrease (increase) in the occupied spectral weight for the spectra taken along Γ-bar M (Γ-X)

  17. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  18. Effective spectral function for quasielastic scattering on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)

    2014-10-15

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  19. Effective spectral function for quasielastic scattering on nuclei

    International Nuclear Information System (INIS)

    Bodek, A.; Coopersmith, B.; Christy, M.E.

    2014-01-01

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  20. The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions.

    Science.gov (United States)

    Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P

    2005-01-01

    Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.

  1. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  2. Spectral functions of hadrons in lattice QCD

    International Nuclear Information System (INIS)

    Nakahara, Y.; Asakawa, M.; Hatsuda, T.

    2000-01-01

    Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)

  3. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  4. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  5. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  6. Effective Spectral Function for Quasielastic Scattering on Nuclei

    OpenAIRE

    Bodek, A.; Christy, M. E.; Coopersmith, B.

    2014-01-01

    Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the $\

  7. Functional analysis, spectral theory, and applications

    CERN Document Server

    Einsiedler, Manfred

    2017-01-01

    This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

  8. Variational principles for the spectral radius of functional operators

    International Nuclear Information System (INIS)

    Antonevich, A B; Zajkowski, K

    2006-01-01

    The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional T defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional T by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional T and the spectral radius are presented.

  9. Variable weight spectral amplitude coding for multiservice OCDMA networks

    Science.gov (United States)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  10. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  11. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  12. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  13. Psychophysics of the probability weighting function

    Science.gov (United States)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (01e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  14. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  15. Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors

    International Nuclear Information System (INIS)

    Flint, S.D.; Caldwell, M.M.

    1996-01-01

    Biological spectral weighting functions (BSWF) play a key role in calculating the increase of biologically effective solar ultraviolet-B radiation (UV-BBE) due to ozone reduction, assessing current latitudinal gradients of UV-B BE . and comparing solar UV-B BE with that from lamps and filters in plant experiments. Plant UV action spectra (usually determined with monochromatic radiation in the laboratory with exposure periods on the order of hours) are often used as BSWF. The realism of such spectra for plants growing day after day in polychromatic solar radiation in the field is questionable. We tested the widely used generalized plant action spectrum since preliminary data from an action spectrum being developed with monochromatic radiation for a cultivated oat variety indicate reasonable agreement with the generalized spectrum. These tests involved exposing plants to polychromatic radiation either from a high-pressure xenon arc lamp in growth chambers or in the field under solar radiation with supplemental UV-B lamps. Different broad-spectrum combinations were achieved by truncating the spectrum at successively longer UV wavelengths with various filters. In the growth chamber experiments, the generalized plant spectrum appeared to predict plant growth responses at short (<310nm) wavelengths but not at longer wavelengths. The field experiment reinforced these conclusions, showing (in addition to the expected direct UV-B effects) both direct UV-A effects and UV-A mitigation of UV-B effects. (author)

  16. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-03-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  17. Numerical evolutions of fields on the 2-sphere using a spectral method based on spin-weighted spherical harmonics

    International Nuclear Information System (INIS)

    Beyer, Florian; Daszuta, Boris; Frauendiener, Jörg; Whale, Ben

    2014-01-01

    Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through the use of integer spin-weighted spherical harmonics, we present a method which allows for the implementation of arbitrary tensorial evolution equations. Our method combines two numerical techniques that were originally developed with different applications in mind. The first is Huffenberger and Wandelt’s spectral decomposition algorithm to perform the mapping from physical to spectral space. The second is the application of Luscombe and Luban’s method, to convert numerically divergent linear recursions into stable nonlinear recursions, to the calculation of reduced Wigner d-functions. We give a detailed discussion of the theory and numerical implementation of our algorithm. The properties of our method are investigated by solving the scalar and vectorial advection equation on the sphere, as well as the 2 + 1 Maxwell equations on a deformed sphere. (paper)

  18. Spectral functions from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)

    2016-12-15

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  19. In-plane optical spectral weight redistribution in the optimally doped Ba0.6 K0.4Fe2As2 superconductor

    International Nuclear Information System (INIS)

    Xu Bing; Dai Yao-Min; Xiao Hong; Qiu Xiang-Gang; Lobo, R. P. S. M.

    2014-01-01

    We performed detailed temperature-dependent optical measurements on optimally doped Ba 0.6 K 0.4 Fe 2 As 2 single crystal. We examine the changes of the in-plane optical conductivity spectral weight in the normal state and the evolution of the superconducting condensate in the superconducting state. In the normal state, the low-frequency spectral weight shows a metallic response with an arctan (T) dependence, indicating a T-linear scattering rate behavior for the carriers. A high energy spectral weight transfer associated with the Hund's coupling occurs from the low frequencies below 4000 cm −1 ∼ 5000 cm −1 to higher frequencies up to at least 10 cm −1 . Its temperature dependence analysis suggests that the Hund's coupling strength is continuously enhanced as the temperature is reduced. In the superconducting state, the FGT sum rule is conserved according to the spectral weight estimation within the conduction bands, only about 40% of the conduction bands participates in the superconducting condensate indicating that Ba 0.6 K 0.4 Fe 2 As 2 is in dirty limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  1. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F; Plessier, R; Till, M; Marie, B; Djavdan, E [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1997-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  2. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F.; Plessier, R.; Till, M.; Marie, B.; Djavdan, E. [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1996-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  3. ALEPH Tau Spectral Functions and QCD

    CERN Document Server

    Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing

    2007-01-01

    Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.

  4. Koopmans-Compliant Spectral Functionals for Extended Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Linh Nguyen

    2018-05-01

    Full Text Available Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans’s orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  5. Koopmans-Compliant Spectral Functionals for Extended Systems

    Science.gov (United States)

    Nguyen, Ngoc Linh; Colonna, Nicola; Ferretti, Andrea; Marzari, Nicola

    2018-04-01

    Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans's orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  6. Spectral function for a nonsymmetric differential operator on the half line

    Directory of Open Access Journals (Sweden)

    Wuqing Ning

    2017-05-01

    Full Text Available In this article we study the spectral function for a nonsymmetric differential operator on the half line. Two cases of the coefficient matrix are considered, and for each case we prove by Marchenko's method that, to the boundary value problem, there corresponds a spectral function related to which a Marchenko-Parseval equality and an expansion formula are established. Our results extend the classical spectral theory for self-adjoint Sturm-Liouville operators and Dirac operators.

  7. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2017-04-14

    We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  8. Beyond the spectral theorem: Spectrally decomposing arbitrary functions of nondiagonalizable operators

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-06-01

    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, the familiar linear operator techniques that one would then hope to use often fail since the operators cannot be diagonalized. The curse of nondiagonalizability also plays an important role even in finite-dimensional linear operators, leading to analytical impediments that occur across many scientific domains. We show how to circumvent it via two tracks. First, using the well-known holomorphic functional calculus, we develop new practical results about spectral projection operators and the relationship between left and right generalized eigenvectors. Second, we generalize the holomorphic calculus to a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. This simultaneously simplifies and generalizes functional calculus so that it is readily applicable to analyzing complex physical systems. Together, these results extend the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics arise, including memoryful stochastic processes, open nonunitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator, highlighting the special role of the zero eigenvalue. Furthermore, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a new general

  9. Calculation of the pion-nucleon double spectral functions and applications

    International Nuclear Information System (INIS)

    Grether, D.

    1986-01-01

    In the present thesis the latest results from pion-pion and pion-nucleon phase analyses are applied in order to calculate the pion-nucleon double spectral functions which belong to the elastic unitarity in the t-channel. The equivalence of the partial wave projection of these spectral functions in the s-channel with the elastic t-channel unitarity is extensively discussed. After we summarize the aspects of the pion-nucleon system seeming in this connection interesting we discuss the Mandelstam method for the calculation of the spectral functions by means of the elastic t-channel unitarity as well as the applied input and present the results. Thereafter we use these results in order to calculate by means of a fixed t-channel dispersion relation the real parts of the t-channel cuts. Partial wave projections into the t-channel are proved as equivalent to the elastic t-channel unitarity. We study the compatibility of the asymptotic behaviour of the spectral functions relative to the energy with current Regge pole models. Finally we use our results in order to calculate the pion-nucleon partial waves by means of their Froissart-Gribov representations which follow from their analyticity at fixed energy. (orig./HSI) [de

  10. Weighted semiconvex spaces of measurable functions

    International Nuclear Information System (INIS)

    Olaleru, J.O.

    2001-12-01

    Semiconvex spaces are intermediates between locally convex spaces and the non locally convex topological vector spaces. They include all locally convex spaces; hence it is a generalization of locally convex spaces. In this article, we make a study of weighted semiconvex spaces parallel to weighted locally convex spaces where continuous functions are replaced with measurable functions and N p family replaces Nachbin family on a locally compact space X. Among others, we examine the Hausdorffness, completeness, inductive limits, barrelledness and countably barrelledness of weighted semiconvex spaces. New results are obtained while we have a more elegant proofs of old results. Furthermore, we get extensions of some of the old results. It is observed that the technique of proving theorems in weighted locally convex spaces can be adapted to that of weighted semicovex spaces of measurable functions in most cases. (author)

  11. Executive function in weight loss and weight loss maintenance: a conceptual review and novel neuropsychological model of weight control.

    Science.gov (United States)

    Gettens, Katelyn M; Gorin, Amy A

    2017-10-01

    Weight loss maintenance is a complex, multifaceted process that presents a significant challenge for most individuals who lose weight. A growing body of literature indicates a strong relationship between cognitive dysfunction and excessive body weight, and suggests that a subset of high-order cognitive processes known as executive functions (EF) likely play an important role in weight management. Recent reviews cover neuropsychological correlates of weight status yet fail to address the role of executive function in the central dilemma of successful weight loss maintenance. In this paper, we provide an overview of the existing literature examining executive functions as they relate to weight status and initial weight loss. Further, we propose a novel conceptual model of the relationships between EF, initial weight loss, and weight loss maintenance, mapping specific executive functions onto strategies known to be associated with both phases of the weight control process. Implications for the development of more efficacious weight loss maintenance interventions are discussed.

  12. Executive functions predict weight loss in a medically supervised weight loss programme

    OpenAIRE

    Galioto, R.; Bond, D.; Gunstad, J.; Pera, V.; Rathier, L.; Tremont, G.

    2016-01-01

    Summary Background Deficits in executive functions are related to poorer weight loss after bariatric surgery; however, less is known about the role that these deficits may play during participation in nonsurgical weight loss programmes. This study examined associations between objectively measured executive functions and weight loss during participation in a medically supervised weight loss programme. Methods Twenty?three adult patients (age 50.4???15.1, BMI 44.2???8.8, 68% female, 92% White)...

  13. Spectral Data Captures Important Variability Between and Among Species and Functional Types

    Science.gov (United States)

    Townsend, P. A.; Serbin, S. P.; Kingdon, C.; Singh, A.; Couture, J. J.; Gamon, J. A.

    2013-12-01

    Narrowband spectral data in the visible, near and shortwave infrared (400-2500 nm) are being used increasingly in plant ecology to characterize the biochemical, physiological and water status of vegetation, as well as community composition. In particular, spectroscopic data have recently received considerable attention for their capacity to discriminate plants according to functional properties or 'optical types.' Such measurements can be acquired from airborne/satellite remote sensing imagery or field spectrometers and are commonly used to directly estimate or infer properties important to photosynthesis, carbon and water fluxes, nutrient dynamics, phenology, and disturbance. Spectral data therefore represent proxies for measurements that are otherwise time consuming or expensive to make, and - more importantly - provide the opportunity to characterize the spatial and temporal variability of taxonomic or functional groups. We have found that spectral variation within species and functional types can in fact exceed the variation between types. As such, we recommend that the traditional quantification of characteristics defining species and/or functional types must be modified to include the range of variability in those properties. We provide four examples of the importance of spectral data for describing within-species/functional type variation. First, within temperate forests, the spectral properties of foliage vary considerably with canopy position. This variability is strongly related to differences in specific leaf area between shade- and sun-lit leaves, and the resulting differences among leaves in strategies for light harvesting, photosynthesis, and leaf longevity. These results point to the need to better characterize leaf optical properties throughout a canopy, rather than basing the characterization of ecosystem functioning on only the sunlit portion of the canopy crown. Second, we show considerable differences in optical properties of foliage from

  14. The Relationships between Weight Functions, Geometric Functions,and Compliance Functions in Linear Elastic Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Rong [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight

  15. Uniform convergence of the empirical spectral distribution function

    NARCIS (Netherlands)

    Mikosch, T; Norvaisa, R

    1997-01-01

    Let X be a linear process having a finite fourth moment. Assume F is a class of square-integrable functions. We consider the empirical spectral distribution function J(n,X) based on X and indexed by F. If F is totally bounded then J(n,X) satisfies a uniform strong law of large numbers. If, in

  16. Topological vertex, string amplitudes and spectral functions of hyperbolic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, M.E.X.; Rosa, T.O. [Universidade Federal Fluminense, Instituto de Fisica, Av. Gal. Milton Tavares de Souza, s/n, CEP 24210-346, Niteroi, RJ (Brazil); Luna, R.M. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil)

    2014-05-15

    We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of a hyperbolic three-geometry associated with q-series in the computation of the string amplitudes. (orig.)

  17. Executive functions predict weight loss in a medically supervised weight loss programme

    Science.gov (United States)

    Bond, D.; Gunstad, J.; Pera, V.; Rathier, L.; Tremont, G.

    2016-01-01

    Summary Background Deficits in executive functions are related to poorer weight loss after bariatric surgery; however, less is known about the role that these deficits may play during participation in nonsurgical weight loss programmes. This study examined associations between objectively measured executive functions and weight loss during participation in a medically supervised weight loss programme. Methods Twenty‐three adult patients (age 50.4 ± 15.1, BMI 44.2 ± 8.8, 68% female, 92% White) enrolled in a medically supervised weight loss programme, involving prescription of a very low calorie diet and strategies to change eating and activity behaviours, underwent comprehensive computerized testing of executive functions at baseline. Weight was obtained at baseline and 8 weeks. Demographic and clinical information were obtained through medical chart review. Results Participants lost an average of 9.8 ± 3.4% of their initial body weight at 8 weeks. Fewer correct responses on a set‐shifting task and faster reaction time on a response inhibition task were associated with lower weight loss percentage at 8 weeks after adjusting for age, education and depressive symptoms. There were no associations between performance on tests of working memory or planning and weight loss. Conclusions This study shows that worse performance on a set‐shifting task (indicative of poorer cognitive flexibility) and faster reaction times on a response inhibition test (indicative of higher impulsivity) are associated with lower weight loss among participants in a medically supervised weight loss programme. Pre‐treatment assessment of executive functions may be useful in identifying individuals who may be at risk for suboptimal treatment outcomes. Future research is needed to replicate these findings in larger samples and identify underlying mechanisms. PMID:28090338

  18. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  19. Fermi energy 5f spectral weight variation in uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, J.D.; Clack, J.; Allen, J.W. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varying degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.

  20. Spectral analysis of difference and differential operators in weighted spaces

    International Nuclear Information System (INIS)

    Bichegkuev, M S

    2013-01-01

    This paper is concerned with describing the spectrum of the difference operator K:l α p (Z,X)→l α p (Z......athscrKx)(n)=Bx(n−1),  n∈Z,  x∈l α p (Z,X), with a constant operator coefficient B, which is a bounded linear operator in a Banach space X. It is assumed that K acts in the weighted space l α p (Z,X), 1≤p≤∞, of two-sided sequences of vectors from X. The main results are obtained in terms of the spectrum σ(B) of the operator coefficient B and properties of the weight function. Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given. Bibliography: 23 titles

  1. Spectral functions in quantum chromodynamics and applications

    International Nuclear Information System (INIS)

    Tran, M.D.

    1981-01-01

    The longitudinal and transverse spectral functions for arbitrary conserved and non-conserved vector and axial vector currents of massive quarks are calculated to first order in α/sub s/ and exact analytical expressions are given. As an intermediate step the form factors to the same order in α/sub s/ are determined. A remarkably simple result for the combination of the spectral functions corresponding to the Weinberg's first sum rule is derived. It behaves asymptotically like α/sub s/s 2 thus ensuring the convergence of the sum rule. The Weinberg's second sum rule is shown to fail to hold, a new sum rule is then proposed to replace the original one. The current algebra calculation of the pion electromagnetic mass difference is reexamined in the light of quantum chromodynamics. The old analysis cannot be upheld because of the failure of the Weinberg's second sum rule. After a modification based on Dashen's theorem, the proposed sum rule then can be used to obtain a mass difference close to experimental value. Using the derived QCD corrected spectral functions on finite Q 2 sum rules, the current couplings of the five low-lying mesons π, rho, K, K*, A 1 are computed. For values of quark masses m/sub u/ = m/sub d/ = 0.25 GeV, m/sub s/ = 0.4 GeV and of the QCD scale parameter Λ = 0.5 GeV, a striking agreement with experiment is obtained. We investigate decay properties of the intermediate vector bosons Z, W. Gluonic corrections to hadronic decay modes are calculated with the account of quark mass effect. Implications of the results for decay widths, branching ratios are examined. The ratio R of reaction e + e - → hadrons is calculated to first order in α/sub s/, the quark mass effect is shown to be important

  2. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  3. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  4. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to the full first-principles theory and the Fröhlich polaron

    Science.gov (United States)

    Nery, Jean Paul; Allen, Philip B.; Antonius, Gabriel; Reining, Lucia; Miglio, Anna; Gonze, Xavier

    2018-03-01

    The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies ɛk(T ) . Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function A (k ,ω ) =-ℑ m GR(k ,ω ) /π , where GR is the retarded Green's function. Electronic structure codes (e.g., using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self-energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self-energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fröhlich Hamiltonian by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fröhlich Hamiltonian. Such an analysis applies widely to materials with infrared(IR)-active phonons.

  5. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods

    International Nuclear Information System (INIS)

    Kumashiro, Kristin K.; Niemczura, Walter P.; Kim, Minna S.; Sandberg, Lawrence B.

    2000-01-01

    Solid-state spectral editing techniques have been used by others to simplify 13 C CPMAS spectra of small organic molecules, synthetic organic polymers, and coals. One approach utilizes experiments such as cross-polarization-with-polarization-inversion and cross-polarization-with-depolarization to generate subspectra. This work shows that this particular methodology is also applicable to natural-abundance 13 C CPMAS NMR studies of high-molecular-weight biopolymers. The editing experiments are demonstrated first with model peptides and then with α-elastin, a high-molecular-weight peptidyl preparation obtained from the elastic fibers in mammalian tissue. The latter has a predominance of small, nonpolar residues, which is evident in the crowded aliphatic region of typical 13 C CPMAS spectra. Spectral editing is particularly useful for simplifying the aliphatic region of the NMR spectrum of this elastin preparation

  6. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Spectral functions for the flat plasma sheet model

    International Nuclear Information System (INIS)

    Pirozhenko, I G

    2006-01-01

    The present work is based on Bordag M et al 2005 (J. Phys. A: Math. Gen. 38 11027) where the spectral analysis of the electromagnetic field on the background of an infinitely thin flat plasma layer is carried out. The solutions to Maxwell equations with the appropriate matching conditions at the plasma layer are derived and the spectrum of electromagnetic oscillations is determined. The spectral zeta function and the integrated heat kernel are constructed for different branches of the spectrum in an explicit form. The asymptotic expansion of the integrated heat kernel at small values of the evolution parameter is derived. The local heat kernels are considered also

  8. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    Science.gov (United States)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  9. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  10. Regge expansion of a casual spectral function in electroproduction

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Taha, M.O.

    1975-01-01

    The conjecture that a term in the Regge espansion of the Deser-Gilbert-Sudarshan spectral function in electroproduction may identically vanish is investigated. It is shown that this conjecture does not appear to be in agreement with experiment

  11. Finite-temperature gluon spectral functions from N{sub f} = 2+1+1 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, Ernst-Michael; Trunin, Anton [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Pawlowski, Jan M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung mbH, Darmstadt (Germany); Rothkopf, Alexander [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany)

    2018-02-15

    We investigate gluon correlation functions and spectral functions at finite temperature in Landau gauge on lattice QCD ensembles with N{sub f} = 2+1+1 dynamical twisted-mass quarks flavors, generated by the tmfT collaboration. They cover a temperature range from 0.8 ≤ T/T{sub C} ≤ 4 using the fixed-scale approach. Our study of spectral properties is based on a novel Bayesian approach for the extraction of non-positive-definite spectral functions. For each binned spatial momentum we take into account the gluon correlation functions at all available discrete imaginary frequencies. Clear indications for the existence of a well defined quasi-particle peak are obtained. Due to a relatively small number of imaginary frequencies available, we focus on the momentum and temperature dependence of the position of this spectral feature. The corresponding dispersion relation reveals different in-medium masses for longitudinal and transversal gluons at high temperatures, qualitatively consistent with weak coupling expectations. (orig.)

  12. Universality of many-body two-nucleon momentum distributions: Correlated nucleon spectral function of complex nuclei

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Morita, Hiko

    2017-12-01

    Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A

  13. Moments of the weighted sum-of-digits function | Larcher ...

    African Journals Online (AJOL)

    The weighted sum-of-digits function is a slight generalization of the well known sum-of-digits function with the difference that here the digits are weighted by some weights. So for example in this concept also the alternated sum-of-digits function is included. In this paper we compute the first and the second moment of the ...

  14. Infinite-component conformal fields. Spectral representation of the two-point function

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Tcholakov, V.

    1975-01-01

    The infinite-component conformal fields (with respect to the stability subgroup) are considered. The spectral representation of the conformally invariant two-point function is obtained. This function is nonvanishing as/lso for one ''fundamental'' and one infinite-component field

  15. Hole spectral functions in lightly doped quantum antiferromagnets

    Science.gov (United States)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  16. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  17. QCD sum-rules for V-A spectral functions

    International Nuclear Information System (INIS)

    Chakrabarti, J.; Mathur, V.S.

    1980-01-01

    The Borel transformation technique of Shifman et al is used to obtain QCD sum-rules for V-A spectral functions. In contrast to the situation in the original Weinberg sum-rules and those of Bernard et al, the problem of saturating the sum-rules by low lying resonances is brought under control. Furthermore, the present sum-rules, on saturation, directly determine useful phenomenological parameters

  18. Remote Sensing Image Fusion at the Segment Level Using a Spatially-Weighted Approach: Applications for Land Cover Spectral Analysis and Mapping

    Directory of Open Access Journals (Sweden)

    Brian Johnson

    2015-01-01

    Full Text Available Segment-level image fusion involves segmenting a higher spatial resolution (HSR image to derive boundaries of land cover objects, and then extracting additional descriptors of image segments (polygons from a lower spatial resolution (LSR image. In past research, an unweighted segment-level fusion (USF approach, which extracts information from a resampled LSR image, resulted in more accurate land cover classification than the use of HSR imagery alone. However, simply fusing the LSR image with segment polygons may lead to significant errors due to the high level of noise in pixels along the segment boundaries (i.e., pixels containing multiple land cover types. To mitigate this, a spatially-weighted segment-level fusion (SWSF method was proposed for extracting descriptors (mean spectral values of segments from LSR images. SWSF reduces the weights of LSR pixels located on or near segment boundaries to reduce errors in the fusion process. Compared to the USF approach, SWSF extracted more accurate spectral properties of land cover objects when the ratio of the LSR image resolution to the HSR image resolution was greater than 2:1, and SWSF was also shown to increase classification accuracy. SWSF can be used to fuse any type of imagery at the segment level since it is insensitive to spectral differences between the LSR and HSR images (e.g., different spectral ranges of the images or different image acquisition dates.

  19. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic τ decays with the OPAL detector

    International Nuclear Information System (INIS)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ - → (Kπ) - ν τ , (Kππ) - ν τ and (Kπππ) - ν τ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ - → K - π 0 ν τ ) = (0.471 ± 0.064 stat ± 0.021 sys )%, B(τ - → K - π + π - ν τ ) = (0.415 ± 0.059 stat ± 0.031 sys )% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the τ mass scale has been determined: m s (m τ 2 ) = (84 ± 14 exp ± 6 V us ± 17 theo ) MeV. Evolving this result to customary scales yields m s (1 GeV 2 ) = (111 -35 +26 ) MeV, m s (4 GeV 2 ) = (82 -25 +19 ) MeV. (orig.)

  20. Eigenvector Weighting Function in Face Recognition

    Directory of Open Access Journals (Sweden)

    Pang Ying Han

    2011-01-01

    Full Text Available Graph-based subspace learning is a class of dimensionality reduction technique in face recognition. The technique reveals the local manifold structure of face data that hidden in the image space via a linear projection. However, the real world face data may be too complex to measure due to both external imaging noises and the intra-class variations of the face images. Hence, features which are extracted by the graph-based technique could be noisy. An appropriate weight should be imposed to the data features for better data discrimination. In this paper, a piecewise weighting function, known as Eigenvector Weighting Function (EWF, is proposed and implemented in two graph based subspace learning techniques, namely Locality Preserving Projection and Neighbourhood Preserving Embedding. Specifically, the computed projection subspace of the learning approach is decomposed into three partitions: a subspace due to intra-class variations, an intrinsic face subspace, and a subspace which is attributed to imaging noises. Projected data features are weighted differently in these subspaces to emphasize the intrinsic face subspace while penalizing the other two subspaces. Experiments on FERET and FRGC databases are conducted to show the promising performance of the proposed technique.

  1. Multi-function nuclear weight scale system

    International Nuclear Information System (INIS)

    Zheng Mingquan; Sun Jinhua; Jia Changchun; Wang Mingqian; Tang Ke

    1998-01-01

    The author introduces the methods to contrive the hardware and software of a Multi-function Nuclear Weight Scale System based on the communication contract in compliance with RS485 between a master (industrial control computer 386) and a slave (single chip 8098) and its main functions

  2. Preoperative thyroid function and weight loss after bariatric surgery.

    Science.gov (United States)

    Neves, João Sérgio; Souteiro, Pedro; Oliveira, Sofia Castro; Pedro, Jorge; Magalhães, Daniela; Guerreiro, Vanessa; Costa, Maria Manuel; Bettencourt-Silva, Rita; Santos, Ana Cristina; Queirós, Joana; Varela, Ana; Freitas, Paula; Carvalho, Davide

    2018-05-16

    Thyroid function has an important role on body weight regulation. However, the impact of thyroid function on weight loss after bariatric surgery is still largely unknown. We evaluated the association between preoperative thyroid function and the excess weight loss 1 year after surgery, in 641 patients with morbid obesity who underwent bariatric surgery. Patients with a history of thyroid disease, treatment with thyroid hormone or antithyroid drugs and those with preoperative evaluation consistent with overt hypothyroidism or hyperthyroidism were excluded. The preoperative levels of TSH and FT4 were not associated with weight loss after bariatric surgery. The variation of FT3 within the reference range was also not associated with weight loss. In contrast, the subgroup with FT3 above the reference range (12.3% of patients) had a significantly higher excess weight loss than patients with normal FT3. This difference remained significant after adjustment for age, sex, BMI, type of surgery, TSH and FT4. In conclusion, we observed an association between high FT3 and a greater weight loss after bariatric surgery, highlighting a group of patients with an increased benefit from this intervention. Our results also suggest a novel hypothesis: the pharmacological modulation of thyroid function may be a potential therapeutic target in patients undergoing bariatric surgery.

  3. [Weight loss in overweight or obese patients and family functioning].

    Science.gov (United States)

    Jaramillo-Sánchez, Rosalba; Espinosa-de Santillana, Irene; Espíndola-Jaramillo, Ilia Angélica

    2012-01-01

    to determine the association between weight loss and family functioning. a cohort of 168 persons with overweight or obesity from 20-49 years, either sex, with no comorbidity was studied at the nutrition department. A sociodemographic data was obtained and FACES III instrument to measure family functioning was applied. At the third month a new assessment of the body mass index was measured. Descriptive statistical analysis and relative risk were done. obesity presented in 50.6 %, 59.53 % of them did not lose weight. Family dysfunction was present in 56.6 % of which 50 % did not lose weight. From 43.4 % of functional families, 9.52 % did not lose weight (p = 0.001). The probability or risk of not losing weight was to belong to a dysfunctional family is 4.03 % (CI = 2.60-6.25). A significant association was found between the variables: weight loss and family functioning. Belonging to a dysfunctional family may be a risk factor for not losing weight.

  4. Charmonium correlators and spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.

    2008-09-01

    We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.

  5. Heavy carriers, non-drude optical conductivity and transfer of spectral weight in MnSi

    International Nuclear Information System (INIS)

    Mena, F.P.; Damascelli, A.; Marel, D. van der; Fath, M.; Menovsky, A.A.; Mydosh, J.A.

    2004-01-01

    The optical properties of the weak magnetic metal MnSi were determined using reflectance at 80 deg. (2-800 meV) and ellipsometry (0.8-4.5 eV). At low frequencies in the magnetic phase we observe a departure of the optical conductivity from Drude behavior: m*(ω)/m is strongly frequency dependent and 1/τ(ω) is approximately linear in frequency. In fact, we show that σ(ω)/σ(0)=(1+iω/Γ) -0.5 . Moreover, in the magnetic phase, the plasma frequency shifts to the red indicating that spectral weight is transferred to high frequencies. This is opposite to the effect recently seen in other magnetic compounds

  6. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  7. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic {tau} decays with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)

  8. Measurement of the lepton τ spectral functions and applications to quantum chromodynamic

    International Nuclear Information System (INIS)

    Hoecker, A.

    1997-01-01

    This thesis presents measurements of the τ vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e + e - annihilation. A combined fit of the pion form factor from τ decays and e + e - data is performed using different parametrizations. The mass and the width of the ρ ± (770) and the ρ 0 (770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M ρ ± (770) - M ρ 0 (770) =(0.0±1.0) MeV/c 2 and Γ ρ ± (770) - Γ ρ 0 (770) =(0.1 ± 1.9) MeV/c 2 . Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be α E =(2.68±0.91) x 10 -4 fm 3 . The τ vector and axial-vector hadronic widths and certain spectral moments are exploited to measure α s and non-perturbative contributions at the τ mass scale. The best, and experimentally and theoretically most robust, determination of α s (M τ ) is obtained from the inclusive (V + A) fit that yields α s (M τ )= 0.348±0.017 giving α s (M Z )=0.1211 ± 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the τ hadronic width to masses smaller that the τ mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6.9±0.5. The vector spectral functions are used to improve the precision of the experimental determination of the hadronic contribution to the anomalous magnetic moment of the muon a μ =(g - 2)/2 and to the running of the QED

  9. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  10. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  11. Enkephalins: Raman spectral analysis and comparison as function of pH 1-13

    DEFF Research Database (Denmark)

    Abdali, Salim; Refstrup, Pia; Nielsen, O.F.

    2003-01-01

    Raman spectral studies are carried out on Leu- and Met-enkephalin as a function of the pH value in the range of 1-13. The molecules are dissolved in KCI solvent and the pH is controlled at each value. Spectral analyses reveal the dependence of the structural conformation on the pH, and a comparis...

  12. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  13. Evaluation of spectral zeta-functions with the renormalization group

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Li, Shanshan

    2017-01-01

    We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)

  14. Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    International Nuclear Information System (INIS)

    Fiebig, H. Rudolf

    2002-01-01

    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach

  15. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  16. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    Science.gov (United States)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  17. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  18. Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions.

    Science.gov (United States)

    Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2014-06-30

    In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

  19. The 3He spectral function in light-front dynamics

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2016-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.

  20. Measurement of the spectral functions of vector current hadronic $\\tau$ decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    A measurement of the spectral functions of non-strange tau vector current final states is presented, using 124,358 tau pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion tau decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from tau decays and e+e- data is performed using different parametrizations. The mass and the width of the charged and the neutral rho(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M(rho^+/-(770)) - M(rho^0(770)) = (0.0 +/- 1.0) MeV/c^2 and Gamma(rho^+/-(770)) - Gamma(rho^0(770)) = (0.1 +/- 1.9) MeV/c^2.

  1. Simulation and Analysis of Spectral Response Function and Bandwidth of Spectrometer

    Directory of Open Access Journals (Sweden)

    Zhenyu Gao

    2016-01-01

    Full Text Available A simulation method for acquiring spectrometer’s Spectral Response Function (SRF based on Huygens Point Spread Function (PSF is suggested. Taking into account the effects of optical aberrations and diffraction, the method can obtain the fine SRF curve and corresponding spectral bandwidth at any nominal wavelength as early as in the design phase. A prism monochromator is proposed for illustrating the simulation procedure. For comparison, a geometrical ray-tracing method is also provided, with bandwidth deviations varying from 5% at 250 nm to 25% at 2400 nm. Further comparison with reported experiments shows that the areas of the SRF profiles agree to about 1%. However, the weak scattered background light on the level of 10−4 to 10−5 observed by experiment could not be covered by this simulation. This simulation method is a useful tool for forecasting the performance of an underdesigned spectrometer.

  2. On the Projective Description of Weighted (LF-Spaces of Continuous Functions

    Directory of Open Access Journals (Sweden)

    Catherine V. Komarchuk

    2014-01-01

    Full Text Available We solve the problem of the topological or algebraic description of countable inductive limits of weighted Fréchet spaces of continuous functions on a cone. This problem is investigated for two families of weights defined by positively homogeneous functions. Weights of this form play the important role in Fourier analysis.

  3. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    Science.gov (United States)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  4. Recent advances in the spectral green's function method for monoenergetic slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: jperez@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional; Hernandez, Carlos R.G., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2015-07-01

    The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (S{sub N}) adjoint problems. The method is based on the standard spatially discretized adjoint S{sub N} balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the S{sub N} equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint S{sub N} problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)

  5. Weight loss improves biomarkers endothelial function and systemic ...

    African Journals Online (AJOL)

    Background: Although postmenopausal associated disorders are important public health problems worldwide, to date limited studies evaluated the endothelial function and systemic inflammation response to weight loss in obese postmenopausal women. Objective: This study was done to evaluate the endothelial function ...

  6. Discriminating Among Probability Weighting Functions Using Adaptive Design Optimization

    Science.gov (United States)

    Cavagnaro, Daniel R.; Pitt, Mark A.; Gonzalez, Richard; Myung, Jay I.

    2014-01-01

    Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models. PMID:24453406

  7. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  8. Proceedings of RIKEN BNL Research Center Workshop: Understanding QGP through Spectral Functions and Euclidean Correlators (Volume 89)

    International Nuclear Information System (INIS)

    Mocsy, A.; Petreczky, P.

    2008-01-01

    In the past two decades, one of the most important goals of the nuclear physics community has been the production and characterization of the new state of matter--Quark-Gluon Plasma (QGP). Understanding how properties of hadrons change in medium, particularly, the bound state of a very heavy quark and its antiquark, known as quarkonium, as well as determining the transport coefficients is crucial for identifying the properties of QGP and for the understanding of the experimental data from RHIC. On April 23rd, more than sixty physicists from twenty-seven institutions gathered for this three-day topical workshop held at BNL to discuss how to understand the properties of the new state of matter obtained in ultra-relativistic heavy ion collisions (particularly at RHIC-BNL) through spectral functions. In-medium properties of the different particle species and the transport properties of the medium are encoded in spectral functions. The former could yield important signatures of deconfinement and chiral symmetry restoration at high temperatures and densities, while the later are crucial for the understanding of the dynamics of ultra-relativistic heavy ion collisions. Participants at the workshop are experts in various areas of spectral function studies. The workshop encouraged direct exchange of scientific information among experts, as well as between the younger and the more established scientists. The workshops success is evident from the coherent picture that developed of the current understanding of transport properties and in-medium particle properties, illustrated in the current proceedings. The following pages show calculations of meson spectral functions in lattice QCD, as well as implications of these for quarkonia melting/survival in the quark gluon plasma; Lattice calculations of the transport coefficients (shear and bulk viscosities, electric conductivity); Calculation of spectral functions and transport coefficients in field theories using weak coupling

  9. Models for predicting objective function weights in prostate cancer IMRT

    International Nuclear Information System (INIS)

    Boutilier, Justin J.; Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.

    2015-01-01

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  10. Models for predicting objective function weights in prostate cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  11. A Loudness Function for Maintaining Spectral Balance at Changing Sound Pressure Levels

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    Our perception of loudness is a function of frequency as well as sound pressure level as described in ISO226:2003: Normal Equal Loudness Level Contours, which describes the needed sound pressure level for pure tones to be perceived equally loud. At a music performance, this is taking care...... of by the sound engineer by listening to the individual sound sources and adjust and equalize them to the wanted spectral balance including the whole chain of audio equipment and surroundings. At a live venue the sound pressure level will normally change during a concert, and typically increase over time......B is doubling of the effect to the loudspeakers). A level depending digital loudness function has been made based on ISO226:2003, and will be demonstrated. It can maintain the spectral balance at alternating levels and is based on fractional order digital filters. Tutorial. Abstract T3.3 (30th August 16:00 - 17...

  12. Audibility of spectral differences in head-related transfer functions

    DEFF Research Database (Denmark)

    Hoffmann, Pablo F.F.; Møller, Henrik

    2006-01-01

    The spatial resolution at which head-related transfer functions (HRTFs) are available is an important aspect in the implementation of three-dimensional sound. Specifically, synthesis of moving sound requires that HRTFs are sufficiently close so the simulated sound is perceived as moving smoothly....... How close they must be, depends directly on how much the characteristics of neighboring HRTFs differ, and, most important, when these differences become audible. Differences between HRTFs exist in the interaural delay (ITD) and in the spectral characteristics, i.e. the magnitude spectrum of the HRTFs...

  13. ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS

    Directory of Open Access Journals (Sweden)

    E. L. Shishkina

    2016-12-01

    Full Text Available In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated ultra-hyperbolic equations with the Bessel operator and for constructing negative real powers of ultra-hyperbolic operators with the Bessel operator.

  14. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  15. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  16. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    Science.gov (United States)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2017-12-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  17. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    Science.gov (United States)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2018-06-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  18. Weight change and physical function in older women: findings from the Nun Study.

    Science.gov (United States)

    Tully, C L; Snowdon, D A

    1995-12-01

    To investigate the association between change in weight and decline in physical function in older women. Longitudinal study of a defined population of Catholic sisters (nuns) whose weight and function were assessed twice, an average of 584 days apart. Unique life communities (convents) located throughout the United States. 475 Catholic sisters who were 75 to 99 years of age (M = 82.1, SD = 4.8) and were independent in at least one Activity of Daily Living (ADL) at the first assessment of weight and function. None. At each assessment, weight, ADLs, and cognitive function were evaluated as part of the Nun Study--a longitudinal study of aging and Alzheimer's disease. Annual percent weight change was calculated using weights from the two assessments, as well as the number of days that elapsed between assessments. Mean weight at first assessment was 140 pounds (range 78 to 232, SD = 27). The mean annual percent weight change was 0.1% (range 22% loss to 16% gain, SD = 3.8). Age- and initial weight-adjusted findings indicated that those participants with an annual percent weight loss of 3% or greater had 2.7 to 3.9 times the risk of becoming dependent in each ADL, compared to the sisters with no weight change. The elevated risk persisted in those who were mentally intact or were independent in their eating habits. Monitoring of weight may be an easy and inexpensive method of identifying older individuals at increased risk of disability.

  19. Spectral transformation chains and some new biorthogonal rational functions

    International Nuclear Information System (INIS)

    Spiridonov, V.

    2000-01-01

    A discrete-time chain, associated with the generalized eigenvalue problem for two Jacobi matrices, is derived. Various discrete and continuous symmetries of this integrable equation are revealed. A class of its rational, elementary and elliptic function solutions, appearing from a similarity reduction, are constructed. The latter lead to large families of biorthogonal rational functions based upon the very-well-posed balanced hypergeometric series of three types: the standard hypergeometric series 9 F 8 , basic series 10 φ 9 and its elliptic analogue 10 E 9 . For an important subclass of the elliptic biorthogonal rational functions the weight function and normalization constants are determined explicitly. (orig.)

  20. [Colon adenoma detection using Kubelka-Munk spectral function of DNA and protein bands].

    Science.gov (United States)

    Wei, Hua-Jiang; Guo, Zhou-Yi; Xie, Shu-Sen; He, Bo-Hua; Li, Li-Bo; Chen, Xue-Mei; Wu, Guo-Yong; Lu, Jian-Jun

    2009-06-01

    Differential diagnosis of human colon adenoma was studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 590 to 1 064 nm pathological changes of colon epithelial tissues were induced so that there were significant differences in the averaged values of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the DNA absorption bands at 260 nm between normal and adenomatous colon epithelial tissues, and the differences were 218% (p function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the protein absorption bands at 280 nm between normal and adenomatous colon epithelial tissues, and the differences were 208% (p function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the beta-carotene absorption bands at 480 nm between normal and adenomatous colon epithelial tissues, and the differences were 41.7% (p < 0.05) and 32.9% (p < 0.05) respectively. Obviously, pathological changes of colon epithelial tissues were induced so that there were significant changes in the contents of the DNA, protein and beta-carotene of colon epithelial tissues. The conclusion can be applied to rapid, low-cost and noninvasive optical biopsy of colon adenoma, and provides a useful reference.

  1. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  2. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    International Nuclear Information System (INIS)

    Lee, Taewoo; Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.

    2013-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl 2 distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the

  3. Energy-weighted moments in the problems of fragmentation

    International Nuclear Information System (INIS)

    Kuz'min, V.A.

    1986-01-01

    The problem of fragmentation of simple nuclear states on the complex ones is reduced to real symmetrical matrix eigenvectors and eigenvalue problem. Based on spectral decomposition of this matrix the simple and economical from computing point of view algorithm to calculate energetically-weighted strength function moments is obtained. This permitted one to investigate the sensitivity of solving the fragmentation problem to reducing the basis of complex states. It is shown that the full width of strength function is determined only by the complex states connected directly with the simple ones

  4. Measurement of the lepton {tau} spectral functions and applications to quantum chromodynamic; Mesure des fonctions spectrales du lepton {tau} et applications a la chromodynamique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, A [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire; [Universite de Paris Sud, 91 - Orsay (France)

    1997-04-18

    This thesis presents measurements of the {tau} vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e{sup +}e{sup -} annihilation. A combined fit of the pion form factor from {tau} decays and e{sup +}e{sup -} data is performed using different parametrizations. The mass and the width of the {rho}{sup {+-}}(770) and the {rho}{sup 0}(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M{sub {rho}{sup {+-}}{sub (770)} - M{sub {rho}{sup 0}}{sub (770)}=(0.0{+-}1.0) MeV/c{sup 2} and {gamma}{sub {rho}{sup {+-}}{sub (770)} - {gamma}{sub {rho}{sup 0}}{sub (770)}=(0.1 {+-} 1.9) MeV/c{sup 2}. Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be {alpha}{sub E}=(2.68{+-}0.91) x 10{sup -4} fm{sup 3}. The {tau} vector and axial-vector hadronic widths and certain spectral moments are exploited to measure {alpha}{sub s} and non-perturbative contributions at the {tau} mass scale. The best, and experimentally and theoretically most robust, determination of {alpha}{sub s}(M{sub {tau}}) is obtained from the inclusive (V + A) fit that yields {alpha}{sub s}(M{sub {tau}})= 0.348{+-}0.017 giving {alpha}{sub s}(M{sub Z})=0.1211 {+-} 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the {tau} hadronic width to masses smaller that the {tau} mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6

  5. Cognitive function and MRI findings in very low birth weight infants

    International Nuclear Information System (INIS)

    Imamura, Atsuko; Takagishi, Yuka; Takada, Satoru; Uetani, Yoshiyuki; Nakamura, Toru; Nakamura, Hajime; Inagaki, Yuko.

    1996-01-01

    Twenty-two very low birth weight infants at preschool ages of 5-6 years were studied to clarify the correlation between cognitive function and MRI findings. Cognitive function was evaluated by the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Frostig developmental test of visual perception. Ventricular enlargement, assessed by the bioccipital index (B.I.) measured on MRI, was correlated to cognitive disorders. Children with periventricular high intensity areas (T 2 -weighted images) extending from the posterior periventricular region to the parietal lobe tend to highly suffer from cerebral palsy and visuoperceptual impairment. These results indicate that the disorders of cognitive function in very low birth weight infants were caused by a damage of association fibers in periventricular areas which was detectable by MRI. (author)

  6. Impact on weight and physical function of intensive medical weight loss in older adults with stage II and III obesity.

    Science.gov (United States)

    Ard, Jamy D; Cook, Miranda; Rushing, Julia; Frain, Annette; Beavers, Kristen; Miller, Gary; Miller, Michael E; Nicklas, Barb

    2016-09-01

    A 6-month pilot trial compared two strategies for weight loss in older adults with body mass indexes (BMIs) ≥35 kg/m(2) to assess weight loss response, safety, and impact on physical function. Twenty-eight volunteers were randomized to a balanced deficit diet (BDD) (500 kcal/day below estimated energy needs) or an intensive, low-calorie, meal replacement diet (ILCD, 960 kcal/day). Behavioral interventions and physical activity prescriptions were similar for both groups. Primary outcomes were changes in body weight and adverse event frequency; secondary outcomes included measures of physical function and body composition. ILCD average weight change was -19.1 ± 2.2 kg or 15.9 ± 4.6% of initial body weight compared with -9.1 ± 2.7 kg or 7.2 ± 1.9% for BDD. ILCD lost more fat mass (-7.7 kg, 95% CI [-11.9 to -3.5]) but had similar loss of lean mass (-1.7 kg, 95% CI [-4.1 to 0.6]) compared with BDD. There were no significant differences in change in physical function or adverse event frequency. Compared with a traditional BDD intervention, older adults who have severe obesity treated with intensive medical weight loss had greater weight loss and decreases in fat mass without a higher frequency of adverse events. In the short term, however, this did not translate into greater improvements in physical function. © 2016 The Obesity Society.

  7. Spectral correlation functions of the sum of two independent complex Wishart matrices with unequal covariances

    International Nuclear Information System (INIS)

    Akemann, Gernot; Checinski, Tomasz; Kieburg, Mario

    2016-01-01

    We compute the spectral statistics of the sum H of two independent complex Wishart matrices, each of which is correlated with a different covariance matrix. Random matrix theory enjoys many applications including sums and products of random matrices. Typically ensembles with correlations among the matrix elements are much more difficult to solve. Using a combination of supersymmetry, superbosonisation and bi-orthogonal functions we are able to determine all spectral k -point density correlation functions of H for arbitrary matrix size N . In the half-degenerate case, when one of the covariance matrices is proportional to the identity, the recent results by Kumar for the joint eigenvalue distribution of H serve as our starting point. In this case the ensemble has a bi-orthogonal structure and we explicitly determine its kernel, providing its exact solution for finite N . The kernel follows from computing the expectation value of a single characteristic polynomial. In the general non-degenerate case the generating function for the k -point resolvent is determined from a supersymmetric evaluation of the expectation value of k ratios of characteristic polynomials. Numerical simulations illustrate our findings for the spectral density at finite N and we also give indications how to do the asymptotic large- N analysis. (paper)

  8. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  9. Weighted Anisotropic Integral Representations of Holomorphic Functions in the Unit Ball of

    Directory of Open Access Journals (Sweden)

    Arman Karapetyan

    2010-01-01

    Full Text Available We obtain weighted integral representations for spaces of functions holomorphic in the unit ball and belonging to area-integrable weighted -classes with “anisotropic” weight function of the type ∏=1(1−|1|2−|2|2−⋯−||2, =(1,2,…,∈. The corresponding kernels of these representations are estimated, written in an integral form, and even written out in an explicit form (for =2.

  10. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  11. Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2)

    International Nuclear Information System (INIS)

    Matassa, Marco

    2015-01-01

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension

  12. Cognitive function and MRI findings in very low birth weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Atsuko; Takagishi, Yuka; Takada, Satoru; Uetani, Yoshiyuki; Nakamura, Toru; Nakamura, Hajime [Kobe Univ. (Japan). School of Medicine; Inagaki, Yuko

    1996-07-01

    Twenty-two very low birth weight infants at preschool ages of 5-6 years were studied to clarify the correlation between cognitive function and MRI findings. Cognitive function was evaluated by the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Frostig developmental test of visual perception. Ventricular enlargement, assessed by the bioccipital index (B.I.) measured on MRI, was correlated to cognitive disorders. Children with periventricular high intensity areas (T{sub 2}-weighted images) extending from the posterior periventricular region to the parietal lobe tend to highly suffer from cerebral palsy and visuoperceptual impairment. These results indicate that the disorders of cognitive function in very low birth weight infants were caused by a damage of association fibers in periventricular areas which was detectable by MRI. (author)

  13. A method for measuring quality of life through subjective weighting of functional status.

    Science.gov (United States)

    Stineman, Margaret G; Wechsler, Barbara; Ross, Richard; Maislin, Greg

    2003-04-01

    To apply a new tool to understand the quality of life (QOL) implications of patients' functional status. Results from the Features-Resource Trade-Off Game were used to form utility weights by ranking functional activities by the relative value of achieving independence in each activity compared with all other component activities. The utility weights were combined with patients' actual levels of performance across the same activities to produce QOL-weighted functional status scores and to form "value rulers" to order activities by perceived importance. Persons with severe disabilities living in the community and clinicians practicing in various rehabilitation disciplines. Two panels of 5 consumers with disabilities and 2 panels of 5 rehabilitation clinicians. The 4 panels played the Features Resource Trade-Off Game by using the FIMT(TM) instrument definitions. Utility weights for each of the 18 FIM items, QOL-weighted FIM scores, and value rulers. All 4 panels valued the achievement of independence in cognitive and communication activities more than independence in physical activities. Consequently, the unweighted FIM scores of patients who have severe physical disabilities but relatively intact cognitive skills will underestimate QOL, while inflating QOL in those with low levels of independence in cognition and communication but higher physical function. Independence in some activities is more valued than in others; thus, 2 people with the same numeric functional status score could experience very different QOL. QOL-weighted functional status scores translate objectively measured functional status into its subjective meaning. This new technology for measuring subjective function-related QOL has a variety of applications to clinical, educational, and research practices.

  14. Spectral Kurtosis Entropy and Weighted SaE-ELM for Bogie Fault Diagnosis under Variable Conditions

    Directory of Open Access Journals (Sweden)

    Zhipeng Wang

    2018-05-01

    Full Text Available Bogies are crucial for the safe operation of rail transit systems and usually work under uncertain and variable operating conditions. However, the diagnosis of bogie faults under variable conditions has barely been discussed until now. Thus, it is valuable to develop effective methods to deal with variable conditions. Besides, considering that the normal data for training are much more than the faulty data in practice, there is another problem in that only a small amount of data is available that includes faults. Concerning these issues, this paper proposes two new algorithms: (1 A novel feature parameter named spectral kurtosis entropy (SKE is proposed based on the protrugram. The SKE not only avoids the manual post-processing of the protrugram but also has strong robustness to the operating conditions and parameter configurations, which have been validated by a simulation experiment in this paper. In this paper, the SKE, in conjunction with variational mode decomposition (VMD, is employed for feature extraction under variable conditions. (2 A new learning algorithm named weighted self-adaptive evolutionary extreme learning machine (WSaE-ELM is proposed. WSaE-ELM gives each sample an extra sample weight to rebalance the training data and optimizes these weights along with the parameters of hidden neurons by means of the self-adaptive differential evolution algorithm. Finally, the hybrid method based on VMD, SKE, and WSaE-ELM is verified by using the vibration signals gathered from real bogies with speed variations. It is demonstrated that the proposed method of bogie fault diagnosis outperforms the conventional methods by up to 4.42% and 6.22%, respectively, in percentages of accuracy under variable conditions.

  15. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    Science.gov (United States)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  16. Computer-assisted spectral design and synthesis

    Science.gov (United States)

    Vadakkumpadan, Fijoy; Wang, Qiqi; Sun, Yinlong

    2005-01-01

    In this paper, we propose a computer-assisted approach for spectral design and synthesis. This approach starts with some initial spectrum, modifies it interactively, evaluates the change, and decides the optimal spectrum. Given a requested change as function of wavelength, we model the change function using a Gaussian function. When there is the metameric constraint, from the Gaussian function of request change, we propose a method to generate the change function such that the result spectrum has the same color as the initial spectrum. We have tested the proposed method with different initial spectra and change functions, and implemented an interactive graphics environment for spectral design and synthesis. The proposed approach and graphics implementation for spectral design and synthesis can be helpful for a number of applications such as lighting of building interiors, textile coloration, and pigment development of automobile paints, and spectral computer graphics.

  17. Composition of S^p-weighted pseudo almost automorphic functions and applications

    Directory of Open Access Journals (Sweden)

    Chuan-Hua Chen

    2014-11-01

    Full Text Available Since the background space of $S^p$-weighted pseudo almost automorphic functions (abbr. $S^p$-wpaa functions is endowed with a norm coming from $L^p$ norm, it is natural to consider the composition of $S^p$-wpaa functions under conditions of $L^p$ norm. However, the known resutls for composition of $S^p$-wpaa functions were always given under conditions of supremum norm. Motivated by this, we establish some new results for the composition of $S^p$-almost automorphic functions and $S^p$-wpaa functions under a ``uniform continuity condition'' with respect to $L^p$ norm. As an application, we prove the existence of mild weighted pseudo almost automorphic solutions for some semilinear differential equations with an $S^p$-wpaa force term. An example of the heat equation illustrates our results.

  18. A spectral scheme for Kohn-Sham density functional theory of clusters

    Science.gov (United States)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-04-01

    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  19. Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour

    International Nuclear Information System (INIS)

    Fortmann, Carsten

    2008-01-01

    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density

  20. Calculation of intensity factors using weight function theory for a transversely isotropic piezoelectric material

    International Nuclear Information System (INIS)

    Son, In Ho; An, Deuk Man

    2012-01-01

    In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory

  1. Approximated Function Based Spectral Gradient Algorithm for Sparse Signal Recovery

    Directory of Open Access Journals (Sweden)

    Weifeng Wang

    2014-02-01

    Full Text Available Numerical algorithms for the l0-norm regularized non-smooth non-convex minimization problems have recently became a topic of great interest within signal processing, compressive sensing, statistics, and machine learning. Nevertheless, the l0-norm makes the problem combinatorial and generally computationally intractable. In this paper, we construct a new surrogate function to approximate l0-norm regularization, and subsequently make the discrete optimization problem continuous and smooth. Then we use the well-known spectral gradient algorithm to solve the resulting smooth optimization problem. Experiments are provided which illustrate this method is very promising.

  2. Measurement of Spectral Functions of Ultracold Atoms in Disordered Potentials

    Science.gov (United States)

    Volchkov, Valentin V.; Pasek, Michael; Denechaud, Vincent; Mukhtar, Musawwadah; Aspect, Alain; Delande, Dominique; Josse, Vincent

    2018-02-01

    We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2 orders of magnitude, we observe the crossover from the "quantum" perturbative regime of low disorder to the "classical" regime at higher disorder strength, and find an excellent agreement with numerical simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms to create well-defined energy states. This opens new avenues for experimental investigations of three-dimensional Anderson localization.

  3. Gamelan Music Onset Detection based on Spectral Features

    Directory of Open Access Journals (Sweden)

    Yoyon Kusnendar Suprapto

    2013-03-01

    Full Text Available This research detects onsets of percussive instruments by examining the performance on the sound signals of gamelan instruments as one of traditional music instruments in Indonesia. Onset plays important role in determining musical rythmic structure, like beat, tempo, and is highly required in many applications of music information retrieval. There are four onset detection methods compared that employ spectral features, such as magnitude, phase, and the combination of both, which are phase slope (PS, weighted phase deviation (WPD, spectral flux (SF, and rectified complex domain (RCD. These features are extracted by representing the sound signals into time-frequency domain using overlapped Short-time Fourier Transform (STFT and varying the window length. Onset detection functions are processed through peak-picking using dynamic threshold. The results showed that by using suitable window length and parameter setting of dynamic threshold, F-measure which is greater than 0.80 can be obtained for certain methods.

  4. Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)

    Energy Technology Data Exchange (ETDEWEB)

    Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)

    2015-12-15

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.

  5. A new class of weight and WA systems of the Kravchenko-Kaiser functions

    Science.gov (United States)

    Kravchenko, V. F.; Pustovoit, V. I.; Churikov, D. V.

    2014-05-01

    A new class of weight and WA-systems of the Kravchenko-Kaiser functions which showed its efficiency in various physical applications is proposed and substantiated. This publication consists of three parts. In the first the Kravchenko-Kaiser weight functions are constructed on basis of the theory of atomic functions (AFs) and the Kaiser windows for the first time. In the second part new constructions of analytic WA-systems of the Kravchenko-Kaiser functions are costructed. In the third part their applications to problems of weight averaging of the difference frequency signals are considered. The numerical experiment and the physical analysis of the results for concrete physical models confirmed their efficiency. This class of functions can find wide physical applications in problems of digital signal processing, restoration of images, radar, radiometry, radio astronomy, remote sensing, etc.

  6. The role of weight teasing and weight bias internalization in psychological functioning: a prospective study among school-aged children.

    Science.gov (United States)

    Zuba, Anna; Warschburger, Petra

    2017-10-01

    Weight-related teasing is a widespread phenomenon in childhood, and might foster the internalization of weight bias. The goal of this study was to examine the role of weight teasing and weight bias internalization as mediators between weight status and negative psychological sequelae, such as restrained eating and emotional and conduct problems in childhood. Participants included 546 female (52%) and 501 (48%) male children aged 7-11 and their parents, who completed surveys assessing weight teasing, weight bias internalization, restrained eating behaviors, and emotional and conduct problems at two points of measurement, approximately 2 years apart. To examine the hypothesized mediation, a prospective design using structural equation modeling was applied. As expected, the experience of weight teasing and the internalization of weight bias were mediators in the relationship between weight status and psychosocial problems. This pattern was observed independently of gender or weight status. Our findings suggest that the experience of weight teasing and internalization of weight bias is more important than weight status in explaining psychological functioning among children and indicate a need for appropriate prevention and intervention approaches.

  7. A functional food product for the management of weight.

    Science.gov (United States)

    Bell, Stacey J; Goodrick, G Ken

    2002-03-01

    More than half of Americans have a body mass index of 25 kg/m2 or more, which classifies them as overweight or obese. Overweight or obesity is strongly associated with comorbidities such as type 2 diabetes mellitus, hypertension, heart disease, gall bladder disease, and sleep apnea. Clearly, this is a national health concern, and although about 30 to 40% of the obese claim that they are trying to lose weight or maintain weight after weight loss, current therapies appear to have little effect. None of the current popular diets are working, and there is room for innovation. With the advancing science of nutrition, several nutrients - low-glycemic-index carbohydrates, 5-hydroxytryptophan, green tea extract, and chromium - have been identified that may promote weight loss. The first two nutrients decrease appetite, green tea increases the 24-h energy expenditure, and chromium promotes the composition of the weight lost to be fat rather than lean tissue. These have been assembled in efficacious doses into a new functional food product and described in this review. The product is undergoing clinical testing; each component has already been shown to promote weight loss in clinical trials.

  8. Four point functions in the SL(2,R) WZW model

    Energy Technology Data Exchange (ETDEWEB)

    Minces, Pablo [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)]. E-mail: minces@iafe.uba.ar; Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina) and Physics Department, University of Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)]. E-mail: carmen@iafe.uba.ar

    2007-04-19

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions.

  9. Four point functions in the SL(2,R) WZW model

    International Nuclear Information System (INIS)

    Minces, Pablo; Nunez, Carmen

    2007-01-01

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions

  10. Adinkras, Dessins, Origami, and Supersymmetry Spectral Triples

    OpenAIRE

    Marcolli, Matilde; Zolman, Nick

    2016-01-01

    We investigate the spectral geometry and spectral action functionals associated to 1D Supersymmetry Algebras, using the classification of these superalgebras in terms of Adinkra graphs and the construction of associated dessin d'enfant and origami curves. The resulting spectral action functionals are computed in terms of the Selberg (super) trace formula.

  11. Perceptual weights for loudness reflect central spectral processing

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Jesteadt, Walt

    2011-01-01

    Weighting patterns for loudness obtained using the reverse correlation method are thought to reveal the relative contributions of different frequency regions to total loudness, the equivalent of specific loudness. Current models of loudness assume that specific loudness is determined by peripheral...... processes such as compression and masking. Here we test this hypothesis using 20-tone harmonic complexes (200Hz f0, 200 to 4000Hz, 250 ms, 65 dB/Component) added in opposite phase relationships (Schroeder positive and negative). Due to the varying degree of envelope modulations, these time-reversed harmonic...... processes and reflect a central frequency weighting template....

  12. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    Science.gov (United States)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  13. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  14. Smoking cessation, lung function, and weight gain : a follow-up study

    NARCIS (Netherlands)

    Chinn, S; Jarvis, D; Melotti, R; Luczynska, C; Ackermann-Liebrich, U; Anto, JM; Cerveri, [No Value; de Marco, R; Gislason, T; Heinrich, J; Janson, C; Kunzli, N; Leynaert, B; Neukirch, F; Schouten, J; Sunyer, J; Svanes, C; Vermeire, P; Wjst, M; Burney, P

    2005-01-01

    Background Only one population-based study in one country has reported effects of smoking cessation and weight change on lung function, and none has reported the net effect. We estimated the net benefit of smoking cessation, and the independent effects of smoking and weight change on change in

  15. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  16. Assessment of executive functioning in binge-eating disorder independent of weight status.

    Science.gov (United States)

    Eneva, Kalina T; Arlt, Jean M; Yiu, Angelina; Murray, Susan M; Chen, Eunice Y

    2017-08-01

    Executive functioning (EF) problems may serve as vulnerability or maintenance factors for Binge-Eating Disorder (BED). However, it is unclear if EF problems observed in BED are related to overweight status or BED status. The current study extends this literature by examining EF in overweight and normal-weight BED compared to weight-matched controls. Participants were normal-weight women with BED (n = 23), overweight BED (n = 32), overweight healthy controls (n = 48), and normal-weight healthy controls (n = 29). The EF battery utilized tests from the National Institutes of Health (NIH) Toolbox and Delis-Kaplan Executive Function System (D-KEFS). After controlling for years of education and minority status, overweight individuals performed more poorly than normal-weight individuals on a task of cognitive flexibility requiring generativity (p < .01), and speed on psychomotor performance tasks (p = .01). Normal-weight and overweight BED performed worse on working memory tasks compared to controls (p = .04). Unexpectedly, normal-weight BED individuals out-performed all other groups on an inhibitory control task (p < .01). No significant differences were found between the four groups on tasks of planning. Regardless of weight status, BED is associated with working memory problems. Replication of the finding that normal-weight BED is associated with enhanced inhibitory control is needed. © 2017 Wiley Periodicals, Inc.

  17. A spectral scheme for Kohn–Sham density functional theory of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu

    2015-04-15

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  18. A spectral scheme for Kohn–Sham density functional theory of clusters

    International Nuclear Information System (INIS)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-01-01

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed

  19. Decision making generalized by a cumulative probability weighting function

    Science.gov (United States)

    dos Santos, Lindomar Soares; Destefano, Natália; Martinez, Alexandre Souto

    2018-01-01

    Typical examples of intertemporal decision making involve situations in which individuals must choose between a smaller reward, but more immediate, and a larger one, delivered later. Analogously, probabilistic decision making involves choices between options whose consequences differ in relation to their probability of receiving. In Economics, the expected utility theory (EUT) and the discounted utility theory (DUT) are traditionally accepted normative models for describing, respectively, probabilistic and intertemporal decision making. A large number of experiments confirmed that the linearity assumed by the EUT does not explain some observed behaviors, as nonlinear preference, risk-seeking and loss aversion. That observation led to the development of new theoretical models, called non-expected utility theories (NEUT), which include a nonlinear transformation of the probability scale. An essential feature of the so-called preference function of these theories is that the probabilities are transformed by decision weights by means of a (cumulative) probability weighting function, w(p) . We obtain in this article a generalized function for the probabilistic discount process. This function has as particular cases mathematical forms already consecrated in the literature, including discount models that consider effects of psychophysical perception. We also propose a new generalized function for the functional form of w. The limiting cases of this function encompass some parametric forms already proposed in the literature. Far beyond a mere generalization, our function allows the interpretation of probabilistic decision making theories based on the assumption that individuals behave similarly in the face of probabilities and delays and is supported by phenomenological models.

  20. Optimisation of chromatographic resolution using objective functions including both time and spectral information.

    Science.gov (United States)

    Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2015-01-16

    The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    Science.gov (United States)

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  3. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  4. Spectral flow and conformal blocks in AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cagnacci, Yago [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Iguri, Sergio M. [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette Cedex (France)

    2015-09-08

    In this article we investigate the structure of the four-point functions of the AdS{sub 3}-WZNW model. We consider the integral expression for the unflowed four-point correlator involving at least one state in the discrete part of the spectrum derived by analytic continuation from the H{sub 3}{sup +}-WZNW model and we show that the conformal blocks can be obtained from those with an extremal-weight state by means of an intertwining operator. We adapt the procedure for dealing with correlators with a single unit of spectral flow charge and we get a factorized integral expression for the corresponding four-point function. We finally transform the formulas back to the space-time picture.

  5. Analyzing availability using transfer function models and cross spectral analysis

    International Nuclear Information System (INIS)

    Singpurwalla, N.D.

    1980-01-01

    The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems

  6. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  7. Image features dependant correlation-weighting function for efficient PRNU based source camera identification.

    Science.gov (United States)

    Tiwari, Mayank; Gupta, Bhupendra

    2018-04-01

    For source camera identification (SCI), photo response non-uniformity (PRNU) has been widely used as the fingerprint of the camera. The PRNU is extracted from the image by applying a de-noising filter then taking the difference between the original image and the de-noised image. However, it is observed that intensity-based features and high-frequency details (edges and texture) of the image, effect quality of the extracted PRNU. This effects correlation calculation and creates problems in SCI. For solving this problem, we propose a weighting function based on image features. We have experimentally identified image features (intensity and high-frequency contents) effect on the estimated PRNU, and then develop a weighting function which gives higher weights to image regions which give reliable PRNU and at the same point it gives comparatively less weights to the image regions which do not give reliable PRNU. Experimental results show that the proposed weighting function is able to improve the accuracy of SCI up to a great extent. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  9. Spectral synthesis in certain spaces of entire functions of exponential type and its applications

    International Nuclear Information System (INIS)

    Odinokov, O V

    2000-01-01

    We consider certain spaces P Ω of entire functions of exponential type in C n associated with a domain Ω element of R n that are in fact Laplace transforms of distributions in Ω. It is shown that any shift-invariant subspace of these functions admits spectral synthesis, that is, coincides with the closure of the linear span of the exponential polynomials contained in it. As an application of this result, we describe the solution space in P Ω of a system of homogeneous equations of infinite order for differential operators with characteristic functions infinitely differentiable in Ω

  10. Characterization and prediction of chemical functions and weight fractions in consumer products

    Directory of Open Access Journals (Sweden)

    Kristin K. Isaacs

    Full Text Available Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents. We combined these functions with weight fraction data for 4115 personal care products (PCPs to characterize the composition of 66 different product categories (e.g., shampoos. We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties. We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-based chemical prioritization. Keywords: Chemical function, Exposure modeling, Chemical prioritization, Consumer products, Cosmetics, ExpoCast

  11. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  12. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter

    2012-06-21

    Precise asymptotics known for the Green\\'s function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter; Raich, Andrew

    2012-01-01

    Precise asymptotics known for the Green's function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  16. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    Science.gov (United States)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies

  17. Log-supermodularity of weight functions and the loading monotonicity of weighted insurance premiums

    OpenAIRE

    Hristo S. Sendov; Ying Wang; Ricardas Zitikis

    2010-01-01

    The paper is motivated by a problem concerning the monotonicity of insurance premiums with respect to their loading parameter: the larger the parameter, the larger the insurance premium is expected to be. This property, usually called loading monotonicity, is satisfied by premiums that appear in the literature. The increased interest in constructing new insurance premiums has raised a question as to what weight functions would produce loading-monotonic premiums. In this paper we demonstrate a...

  18. Organ doses as a function of body weight for environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    The organ doses for γ rays from typical environmental sources were determined with Monte Carlo calculations using anthropomorphic phantoms having different body sizes. It has been suggested that body weight is the predominant factor influencing organ doses for environmental γ rays, regardless of sex and age. A weight function expressing organ doses for environmental γ rays was introduced. This function fitted well with the organ doses calculated using the different phantoms. The function coefficients were determined mathematically with the least squares method. On the assumption that this function was applicable to organ doses for human bodies with diverse characteristics, the variances in organ doses due to race, sex, age and difference in body weight of adults were investigated. The variations of organ doses due to race and sex were not significant. Differences in body weight were found to alter organ doses by a maximum of 10% for γ rays over 100 keV, and 20% for low-energy γ rays. The doses for organs located deep inside a body, such as ovaries, differed between a newborn baby and an adult by a maximum factor of 2 to 3. For γ rays over 100 keV, the variation was within a factor of 2 for all organs. The organ doses for adolescents more than 12 years agreed within 15% with those of the average adult. (author)

  19. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  20. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Pham Nhu Viet Ha; Min Jae Lee; Sunghwan Yun; Sang Ji Kim

    2015-01-01

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  1. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  2. Calculation of spatial weighting functions for ex-core detectors of VVER-440 reactors by Monte Carlo method

    International Nuclear Information System (INIS)

    Berki, T.

    2003-01-01

    The signal of ex-core detectors depends not only on the total power of a reactor but also on the power distribution. The spatial weighting function establishes correspondence between the power distribution and the detector signal. The weighting function is independent of the power distribution. The weighting function is used for detector-response analyses, for example in the case of rod-drop experiments. (1) The paper describes the calculation and analysis of the weighting function of a VVER-440. The three-dimensional Monte Carlo code MCNP is used for the evaluation. Results from forward and adjoint calculations are compared. The effect of the change in the concentration of boric acid is also investigated. The evaluation of the spatial weighting function is a fixed-source neutron transport problem, which can be solved much faster by adjoint calculation, however forward calculations provide more detailed results. It is showed that the effect of boric acid upon the weighting function is negligible. (author)

  3. Perturbation results for the Estrada index in weighted networks

    Energy Technology Data Exchange (ETDEWEB)

    Shang Yilun, E-mail: shylmath@hotmail.com [Institute for Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249 (United States)

    2011-02-18

    The logarithm of the Estrada index has been proposed recently as a spectral measure to character efficiently the robustness of complex networks. In this paper, we explore the Estrada index in weighted networks and develop various perturbation results based on spectral graph theory. It is shown that the robustness of a network may be enhanced even when some edge weights are reduced. This is of particular theoretical and practical significance to network design and optimization.

  4. Perturbation results for the Estrada index in weighted networks

    International Nuclear Information System (INIS)

    Shang Yilun

    2011-01-01

    The logarithm of the Estrada index has been proposed recently as a spectral measure to character efficiently the robustness of complex networks. In this paper, we explore the Estrada index in weighted networks and develop various perturbation results based on spectral graph theory. It is shown that the robustness of a network may be enhanced even when some edge weights are reduced. This is of particular theoretical and practical significance to network design and optimization.

  5. Functional foods for weight management: Dietary Fiber – a systematic review

    Directory of Open Access Journals (Sweden)

    Mona Boaz

    2013-04-01

    Full Text Available ABSTRACTIt has been estimated that more than 1.5 billion adults are overweight or obese worldwide [1], rendering obesity a global epidemic [2]. Obesity is associated with significant morbidity, including type 2 diabetes, cardiovascular disease, osteoarthritis and some cancers [3]. Thus, obesity is clearly a medical issue, its costs impacting heavily on health care systems in both developed and developing nations [4]. The combined impact of transmissible and chronic disease in the third world is particularly devastating to the very health care systems with fewest resources [5].Because obesity has been identified as a major health issue, treating obesity is an important goal. However, weight loss management has proven notoriously difficult. It is well documented that reduced energy intake and increased energy expenditure may reduce body weight in the short term, but obesity relapse is the long term is anticipated [6]. In a study of overweight or obese US adults who weighed ≥ 10% less than their maximum body weight the year prior to the survey (n=1310, 33.5% regained > 5% during that year [7].Despite its somewhat unimpressive success rate, "lifestyle" weight management remains the first line intervention for obesity treatment [8]. Lifestyle weight management can be defined as interventions based on energy restriction (weight loss diet; increased energy output (exercise; and/or behavioral change (cognitive or behavior therapy. Functional foods have been explored as a tool for enhancing lifestyle weight management.Functional foods evaluated for their efficacy as obesity interventions can be divided into two broad categories: 1 foods which suppress appetite and increase satiety; and 2 foods which enhance thermogenesis. The present review will focus on those foods thought to act by increasing satiety and suppressing appetite.Key words: Obesity, weight loss, systematic review, dietary fiber

  6. Geographically Weighted Regression Model with Kernel Bisquare and Tricube Weighted Function on Poverty Percentage Data in Central Java Province

    Science.gov (United States)

    Nugroho, N. F. T. A.; Slamet, I.

    2018-05-01

    Poverty is a socio-economic condition of a person or group of people who can not fulfil their basic need to maintain and develop a dignified life. This problem still cannot be solved completely in Central Java Province. Currently, the percentage of poverty in Central Java is 13.32% which is higher than the national poverty rate which is 11.13%. In this research, data of percentage of poor people in Central Java Province has been analyzed through geographically weighted regression (GWR). The aim of this research is therefore to model poverty percentage data in Central Java Province using GWR with weighted function of kernel bisquare, and tricube. As the results, we obtained GWR model with bisquare and tricube kernel weighted function on poverty percentage data in Central Java province. From the GWR model, there are three categories of region which are influenced by different of significance factors.

  7. Effects of motor programming on the power spectral density function of finger and wrist movements

    NARCIS (Netherlands)

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower

  8. Regularized image denoising based on spectral gradient optimization

    International Nuclear Information System (INIS)

    Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša

    2011-01-01

    Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance

  9. Temporal and spectral interaction in loudness perception

    Science.gov (United States)

    Pedersen, Benjamin; Ellermeier, Wolfgang

    2005-04-01

    An experiment was conducted to investigate how changes in spectral content influence loudness judgments. Six listeners were asked to discriminate sounds, which were of one second duration and changing in level every 0.1 s. In one condition the first half of the sound was low-pass filtered and the second half high-pass filtered. In a second condition the opposite order was used. In a third condition no filtering was applied and the frequency spectrum was simply white noise. The results were analyzed using a statistical method, which assigns relative weights to the ten temporal segments. In this way individual weighting curves were obtained for each condition. Listeners tended to emphasize the beginning of the sound in their loudness judgments. When the frequency spectrum changed in the middle of the sound, however, the weighting of the onset of the new spectral content was emphasized as well. This outcome is inconsistent with overall temporal integration, and argues for a cognitive mechanism allocating attention to changes in an event sequence.

  10. Effect of weight loss on menstrual function in adolescents with polycystic ovary syndrome.

    Science.gov (United States)

    Ornstein, Rollyn M; Copperman, Nancy M; Jacobson, Marc S

    2011-06-01

    To compare the effects of a hypocaloric low-fat diet with those of a very low carbohydrate diet on body mass index (BMI), waist circumference (WC), and menstrual function in overweight adolescent females with polycystic ovary syndrome (PCOS). Randomized pilot trial of two diets in a prospective, 12-week study. A hospital-based, academic adolescent medicine division. 24 females, age 12-22 years (mean 15.8 ± 2.2), with PCOS and a BMI above the 85(th) percentile for age (mean 35.7 ± 6.0 kg/m(2)). Nutrition counseling was given biweekly, and dietary compliance, menstrual history, and weight were recorded. WC was measured at the beginning and end of the study. Changes in weight, BMI, WC, and improvement in menstrual function over the course of the study period. 16 participants completed the study. 12 completers menstruated during the study period, 8 with regularity. The number of periods over 3 months increased from 0.6 ± 0.6 pre-treatment to 1.6 ± 1.3 post-treatment (P = 0.003). Overall, weight loss averaged 6.5% (P weight were 3.4 times more likely to have improved menstrual function (P = 0.001). There were no statistically significant differences between the two groups. Weight loss is feasible in adolescents with PCOS and results in significant improvements in BMI, WC, and menstrual function. Weight management may be preferable as first-line treatment in adolescents, because it targets both the menstrual dysfunction and risk factors for long-term morbidity associated with PCOS. Copyright © 2011 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  11. Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere

    Science.gov (United States)

    Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul

    2017-09-01

    The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.

  12. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  13. Functional brain response to food images in successful adolescent weight losers compared with normal-weight and overweight controls.

    Science.gov (United States)

    Jensen, Chad D; Kirwan, C Brock

    2015-03-01

    Research conducted with adults suggests that successful weight losers demonstrate greater activation in brain regions associated with executive control in response to viewing high-energy foods. No previous studies have examined these associations in adolescents. Functional neuroimaging was used to assess brain response to food images among groups of overweight (OW), normal-weight (NW), and successful weight-losing (SWL) adolescents. Eleven SWL, 12 NW, and 11 OW participants underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. When viewing high-energy food images, SWLs demonstrated greater activation in the dorsolateral prefrontal cortex (DLPFC) compared with OW and NW controls. Compared with NW and SWL groups, OW individuals demonstrated greater activation in the ventral striatum and anterior cingulate in response to food images. Adolescent SWLs demonstrated greater neural activation in the DLPFC compared with OW/NW controls when viewing high-energy food stimuli, which may indicate enhanced executive control. OW individuals' brain responses to food stimuli may indicate greater reward incentive processes than either SWL or NW groups. © 2015 The Obesity Society.

  14. Ternary Weighted Function and Beurling Ternary Banach Algebra l1ω(S

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghanian

    2011-01-01

    Full Text Available Let S be a ternary semigroup. In this paper, we introduce our notation and prove some elementary properties of a ternary weight function ω on S. Also, we make ternary weighted algebra l1ω(S and show that l1ω(S is a ternary Banach algebra.

  15. Wigner weight functions and Weyl symbols of non-negative definite linear operators

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1989-01-01

    In this paper we present several necessary and, for radially symmetric functions, necessary and sufficient conditions for a function of two variables to be a Wigner weight function (Weyl symbol of a non-negative definite linear operator of L2(R)). These necessary conditions are in terms of spread

  16. WE-FG-207B-02: Material Reconstruction for Spectral Computed Tomography with Detector Response Function

    International Nuclear Information System (INIS)

    Liu, J; Gao, H

    2016-01-01

    Purpose: Different from the conventional computed tomography (CT), spectral CT based on energy-resolved photon-counting detectors is able to provide the unprecedented material composition. However, an important missing piece for accurate spectral CT is to incorporate the detector response function (DRF), which is distorted by factors such as pulse pileup and charge-sharing. In this work, we propose material reconstruction methods for spectral CT with DRF. Methods: The polyenergetic X-ray forward model takes the DRF into account for accurate material reconstruction. Two image reconstruction methods are proposed: a direct method based on the nonlinear data fidelity from DRF-based forward model; a linear-data-fidelity based method that relies on the spectral rebinning so that the corresponding DRF matrix is invertible. Then the image reconstruction problem is regularized with the isotropic TV term and solved by alternating direction method of multipliers. Results: The simulation results suggest that the proposed methods provided more accurate material compositions than the standard method without DRF. Moreover, the proposed method with linear data fidelity had improved reconstruction quality from the proposed method with nonlinear data fidelity. Conclusion: We have proposed material reconstruction methods for spectral CT with DRF, whichprovided more accurate material compositions than the standard methods without DRF. Moreover, the proposed method with linear data fidelity had improved reconstruction quality from the proposed method with nonlinear data fidelity. Jiulong Liu and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).

  17. Cognitive function predicts 24-month weight loss success after bariatric surgery.

    Science.gov (United States)

    Spitznagel, Mary Beth; Alosco, Michael; Strain, Gladys; Devlin, Michael; Cohen, Ronald; Paul, Robert; Crosby, Ross D; Mitchell, James E; Gunstad, John

    2013-01-01

    Clinically significant cognitive impairment, particularly in attention/executive and memory function, is found in many patients undergoing bariatric surgery. These difficulties have previously been linked to decreased weight loss 12 months after surgery, but more protracted examination of this relationship has not yet been conducted. The present study prospectively examined the independent contribution of cognitive function to weight loss 24 months after bariatric surgery. Given the rapid rate of cognitive improvement observed after surgery, postoperative cognitive function (i.e., cognition 12 weeks after surgery, controlling for baseline cognition) was expected to predict lower body mass index (BMI) and higher percent total weight loss (%WL) at 24-month follow-up. Data were collected by 3 sites of the Longitudinal Assessment of Bariatric Surgery (LABS) parent project. Fifty-seven individuals enrolled in the LABS project who were undergoing bariatric surgery completed cognitive evaluation at baseline, 12 weeks, and 24 months. BMI and %WL were calculated for 24-month postoperative follow-up. Better cognitive function 12 weeks after surgery predicted higher %WL and lower BMI at 24 months, and specific domains of attention/executive and memory function were robustly related to decreased BMI and greater %WL at 24 months. Results show that cognitive performance shortly after bariatric surgery predicts greater long-term %WL and lower BMI 24 months after bariatric surgery. Further work is needed to clarify the degree to which this relationship is mediated by adherence to postoperative guidelines. Copyright © 2013 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  19. Effect of partial weight bearing program on functional ability and ...

    African Journals Online (AJOL)

    Lilian A. Zaky

    2013-03-17

    Mar 17, 2013 ... essence of the importance of partial weight bearing program in rehabilitation of lower limb condi ... and long term physical and psychosocial impairments [11,12]. .... gram for their functional walking using the 6-min walking test,.

  20. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  1. Spectral properties of generalized eigenparameter dependent ...

    African Journals Online (AJOL)

    Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...

  2. Relationship between different approaches to derive weighting functions related to atmospheric remote sensing problems

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Rozanov, Alexei V.

    2007-01-01

    The paper is devoted to the investigation of the relationship between different methods used to derive weighting functions required to solve numerous inverse problems related to the remote sensing of the Earth's atmosphere by means of scattered solar light observations. The first method commonly referred to as the forward-adjoint approach is based on a joint solution of the forward and adjoint radiative transfer equations and the second one requires the linearized forward radiative transfer equation to be solved. In the framework of the forward-adjoint method we consider two approaches commonly used to derive the weighting functions. These approaches are referenced as the 'response function' and the 'formal solution' techniques, respectively. We demonstrate here that the weighting functions derived employing the formal solution technique can also be obtained substituting the analytical representations for the direct forward and direct adjoint intensities into corresponding expressions obtained in the framework of the response function technique. The advantages and disadvantages of different techniques are discussed

  3. An implicit spectral formula for generalized linear Schroedinger equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  4. Semiclassical transport of particles with dynamical spectral functions

    International Nuclear Information System (INIS)

    Cassing, W.; Juchem, S.

    2000-01-01

    The conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a spectral function A(X,P,M 2 ) for a particle moving in an area of complex self-energy Σ ret X =Re Σ ret X -iΓ X /2. Starting from the Kadanoff--Baym equations we derive in first-order gradient expansion equations of motion for testparticles with respect to their time evolution in X,P and M 2 . The off-shell propagation is demonstrated for a couple of model cases that simulate hadron-nucleus collisions. In case of nucleus-nucleus collisions the imaginary part of the hadron self-energy Γ X is determined by the local space-time dependent collision rate dynamically. A first application is presented for A+A reactions up to 95 A MeV, where the effects from the off-shell propagation of nucleons are discussed with respect to high energy proton spectra, high energy photon production as well as kaon yields in comparison to the available data from GANIL

  5. Hash function construction using weighted complex dynamical networks

    International Nuclear Information System (INIS)

    Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency. (general)

  6. Dominance Weighted Social Choice Functions for Group Recommendations

    Directory of Open Access Journals (Sweden)

    Silvia ROSSI

    2015-12-01

    Full Text Available In travel domains, decision support systems provide support to tourists in the planning of their vacation. In particular, when the number of possible Points of Interest (POI to visit is large, the system should help tourists providing recommendations on the POI that could be more interesting for them. Since traveling is, usually, an activity that involves small groups of people, the system should take simultaneously into account the preferences of each group's member. At the same time, it also should model possible intra-group relationships, which can have an impact in the group decision-making process. In this paper, we model this problem as a multi-agent aggregation of preferences by using weighted social choice functions, whereas such weights are automatically evaluated by analyzing the interactions of the group's members on Online Social Networks.

  7. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  8. Executive functioning in low birth weight children entering kindergarten.

    Science.gov (United States)

    Miller, S E; DeBoer, M D; Scharf, R J

    2018-01-01

    Poor executive functioning is associated with life-long difficulty. Identification of children at risk for executive dysfunction is important for early intervention to improve neurodevelopmental outcomes. This study is designed to examine relationships between birthweight and executive functioning in US children during kindergarten. Our hypothesis was that children with higher birthweights would have better executive function scores. We evaluated data from 17506 US children from the Early Childhood Longitudinal Study-Kindergarten 2011 cohort. Birthweight and gestational age were obtained by parental survey. Executive functions were directly assessed using the number reverse test and card sort test to measure working memory and cognitive flexibility, respectively. Teacher evaluations were used for additional executive functions. Data were analyzed using SAS to run all linear and logistical regressions. For every kilogram of birthweight, scores of working memory increased by 1.47 (Pexecutive functioning. As birthweight increases executive function scores improve, even among infants born normal weight. Further evaluation of this population including interventions and progression through school is needed.

  9. Trajectory modeling of gestational weight: A functional principal component analysis approach.

    Directory of Open Access Journals (Sweden)

    Menglu Che

    Full Text Available Suboptimal gestational weight gain (GWG, which is linked to increased risk of adverse outcomes for a pregnant woman and her infant, is prevalent. In the study of a large cohort of Canadian pregnant women, our goals are to estimate the individual weight growth trajectory using sparsely collected bodyweight data, and to identify the factors affecting the weight change during pregnancy, such as prepregnancy body mass index (BMI, dietary intakes and physical activity. The first goal was achieved through functional principal component analysis (FPCA by conditional expectation. For the second goal, we used linear regression with the total weight gain as the response variable. The trajectory modeling through FPCA had a significantly smaller root mean square error (RMSE and improved adaptability than the classic nonlinear mixed-effect models, demonstrating a novel tool that can be used to facilitate real time monitoring and interventions of GWG. Our regression analysis showed that prepregnancy BMI had a high predictive value for the weight changes during pregnancy, which agrees with the published weight gain guideline.

  10. A deterministic algorithm for fitting a step function to a weighted point-set

    KAUST Repository

    Fournier, Hervé ; Vigneron, Antoine E.

    2013-01-01

    Given a set of n points in the plane, each point having a positive weight, and an integer k>0, we present an optimal O(nlogn)-time deterministic algorithm to compute a step function with k steps that minimizes the maximum weighted vertical distance

  11. Text analysis of MEDLINE for discovering functional relationships among genes: evaluation of keyword extraction weighting schemes.

    Science.gov (United States)

    Liu, Ying; Navathe, Shamkant B; Pivoshenko, Alex; Dasigi, Venu G; Dingledine, Ray; Ciliax, Brian J

    2006-01-01

    One of the key challenges of microarray studies is to derive biological insights from the gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the functional links among genes. However, the quality of the keyword lists significantly affects the clustering results. We compared two keyword weighting schemes: normalised z-score and term frequency-inverse document frequency (TFIDF). Two gene sets were tested to evaluate the effectiveness of the weighting schemes for keyword extraction for gene clustering. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords outperformed those produced from normalised z-score weighted keywords. The optimised algorithms should be useful for partitioning genes from microarray lists into functionally discrete clusters.

  12. A Bayesian approach to spectral quantitative photoacoustic tomography

    International Nuclear Information System (INIS)

    Pulkkinen, A; Kaipio, J P; Tarvainen, T; Cox, B T; Arridge, S R

    2014-01-01

    A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)

  13. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  14. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial.

    Science.gov (United States)

    Valkering, Kars P; Aufwerber, Susanna; Ranuccio, Francesco; Lunini, Enricomaria; Edman, Gunnar; Ackermann, Paul W

    2017-06-01

    Functional weight-bearing mobilization may improve repair of Achilles tendon rupture (ATR), but the underlying mechanisms and outcome were unknown. We hypothesized that functional weight-bearing mobilization by means of increased metabolism could improve both early and long-term healing. In this prospective randomized controlled trial, patients with acute ATR were randomized to either direct post-operative functional weight-bearing mobilization (n = 27) in an orthosis or to non-weight-bearing (n = 29) plaster cast immobilization. During the first two post-operative weeks, 15°-30° of plantar flexion was allowed and encouraged in the functional weight-bearing mobilization group. At 2 weeks, patients in the non-weight-bearing cast immobilization group received a stiff orthosis, while the functional weight-bearing mobilization group continued with increased range of motion. At 6 weeks, all patients discontinued immobilization. At 2 weeks, healing metabolites and markers of procollagen type I (PINP) and III (PIIINP) were examined using microdialysis. At 6 and 12 months, functional outcome using heel-rise test was assessed. Healing tendons of both groups exhibited increased levels of metabolites glutamate, lactate, pyruvate, and of PIIINP (all p bearing mobilization group demonstrated significantly higher concentrations of glutamate compared to the non-weight-bearing cast immobilization group (p = 0.045).The upregulated glutamate levels were significantly correlated with the concentrations of PINP (r = 0.5, p = 0.002) as well as with improved functional outcome at 6 months (r = 0.4; p = 0.014). Heel-rise tests at 6 and 12 months did not display any differences between the two groups. Functional weight-bearing mobilization enhanced the early healing response of ATR. In addition, early ankle range of motion was improved without the risk of Achilles tendon elongation and without altering long-term functional outcome. The relationship between

  15. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    Science.gov (United States)

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  16. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  17. Special function solutions of a spectral problem for a nonlinear quantum oscillator

    International Nuclear Information System (INIS)

    Schulze-Halberg, A; Morris, J R

    2012-01-01

    We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)

  18. Wearing weighted backpack dilates subjective visual duration: The role of functional linkage between weight experience and visual timing

    Directory of Open Access Journals (Sweden)

    Lina eJia

    2015-09-01

    Full Text Available Bodily state plays a critical role in our perception. In the present study, we asked the question whether and how bodily experience of weights influences time perception. Participants judged durations of a picture (a backpack or a trolley bag presented on the screen, while wearing different weight backpacks or without backpack. The results showed that the subjective dura-tion of the backpack picture was dilated when participants wore a medium weighted backpack relative to an empty backpack or without backpack, regardless of identity (e.g., color of the visual backpack. However, the duration dilation was not manifested for the picture of trolley bag. These findings suggest that weight experience modulates visual duration estimation through the linkage between the wore backpack and to-be-estimated visual target. The con-gruent action affordance between the wore backpack and visual inputs plays a critical role in the functional linkage between inner experience and time perception. We interpreted our findings within the framework of embodied time perception.

  19. Measurement of the Strangeness Spectral Function and the Mass of the Strange Quark in Hadronic tau Decays with the OPAL Detector

    CERN Document Server

    Mader, Wolfgang Franz

    2004-01-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ −→ (Kπ) −ντ , (Kππ) −ντ and (Kπππ) −ντ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ − → K −π 0 ντ ) = (0.471 ± 0.064stat ± 0.021sys) % B(τ − → K ...

  20. Statistically generated weighted curve fit of residual functions for modal analysis of structures

    Science.gov (United States)

    Bookout, P. S.

    1995-01-01

    A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

  1. Spectral Interpolation on 3 x 3 Stencils for Prediction and Compression

    Energy Technology Data Exchange (ETDEWEB)

    Ibarria, L; Lindstrom, P; Rossignac, J

    2007-06-25

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show through several applications that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  2. Staircase functions, spectral regidity and a rule for quantizing chaos

    International Nuclear Information System (INIS)

    Aurich, R.; Steiner, F.

    1991-07-01

    Considering the Selberg trace formula as an exact version of Gutzwiller's semiclassical periodic-orbit theory in the case of the free motion on compact Riemann surfaces with constant negative curvature (Hadamard-Gutzwiller model), we study two complementary basic problems in quantum chaology: the computation of the calssical staircase N(l), the number of periodic orbits with length shorter than l, in terms of the quantal energy spectrum {E n }, the computation of the spectral staircase N (E), the number of quantal energies below the energy E, in terms of the length spectrum {l n } of the classical periodic orbits. A formulation of the periodic-orbit theory is presented which is intrinsically unsmoothed, but for which an effective smoothing arises from the limited 'input data', i.e. from the limited knowledge of the periodic orbits in the case of N(E) and the limited knowledge of quantal energies in the case of N(l). Based on the periodic-orbit formula for N(E), we propose a new rule for quantizing chaos, which simply states that the quantal energies are determined by the zeros of the function ξ 1 (E) = cos (πN(E)). The formulas for N(l) and N(E) as well as the new quantization condition are tested numerically. Furthermore, it is shown that the staircase N(E) computed from the length spectrum yields (up to a constant) a good description of the spectral rigidity Δ 3 (L), being the first numerical attempt to compute a statistical property of the quantal energy spectrum of a chaotic system from classical periodic orbits. (orig.)

  3. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  4. Long-range weight functions in fundamental measure theory of the non-uniform hard-sphere fluid

    International Nuclear Information System (INIS)

    Hansen-Goos, Hendrik

    2016-01-01

    We introduce long-range weight functions to the framework of fundamental measure theory (FMT) of the non-uniform, single-component hard-sphere fluid. While the range of the usual weight functions is equal to the hard-sphere radius R , the modified weight functions have range 3 R . Based on the augmented FMT, we calculate the radial distribution function g (r) up to second order in the density within Percus’ test particle theory. Consistency of the compressibility and virial routes on this level allows us to determine the free parameter γ of the theory. As a side result, we obtain a value for the fourth virial coefficient B 4 which deviates by only 0.01% from the exact result. The augmented FMT is tested for the dense fluid by comparing results for g (r) calculated via the test particle route to existing results from molecular dynamics simulations. The agreement at large distances (r   >  6 R) is significantly improved when the FMT with long-range weight functions is used. In order to improve agreement close to contact (r   =  2 R) we construct a free energy which is based on the accurate Carnahan–Starling equation of state, rather than the Percus–Yevick compressibility equation underlying standard FMT. (paper)

  5. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  6. Presurgical Weight Is Associated with Pain, Functional Impairment, and Anxiety among Gastric Bypass Surgery Patients

    Directory of Open Access Journals (Sweden)

    Sharlene Wedin

    2012-01-01

    Full Text Available Chronic pain and obesity are significant public health concerns in the United States associated with significant levels of health-care expenses and lost productivity. Previous research suggests that obesity is a risk factor for chronic pain, mainly due to excessive weight placed on the joints. However, the obesity-pain relationship appears to be complex and reciprocal. Little work to date has focused on the relationship between weight and pain among patients undergoing gastric bypass surgery for weight loss. Patients scheduled to undergo bariatric surgery for weight loss at a large southeastern academic medical center ( completed the Brief Pain Inventory (BPI, the Center for Epidemiological Studies 10-item Depression scale (CESD-10, and the Beck Anxiety Inventory (BAI. Higher presurgical weight was associated with higher pain-on-average ratings, higher functional impairment due to pain across the domains of physical activity, mood, walking ability, relationships, and enjoyment of life. Higher presurgical weight was associated with higher BAI scores, but weight was not related to depression. Findings suggest that bariatric surgery candidates report a moderate amount of pain prior to surgery and that presurgical weight is associated with higher pain, increased functional impairment due to pain, and increased anxiety. Anxiety was found to mediate the relationship between increased weight and pain.

  7. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping

    International Nuclear Information System (INIS)

    Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J

    2003-01-01

    Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies

  8. Observer model optimization of a spectral mammography system

    Science.gov (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  9. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    Science.gov (United States)

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  10. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    Science.gov (United States)

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the carotene absorption bands at 480 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 59.5% (p < 0.05), 73% (p < 0

  11. A methodology for evaluating weighting functions using MCNP and its application to PWR ex-core analyses

    International Nuclear Information System (INIS)

    Pecchia, Marco; Vasiliev, Alexander; Ferroukhi, Hakim; Pautz, Andreas

    2017-01-01

    Highlights: • Evaluation of neutron source importance for a given tally. • Assessment of ex-core detector response plus its uncertainty. • Direct use of neutron track evaluated by a Monte Carlo neutron transport code. - Abstract: The ex-core neutron detectors are commonly used to control reactor power in light water reactors. Therefore, it is relevant to understand the importance of a neutron source to the ex-core detectors response. In mathematical terms, this information is conveniently represented by the so called weighting functions. A new methodology based on the MCNP code for evaluating the weighting functions starting from the neutron history database is presented in this work. A simultaneous evaluation of the weighting functions in a user-given Cartesian coverage mesh is the main advantage of the method. The capability to generate weighting functions simultaneously in both spatial and energy ranges is the innovative part of this work. Then, an interpolation tool complements the methodology, allowing the generation of weighting functions up to the pin-by-pin fuel segment, where a direct evaluation is not possible due to low statistical precision. A comparison to reference results provides a verification of the methodology. Finally, an application to investigate the role of ex-core detectors spatial location and core burnup for a Swiss nuclear power plant is provided.

  12. Influence of Type of Frequency Weighting Function On VDV Analysis

    Science.gov (United States)

    Kowalska-Koczwara, Alicja; Stypuła, Krzysztof

    2017-10-01

    Transport vibrations are the subject of many research, mostly their influence on structural elements of the building is investigated. However, nowadays, especially in the centres of large cities were apartments, residential buildings are closer to the transport vibration sources, an increasing attention is given to providing vibrational comfort to humans in buildings. Currently, in most countries, two main methods of evaluation are used: root mean squared method (RMS) and vibration dose value (VDV). In this article, VDV method is presented and the analysis of the weighting functions selection on value of VDV is made. Measurements required for the analysis were made in Krakow, on masonry, residential, two storey building located in the city centre. The building is subjected into two transport vibration sources: tram passages and vehicle passages on very close located road. Measurement points were located on the basement wall at ground level to control the excitation and in the middle of the floor on the highest storey (in the place where people percept vibration). The room chosen for measurements is located closest to the transport excitation sources. During the measurements, 25 vibration events were recorded and analysed. VDV values were calculated for three different weighting functions according to standard: ISO 2631-1, ISO 2631-2 and BS-6841. Differences in VDV values are shown, but also influence of the weighting function selection on result of evaluation is also presented. VDV analysis was performed not only for the individual vibration event but also all day and night vibration exposure were calculated using formulas contained in the annex to the standard BS-6841. It is demonstrated that, although there are differences in the values of VDV, an influence on all day and night exposure is no longer so significant.

  13. Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels

    NARCIS (Netherlands)

    Baskent, Deniz

    Speech recognition by normal-hearing listeners improves as a function of the number of spectral channels when tested with a noiseband vocoder simulating cochlear implant signal processing. Speech recognition by the best cochlear implant users, however, saturates around eight channels and does not

  14. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  15. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  16. Pancreatic cancerrelated cachexia: influence on metabolism and correlation to weight loss and pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Jeannine; Ketterer, Knut [Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Marsch, Christiane [Department of General Surgery, University of Heidelberg, Heidelberg (Germany); Fechtner, Kerstin [Department of Radiology, University of Heidelberg, Heidelberg (Germany); Krakowski-Roosen, Holger [German Cancer Research Center, Heidelberg (Germany); Büchler, Markus W [Department of General Surgery, University of Heidelberg, Heidelberg (Germany); Friess, Helmut; Martignoni, Marc E [Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich (Germany)

    2009-07-28

    Dramatic weight loss is an often underestimated symptom in pancreatic cancer patients. Cachexia- defined as an unintended loss of stable weight exceeding 10% – is present in up to 80% of patients with cancer of the upper gastrointestinal tract, and has a significant influence on survival. The aim of the study was to show the multiple systemic effects of cachexia in pancreatic cancer patients, in terms of resection rate, effects on pulmonary function, amount of fat and muscle tissue, as well as changes in laboratory parameters. In patients with pancreatic cancer, clinical appearance was documented, including the amount of weight loss. Laboratory parameters and lung-function tests were evaluated, and the thickness of muscle and fat tissue was measured with computed tomography scans. Statistical analysis, including multivariate analysis, was performed using SPSS software. Survival curves were calculated using Kaplan-Meier analysis and the log-rank test. To test for significant differences between the examined groups we used Student's t-test and the Mann-Whitney U test. Significance was defined as p < 0.05. Of 198 patients with a ductal adenocarcinoma of the pancreas, 70% were suffering from weight loss when they presented for operation, and in 40% weight loss exceeded 10% of the stable weight. In patients with cachexia, metastases were diagnosed significantly more often (47% vs. 24%, P < 0.001), leading to a significantly reduced resection rate in these patients. Patients with cachexia had significantly reduced fat tissue amounts. Hence, dramatic weight loss in a patient with pancreatic cancer may be a hint of a more progressed or more aggressive tumour. Pancreatic cancer patients with cachexia had a higher rate of more progressed tumour stages and a worse nutritional status. Furthermore, patients with cachexia had an impaired lung function and a reduction in fat tissue. Patients with pancreatic cancer and cachexia had significantly reduced survival. If weight loss

  17. Pancreatic cancerrelated cachexia: influence on metabolism and correlation to weight loss and pulmonary function

    International Nuclear Information System (INIS)

    Bachmann, Jeannine; Ketterer, Knut; Marsch, Christiane; Fechtner, Kerstin; Krakowski-Roosen, Holger; Büchler, Markus W; Friess, Helmut; Martignoni, Marc E

    2009-01-01

    Dramatic weight loss is an often underestimated symptom in pancreatic cancer patients. Cachexia- defined as an unintended loss of stable weight exceeding 10% – is present in up to 80% of patients with cancer of the upper gastrointestinal tract, and has a significant influence on survival. The aim of the study was to show the multiple systemic effects of cachexia in pancreatic cancer patients, in terms of resection rate, effects on pulmonary function, amount of fat and muscle tissue, as well as changes in laboratory parameters. In patients with pancreatic cancer, clinical appearance was documented, including the amount of weight loss. Laboratory parameters and lung-function tests were evaluated, and the thickness of muscle and fat tissue was measured with computed tomography scans. Statistical analysis, including multivariate analysis, was performed using SPSS software. Survival curves were calculated using Kaplan-Meier analysis and the log-rank test. To test for significant differences between the examined groups we used Student's t-test and the Mann-Whitney U test. Significance was defined as p < 0.05. Of 198 patients with a ductal adenocarcinoma of the pancreas, 70% were suffering from weight loss when they presented for operation, and in 40% weight loss exceeded 10% of the stable weight. In patients with cachexia, metastases were diagnosed significantly more often (47% vs. 24%, P < 0.001), leading to a significantly reduced resection rate in these patients. Patients with cachexia had significantly reduced fat tissue amounts. Hence, dramatic weight loss in a patient with pancreatic cancer may be a hint of a more progressed or more aggressive tumour. Pancreatic cancer patients with cachexia had a higher rate of more progressed tumour stages and a worse nutritional status. Furthermore, patients with cachexia had an impaired lung function and a reduction in fat tissue. Patients with pancreatic cancer and cachexia had significantly reduced survival. If weight

  18. Doping-induced redistribution of magnetic spectral weight in the substituted hexaborides Ce1 -xLaxB6 and Ce1 -xNdxB6

    Science.gov (United States)

    Nikitin, S. E.; Portnichenko, P. Y.; Dukhnenko, A. Â. V.; Shitsevalova, N. Yu.; Filipov, V. B.; Qiu, Y.; Rodriguez-Rivera, J. A.; Ollivier, J.; Inosov, D. S.

    2018-02-01

    We investigate the doping-induced changes in the electronic structure of CeB6 on a series of substituted Ce1 -xRxB6 samples (R =La , Nd) using diffuse neutron scattering. We observe a redistribution of magnetic spectral weight across the Brillouin zone, which we associate with the changes in the Fermi-surface nesting properties related to the modified charge carrier concentration. In particular, a strong diffuse peak at the corner of the Brillouin zone (R point), which coincides with the propagation vector of the elusive antiferroquadrupolar (AFQ) order in CeB6, is rapidly suppressed by both La and Nd doping, like the AFQ order itself. The corresponding spectral weight is transferred to the X (00 1/2 ) point, ultimately stabilizing a long-range AFM order at this wave vector at the Nd-rich side of the phase diagram. At an intermediate Nd concentration, a broad diffuse peak with multiple local maxima of intensity is observed around the X point, evidencing itinerant frustration that gives rise to multiple ordered phases for which Ce1 -xNdxB6 is known. On the La-rich side of the phase diagram, however, dilution of the magnetic moments prevents the formation of a similar (00 1/2 ) -type order despite the presence of nesting. Our results demonstrate how diffuse neutron scattering can be used to probe the nesting vectors in complex f -electron systems directly, without reference to the single-particle band structure, and emphasize the role of Fermi surface geometry in stabilizing magnetic order in rare-earth hexaborides.

  19. Family functioning and quality of parent-adolescent relationship: cross-sectional associations with adolescent weight-related behaviors and weight status.

    Science.gov (United States)

    Haines, Jess; Rifas-Shiman, Sheryl L; Horton, Nicholas J; Kleinman, Ken; Bauer, Katherine W; Davison, Kirsten K; Walton, Kathryn; Austin, S Bryn; Field, Alison E; Gillman, Matthew W

    2016-06-14

    Little is known about how factors within the general family environment are associated with weight and related behaviors among adolescents/young adults. We studied 3768 females and 2614 males, 14-24 years old in 2011, participating in the Growing Up Today Study 2. We used generalized mixed models to examine cross-sectional associations of family functioning and quality of mother- and father-adolescent relationship with adolescent/young adult weight status, disordered eating, intake of fast food and sugar-sweetened beverages, screen time, physical activity, and sleep duration. In all models, we included participant's age and family structure. Eighty percent of participants reported high family functioning and 60% and 50% of participants reported high-quality mother and father relationship, respectively. Among both males and females, high family functioning was associated with lower odds of disordered eating (adjusted odds ratio [AOR] females = 0.53; 95% Confidence Interval [CI] = 0.45-0.63; AOR males = 0.48; CI = 0.39-0.60), insufficient physical activity, i.e., less than 1 h/day, (AOR females = 0.74; CI = 0.61-0.89; AOR males = 0.73; CI = 0.58-0.92), and insufficient sleep, i.e., less than 7 h/day, (AOR females = 0.56; CI = 0.45-0.68; AOR males = 0.65; CI 0.5-0.85). High family functioning was also associated with lower odds of being overweight/obese (AOR = 0.73; CI = 0.60-0.88) and eating fast food one or more times/week (AOR = 0.74; CI = 0.61-0.89) among females only. Among females, high-quality mother and father relationship were both associated with lower odds of being overweight/obese and disordered eating, eating fast food, and insufficient sleep and the magnitude of associations were similar for mother and father relationship quality (AOR range 0.61-0.84). Among males, high-quality mother and father relationship were both associated with lower odds of disordered eating, insufficient physical activity

  20. WE-DE-BRA-07: Megavoltage Spectral Imaging with a Layered Detector

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Rottmann, J; Berbeco, R [Brigham and Women’s Hospital, Boston, MA (United States); Hu, Y [Dana Farber Cancer Institute, Boston, MA (United States); Wang, A; Shedlock, D; Star-Lack, J [Varian Medical Systems, Palo Alto, CA (United States); Morf, D [Varian Medical Systems, Dattwil, Aargau (Switzerland)

    2016-06-15

    Purpose: The aim of the current work is to investigate the feasibility of megavoltage spectral imaging using a multiple layered detector for enhancement of low contrast detectability through material segmentation and discrimination (such as bone, markers and metal implants). Potentially the technique can be applied to improve detection and reduce dose in Megavoltage Cone Beam Computed Tomography (MV-CBCT). Methods: Experiments were performed with a prototype multi-layer imager (MLI) which has higher detective efficiency and lower noise characteristics than conventional Electronic Portal Imaging Devices (EPIDs). Images of a solid water phantom were acquired at 2.5 MV, 6MV and 6MV without flattening filter (FFF). The following materials were placed within a stack of solid water: aluminum, copper and gold. Material separation was assessed based on Contrast-to-Noise Ratio (CNR) of the weighted image, formed by a weighted subtraction of the images from two layers of the MLI. A range of weighting factors were investigated for material separation. Results: CNR can be minimized for each material by appropriate selection of the subtraction weighting factor. This is equivalent to a selective subtraction of specific materials from the image. Using multiple layers simultaneously also decreases the dose requirement and removes any registration errors. The minimum CNR for aluminum, copper and gold at the weighted image formed with 2.5MV was obtained at weighting factors equal to 0.92, 0.76 and 0.64 respectively. The corresponding values at 6MVFFF were 0.99, 0.92 and 0.78 respectively. Conclusion: In the current work, an MV spectral imaging feasibility study was attempted using a novel multi-layer prototype EPID imager. Initial results suggest that material separation based on spectral differences between different layers is possible. This spectral imaging technique has potential advantages in MV-CBCT for real-time target tracking, patient set-up imaging and adaptive radiotherapy

  1. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  2. Configuration space analysis of common cost functions in radiotherapy beam-weight optimization algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rowbottom, Carl Graham [Joint Department of Physics, Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom); Webb, Steve [Joint Department of Physics, Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom)

    2002-01-07

    The successful implementation of downhill search engines in radiotherapy optimization algorithms depends on the absence of local minima in the search space. Such techniques are much faster than stochastic optimization methods but may become trapped in local minima if they exist. A technique known as 'configuration space analysis' was applied to examine the search space of cost functions used in radiotherapy beam-weight optimization algorithms. A downhill-simplex beam-weight optimization algorithm was run repeatedly to produce a frequency distribution of final cost values. By plotting the frequency distribution as a function of final cost, the existence of local minima can be determined. Common cost functions such as the quadratic deviation of dose to the planning target volume (PTV), integral dose to organs-at-risk (OARs), dose-threshold and dose-volume constraints for OARs were studied. Combinations of the cost functions were also considered. The simple cost function terms such as the quadratic PTV dose and integral dose to OAR cost function terms are not susceptible to local minima. In contrast, dose-threshold and dose-volume OAR constraint cost function terms are able to produce local minima in the example case studied. (author)

  3. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  4. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  5. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  6. Spectral properties of the massless relativistic quartic oscillator

    Science.gov (United States)

    Durugo, Samuel O.; Lőrinczi, József

    2018-03-01

    An explicit solution of the spectral problem of the non-local Schrödinger operator obtained as the sum of the square root of the Laplacian and a quartic potential in one dimension is presented. The eigenvalues are obtained as zeroes of special functions related to the fourth order Airy function, and closed formulae for the Fourier transform of the eigenfunctions are derived. These representations allow to derive further spectral properties such as estimates of spectral gaps, heat trace and the asymptotic distribution of eigenvalues, as well as a detailed analysis of the eigenfunctions. A subtle spectral effect is observed which manifests in an exponentially tight approximation of the spectrum by the zeroes of the dominating term in the Fourier representation of the eigenfunctions and its derivative.

  7. On weighted hardy inequalities on semiaxis for functions vanishing at the endpoints

    Directory of Open Access Journals (Sweden)

    Stepanov Vladimir

    1997-01-01

    Full Text Available We study the weighted Hardy inequalities on the semiaxis of the form for functions vanishing at the endpoints together with derivatives up to the order . The case is completely characterized.

  8. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  9. Thyroid function and body weight in girls with irregular menstrual cycle living in mild iodine deficiency region

    Directory of Open Access Journals (Sweden)

    L Sh Vagapova

    2011-09-01

    Full Text Available To establish the relation of body weight indexes and functional state of thyroid in female adolescents with menstrual cycle disorder, living in the iodine-deficiency region, the investigation was conducted in 130 female adolescents with irregular menses. Obesity incidence and overweight in them was 18.5%, body weight deficiency was 43.8%.37.7% of the girls had normal body weight. Statistically significant differences were not defined according to TSH, fT4 and fT3 in patients with different body weight indexes. So, the results of investigation can help to come to the conclusion about the absence of true correlation between body weight and functional thyroid state in female adolescents with irregular menses.

  10. The impact of birth weight on the level of lung function and lung function decline in the general adult population. The Inter99 study

    DEFF Research Database (Denmark)

    Baumann, Sophie; Godtfredsen, Nina Skavlan; Lange, Peter

    2015-01-01

    BACKGROUND: Previous studies have reported an association between low birth weight and low adult lung function, but findings have not been consistent. The aim of this study was to investigate whether birth weight is associated with both the level and the decline in adult lung function in general...... population. METHODS: The Danish Inter99 study is a population-based intervention study in adults aged 30-60 years, providing information on birth weight and lung function on 4428 participants. Of these, 2931 participants performed spirometry at baseline and at five-year follow-up. Multiple linear regression...... models were used to examine the association between birth weight and forced expiratory volume in first second (FEV1) and forced vital capacity (FVC) and age-related decline in these variables. Analyses were conducted stepwise including sex, age, adult height, abdominal circumference, birth height, mother...

  11. Weighting Function Integrated in Grid-interfacing Converters for Unbalanced Voltage Correction

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2008-01-01

    In this paper a weighting function for voltage unbalance correction is proposed to be integrated into the control of distributed grid-interfacing systems. The correction action can help decrease the negative-sequence voltage at the point of connection with the grid. Based on the voltage unbalance

  12. Spectral theory and quotients in Von Neumann algebras | West ...

    African Journals Online (AJOL)

    In this note we consider to what extent the functional calculus and the spectral theory in von Neumann algebras are preserved by the taking of quotients relative to two-sided ideals of the von Neumann algebra. Keywords:von Neumann algebra, functional calculus, spectral theory, quotient algebras. Quaestiones ...

  13. Stress intensity factors and weight functions for cracks in front of notches

    International Nuclear Information System (INIS)

    Fett, T.

    1993-12-01

    The knowledge of stress intensity factors for cracks at notch roots is important for the fracture mechanical treatment of real components. Stress intensity factor solutions are available only for special notches and externally applied loads. For the treatment of more complex loadings as thermal stresses near the notch root the weight function is needed in addition. In the first part of this report weight functions for cracks in front of internal notches are derived from stress intensity factor solutions under external loading available in the literature. The second part deals with cracks in front of edge notches. Limit cases of stress intensity factors are derived which allow to estimate stress intensity factors for cracks in front of internal elliptical notches with arbitrary aspect ratio of the ellipse and for external notches. (orig.) [de

  14. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model

    Science.gov (United States)

    Lu, Yi; Haverkort, Maurits W.

    2017-12-01

    We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.

  15. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: karol.kowalski@pnnl.gov; Bhaskaran-Nair, K.; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  16. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Bhaskaran-Nair, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N - 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N - 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. Finally, as a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  17. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    International Nuclear Information System (INIS)

    Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.

    2014-01-01

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function

  18. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    Science.gov (United States)

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  19. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  20. Functional evaluation of the kidney by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Hasegawa, Taro; Hasegawa, Norio; Irie, Takeo; Fukuda, Kunihiko

    2003-01-01

    The purpose of this study was to determine the relationship between the apparent diffusion coefficient (ADC) and diffuse renal disease by diffusion-weighted echo planar magnetic resonance (MR) imaging (EPI). Ten volunteers, seven patients with chronic renal failure and eighteen recipients of renal transplants were examined with diffusion-weighted EPI. We compared renal function (serum creatinine level) with provided ADC value. The average ADC values were 2.63 x 10 -3 mm 2 /sec for the whole kidney, 2.67 x 10 -3 mm 2 /sec for the cortex and 2.61 x 10 -3 mm 2 /sec for the medulla in normal kidneys. ADC values in the whole kidney, the cortex and the medulla in chronic renal failure were significantly lower than those for normal kidneys. In renal transplantation kidneys, the ADC values in the cortex were significantly lower than those for normal kidney. There was a linear correlation between ADC value and serum creatinine level. Our results show that diffusion-weighted MR imaging may be useful to identify renal dysfunction. (author)

  1. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    Science.gov (United States)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2017-03-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  2. Highest weight generating functions for hyperKähler T{sup ⋆}(G/H) spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Ramgoolam, Sanjaye [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Rodriguez-Gomez, Diego [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, 33007, Oviedo (Spain)

    2016-10-05

    We develop an efficient procedure for counting holomorphic functions on a hyperKahler cone that has a resolution as a cotangent bundle of a homogeneous space by providing a formula for computing the corresponding Highest Weight Generating function.

  3. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  4. Spectral function and quark diffusion constant in non-critical holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bu Yanyan, E-mail: yybu@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China); Yang Jinmin, E-mail: jmyang@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China)

    2012-02-11

    Motivated by recent studies of intersecting D-brane systems in critical string theory and phenomenological AdS/QCD models, we present a detailed analysis for the vector and scalar fluctuations in a non-critical holographic QCD model in the high temperature phase, i.e., the chiral symmetric phase. This model is described by N{sub f} pairs of D4 and D4{sup Macron} probe branes in a non-critical AdS{sub 6} black hole background. Focusing on the hydrodynamic as well as the high frequency limit, we analytically obtain spectral functions for vector and scalar modes on the flavor probe. Then we extract the light quark diffusion constant for flavor current using three different methods and find that different methods give the same results. We also compute the heavy quark diffusion constant for comparison with the light quark case.

  5. Uncertainty plus prior equals rational bias: an intuitive Bayesian probability weighting function.

    Science.gov (United States)

    Fennell, John; Baddeley, Roland

    2012-10-01

    Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several nonexpected utility theories, including rank-dependent models and prospect theory; here, we propose a Bayesian approach to the probability weighting function and, with it, a psychological rationale. In the real world, uncertainty is ubiquitous and, accordingly, the optimal strategy is to combine probability statements with prior information using Bayes' rule. First, we show that any reasonable prior on probabilities leads to 2 of the observed effects; overweighting of low probabilities and underweighting of high probabilities. We then investigate 2 plausible kinds of priors: informative priors based on previous experience and uninformative priors of ignorance. Individually, these priors potentially lead to large problems of bias and inefficiency, respectively; however, when combined using Bayesian model comparison methods, both forms of prior can be applied adaptively, gaining the efficiency of empirical priors and the robustness of ignorance priors. We illustrate this for the simple case of generic good and bad options, using Internet blogs to estimate the relevant priors of inference. Given this combined ignorant/informative prior, the Bayesian probability weighting function is not only robust and efficient but also matches all of the major characteristics of the distortions found in empirical research. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  6. Analysis on Influential Functions in the Weighted Software Network

    Directory of Open Access Journals (Sweden)

    Haitao He

    2018-01-01

    Full Text Available Identifying influential nodes is important for software in terms of understanding the design patterns and controlling the development and the maintenance process. However, there are no efficient methods to discover them so far. Based on the invoking dependency relationships between the nodes, this paper proposes a novel approach to define the node importance for mining the influential software nodes. First, according to the multiple execution information, we construct a weighted software network (WSN to denote the software execution dependency structure. Second, considering the invoking times and outdegree about software nodes, we improve the method PageRank and put forward the targeted algorithm FunctionRank to evaluate the node importance (NI in weighted software network. It has higher influence when the node has lager value of NI. Finally, comparing the NI of nodes, we can obtain the most influential nodes in the software network. In addition, the experimental results show that the proposed approach has good performance in identifying the influential nodes.

  7. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  8. Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function

    International Nuclear Information System (INIS)

    Ramazanov, A.-R K

    2005-01-01

    Necessary and sufficient conditions for the best polynomial approximation with an arbitrary and, generally speaking, unbounded sign-sensitive weight to a continuous function are obtained; the components of the weight can also take infinite values, therefore the conditions obtained cover, in particular, approximation with interpolation at fixed points and one-sided approximation; in the case of the weight with components equal to 1 one arrives at Chebyshev's classical alternation theorem.

  9. A deterministic algorithm for fitting a step function to a weighted point-set

    KAUST Repository

    Fournier, Hervé

    2013-02-01

    Given a set of n points in the plane, each point having a positive weight, and an integer k>0, we present an optimal O(nlogn)-time deterministic algorithm to compute a step function with k steps that minimizes the maximum weighted vertical distance to the input points. It matches the expected time bound of the best known randomized algorithm for this problem. Our approach relies on Coles improved parametric searching technique. As a direct application, our result yields the first O(nlogn)-time algorithm for computing a k-center of a set of n weighted points on the real line. © 2012 Elsevier B.V.

  10. Chest circumference and birth weight are good predictors of lung function in preschool children from an e-waste recycling area.

    Science.gov (United States)

    Zeng, Xiang; Xu, Xijin; Zhang, Yuling; Li, Weiqiu; Huo, Xia

    2017-10-01

    The purpose of this study was to investigate the associations between birth weight, chest circumference, and lung function in preschool children from e-waste exposure area. A total of 206 preschool children from Guiyu (an e-waste recycling area) and Haojiang and Xiashan (the reference areas) in China were recruited and required to undergo physical examination, blood tests, and lung function tests during the study period. Birth outcome such as birth weight and birth height were obtained by questionnaire. Children living in the e-waste-exposed area have a lower birth weight, chest circumference, height, and lung function when compare to their peers from the reference areas (all p value <0.05). Both Spearman and partial correlation analyses showed that birth weight and chest circumference were positively correlated with lung function levels including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ). After adjustment for the potential confounders in further linear regression analyses, birth weight, and chest circumference were positively associated with lung function levels, respectively. Taken together, birth weight and chest circumference may be good predictors for lung function levels in preschool children.

  11. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  12. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    .... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...

  13. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    Science.gov (United States)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  14. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  15. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  16. Function of snake mobbing in spectral tarsiers.

    Science.gov (United States)

    Gursky, Sharon

    2006-04-01

    Numerous species are known for their tendency to approach and confront their predators as a group. This behavior is known as mobbing. Snakes seem to be one of the more consistent recipients of this type of predator-directed behavior. This paper explores individual differences (sex and age) in the mobbing behavior of the spectral tarsier toward live and model snakes. This study was conducted at Tangkoko Nature Reserve (Sulawesi, Indonesia) during 2003-2004. During this research, 11 natural mobbing events and 31 artificially induced mobbing events were observed. The mean number of individuals at a mobbing was 5.7. The duration of mobbing events was strongly correlated with the number of assembled mobbers. Adults were more likely than other age classes to participate in mobbings. Males were more likely than females to participate in mobbings. Mobbing groups often contained more than one adult male, despite the fact that no spectral tarsier group contains more than one adult male. No difference in body size between extragroup males and resident males was observed, refuting the "attract the mightier" hypothesis. The number of mobbers did not affect whether the tarsier or the snake retreated first, countering the "move-on" hypothesis. The "perception advertisement" hypothesis was tentatively supported, in that live snakes were rarely seen in the area following mobbing calls, in comparison to when tarsiers either ignored the snake or alarm call. Copyright 2006 Wiley-Liss, Inc.

  17. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P spectral mammographic and MR images. © RSNA, 2016.

  18. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    International Nuclear Information System (INIS)

    Boutilier, J; Chan, T; Lee, T; Craig, T; Sharpe, M

    2014-01-01

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time

  19. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, J; Chan, T; Lee, T [University of Toronto, Toronto, Ontario (Canada); Craig, T; Sharpe, M [University of Toronto, Toronto, Ontario (Canada); The Princess Margaret Cancer Centre - UHN, Toronto, ON (Canada)

    2014-06-15

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time.

  20. Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL

    International Nuclear Information System (INIS)

    Swift, Neil; Nield, Kathryn; Hamlin, John; Hülsen, Gregor; Gröbner, Julian

    2013-01-01

    A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagree significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.

  1. Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Neil; Nield, Kathryn; Hamlin, John [Measurement Standards Laboratory of New Zealand, Industrial Research Ltd, Lower Hutt (New Zealand); Huelsen, Gregor; Groebner, Julian [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Centre, Davos Dorf (Switzerland)

    2013-05-10

    A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagree significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.

  2. Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    Science.gov (United States)

    Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.

    2010-01-01

    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.

  3. Real-time detection of natural objects using AM-coded spectral matching imager

    Science.gov (United States)

    Kimachi, Akira

    2005-01-01

    This paper describes application of the amplitude-modulation (AM)-coded spectral matching imager (SMI) to real-time detection of natural objects such as human beings, animals, vegetables, or geological objects or phenomena, which are much more liable to change with time than artificial products while often exhibiting characteristic spectral functions associated with some specific activity states. The AM-SMI produces correlation between spectral functions of the object and a reference at each pixel of the correlation image sensor (CIS) in every frame, based on orthogonal amplitude modulation (AM) of each spectral channel and simultaneous demodulation of all channels on the CIS. This principle makes the SMI suitable to monitoring dynamic behavior of natural objects in real-time by looking at a particular spectral reflectance or transmittance function. A twelve-channel multispectral light source was developed with improved spatial uniformity of spectral irradiance compared to a previous one. Experimental results of spectral matching imaging of human skin and vegetable leaves are demonstrated, as well as a preliminary feasibility test of imaging a reflective object using a test color chart.

  4. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy.

    Science.gov (United States)

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R; Krah, Nathan M; Dennison, Roberta J; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D; Smith, Lois E H

    2010-12-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r(2) = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome.

  5. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation

  6. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres : the case of limb viewing geometry

    Science.gov (United States)

    Ustinov, Eugene A.

    2006-01-01

    In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.

  7. Reduction theorems for weighted integral inequalities on the cone of monotone functions

    International Nuclear Information System (INIS)

    Gogatishvili, A; Stepanov, V D

    2013-01-01

    This paper surveys results related to the reduction of integral inequalities involving positive operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of monotone functions, to certain more easily manageable inequalities valid on the cone of non-negative functions. The case of monotone operators is new. As an application, a complete characterization for all possible integrability parameters is obtained for a number of Volterra operators. Bibliography: 118 titles

  8. Uncertainty plus Prior Equals Rational Bias: An Intuitive Bayesian Probability Weighting Function

    Science.gov (United States)

    Fennell, John; Baddeley, Roland

    2012-01-01

    Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several…

  9. Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.

    Science.gov (United States)

    Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J

    2014-06-01

    Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  11. Spectral theory of linear operators and spectral systems in Banach algebras

    CERN Document Server

    Müller, Vladimir

    2003-01-01

    This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...

  12. Application of Rader transforms to the analysis of nuclear spectral data

    International Nuclear Information System (INIS)

    Kekre, H.B.; Madan, V.K.; Bairi, B.R.

    1988-01-01

    This paper describes a Rader transform method using a special arithmetic for the processing of nuclear spectral data. Rader transforms offer impressive computational savings vis-a-vis Fourier transform methods. Rader transforms require only integer additions and word shifts but no multiplications while Fourier transforms require complex arithmetic operations. Moreover, use of Rader transforms gives exact computations without any roundoff errors and does not require storage of basis functions. They are 'the best transforms' for computer processing of nuclear spectral data. Rader transforms using a Fermat prime 65 537 have been applied to deconvolve observed spectral data using a special filter function. A uniform improvement in resolution of 45% has been observed both in single and double spectrallines. A FORTRAN program GAMRAD is written to deconvolve spectral data using the special filter function. (orig.)

  13. Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories

    Science.gov (United States)

    Burnier, Yannis; Rothkopf, Alexander

    2013-11-01

    We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33TC.

  14. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    Science.gov (United States)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  15. Maternal thyroid function, prepregnancy obesity and gestational weight gain-The Generation R Study: A prospective cohort study.

    Science.gov (United States)

    Collares, Fernanda M; Korevaar, Tim I M; Hofman, Albert; Steegers, Eric A P; Peeters, Robin P; Jaddoe, Vincent W V; Gaillard, Romy

    2017-12-01

    Maternal prepregnancy obesity and excessive gestational weight gain are associated with pregnancy complications. Thyroid function is related to differences in body mass index (BMI) in adult populations. We examined the associations of maternal thyroid function in early pregnancy with maternal BMI and weight gain during pregnancy. In a population-based prospective cohort study among 5726 mothers, we measured maternal TSH and FT4 levels at 13.5 weeks of gestation (95% range: 9.7-17.6 weeks). Maternal weight was assessed before pregnancy and in each trimester. Higher maternal TSH levels were associated with higher prepregnancy BMI (difference: 0.18 kg/m 2 [95% CI: 0.01, 0.36] per SD increase in maternal TSH level) and higher total gestational weight gain (difference: 0.02 kg/wk [95% CI: 0.01, 0.03] per SD increase in maternal TSH level). Higher maternal FT4 levels were associated with lower prepregnancy BMI (difference: -0.44 kg/m 2 [95% CI: -0.63, -0.26] per SD increase in maternal FT4 level) and lower total gestational weight gain (difference: -0.01 kg/wk [95% CI: -0.02, -0.01] per SD increase in maternal FT4 level). The associations of maternal thyroid function with weight gain in early pregnancy were stronger than those with weight gain in mid and late-pregnancy. Maternal hypothyroidism was associated with higher prepregnancy BMI and early pregnancy weight gain, whereas opposite effects were observed for maternal hyperthyroidism (Pgain. Further studies are needed to explore maternal and foetal consequences. © 2017 John Wiley & Sons Ltd.

  16. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.; MacKinnon, A.; Schwingenschlö gl, Udo

    2014-01-01

    of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate

  17. Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter

    International Nuclear Information System (INIS)

    Hirvonen, Juha-Matti; Poikonen, Tuomas; Vaskuri, Anna; Kärhä, Petri; Ikonen, Erkki

    2013-01-01

    A spectrally adjustable radiance source based on light-emitting diodes (LEDs) has been constructed for spectral responsivity measurements of radiance and luminance meters. A 300 mm integrating sphere source with adjustable output port is illuminated using 30 thermally stabilized narrow-band LEDs covering the visible wavelength range of 380–780 nm. The functionality of the measurement setup is demonstrated by measuring the relative spectral responsivities of a luminance meter and a photometer head with cosine-corrected input optics. (paper)

  18. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....

  19. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  20. The potential of Sentinel-2 spectral configuration to assess rangeland quality

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2015-08-01

    Full Text Available was measured using the analytical spectral device (ASD) in concert with leaf sample collections for leaf N chemical analysis. ASD reflectance data were resampled to the spectral bands of Sentinel-2 using published spectral response functions. Random forest (RF...

  1. Socioeconomic position in early life, birth weight, childhood cognitive function, and adult mortality

    DEFF Research Database (Denmark)

    Osler, M; Andersen, A-M N; Due, P

    2003-01-01

    . The data were analysed using Cox regression. SETTING: The metropolitan area of Copenhagen, Denmark. SUBJECTS: 7493 male singletons born in 1953, who completed a questionnaire with various cognitive measures, in school at age 12 years, and for whom birth certificates with data on birth and parental...... with all cause mortality. The association between father's social class and mortality attenuated (HR(working class)1.30 (1.08 to 1.56); HR(unknown class)1.81 (1.30 to 2.52)) after control for birth weight and cognitive function. Mortality from cardiovascular diseases and violent deaths was also......OBJECTIVE: To examine the relation between socioeconomic position in early life and mortality in young adulthood, taking birth weight and childhood cognitive function into account. DESIGN: A longitudinal study with record linkage to the Civil Registration System and Cause of Death Registry...

  2. Robustness of weighted networks

    Science.gov (United States)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  3. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  4. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    Science.gov (United States)

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  5. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    Science.gov (United States)

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  7. Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations

    CERN Document Server

    Ichinose, T

    2004-01-01

    We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\

  8. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  9. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  10. Feasibility of Using an Arm Weight-Supported Training System to Improve Hand Function Skills in Children With Hemiplegia.

    Science.gov (United States)

    Krishnaswamy, Swetha; Coletti, Daniel J; Berlin, Hilary; Friel, Kathleen

    This investigation was a pilot feasibility trial evaluating the use of an arm-weight-supported training device to improve upper-extremity function in children with hemiplegia. A single-group within-subject design was used. Participants were 6 children ages 7-17 yr with upper-extremity weakness secondary to hemiplegia. The intervention consisted of 15-18 treatment sessions using an arm-weight-supported training device with the affected upper extremity. Fine motor function was assessed using the Jebsen-Taylor Hand Function Test, the Box and Block Test, and the Assisting Hand Assessment. We examined participants' interactions with the device and assessment scores pre- and postintervention. Five of the 6 children exhibited some changes after the therapy. The system required significant modifications to ensure appropriate positioning. The arm-weight-supported system may be viable for therapeutic use. Future studies should use randomized controlled designs and compare effectiveness of weight-supported training with that of other rehabilitation strategies. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  11. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  12. [Modeling and Simulation of Spectral Polarimetric BRDF].

    Science.gov (United States)

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  13. Chebyshev and Fourier spectral methods

    CERN Document Server

    Boyd, John P

    2001-01-01

    Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

  14. Intermediate spectral theory and quantum dynamics

    CERN Document Server

    de Oliveira, Cesar R

    2008-01-01

    The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...

  15. Riemann zeros and phase transitions via the spectral operator on fractal strings

    International Nuclear Information System (INIS)

    Herichi, Hafedh; Lapidus, Michel L

    2012-01-01

    The spectral operator was introduced by Lapidus and van Frankenhuijsen (2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings) in their reinterpretation of the earlier work of Lapidus and Maier (1995 J. Lond. Math. Soc. 52 15–34) on inverse spectral problems and the Riemann hypothesis. In essence, it is a map that sends the geometry of a fractal string onto its spectrum. In this review, we present the rigorous functional analytic framework given by Herichi and Lapidus (2012) and within which to study the spectral operator. Furthermore, we give a necessary and sufficient condition for the invertibility of the spectral operator (in the critical strip) and therefore obtain a new spectral and operator-theoretic reformulation of the Riemann hypothesis. More specifically, we show that the spectral operator is quasi-invertible (or equivalently, that its truncations are invertible) if and only if the Riemann zeta function ζ(s) does not have any zeros on the vertical line Re(s) = c. Hence, it is not invertible in the mid-fractal case when c= 1/2 , and it is quasi-invertible everywhere else (i.e. for all c ∈ (0, 1) with c≠ 1/2 ) if and only if the Riemann hypothesis is true. We also show the existence of four types of (mathematical) phase transitions occurring for the spectral operator at the critical fractal dimension c= 1/2 and c = 1 concerning the shape of the spectrum, its boundedness, its invertibility as well as its quasi-invertibility. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  16. Spectral density and a family of Dirac operators

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1985-01-01

    The spectral density for a class Dirac operators is investigated by relating its even and odd parts to the Riemann zeta-function and to the eta-invariant by Atiyah, Padoti and Singer. Asymptotic expansions are studied and a 'hidden' supersymmetry is revealed and used to relate the Dirac operator to a supersymmetric quantum mechanics. A general method for the computation of the odd spectral density is developed, and various applications are discussed. In particular the connection to the fermion number and a relation between the odd spectral density and some ratios of Jost functions and relative phase shifts are pointed out. Chiral symmetry breaking is investigated using methods analogous to those applied in the investigation of the fermion number, and related to supersymmetry breaking in the corresponding quantum mechanical model. (orig.)

  17. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  18. Spectral Correlation of Multicarrier Modulated Signals and Its Application for Signal Detection

    Directory of Open Access Journals (Sweden)

    Zhang Haijian

    2010-01-01

    Full Text Available Spectral correlation theory for cyclostationary time-series signals has been studied for decades. Explicit formulas of spectral correlation function for various types of analog-modulated and digital-modulated signals are already derived. In this paper, we investigate and exploit the cyclostationarity characteristics for two kinds of multicarrier modulated (MCM signals: conventional OFDM and filter bank based multicarrier (FBMC signals. The spectral correlation characterization of MCM signal can be described by a special linear periodic time-variant (LPTV system. Using this LPTV description, we have derived the explicit theoretical formulas of nonconjugate and conjugate cyclic autocorrelation function (CAF and spectral correlation function (SCF for OFDM and FBMC signals. According to theoretical spectral analysis, Cyclostationary Signatures (CS are artificially embedded into MCM signal and a low-complexity signature detector is, therefore, presented for detecting MCM signal. Theoretical analysis and simulation results demonstrate the efficiency and robustness of this CS detector compared to traditionary energy detector.

  19. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  20. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  1. A fast conservative spectral solver for the nonlinear Boltzmann collision operator

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.; Hu, Jingwei

    2014-01-01

    We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M 2 N 4 logN) from the O(N 6 ) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results

  2. Stability estimates for hp spectral element methods for general ...

    Indian Academy of Sciences (India)

    We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...

  3. Effect of weight loss in obese dogs on indicators of renal function or disease.

    Science.gov (United States)

    Tvarijonaviciute, A; Ceron, J J; Holden, S L; Biourge, V; Morris, P J; German, A J

    2013-01-01

    Obesity is a common medical disorder in dogs, and can predispose to a number of diseases. Human obesity is a risk factor for the development and progression of chronic kidney disease. To investigate the possible association of weight loss on plasma and renal biomarkers of kidney health. Thirty-seven obese dogs that lost weight were included in the study. Prospective observational study. Three novel biomarkers of renal functional impairment, disease, or both (homocysteine, cystatin C, and clusterin), in addition to traditional markers of chronic renal failure (serum urea and creatinine, urine specific gravity [USG], urine protein-creatinine ratio [UPCR], and urine albumin corrected by creatinine [UAC]) before and after weight loss in dogs with naturally occurring obesity were investigated. Urea (P = .043) and USG (P = .012) were both greater after weight loss than before loss, whilst UPCR, UAC, and creatinine were less after weight loss (P = .032, P = .006, and P = .026, respectively). Homocysteine (P canine obesity, which improve with weight loss. Further work is required to determine the nature of these alterations and, most notably, the reason for the association between before loss plasma clusterin and subsequent lean tissue loss during weight management. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  4. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    Science.gov (United States)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  5. Weight functions for the determination of stress intensity factor and T-stress for edge-cracked plates with built-in ends

    International Nuclear Information System (INIS)

    Li, J.; Wang, X.; Tan, C.L.

    2004-01-01

    This paper presents the weight functions for the determination of the stress intensity factor and T-stress solutions for edge-cracked plates with built-in ends under complex stress distributions. First, a compliance analysis approach is used to calculate stress intensity factor and T-stress for edge cracks in finite width plates with built-in ends with uniform or linear stress distributions acting on the crack face. The results serve as the reference solutions for the next step in which the approaches of deriving weight functions from reference stress intensity factor and T-stress solutions developed for stress boundary conditions are extended to obtain the corresponding weight functions for edge-cracked plates with built-in ends. Finite element analysis is conducted to validate the derived solutions. The weight functions derived are suitable for obtaining stress intensity factors and T-stress solutions under any complex stress field

  6. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  7. Spectral asymmetry for bag boundary conditions

    International Nuclear Information System (INIS)

    Beneventano, C G; Santangelo, E M; Wipf, A

    2002-01-01

    We give an expression, in terms of boundary spectral functions, for the spectral asymmetry of the Euclidean Dirac operator in two dimensions, when its domain is determined by local boundary conditions and the manifold is of product type. As an application, we explicitly evaluate the asymmetry in the case of a finite-length cylinder and check that the outcome is consistent with our general result. Finally, we study the asymmetry in a disc, which is a non-product case, and propose an interpretation

  8. Quarkonium spectral function in medium at next-to-leading order for any quark mass

    International Nuclear Information System (INIS)

    Burnier, Yannis

    2015-01-01

    The vector channel spectral function at zero spatial momentum is calculated at next-to-leading order in thermal QCD for any quark mass. It corresponds to the imaginary part of the massive quark contribution to the photon polarisation tensor. The spectrum shows a well-defined transport peak in contrast to both the heavy quark limit studied previously, where the low frequency domain is exponentially suppressed at this order, and the naive massless case where it vanishes at leading order and diverges at next-to-leading order. From our general expressions, the massless limit can be taken and we show that no divergences occur if done carefully. Finally, we compare the massless limit to results from lattice simulations. (orig.)

  9. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.

    Science.gov (United States)

    Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert

    2018-05-01

    Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.

  10. Trace formulae and spectral statistics for discrete Laplacians on regular graphs (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oren, Idan; Godel, Amit; Smilansky, Uzy [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: idan.oren@weizmann.ac.il, E-mail: amit.godel@weizmann.ac.il, E-mail: uzy.smilansky@weizmann.ac.il

    2009-10-16

    Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w = 1, the only periodic orbits which contribute are the non-back-scattering orbits, and the smooth part in the trace formula coincides with the Kesten-McKay expression. As w deviates from unity, non-vanishing weights are assigned to the periodic walks with backscatter, and the smooth part is modified in a consistent way. The trace formulae presented here are the tools to be used in the second paper in this sequence, for showing the connection between the spectral properties of d-regular graphs and the theory of random matrices.

  11. Spectral zone selection methodology for pebble bed reactors

    International Nuclear Information System (INIS)

    Mphahlele, Ramatsemela; Ougouag, Abderrafi M.; Ivanov, Kostadin N.; Gougar, Hans D.

    2011-01-01

    A methodology is developed for determining boundaries of spectral zones for pebble bed reactors. A spectral zone is defined as a region made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. The spectral zones are selected in such a manner that the difference (error) between the reference transport solution and the diffusion code solution takes a minimum value. This is achieved by choosing spectral zones through optimally minimizing this error. The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates errors in each zone. The selection of these spectral zones is such that the core calculation results based on diffusion theory are within an acceptable tolerance as compared to a proper transport reference solution. Through this work, a consistent approach for identifying spectral zones that yield more accurate diffusion results is introduced.

  12. Difference equations having bases with powerlike growth which are perturbed by a spectral parameter

    International Nuclear Information System (INIS)

    Tulyakov, Dmitrii N

    2009-01-01

    The asymptotic behaviour of solutions with powerlike growth of recurrence relations with a spectral parameter is investigated. A class of recurrence relations in which all basis solutions have powerlike growth is introduced. Recurrence relations in this class are linearly perturbed by a spectral parameter; for solutions of the new recurrence relations asymptotic formulae are obtained which are uniform with respect to the spectral parameter ranging within appropriate bounds. The theorems obtained are used for deriving new local asymptotic formulae for orthogonal and multiple orthogonal polynomials in a neighbourhood of the end-points of the support of the orthogonality weights. Bibliography: 14 titles.

  13. Soil classification basing on the spectral characteristics of topsoil samples

    Science.gov (United States)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  14. Spectral quality requirements for effluent identification

    Science.gov (United States)

    Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.

    2005-11-01

    We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.

  15. Joint Inversion of Gravity and Gravity Tensor Data Using the Structural Index as Weighting Function Rate Decay

    Science.gov (United States)

    Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.

    2011-12-01

    Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density

  16. Reduction theorems for weighted integral inequalities on the cone of monotone functions

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Stepanov, V.D.

    2013-01-01

    Roč. 68, č. 4 (2013), s. 597-664 ISSN 0036-0279 R&D Projects: GA ČR GA201/08/0383; GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : weighted Lebesgue space * cone of monotone functions * duality principle Subject RIV: BA - General Mathematics Impact factor: 1.357, year: 2013 http://iopscience.iop.org/0036-0279/68/4/597

  17. Dielectric function of two-phase colloid-polymer nanocomposite.

    Science.gov (United States)

    Mitzscherling, S; Cui, Q; Koopman, W; Bargheer, M

    2015-11-28

    The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses.

  18. Reduced body weight or increased muscle quality: Which is more important for improving physical function following exercise and weight loss in overweight and obese older women?

    Science.gov (United States)

    Straight, Chad R; Berg, Alison C; Reed, Rachelle A; Johnson, Mary Ann; Evans, Ellen M

    2018-04-19

    The purpose of this study was to examine the relative contributions of changes in muscle quality and body composition to changes in lower-extremity physical function (LEPF) following a 6-month exercise and weight loss intervention in overweight and obese older women. Thirty-eight overweight and obese (BMI = 30.0 ± 4.4 kg/m 2 ) older (age = 69.3 ± 4.1 y) women completed 6 months of multicomponent exercise (cardiorespiratory, resistance, balance and flexibility training) and weight loss (hypocaloric diet that reduced energy intake by ~500 kcal/d). Body composition was measured via dual-energy X-ray absorptiometry and muscle quality (N-m/kg) was defined as maximal concentric isokinetic knee torque divided by upper-leg lean mass. The standardized scores of four objective measures of physical function were summed to yield a composite LEPF Z-score. At 6 months, there were significant reductions in body weight (-9.6 ± 3.5%, p quality (+1.6 ± 1.8 N-m/kg, p quality was the strongest independent predictor of an improvement in LEPF Z-score (standardized β = 0.64, p quality. In conclusion, muscle quality can be increased in the presence of clinically meaningful weight loss, and is the primary determinant of improved physical function in overweight/obese older women. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Do Knee Bracing and Delayed Weight Bearing Affect Mid-Term Functional Outcome after Anterior Cruciate Ligament Reconstruction?

    Science.gov (United States)

    Di Miceli, Riccardo; Marambio, Carlotta Bustos; Zati, Alessandro; Monesi, Roberta; Benedetti, Maria Grazia

    2017-12-01

    Purpose  The aim of this study was to assess the effect of knee bracing and timing of full weight bearing after anterior cruciate ligament reconstruction (ACLR) on functional outcomes at mid-term follow-up. Methods  We performed a retrospective study on 41 patients with ACLR. Patients were divided in two groups: ACLR group, who received isolated ACL reconstruction and ACLR-OI group who received ACL reconstruction and adjunctive surgery. Information about age at surgery, bracing, full or progressive weight bearing permission after surgery were collected for the two groups. Subjective IKDC score was obtained at follow-up. Statistical analysis was performed to compare the two groups for IKDC score. Subgroup analysis was performed to assess the effect of postoperative regimen (knee bracing and weight bearing) on functional outcomes. Results  The mean age of patients was 30.8 ± 10.6 years. Mean IKDC score was 87.4 ± 13.9. The mean follow-up was 3.5 ± 1.8 years. Twenty-two (53.7%) patients underwent ACLR only, while 19 (46.3%) also received other interventions, such as meniscal repair and/or collateral ligament suture. Analysis of overall data showed no differences between the groups for IKDC score. Patients in the ACLR group exhibited a significantly better IKDC score when no brace and full weight bearing after 4 weeks from surgery was prescribed in comparison with patients who worn a brace and had delayed full weight bearing. No differences were found with respect to the use of brace and postoperative weight bearing regimen in the ACLR-OI group. Conclusion  Brace and delayed weight bearing after ACLR have a negative influence on long-term functional outcomes. Further research is required to explore possible differences in the patients operated on ACLR and other intervention with respect to the use of a brace and the timing of full weight bearing to identify optimal recovery strategies. Level of Evidence  Level III, retrospective observational

  20. Minor long-term changes in weight have beneficial effects on insulin sensitivity and beta-cell function in obese subjects

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Hendel, Helle Westergren; Rasmussen, M H

    2002-01-01

    To evaluate the long-term effect of changes in body composition induced by weight loss on insulin sensitivity (SI), non-insulin mediated glucose disposal, glucose effectiveness (SG)and beta-cell function.......To evaluate the long-term effect of changes in body composition induced by weight loss on insulin sensitivity (SI), non-insulin mediated glucose disposal, glucose effectiveness (SG)and beta-cell function....

  1. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code

    Science.gov (United States)

    Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya

    2017-12-01

    We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1

  2. String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups

    International Nuclear Information System (INIS)

    Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio

    2012-01-01

    This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  3. Improved Function With Enhanced Protein Intake per Meal: A Pilot Study of Weight Reduction in Frail, Obese Older Adults.

    Science.gov (United States)

    Porter Starr, Kathryn N; Pieper, Carl F; Orenduff, Melissa C; McDonald, Shelley R; McClure, Luisa B; Zhou, Run; Payne, Martha E; Bales, Connie W

    2016-10-01

    Obesity is a significant cause of functional limitations in older adults; yet, concerns that weight reduction could diminish muscle along with fat mass have impeded progress toward an intervention. Meal-based enhancement of protein intake could protect function and/or lean mass but has not been studied during geriatric obesity reduction. In this 6-month randomized controlled trial, 67 obese (body mass index ≥30kg/m(2)) older (≥60 years) adults with a Short Physical Performance Battery score of 4-10 were randomly assigned to a traditional (Control) weight loss regimen or one with higher protein intake (>30g) at each meal (Protein). All participants were prescribed a hypo-caloric diet, and weighed and provided dietary guidance weekly. Physical function (Short Physical Performance Battery) and lean mass (BOD POD), along with secondary measures, were assessed at 0, 3, and 6 months. At the 6-month endpoint, there was significant (p < .001) weight loss in both the Control (-7.5±6.2kg) and Protein (-8.7±7.4kg) groups. Both groups also improved function but the increase in the Protein (+2.4±1.7 units; p < .001) was greater than in the Control (+0.9±1.7 units; p < .01) group (p = .02). Obese, functionally limited older adults undergoing a 6-month weight loss intervention with a meal-based enhancement of protein quantity and quality lost similar amounts of weight but had greater functional improvements relative to the Control group. If confirmed, this dietary approach could have important implications for improving the functional status of this vulnerable population (ClinicalTrials.gov identifier: NCT01715753). © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  4. Spectral properties and lattice-size dependences in cluster algorithms

    OpenAIRE

    Kerler, W.

    1993-01-01

    Simulation results of Ising systems for several update rules, observables, and dimensions are analyzed. The lattice-size dependence is discussed for the autocorrelation times and for the weights of eigenvalues, giving fit results in the case of power laws. Implications of spectral properties are pointed out and the behavior of a particular observable not governed by detailed balance is explained.

  5. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight

    Science.gov (United States)

    Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.

    2008-01-01

    The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735

  6. Spectral amplitude coding OCDMA using and subtraction technique.

    Science.gov (United States)

    Hasoon, Feras N; Aljunid, S A; Samad, M D A; Abdullah, Mohamad Khazani; Shaari, Sahbudin

    2008-03-20

    An optical decoding technique is proposed for a spectral-amplitude-coding-optical code division multiple access, namely, the AND subtraction technique. The theory is being elaborated and experimental results have been done by comparing a double-weight code against the existing code, Hadamard. We have proved that the and subtraction technique gives better bit error rate performance than the conventional complementary subtraction technique against the received power level.

  7. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  8. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    International Nuclear Information System (INIS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-01-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene

  9. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  10. Distorted spin dependent spectral function of {sup 3}He and semi-inclusive deep inelastic scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)

    2014-03-01

    The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.

  11. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  12. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  13. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    validation of simplified CFD models. In the second results section, spectral measurements (2.4 - 5.4 {mu}m) of a 70 kW turbulent natural gas ame in air blown combustion and in wet and dry oxyfuel combustion were compared with simulated spectra based on measured gas atmospheres. The line-by-line database HITEMP2010 and the two statistical-narrow-band models EM2C and RADCAL were used for the numerical simulation. The measured spectra showed large fluctuations due to turbulence. The averaged experimental intensity was found to be up to 75% higher than the simulated intensity, thus demonstrating the importance of the effect of turbulence-radiation-interaction in combustion simulations. Finally, total emissivities were calculated with the most common spectral models and compared with benchmark calculations by the detailed spectral line-by-line model HITEMP2010. The models were compared at path lengths ranging from 0.001m to 100m and at temperatures from 800 C to 1800 C for atmospheres of pure gases and of various combustion processes (air blown and oxyfuel combustion with wet and dry recirculation) as well as with different fuels (natural gas, brown coal and anthracite). The statistical-narrow-band models RADCAL and EM2C, the exponential-wide-band model and the statistical-line-width model were chosen as models, which are valid for oxyfuel combustion without modifications. A number of weighted-sum-of-grey-gases models from different authors were chosen as computationally efficient models especially developed for oxyfuel combustion. The statistical-narrow-band model EM2C had the highest accuracy with maximum deviations of up to 12%. The weighted-sum-of-grey-gases model from Johansson et al. [64] proved to be the most valid and versatile model for computationally efficient simulations of spectral gas properties with an overall accuracy of 21% or better.

  14. Evaluation of an effect on nuclear characteristics by correcting the weighting function in JFS-3-J3.2

    International Nuclear Information System (INIS)

    Chiba, Gou

    2001-12-01

    The fast reactor group constant set JFS-3-J3.2 based on the newest evaluated nuclear data library JENDL-3.2 has been widely used in the fast reactor analysis. However, it was recently found that there was a serious error in the process of applying the weighting function, a collision density spectrum in the inner core of ''MONJU'' as a representative of fast reactor spectrum. In this report, an effect of the error on nuclear characteristics was evaluated by a comparison with a new reactor group constant set which was produced by a standard reactor group constant set producing system of JNC with a correction of the weighting function. This report shows that the error of weighting function induces incorrect evaluation of neutron energy spectrum due to underestimation of scattering removal cross sections, and hence nuclear characteristics, such as criticality, sample Doppler reactivity, sodium void reactivity and reaction rate in a blanket region, are significantly affected. In addition, this report provides detailed information evaluated by separating ''an effect of new generation reactor group constant'' into more specific effects (i.e. an effect of correcting weighting function, an effect of differences in used cell codes and an effect of ultra fine group constant), which would be useful to investigate further on ''an effect of new generation reactor group constant''. (author)

  15. Effects of a weight loss plus exercise program on physical function in overweight, older women: a randomized controlled trial.

    Science.gov (United States)

    Anton, Stephen D; Manini, Todd M; Milsom, Vanessa A; Dubyak, Pamela; Cesari, Matteo; Cheng, Jing; Daniels, Michael J; Marsiske, Michael; Pahor, Marco; Leeuwenburgh, Christiaan; Perri, Michael G

    2011-01-01

    Obesity and a sedentary lifestyle are associated with physical impairments and biologic changes in older adults. Weight loss combined with exercise may reduce inflammation and improve physical functioning in overweight, sedentary, older adults. This study tested whether a weight loss program combined with moderate exercise could improve physical function in obese, older adult women. Participants (N = 34) were generally healthy, obese, older adult women (age range 55-79 years) with mild to moderate physical impairments (ie, functional limitations). Participants were randomly assigned to one of two groups for 24 weeks: (i) weight loss plus exercise (WL+E; n = 17; mean age = 63.7 years [4.5]) or (ii) educational control (n = 17; mean age = 63.7 [6.7]). In the WL+E group, participants attended a group-based weight management session plus three supervised exercise sessions within their community each week. During exercise sessions, participants engaged in brisk walking and lower-body resistance training of moderate intensity. Participants in the educational control group attended monthly health education lectures on topics relevant to older adults. Outcomes were: (i) body weight, (ii) walking speed (assessed by 400-meter walk test), (iii) the Short Physical Performance Battery (SPPB), and (iv) knee extension isokinetic strength. Participants randomized to the WL+E group lost significantly more weight than participants in the educational control group (5.95 [0.992] vs 0.23 [0.99] kg; P meter walk test = 44 seconds; P < 0.05). Scores on the SPPB improved in both the intervention and educational control groups from pre- to post-test (P < 0.05), with significant differences between groups (P = 0.02). Knee extension strength was maintained in both groups. Our findings suggest that a lifestyle-based weight loss program consisting of moderate caloric restriction plus moderate exercise can produce significant weight loss and improve physical function while maintaining muscle

  16. Interpretation of resistivity of Nd1.85Ce0.15CuO4-y using the electron-phonon spectral function determined from tunneling data

    International Nuclear Information System (INIS)

    Tralshawala, N.; Zasadzinski, J.F.; Coffey, L.; Huang, Q.

    1991-01-01

    Tunneling measurements of α 2 F(ω) of Nd 1.85 Ce 0.15 CuO 4-y are shown to be in good agreement with recent published results of the phonon density of states F(ω) from neutron scattering. The locations of peaks and valleys in both functions are similar, but the spectral weights differ, suggesting that α 2 has a strong energy dependence. We have used α 2 F(ω) to estimate the phonon contribution, ρ phonon (T), to published data of the temperature-dependent resistivity, ρ(T), for thin films and single crystals of Nd 1.85 Ce 0.15 CuO 4-y . When the phonon contribution is subtracted from the experimental data, a clear T 2 contribution remains over most of the temperature range. The T 2 contribution is interpreted to be due to three-dimensional electron-electron scattering, ρ e-e . There is also a correlation between the magnitude of ρ e-e , and the value of the plasma frequency, ω p [obtained from the determination of ρ phonon (T)], with a scaling which approximates ω p -10/3 . Such a scaling is expected from the carrier-concentration dependence of electron-electron scattering

  17. Thyroid function and body weight in girls with irregular menstrual cycle living in mild iodine deficiency region

    OpenAIRE

    L Sh Vagapova; O D Konstantinova; Ya I Koz; L M Shukshina; E O Skrynnik

    2011-01-01

    To establish the relation of body weight indexes and functional state of thyroid in female adolescents with menstrual cycle disorder, living in the iodine-deficiency region, the investigation was conducted in 130 female adolescents with irregular menses. Obesity incidence and overweight in them was 18.5%, body weight deficiency was 43.8%.37.7% of the girls had normal body weight. Statistically significant differences were not defined according to TSH, fT4 and fT3 in patients with different bo...

  18. Simultaneous masking additivity for short Gaussian-shaped tones: spectral effects.

    Science.gov (United States)

    Laback, Bernhard; Necciari, Thibaud; Balazs, Peter; Savel, Sophie; Ystad, Sølvi

    2013-08-01

    Laback et al. [(2011). J. Acoust. Soc. Am. 129, 888-897] investigated the additivity of nonsimultaneous masking using short Gaussian-shaped tones as maskers and target. The present study involved Gaussian stimuli to measure the additivity of simultaneous masking for combinations of up to four spectrally separated maskers. According to most basilar membrane measurements, the maskers should be processed linearly at the characteristic frequency (CF) of the target. Assuming also compression of the target, all masker combinations should produce excess masking (exceeding linear additivity). The results for a pair of maskers flanking the target indeed showed excess masking. The amount of excess masking could be predicted by a model assuming summation of masker-evoked excitations in intensity units at the target CF and compression of the target, using compressive input/output functions derived from the nonsimultaneous masking study. However, the combinations of lower-frequency maskers showed much less excess masking than predicted by the model. This cannot easily be attributed to factors like off-frequency listening, combination tone perception, or between-masker suppression. It was better predicted, however, by assuming weighted intensity summation of masker excitations. The optimum weights for the lower-frequency maskers were smaller than one, consistent with partial masker compression as indicated by recent psychoacoustic data.

  19. Data on body weight and liver functionality in aged rats fed an enriched strawberry diet

    Directory of Open Access Journals (Sweden)

    Francesca Giampieri

    2017-08-01

    Full Text Available Here, we present new original data on the effects of strawberry consumption on body weight and liver status of aged rats. Wistar rats aged 19–21 months were fed a strawberry enriched diet prepared by substituting 15% of the total calories with freeze-dried strawberry powder for two months. Body weight, plasma biomarkers of liver injury (alanine transferase, aspartate aminotransferase and alkaline phosphatase and liver histological analysis were assessed. These data indicate that strawberry supplementation did not interfere with normal animal maintenance and with liver structure and functionality. For further details and experimental findings please refer to the article “Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-Activated Protein Kinase signaling cascade” in FOOD CHEMISTRY (Giampieri et al., 2017 [1].

  20. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  1. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  2. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.

    2017-01-01

    Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  3. [The impact of weight management and related diuretic medication intervention based on body weight changes on cardiac function and re-hospitalization rate in patients with chronic congestive heart failure].

    Science.gov (United States)

    Wang, F W; Shi, J; Shi, J; Yang, J W; Wang, Z H; Ye, J H; Ye, Y; Zheng, H Q; Huang, J

    2017-10-24

    Objective: To explore the impact of weight management and related medication intervention based on body weight changes on cardiac function among patients with chronic congestive heart failure (CHF). Methods: Using prospective, randomized, controlled study methods, consecutive CHF patients, who hospitalized in our department from June 2014 to June 2016 ( n =350), were randomly divided into intervention group ( n =175) and control group ( n =175). Patients in the intervention group received weight management guidance and the post discharge diuretic drugs regimen was adjusted based on body weight changes. The control group received routine medical care post discharge. Left ventricular ejection fraction (LVEF), B type natriuretic peptide precursor (NT-proBNP), 6 minutes walk distance and NYHA classification at one day before discharge and after 6 months were compared between the two groups respectively. Results: Follow-up visit data were not available from 6 patients in the control and intervention group respectively. NYHA classification, LVEF, NT-proBNP and 6 minutes walk distance were similar between the two groups at one day before discharge (all P >0.05). After 6 months, the LVEF and 6 minutes walk distance were significantly higher while NT-proBNP level was significantly lower in the intervention group compared to the control group (all P weight remained unchanged in the intervention group, while body weight tended to be higher in the control group compared to one day before discharge. Conclusion: The weight management and diuretic drug regimen adjudgment intervention based on body weight changes can improve cardiac function and reduced re-hospitalization rate in CHF patients.

  4. Bosonic Spectral Function and the Electron-Phonon Interaction in HTSC Cuprates

    International Nuclear Information System (INIS)

    Maksimov, E. G.; Tamm, I. E.; Kulic, M.L.; Kulic, M.L.; Dolgov, O. V.

    2010-01-01

    In this paper we discuss experimental evidence related to the structure and origin of the bosonic spectral function a2F(ο) in high-temperature superconducting (HTSC) cuprates at and near optimal doping. Global properties of a2F(ο), such as number and positions of peaks, are extracted by combining optics, neutron scattering, ARPES and tunnelling measurements. These methods give evidence for strong electron-phonon interaction (EPI) with 1<λep <3.5 in cuprates near optimal doping. We clarify how these results are in favor of the modified Migdal-Eliashberg (ME) theory for HTSC cuprates near optimal doping. In Section 2 we discuss theoretical ingredients such as strong EPI, strong correlations which are necessary to explain the mechanism of d-wave pairing in optimally doped cuprates. These comprise the ME theory for EPI in strongly correlated systems which give rise to the forward scattering peak. The latter is supported by the long-range part of EPI due to the weakly screened Madelung interaction in the ionic-metallic structure of layered HTSC cuprates. In this approach EPI is responsible for the strength of pairing while the residual Coulomb interaction and spin fluctuations trigger the d-wave pairing.

  5. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  6. SPECTRAL RECONSTRUCTION BASED ON SVM FOR CROSS CALIBRATION

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-05-01

    Full Text Available Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor’s passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF, SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  7. Evolutionary Computing Methods for Spectral Retrieval

    Science.gov (United States)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  8. Birth weight and cognitive function at age 11 years: the Scottish Mental Survey 1932

    OpenAIRE

    Shenkin, S; Starr, J; Pattie, A; Rush, M; Whalley, L; Deary, I; PHARAOH, E. P.

    2001-01-01

    AIMS—To examine the relation between birth weight and cognitive function at age 11 years, and to examine whether this relation is independent of social class.
METHODS—Retrospective cohort study based on birth records from 1921 and cognitive function measured while at school at age 11 in 1932.Subjects were 985 live singletons born in the Edinburgh Royal Maternity and Simpson Memorial Hospital in 1921. Moray House Test scores from the Scottish Mental Survey 1932 were trace...

  9. Analysis of a simplified normalized covariance measure based on binary weighting functions for predicting the intelligibility of noise-suppressed speech.

    Science.gov (United States)

    Chen, Fei; Loizou, Philipos C

    2010-12-01

    The normalized covariance measure (NCM) has been shown previously to predict reliably the intelligibility of noise-suppressed speech containing non-linear distortions. This study analyzes a simplified NCM measure that requires only a small number of bands (not necessarily contiguous) and uses simple binary (1 or 0) weighting functions. The rationale behind the use of a small number of bands is to account for the fact that the spectral information contained in contiguous or nearby bands is correlated and redundant. The modified NCM measure was evaluated with speech intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted by four different types of maskers (car, babble, train, and street interferences). High correlation (r = 0.8) was obtained with the modified NCM measure even when only one band was used. Further analysis revealed a masker-specific pattern of correlations when only one band was used, and bands with low correlation signified the corresponding envelopes that have been severely distorted by the noise-suppression algorithm and/or the masker. Correlation improved to r = 0.84 when only two disjoint bands (centered at 325 and 1874 Hz) were used. Even further improvements in correlation (r = 0.85) were obtained when three or four lower-frequency (<700 Hz) bands were selected.

  10. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  11. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  12. Relationship of body weight with gastrointestinal motor and sensory function: studies in anorexia nervosa and obesity.

    Science.gov (United States)

    Bluemel, Sena; Menne, Dieter; Milos, Gabriella; Goetze, Oliver; Fried, Michael; Schwizer, Werner; Fox, Mark; Steingoetter, Andreas

    2017-01-05

    Whether gastrointestinal motor and sensory function is primary cause or secondary effect of abnormal body weight is uncertain. Moreover, studies relating continuous postprandial sensations of satiation to measurable pathology are scarce. This work assessed postprandial gastrointestinal function and concurrent sensations of satiation across a wide range of body weight and after weight change. Patients with anorexia nervosa (AN) and obesity (OB) were investigated in reference to normal weight controls (HC). AN were additionally investigated longitudinally. Gastric emptying, antral contractions and oro-cecal transit after ingestion of a solid meal were investigated by MRI and 13 C-lactose-ureide breath test. The dependency of self-reported sensations of satiation on the varying degree of stomach filling during gastric emptying was compared between groups. 24 AN (BMI 14.4 (11.9-16.0) kg/m 2 ), 16 OB (34.9 (29.6-41.5) kg/m 2 ) and 20 HC (21.9 (18.9-24.9) kg/m 2 ) were studied. Gastric half-emptying time (t 50 ) was slower in AN than HC (p = 0.016) and OB (p = 0.007), and a negative association between t 50 and BMI was observed between BMI 12 and 25 kg/m 2 (p = 0.007). Antral contractions and oro-cecal transit were not different. For any given gastric content volume, self-reported postprandial fullness was greater in AN than in HC or OB (p < 0.001). After weight rehabilitation, t 50 in AN tended to become shorter (p = 0.09) and postprandial fullness was less marked (p < 0.01). A relationship between body weight and gastric emptying as well as self-reported feelings of satiation is present. AN have slower gastric emptying and heightened visceral perception compared to HC and OB. Longitudinal follow-up after weight rehabilitation in AN suggests these abnormalities are not a primary feature, but secondary to other factors that determine abnormal body weight. Registered July 20, 2009 at ClinicalTrials.gov ( NCT00946816 ).

  13. Monte-Carlo error analysis in x-ray spectral deconvolution

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hoffman, N.M.

    1985-01-01

    The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels

  14. A time-spectral approach to numerical weather prediction

    Science.gov (United States)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  15. Weighted local Hardy spaces associated with operators

    Indian Academy of Sciences (India)

    RUMING GONG

    2018-04-24

    5 days ago ... Studies 116 (1985) (Amsterdam: North Holland). [12] Gong R M and Yan L X, Littlewood–Paley and spectral multipliers on weighted L p spaces, J. Geom. Anal. 24 (2014) 873–900. [13] Gong R M, Li J and Yan L X, A local version of Hardy spaces associated with operators on metric spaces, Sci. China Math.

  16. 99m-Tc-aprotinin; a low molecular weight protein for the study of renal function

    International Nuclear Information System (INIS)

    Bianchi, C.; Donadio, C.; Tramonti, G.; Lorusso, P.; Bellitto, L.; Lunghi, F.

    1982-01-01

    Aprotinin (A), a low molecular weight polypeptide (6500 daltons), is a protease inhibitor which is electively accumulated in the kidney of animals. If labelled with Tcsup(99m), A is an excellent agent for renal imaging. Pharmacokinetics of A-Tcsup(99m) was studied in 53 renal patients with different degrees of renal impairment. In patients with normal or slightly impaired renal function the plasma cl of A-Tcsup(99m) was lower than the GFR (mean ratio plasma cl A-Tcsup(99m)/GFR = 0.68+-0.22 SD). In patients with renal failure, the plasma cl exceeded the GFR (mean ratio 3.35). The apparent distribution volume of A-Tcsup(99m) (percent of body weight) was 15.4+-2.5 SD. A-Tcsup(99m) was markedly and rapidly accumulated in the kidneys. In patients with unilateral kidney disease the accumulation curve of the affected kidney was flatter than that of the contralateral kidney. In 4 of these patients the functional difference between the two kidneys as given by renal accumulation of A-Tcsup(99m) (2 hrs after injection) was lower than that of GFR. Urinary excretion of radioactivity in the first 2 hrs after i.v. injection of A-Tcsup(99m) was negligible (2.4+-1.6 SD percent of the dose). Conclusions: Labelled aprotinin is promising for the study of renal handling of low molecular weight proteins and for the measurement of unilateral renal function. (Author)

  17. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters

    Science.gov (United States)

    Skurvydas, Albertas

    2016-01-01

    Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased (p Fasting decreased (p Fasting also increased (p fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it. PMID:28025637

  18. Spectral and spatial shaping of Smith-Purcell radiation

    Science.gov (United States)

    Remez, Roei; Shapira, Niv; Roques-Carmes, Charles; Tirole, Romain; Yang, Yi; Lereah, Yossi; Soljačić, Marin; Kaminer, Ido; Arie, Ady

    2017-12-01

    The Smith-Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron-driven sources with tailored angular and spectral responses, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient.

  19. Birth weight and cognitive function at age 11years: the Scottish Mental Survey 1932

    OpenAIRE

    Shenkin, S D; Starr, John M; Pattie, Alison; Rush, M A; Whalley, Lawrence J; Deary, Ian J

    2001-01-01

    AIMS---To examine the relation between birth weight and cognitive function at age 11 years, and to examine whether this relation is independent of social class. METHODS---Retrospective cohort study based on birth records from 1921 and cognitive function measured while at school at age 11 in 1932. Subjects were 985 live singletons born in the Edinburgh Royal Maternity and Simpson Memorial Hospital in 1921. Moray House Test scores from the Scottish Mental Survey 1932 were traced on 449 of th...

  20. The Open Spectral Database: an open platform for sharing and searching spectral data.

    Science.gov (United States)

    Chalk, Stuart J

    2016-01-01

    A number of websites make available spectral data for download (typically as JCAMP-DX text files) and one (ChemSpider) that also allows users to contribute spectral files. As a result, searching and retrieving such spectral data can be time consuming, and difficult to reuse if the data is compressed in the JCAMP-DX file. What is needed is a single resource that allows submission of JCAMP-DX files, export of the raw data in multiple formats, searching based on multiple chemical identifiers, and is open in terms of license and access. To address these issues a new online resource called the Open Spectral Database (OSDB) http://osdb.info/ has been developed and is now available. Built using open source tools, using open code (hosted on GitHub), providing open data, and open to community input about design and functionality, the OSDB is available for anyone to submit spectral data, making it searchable and available to the scientific community. This paper details the concept and coding, internal architecture, export formats, Representational State Transfer (REST) Application Programming Interface and options for submission of data. The OSDB website went live in November 2015. Concurrently, the GitHub repository was made available at https://github.com/stuchalk/OSDB/, and is open for collaborators to join the project, submit issues, and contribute code. The combination of a scripting environment (PHPStorm), a PHP Framework (CakePHP), a relational database (MySQL) and a code repository (GitHub) provides all the capabilities to easily develop REST based websites for ingestion, curation and exposure of open chemical data to the community at all levels. It is hoped this software stack (or equivalent ones in other scripting languages) will be leveraged to make more chemical data available for both humans and computers.

  1. Liver volume in thalassaemia major: relationship with body weight, serum ferritin, and liver function

    Energy Technology Data Exchange (ETDEWEB)

    Chan Yuleung; Law Manyee; Howard, Robert [Chinese University of Hong Kong, Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong Kong (China); Li Chikong; Chik Kiwai [Chinese University of Hong Kong, Department of Paediatrics, Prince of Wales Hospital, Hong Kong (China)

    2005-02-01

    It is not known whether body weight alone can adjust for the volume of liver in the calculation of the chelating dose in {beta}-thalassaemia major patients, who frequently have iron overload and hepatitis. The hypothesis is that liver volume in children and adolescents suffering from {beta}-thalassaemia major is affected by ferritin level and liver function. Thirty-five {beta}-thalassaemia major patients aged 7-18 years and 35 age- and sex-matched controls had liver volume measured by MRI. Serum alanine aminotransferase (ALT) and ferritin levels were obtained in the thalassaemia major patients. Body weight explained 65 and 86% of the change in liver volume in {beta}-thalassaemia major patients and age-matched control subjects, respectively. Liver volume/kilogram body weight was significantly higher (P<0.001) in thalassaemia major patients than in control subjects. There was a significant correlation between ALT level and liver volume/kilogram body weight (r=0.55, P=0.001). Patients with elevated ALT had significantly higher liver volume/kilogram body weight (mean 42.9{+-}12 cm{sup 3}/kg) than control subjects (mean 23.4{+-}3.6 cm{sup 3}/kg) and patients with normal ALT levels (mean 27.4{+-}3.6 cm{sup 3}/kg). Body weight is the most important single factor for liver-volume changes in thalassaemia major patients, but elevated ALT also has a significant role. Direct liver volume measurement for chelation dose adjustment may be advantageous in patients with elevated ALT. (orig.)

  2. From dispersion relations to spectral dimension - and back again

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P.; Visser, Matt; Weinfurtner, Silke

    2011-01-01

    The so-called spectral dimension is a scale-dependent number associated with both geometries and field theories that has recently attracted much attention, driven largely, though not exclusively, by investigations of causal dynamical triangulations and Horava gravity as possible candidates for quantum gravity. We advocate the use of the spectral dimension as a probe for the kinematics of these (and other) systems in the region where spacetime curvature is small, and the manifold is flat to a good approximation. In particular, we show how to assign a spectral dimension (as a function of so-called diffusion time) to any arbitrarily specified dispersion relation. We also analyze the fundamental properties of spectral dimension using extensions of the usual Seeley-DeWitt and Feynman expansions and by using saddle point techniques. The spectral dimension turns out to be a useful, robust, and powerful probe, not only of geometry, but also of kinematics.

  3. Does psychological functioning mediate the relationship between bullying involvement and weight loss preoccupation in adolescents? A two-stage cross-sectional study.

    Science.gov (United States)

    Lee, Kirsty; Guy, Alexa; Dale, Jeremy; Wolke, Dieter

    2017-03-24

    Adolescent bullying is associated with a range of adversities for those who are bullied i.e., victims and bully-victims (e.g., those who bully others and get victimised), including reduced psychological functioning and eating disorder symptoms. Bullies are generally well-adjusted psychologically, but previous research suggests that bullies may also engage in problematic diet behaviours. This study investigates a) whether adolescents involved in bullying (bullies, victims, bully-victims) are at increased risk of weight loss preoccupation, b) whether psychological functioning mediates this relationship and c) whether sex is a key moderator. A two-stage design was used. In stage 1, adolescents (n = 2782) from five UK secondary schools were screened for bullying involvement using self and peer reports. In stage 2, a sample of bullies, victims, bully-victims and uninvolved adolescents (n = 767) completed a battery of assessments. The measures included the eating behaviours component of the Child and Adolescent Psychiatric Assessment, which was reduced to one factor (weight loss preoccupation) and used as the outcome variable. Measures of self-esteem, body-esteem and emotional problems were reduced to a latent (mediator) variable of psychological functioning. Multi-group analysis examined the effects of sex and all models were adjusted for covariates (BMI, pubertal stage, age, parental education and ethnicity). Bullies, victims and bully-victims were at increased risk of weight loss preoccupation compared to adolescents uninvolved in bullying. The mechanism by which bullying involvement related to increased weight loss preoccupation varied by bullying role: in bullies the effect was direct, in victims the effect was indirect (via reduced psychological functioning) and in bully-victims the effect was both direct and indirect. Sex significantly moderated the relationship in bullies: weight loss preoccupation was only statistically significant in bullies who were

  4. Spectral representation of the particle production out of equilibrium—Schwinger mechanism in pulsed electric fields

    International Nuclear Information System (INIS)

    Fukushima, Kenji

    2014-01-01

    We develop a formalism to describe the particle production out of equilibrium in terms of dynamical spectral functions, i.e. Wigner transformed Pauli–Jordan's and Hadamard's functions. We take an explicit example of a spatially homogeneous scalar theory under pulsed electric fields and investigate the time evolution of the spectral functions. In the out-state we find an oscillatory peak in Hadamard's function as a result of the mixing between positive- and negative-energy waves. The strength of this peak is of the linear order of the Bogoliubov mixing coefficient, whereas the peak corresponding to the Schwinger mechanism is of the quadratic order. Between the in- and the out-states we observe a continuous flow of the spectral peaks together with two transient oscillatory peaks. We also discuss the medium effect at finite temperature and density. We emphasize that the entire structure of the spectral functions conveys rich information on real-time dynamics including the particle production. (paper)

  5. Applicability of spectral indices on thickness identification of oil slick

    Science.gov (United States)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  6. Few adults with functional limitations advised to exercise more or lose weight in NHANES 2011-14 seek health professional assistance: An opportunity for physical therapists.

    Science.gov (United States)

    Kinslow, Brian; De Heer, Hendrik D; Warren, Meghan

    2018-03-02

    Functional limitations are associated with decreased physical activity and increased body mass index. The purpose of this study was to assess the prevalence of functional limitations among adults who reported receiving health professional advice to exercise more or lose weight, and to assess involvement of health professionals, including physical therapists, in weight loss efforts with these individuals. A cross-sectional analysis of U.S. adults from the 2011 to 2014 National Health and Nutrition Examination Survey (n = 5,480). Participant demographics, health history, and functional limitations were assessed via self-report and examination. Frequency distributions were calculated using SAS® analytical software, accounting for the complex survey design. Population estimates were calculated using the American Community Survey. 31.0% of individuals (n = 1,696), representing a population estimate of 35 million adults, advised to exercise more or lose weight by a health professional reported one or more functional limitation. Of the 31%, 57.6% attempted weight loss, and 40.1% used exercise for weight loss. Few sought health professional assistance. Physical therapists were not mentioned. Few individuals with functional limitations advised to lose weight or increase exercise seek health professional assistance for weight loss. Physical therapists have an opportunity to assist those with functional limitations with exercise prescription.

  7. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    Science.gov (United States)

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  8. On Spectral Triples in Quantum Gravity I

    DEFF Research Database (Denmark)

    Aastrup, Johannes; M. Grimstrup, Jesper; Nest, Ryszard

    2009-01-01

    This paper establishes a link between Noncommutative Geometry and canonical quantum gravity. A semi-finite spectral triple over a space of connections is presented. The triple involves an algebra of holonomy loops and a Dirac type operator which resembles a global functional derivation operator....... The interaction between the Dirac operator and the algebra reproduces the Poisson structure of General Relativity. Moreover, the associated Hilbert space corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism invariant states known from Loop Quantum Gravity. Correspondingly......, the square of the Dirac operator has, in terms of canonical quantum gravity, the form of a global area-squared operator. Furthermore, the spectral action resembles a partition function of Quantum Gravity. The construction is background independent and is based on an inductive system of triangulations...

  9. Calculation of the weighting function and determination of the depth of correlation in micro-PIV from experimental particle images

    International Nuclear Information System (INIS)

    Hein, M; Seemann, R; Wieneke, B

    2014-01-01

    Micro-particle image velocimetry (µPIV) uses volume-illumination and imaging of particles through a single microscope objective. Displacement fields are obtained by image correlation and depend on all imaged particles, including defocused particles. The measured in-plane displacement is a weighted spatial average of the true displacement, with a weighting function W(z) that depends on the optical system and flow-gradients. The characteristic width of the weighting function W(z) is also referred to as depth of correlation (DOC) and is a measure up to which distance from the focal plane particles influence the measurement, which is crucial for the interpretation of measured flow fields. We present procedures to determine the W(z) from which the DOC can be derived and to directly determine the DOC from PIV double images, generated from experimentally recorded particle images. Both procedures provide comparable DOC results. Our approach allows determination of the DOC and W(z)as a function of out of plane gradients, optical setup parameters and PIV-analysis parameters. Experimental results for different objectives and particle sizes are discussed, revealing substantial deviations from theoretical predictions for high NA air-objectives. Moreover, using the determined weighting function W(z), the correction of measured flow profiles for errors introduced by the spatial averaging is demonstrated. (paper)

  10. Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media

    International Nuclear Information System (INIS)

    Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.

    2014-01-01

    Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy

  11. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Science.gov (United States)

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  12. Irregular conformal block, spectral curve and flow equations

    International Nuclear Information System (INIS)

    Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong

    2016-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of irregular conformal block using the spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2) for the gauge theory) and third order (W_3 symmetry, SU(3)) differential equations of a polynomial with finite degree. The conformal and W symmetry generate the flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  13. PedsQL relates to function and behavior in very low and normal birth weight 2- and 3-year-olds from a regional cohort.

    Science.gov (United States)

    Palta, Mari; Sadek-Badawi, Mona

    2008-06-01

    To compare PedsQL scores in young children who were very low (2,500 g) and to examine the relationship of the PedsQL score to behavioral and functional scores. The PedsQL, Achenbach Child Behavior Checklist and the PEDI functional scales were telephone administered to parents of a regional cohort of 672 very low birth weight and 455 normal birth weight children, 2- and 3-years old. PedsQL scales were regressed on behavior, function and health conditions. Mean (SD) overall PedsQL score was 91 (8.4) for normal birth weight and 87 (12) for very low birth weight children, and changed little when standardized to the race/ethnicity and maternal education of corresponding Wisconsin births. Mobility function and the CBCL explained 58% of the variance in PedsQL, but the relationship was curvilinear. The PedsQL is sensitive to health problems of very low birth weight in young children. The PedsQL is quite strongly related to mobility and behavior problems, but scales these differently than do standard instruments. Parents either do not think of subtle issues with child function and behavior without specific prompting or do not perceive them as problems affecting quality of life.

  14. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  15. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...

  16. A flat spectral Faraday filter for sodium lidar.

    Science.gov (United States)

    Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng

    2011-04-01

    We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.

  17. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan; Liang, Faming; Mallick, Bani K.

    2013-01-01

    be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle

  18. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  19. Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults.

    Science.gov (United States)

    Aanes, Synne; Bjuland, Knut Jørgen; Skranes, Jon; Løhaugen, Gro C C

    2015-01-15

    The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤ 1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure-function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19-20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural-functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Study of the Fatigue Life and Weight Optimization of an Automobile Aluminium Alloy Part under Random Road Excitation

    Directory of Open Access Journals (Sweden)

    A. Saoudi

    2010-01-01

    Full Text Available Weight optimization of aluminium alloy automobile parts reduces their weight while maintaining their natural frequency away from the frequency range of the power spectral density (PSD that describes the roadway profile. We present our algorithm developed to optimize the weight of an aluminium alloy sample relative to its fatigue life. This new method reduces calculation time; It takes into account the multipoint excitation signal shifted in time, giving a tangle of the constraint signals of the material mesh elements; It also reduces programming costs. We model an aluminium alloy lower vehicle suspension arm under real conditions. The natural frequencies of the part are inversely proportional to the mass and proportional to flexural stiffness, and assumed to be invariable during the process of optimization. The objective function developed in this study is linked directly to the notion of fatigue. The method identifies elements that have less than 10% of the fatigue life of the part's critical element. We achieved a weight loss of 5 to 11% by removing the identified elements following the first iteration.

  1. Surrogate-assisted identification of influences of network construction on evolving weighted functional networks

    Science.gov (United States)

    Stahn, Kirsten; Lehnertz, Klaus

    2017-12-01

    We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.

  2. Bessel Weighted Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harut [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamberg, Leonard [Pennsylvania State Univ., University Park, PA (United States); Rossi, Patrizia [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Prokudin, Alexei [Pennsylvania State Univ., University Park, PA (United States)

    2016-05-01

    We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.

  3. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  4. Spectral-Domain Measurement of Strain Sensitivity of a Two-Mode Birefringent Side-Hole Fiber

    Directory of Open Access Journals (Sweden)

    Waclaw Urbanczyk

    2012-09-01

    Full Text Available The strain sensitivity of a two-mode birefringent side-hole fiber is measured in the spectral domain. In a simple experimental setup comprising a broadband source, a polarizer, a two-mode birefringent side-hole fiber under varied elongations, an analyzer and a compact spectrometer, the spectral interferograms are resolved. These are characterized by the equalization wavelength at which spectral interference fringes have the highest visibility (the largest period due to the zero group optical path difference between the fundamental, the LP01 mode and the higher-order, the LP11 mode. The spectral interferograms with the equalization wavelength are processed to retrieve the phase as a function of the wavelength. From the retrieved phase functions corresponding to different elongations of a two-mode birefringent side-hole fiber under test, the spectral strain sensitivity is obtained. Using this approach, the intermodal spectral strain sensitivity was measured for both x and y polarizations. Moreover, the spectral polarimetric sensitivity to strain was measured for the fundamental mode when a birefringent delay line was used in tandem with the fiber. Its spectral dependence was also compared with that obtained from a shift of the spectral interferograms not including the equalization wavelength, and good agreement was confirmed.

  5. Asymptotics of quantum weighted Hurwitz numbers

    Science.gov (United States)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  6. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  7. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    Science.gov (United States)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  8. Contrast-enhanced spectral mammography with a photon-counting detector.

    Science.gov (United States)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  9. Contrast-enhanced spectral mammography with a photon-counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden)

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  10. Effects of a weight loss plus exercise program on physical function in overweight, older women: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Anton SD

    2011-06-01

    Full Text Available Stephen D Anton1,2, Todd M Manini1, Vanessa A Milsom2, Pamela Dubyak2, Matteo Cesari3, Jing Cheng4, Michael J Daniels5, Michael Marsiske2, Marco Pahor1, Christiaan Leeuwenburgh1, Michael G Perri21Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; 2Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; 3Area di Geriatria, Università Campus Bio-Medico, Rome, Italy; 4Division of Oral Epidemiology and Dental Public Health, San Francisco, CA, USA; 5Department of Statistics, University of Florida, Gainesville, FL, USABackground: Obesity and a sedentary lifestyle are associated with physical impairments and biologic changes in older adults. Weight loss combined with exercise may reduce inflammation and improve physical functioning in overweight, sedentary, older adults. This study tested whether a weight loss program combined with moderate exercise could improve physical function in obese, older adult women.Methods: Participants (n = 34 were generally healthy, obese, older adult women (age range 55–79 years with mild to moderate physical impairments (ie, functional limitations. Participants were randomly assigned to one of two groups for 24 weeks: (i weight loss plus exercise (WL+E; n = 17; mean age = 63.7 years [4.5] or (ii educational control (n = 17; mean age = 63.7 [6.7]. In the WL+E group, participants attended a group-based weight management session plus three supervised exercise sessions within their community each week. During exercise sessions, participants engaged in brisk walking and lower-body resistance training of moderate intensity. Participants in the educational control group attended monthly health education lectures on topics relevant to older adults. Outcomes were: (i body weight, (ii walking speed (assessed by 400-meter walk test, (iii the Short Physical Performance Battery (SPPB, and (iv knee extension isokinetic strength.Results: Participants randomized

  11. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  12. Towards spectral geometric methods for Euclidean quantum gravity

    Science.gov (United States)

    Panine, Mikhail; Kempf, Achim

    2016-04-01

    The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

  13. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    Science.gov (United States)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  14. FUNCTIONAL OUTCOMES OF HIP ARTHROSCOPY IN AN ACTIVE DUTY MILITARY POPULATION UTILIZING A CRITERION-BASED EARLY WEIGHT BEARING PROGRESSION.

    Science.gov (United States)

    Shaw, K Aaron; Jacobs, Jeremy M; Evanson, J Richard; Pniewski, Josh; Dickston, Michelle L; Mueller, Terry; Bojescul, John A

    2017-10-01

    Hip arthroscopy allows surgeons to address intra-articular pathology of the hip while avoiding more invasive open surgical dislocation. However the post-operative rehabilitation protocols have varied greatly in the literature, with many having prolonged periods of limited motion and weight bearing. The purpose of this study was to describe a criterion-based early weight bearing protocol following hip arthroscopy and investigate functional outcomes in the subjects who were active duty military. Active duty personnel undergoing hip arthroscopy for symptomatic femoroacetabular impingement were prospectively assessed in a controlled environment for the ability to incorporate early postoperative weight-bearing with the following criteria: no increased pain complaint with weight bearing and normalized gait pattern. Modified Harris Hip (HHS) and Hip Outcome score (HOS) were performed preoperatively and at six months post-op. Participants were progressed with a standard hip arthroscopy protocol. Hip flexion was limited to not exceed 90 degrees for the first three weeks post-op, with progression back to running beginning at three months. Final discharge was dependent upon the ability to run two miles at military specified pace and do a single leg broad jump within six inches of the contralateral leg without an increase in pain. Eleven participants met inclusion criteria over the study period. Crutch use was discontinued at an average of five days following surgery based on established weight bearing criteria. Only one participant required continued crutch use at 15 days. Participants' functional outcome was improved postoperatively, as demonstrated by significant increases in HOS and HHS. At the six month follow up, eight of 11 participants were able to take and complete a full Army Physical Fitness Test. Following completion of the early weight bearing rehabilitation protocol, 81% of participants were able to progress to full weight bearing by four days post

  15. Darboux invariants of integrable equations with variable spectral parameters

    International Nuclear Information System (INIS)

    Shin, H J

    2008-01-01

    The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach

  16. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    Science.gov (United States)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  17. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  18. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    Science.gov (United States)

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  19. Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter

    International Nuclear Information System (INIS)

    de Jong, F.; Malfliet, R.

    1991-01-01

    Starting from a relativistic Lagrangian we derive a ''conserving'' approximation for the description of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner scheme. The saturation point of the equation of state calculated agrees very well with the empirical saturation point. The conserving character of the approach is tested by means of the Hugenholtz--van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for compression modulus is derived, K=310 MeV. Also we calculate the occupation probabilities at normal nuclear matter densities by means of the spectral function. The average depletion κ of the Fermi sea is found to be κ∼0.11

  20. Towards quantized number theory: spectral operators and an asymmetric criterion for the Riemann hypothesis.

    Science.gov (United States)

    Lapidus, Michel L

    2015-08-06

    This research expository article not only contains a survey of earlier work but also contains a main new result, which we first describe. Given c≥0, the spectral operator [Formula: see text] can be thought of intuitively as the operator which sends the geometry onto the spectrum of a fractal string of dimension not exceeding c. Rigorously, it turns out to coincide with a suitable quantization of the Riemann zeta function ζ=ζ(s): a=ζ(∂), where ∂=∂(c) is the infinitesimal shift of the real line acting on the weighted Hilbert space [Formula: see text]. In this paper, we establish a new asymmetric criterion for the Riemann hypothesis (RH), expressed in terms of the invertibility of the spectral operator for all values of the dimension parameter [Formula: see text] (i.e. for all c in the left half of the critical interval (0,1)). This corresponds (conditionally) to a mathematical (and perhaps also, physical) 'phase transition' occurring in the midfractal case when [Formula: see text]. Both the universality and the non-universality of ζ=ζ(s) in the right (resp., left) critical strip [Formula: see text] (resp., [Formula: see text]) play a key role in this context. These new results are presented here. We also briefly discuss earlier joint work on the complex dimensions of fractal strings, and we survey earlier related work of the author with Maier and with Herichi, respectively, in which were established symmetric criteria for the RH, expressed, respectively, in terms of a family of natural inverse spectral problems for fractal strings of Minkowski dimension D∈(0,1), with [Formula: see text], and of the quasi-invertibility of the family of spectral operators [Formula: see text] (with [Formula: see text]). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.

  2. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    Science.gov (United States)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  3. A functional approach to cerebral visual impairments in very preterm/very-low-birth-weight children

    NARCIS (Netherlands)

    Geldof, C.J.A.; van Wassenaer-Leemhuis, A.G.; Dik, M.; Kok, J.H.; Oosterlaan, J.

    2015-01-01

    Background:Cerebral visual impairment (CVI) is a major cause of visual impairment, with very preterm birth/very low birth weight (VP/VLBW) being a major risk factor. There is no generally accepted definition of CVI. This study aims to investigate the usefulness of an empirically-based functional

  4. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  5. Defining the spectral and amplitude domain of music---a window into audio

    Science.gov (United States)

    Nam, Myoung W.

    In terms of 'visualizing music', this thesis presents the first critical measurements for the selected musical instruments (piano, violin, cello, flute, piccolo, drums, double bass, electric bass, and electric guitar) seeking to describe their place in the spectral and amplitude domain. All data presented as a part of this research were measured with Z-weighting (un-weighted) from 12.5Hz to 20kHz along the frequency axis, in 1/3 octave bands, evaluated statistically and in equivalent sound level. Measuring musical performances can be a very subjective process. Therefore, this research proceeded under some strategically chosen conditions and limitations. The measurements were made with each musician playing at several different intensities of musical performance. Chosen musical genres were classical, pop and jazz for the selected musical instruments. To obtain data representative of real world conditions, musical instrument measurements were made mostly in professional recording studios by professional players. The results seek to define the spectral and amplitude domain occupied by these instruments when playing typical works.

  6. Study of $\\tau$ decays involving kaons, spectral functions and determination of the strange quark mass

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sedgbeer, J.K.; Spagnolo, P.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Hocker, Andreas; Jacholkowska, A.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Prange, G.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-01-01

    All ALEPH measurements of branching ratios of tau decays involving kaons are summarized including a combination of results obtained with K^0_S and K^0_L detection. The decay dynamics are studied, leading to the determination of contributions from vector K^*(892) and K^{*}(1410), and axial-vector K_1(1270) and K_1(1400) resonances. Agreement with isospin symmetry is observed among the different final states. Under the hypothesis of the conserved vector current, the spectral function for the K\\bar{K}\\pi mode is compared with the corresponding cross section for low energy e^+e^- annihilation, yielding an axial-vector fraction of (94^{+6}_{-8})% for this mode. The branching ratio for tau decay into all strange final states is determined to be B(\\tau^-\\to X^-(S=-1)\

  7. Spectral ansatz in quantum electrodynamics

    International Nuclear Information System (INIS)

    Atkinson, D.; Slim, H.A.

    1979-01-01

    An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented

  8. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample.

    Science.gov (United States)

    Fox, Caroline S; Pencina, Michael J; D'Agostino, Ralph B; Murabito, Joanne M; Seely, Ellen W; Pearce, Elizabeth N; Vasan, Ramachandran S

    2008-03-24

    Overt hypothyroidism and hyperthyroidism may be associated with weight gain and loss. We assessed whether variations in thyroid function within the reference (physiologic) range are associated with body weight. Framingham Offspring Study participants (n=2407) who attended 2 consecutive routine examinations, were not receiving thyroid hormone therapy, and had baseline serum thyrotropin (TSH) concentrations of 0.5 to 5.0 mIU/L and follow-up concentrations of 0.5 to 10.0 mIU/L were included in this study. Baseline TSH concentrations were related to body weight and body weight change during 3.5 years of follow-up. At baseline, adjusted mean weight increased progressively from 64.5 to 70.2 kg in the lowest to highest TSH concentration quartiles in women (Pweight increased by 1.5 (5.6) kg in women and 1.0 (5.0) kg in men. Baseline TSH concentrations were not associated with weight change during follow-up. However, an increase in TSH concentration at follow-up was positively associated with weight gain in women (0.5-2.3 kg across increasing quartiles of TSH concentration change; Pweight in both sexes. Our findings raise the possibility that modest increases in serum TSH concentrations within the reference range may be associated with weight gain.

  9. On weighted hardy inequalities on semiaxis for functions vanishing at the endpoints

    Directory of Open Access Journals (Sweden)

    Vladimir Stepanov

    1997-01-01

    Full Text Available We study the weighted Hardy inequalities on the semiaxis of the form ‖Fu‖2≤C‖F(kv‖2  (1 for functions vanishing at the endpoints together with derivatives up to the order k−1. The case k=2 is completely characterized.

  10. Radiative characteristics of a thin solid fuel at discrete levels of pyrolysis: Angular, spectral, and thermal dependencies

    Science.gov (United States)

    Pettegrew, Richard Dale

    Numerical models of solid fuel combustion rely on accurate radiative property values to properly account for radiative heat transfer to and from the surface. The spectral properties can change significantly over the temperature range from ambient to burnout temperature. The variations of these properties are due to mass loss (as the sample pyrolyzes), chemical changes, and surface finish changes. In addition, band-integrated properties can vary due to the shift in the peak of the Planck curve as the temperature increases, which results in differing weightings of the spectral values. These effects were quantified for a thin cellulosic fuel commonly used in microgravity combustion studies (KimWipesRTM). Pyrolytic effects were simulated by heat-treating the samples in a constant temperature oven for varying times. Spectral data was acquired using a Fourier Transform Infrared (FTIR) spectrometer, along with an integrating sphere. Data was acquired at different incidence angles by mounting the samples at different angles inside the sphere. Comparisons of samples of similar area density created using different heat-treatment regimens showed that thermal history of the samples was irrelevant in virtually all spectral regions, with overall results correlating well with changes in area density. Spectral, angular, and thermal dependencies were determined for a representative data set, showing that the spectral absorptance decreases as the temperature increases, and decreases as the incidence angle varies from normal. Changes in absorptance are primarily offset by corresponding changes in transmittances, with reflectance values shown to be low over the tested spectral region of 2.50 mum to 24.93 mum. Band-integrated values were calculated as a function of temperature for the entire tested spectral region, as well as limited bands relevant for thermal imaging applications. This data was used to demonstrate the significant error that is likely if incorrect emittance values are

  11. Analysis of the Spectral Efficiency of Frequency-Encoded OCDMA Systems With Incoherent Sources

    Science.gov (United States)

    Rochette, Martin; Ayotte, Simon; Rusch, Leslie A.

    2005-04-01

    This paper presents the spectral efficiency of frequency-encoded (FE) optical code-division multiple-access (OCDMA) systems with incoherent sources. The spectral efficiency of five code families compatible with FE-OCDMA is calculated as a function of the number of users. Analytical equations valid in the limiting case of Gaussian noise are also developed for the bit-error rate and the spectral efficiency. Among the code families considered, the modified quadratic congruence code leads to the maximum achievable spectral efficiency.

  12. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  13. Spectral integration of broadband signals in diotoc and dichotic masking experiments

    NARCIS (Netherlands)

    Langhans, A.; Kohlrausch, A.G.

    1992-01-01

    The method of Gässler [Acustica 4, 408–414 (1954)] was used to measure the audibility of multicomponent signals as a function of their bandwidth against a broadband, white-noise masker. Test signals were composed of 1 to 41 sinusoids with a spectral spacing of 10 Hz and were always spectrally

  14. Weight preoccupation as a function of observed physical attractiveness: ethnic differences among normal-weight adolescent females.

    Science.gov (United States)

    Colabianchi, Natalie; Ievers-Landis, Carolyn E; Borawski, Elaine A

    2006-09-01

    To examine the association between observer ratings of physical attractiveness and weight preoccupation for female adolescents, and to explore any ethnic differences between Caucasian, African-American, and Hispanic females. Normal-weight female adolescents who had participated in the National Longitudinal Study of Adolescent Health in-home Wave II survey were included (n = 4,324). Physical attractiveness ratings were made in vivo by interviewers. Using logistic regression models stratified by ethnicity, the associations between observer-rated attractiveness and weight preoccupation were examined after controlling for demographics, measured body mass index (BMI) and psychosocial factors. Caucasian female adolescents perceived as being more attractive reported significantly greater weight preoccupation compared with those rated as being less attractive. Observed attractiveness did not relate to weight preoccupation among African-American or Hispanic youth when controlling for other factors. For Caucasian female adolescents, being perceived by others as more attractive may be a risk factor for disordered eating.

  15. The Impact of Acute Loss of Weight on Eustachian Tube Function

    Directory of Open Access Journals (Sweden)

    Pascoto, Gabriela

    2014-07-01

    Full Text Available Introduction The eustachian tube is one of the key structures responsible for the functional balance of the middle ear. Some clinical conditions associated with tubal malfunction can cause extremely unpleasant symptoms. These symptoms could be triggered by acute loss of weight, for example, after bariatric surgery. Objective To evaluate the frequency and intensity of auditory tube dysfunction symptoms in obese patients after bariatric surgery. Methods Nineteen patients with accepted formal indications for bariatric surgery underwent a hearing evaluation (otoscopy, tonal and vocal audiometry, and impedanceometry and a hearing questionnaire before, at the time of, 3 months after surgery (first postoperative evaluation, and 6 months (second postoperative evaluation after surgery. Patients with a history of ear disease or ear surgery were excluded. Results None of the patients reported tubal dysfunction symptoms before surgery. Postsurgical results showed that 5 (26.3% patients presented symptoms related to dysfunction of the eustachian tube at the first postoperative evaluation. After the 6-month follow-up, 9 (47.3% patients reported symptoms of tubal dysfunction. Conclusion This study suggests that bariatric surgery can cause symptoms of eustachian tube dysfunction, probably due to rapid weight loss and the consequent loss of peritubal fat.

  16. A functional approach to cerebral visual impairments in very preterm/very-low-birth-weight children

    NARCIS (Netherlands)

    Geldof, Christiaan J. A.; van Wassenaer-Leemhuis, Aleid G.; Dik, Marjolein; Kok, Joke H.; Oosterlaan, Jaap

    2015-01-01

    Cerebral visual impairment (CVI) is a major cause of visual impairment, with very preterm birth/very low birth weight (VP/VLBW) being a major risk factor. There is no generally accepted definition of CVI. This study aims to investigate the usefulness of an empirically-based functional definition of

  17. Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis

    International Nuclear Information System (INIS)

    Leite, Valéria C M N; Veloso, Giscard F C; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G; Pinto, João Onofre Pereira

    2016-01-01

    The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers. (paper)

  18. Functional SNP associated with birth weight in independent populations identified with a permutation step added to GBLUP-GWAS

    Science.gov (United States)

    This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...

  19. Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)

    2016-09-15

    Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  20. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  1. Consumption of High-Polyphenol Dark Chocolate Improves Endothelial Function in Individuals with Stage 1 Hypertension and Excess Body Weight

    Directory of Open Access Journals (Sweden)

    Lívia de Paula Nogueira

    2012-01-01

    Full Text Available Background. Hypertension and excess body weight are important risk factors for endothelial dysfunction. Recent evidence suggests that high-polyphenol dark chocolate improves endothelial function and lowers blood pressure. This study aimed to evaluate the association of chocolate 70% cocoa intake with metabolic profile, oxidative stress, inflammation, blood pressure, and endothelial function in stage 1 hypertensives with excess body weight. Methods. Intervention clinical trial includes 22 stage 1 hypertensives without previous antihypertensive treatment, aged 18 to 60 years and presents a body mass index between 25.0 and 34.9 kg/m2. All participants were instructed to consume 50 g of chocolate 70% cocoa/day (2135 mg polyphenols for 4 weeks. Endothelial function was evaluated by peripheral artery tonometry using Endo-PAT 2000 (Itamar Medical. Results. Twenty participants (10 men completed the study. Comparison of pre-post intervention revealed that (1 there were no significant changes in anthropometric parameters, percentage body fat, glucose metabolism, lipid profile, biomarkers of inflammation, adhesion molecules, oxidized LDL, and blood pressure; (2 the assessment of endothelial function through the reactive hyperemia index showed a significant increase: 1.94 ± 0.18 to 2.22 ± 0.08, P=0.01. Conclusion.In individuals with stage 1 hypertension and excess body weight, high-polyphenol dark chocolate improves endothelial function.

  2. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacó n Rebollo, Tomá s; Dia, Ben Mansour

    2015-01-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  3. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacón Rebollo, Tomás

    2015-03-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  4. Description and availability of the SMARTS spectral model for photovoltaic applications

    Science.gov (United States)

    Myers, Daryl R.; Gueymard, Christian A.

    2004-11-01

    Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.

  5. Parisian ruin probability for spectrally negative L\\'{e}vy processes

    OpenAIRE

    Ronnie Loeffen; Irmina Czarna; Zbigniew Palmowski

    2011-01-01

    In this note we give, for a spectrally negative Lévy process, a compact formula for the Parisian ruin probability, which is defined by the probability that the process exhibits an excursion below zero, with a length that exceeds a certain fixed period $r$. The formula involves only the scale function of the spectrally negative Lévy process and the distribution of the process at time $r$.

  6. Integration Processes of Delay Differential Equation Based on Modified Laguerre Functions

    Directory of Open Access Journals (Sweden)

    Yeguo Sun

    2012-01-01

    Full Text Available We propose long-time convergent numerical integration processes for delay differential equations. We first construct an integration process based on modified Laguerre functions. Then we establish its global convergence in certain weighted Sobolev space. The proposed numerical integration processes can also be used for systems of delay differential equations. We also developed a technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed method and coincide well with analysis.

  7. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane.

  8. Executive function training with game elements for obese children: A novel treatment to enhance self-regulatory abilities for weight-control

    NARCIS (Netherlands)

    Verbeken, S.; Braet, C.; Goossens, L.; van der Oord, S.

    2013-01-01

    For obese children behavioral treatment results in only small changes in relative weight and frequent relapse. The current study investigated the effects of an Executive Functioning (EF) training with game-elements on weight loss maintenance in obese children, over and above the care as usual in an

  9. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  10. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  11. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  12. Application of Multi-Valued Weighting Logical Functions in the Analysis of a Degree of Importance of Construction Parameters on the Example of Hydraulic Valves

    Science.gov (United States)

    Deptuła, A.

    2014-08-01

    In the optimization process, changes in the construction parameters value influence the behaviour of functions depending on time. Weighting logical coefficients for the stabilisation time are taken into consideration here, i.e., a shorter (better) stabilisation time has a more important (bigger) value of the weighting coefficient. An example of applying weighting logical functions in the analysis of a degree of importance of construction parameters of a hydraulic valve is presented in the paper

  13. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  14. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation

    International Nuclear Information System (INIS)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R.; Graessner, J.; Petersen, K.; Reitmeier, F.; Jaehne, M.

    2006-01-01

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm 2 , 500 sec/mm 2 and 1000 sec/mm 2 . Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10 -3 mm 2 /sec (95% CI, 1

  15. The n-level spectral correlations for chaotic systems

    International Nuclear Information System (INIS)

    Nagao, Taro; Mueller, Sebastian

    2009-01-01

    We study the n-level spectral correlation functions of classically chaotic quantum systems without time-reversal symmetry. According to Bohigas, Giannoni and Schmit's universality conjecture, it is expected that the correlation functions are in agreement with the prediction of the circular unitary ensemble (CUE) of random matrices. A semiclassical resummation formalism allows us to express the correlation functions as sums over pseudo-orbits. Using an extended version of the diagonal approximation on the pseudo-orbit sums, we derive the n-level correlation functions identical to the n x n determinantal correlation functions of the CUE.

  16. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    Science.gov (United States)

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  17. Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model

    Directory of Open Access Journals (Sweden)

    Lotter Thomas

    2005-01-01

    Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.

  18. The MARS Photon Processing Cameras for Spectral CT

    CERN Document Server

    Doesburg, Robert Michael Nicholas; Butler, APH; Renaud, PF

    This thesis is about the development of the MARS camera: a stan- dalone portable digital x-ray camera with spectral sensitivity. It is built for use in the MARS Spectral system from the Medipix2 and Medipix3 imaging chips. Photon counting detectors and Spectral CT are introduced, and Medipix is identified as a powerful new imaging device. The goals and strategy for the MARS camera are discussed. The Medipix chip physical, electronic and functional aspects, and ex- perience gained, are described. The camera hardware, firmware and supporting PC software are presented. Reports of experimental work on the process of equalisation from noise, and of tests of charge sum- ming mode, conclude the main body of the thesis. The camera has been actively used since late 2009 in pre-clinical re- search. A list of publications that derive from the use of the camera and the MARS Spectral scanner demonstrates the practical benefits already obtained from this work. Two of the publications are first- author, eight are co-authore...

  19. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    Science.gov (United States)

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  20. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    Science.gov (United States)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  1. MOMCON: A spectral code for obtaining three-dimensional magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Lee, D.K.

    1986-01-01

    A new code, MOMCON (spectral moments code with constraints), is described that computes three-dimensional ideal magnetohydrodynamic (MHD) equilibria in a fixed toroidal domain using a Fourier expansion for the inverse coordinates (R, Z) representing nested magnetic surfaces. A set of nonlinear coupled ordinary differential equations for the spectral coefficients of (R, Z) is solved using an accelerated steepest descent method. A stream function, lambda, is introduced to improve the mode convergence properties of the Fourier series for R and Z. The convergence rate of the R-Z spectra is optimized on each flux surface by solving nonlinear constraint equations relating the m>=2 spectral coefficients of R and Z. (orig.)

  2. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo

    2017-01-01

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  3. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi

    2017-04-12

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  4. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging: Relationship between apparent diffusion coefficient and split glomerular filtration rate

    International Nuclear Information System (INIS)

    Toyoshima, S.; Noguchi, K.; Seto, H.; Shimizu, M.; Watanabe, N.

    2000-01-01

    To determine the relationship between apparent diffusion coefficient (ADC) values measured by diffusion-weighted MR imaging and split renal function determined by renal scintigraphy in patients with hydronephrosis. Material and Methods: Diffusion-weighted imaging on a 1.5 T MR unit and renal scintigraphy were performed in 36 patients with hydronephrosis (45 hydronephrotic kidneys, 21 non-hydronephrotic kidneys). ADC values of the individual kidneys were measured by diffusion-weighted MR imaging. Split renal function (glomerular filtration rate (GFR)) was determined by renal scintigraphy using 99m Tc-DTPA. The relationship between ADC values and split GFR was examined in 66 kidneys. The hydronephrotic kidneys were further classified into three groups (severe renal dysfunction, GFR 25 ml/min, n=28), and mean values for ADCs were calculated. Results: In hydronephrotic kidneys, there was a moderate positive correlation between ADC values and split GFR (R2=0.56). On the other hand, in non-hydronephrotic kidneys, poor correlation between ADC values and split GFR was observed (R2=0.08). The mean values for ADCs of the dysfunctioning hydronephrotic kidneys (severe renal dysfunction, 1.32x10 -3 ±0.18x10 -3 mm 2 /s; moderate renal dysfunction, 1.38x10 -3 ±0.10x10 -3 mm2/s) were significantly lower than that of the normal functioning hydronephrotic kidneys (1.63x10 -3 ±0.12±10 -3 mm 2 /s). Conclusion: These results indicated that measurement of ADC values by diffusion-weighted MR imaging has a potential value in the evaluation of the functional status of hydronephrotic kidneys

  5. Modal planes are spectral triples

    International Nuclear Information System (INIS)

    Gayral, Victor; Iochum, Bruno; Schuecker, Thomas; Gracia-Bondia, Jose M.; Varilly, Joseph C.

    2003-09-01

    Axioms for nonunital spectral triples, extending those introduced in the unital case by Connes, are proposed. As a guide, and for the sake of their importance in noncommutative quantum field theory, the spaces R 2N endowed with Moyal products are intensively investigated. Some physical applications, such as the construction of noncommutative Wick monomials and the computation of the Connes-Lott functional action, are given for these noncommutative hyperplanes. (author)

  6. Energy-weighted sum rules for mesons in hot and dense matter

    NARCIS (Netherlands)

    Cabrera, D.; Polls, A.; Ramos, A.; Tolos Rigueiro, Laura

    2009-01-01

    We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific

  7. Preserving Healthy Muscle during Weight Loss123

    Science.gov (United States)

    Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina

    2017-01-01

    Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015

  8. Singular solution of the Feller diffusion equation via a spectral decomposition

    Science.gov (United States)

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  9. A CLASS OF WEIGHTED WEIBULL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Saman Shahbaz

    2010-07-01

    Full Text Available The weighted Weibull model is proposed following the method of Azzalini (1985. Basic properties of the distribution; including moments, generating function, hazard rate function and estimation of parameters; have been studied. The weighted Weibull model is proposed following the method of Azzalini (1985. Basic properties of the distribution; including moments, generating function, hazard rate function and estimation of parameters; have been studied.

  10. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  11. Calculation of spatial weight functions for WWER-440 ex-core neutron detectors

    International Nuclear Information System (INIS)

    Csom, Gy.; Czifrus, Sz.; Feher, S.; Berki, T.

    2001-01-01

    The objective of the work presented in this paper was determination of a spatial weight function for WWER-440 ex-core detectors to be used for the interpretation of reload startup rod drop measurements. In view of the complexity of the geometry of the core as well as the detector, furthermore the presence of a cavity between the vessel and the concrete shield, Monte Carlo calculations were applied. In spite of the fact that in the corresponding literature the use of adjoint methods dominates, in the present case the forward method was chosen and implemented using MCNP4C (Authors)

  12. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach

    Science.gov (United States)

    Liu, Haijian; Wu, Changshan

    2018-06-01

    Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.

  13. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    International Nuclear Information System (INIS)

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme

    2012-01-01

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J – H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 μm) and W2 (4.6 μm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope –0.5 < α < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  14. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  15. [Assessment of external breathing parameters and cardiovascular function in patients with constitutive exogenous obesity and reduced body weight].

    Science.gov (United States)

    Merzlikina, N L; Romantsova, T I; Roik, O V; Lobanova, N A; Drapkina, O M; Ivashkin, V T

    2009-01-01

    The study was designed to evaluate external respiratory function (ERF) and cardiovascular function based on AP measurements, results of 24 hour AP monitoring, treadmill test, and ECG during weight loss therapy in patients with excess body mass. A total of 93 patients with grade 2-3 obesity were examined including 41 (39.8%) with type 2 diabetes mellitus (DM). Group 1 consisted of patients with constitutive exogenous obesity, group 2 of patients with constitutive exogenous obesity and DM, group 3 was used as control. Follow-up studies were conducted after 6 and 12 months. Patients of groups 1 and 2 showed positive dynamics of hemodynamic characteristics related to the loss of weight including significant reduction of heart rate, systolic and diastolic indices of hypertonic loading, specific peripheral vascular resistance, and left ventricular mass. Simultaneously, cardiac index and ERF increased while vital lung capacity, forced vital capacity, and forced respiratory volume in the first second returned to normal values. It is concluded that reduction of body weight has positive effect on ERF dynamics and hemodynamic characteristics in patients with constitutive exogenous obesity.

  16. Spectral/ hp element methods: Recent developments, applications, and perspectives

    Science.gov (United States)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  17. Spectral analysis of multi-dimensional self-similar Markov processes

    International Nuclear Information System (INIS)

    Modarresi, N; Rezakhah, S

    2010-01-01

    In this paper we consider a discrete scale invariant (DSI) process {X(t), t in R + } with scale l > 1. We consider a fixed number of observations in every scale, say T, and acquire our samples at discrete points α k , k in W, where α is obtained by the equality l = α T and W = {0, 1, ...}. We thus provide a discrete time scale invariant (DT-SI) process X(.) with the parameter space {α k , k in W}. We find the spectral representation of the covariance function of such a DT-SI process. By providing the harmonic-like representation of multi-dimensional self-similar processes, spectral density functions of them are presented. We assume that the process {X(t), t in R + } is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of the DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally, we find the spectral density matrix of such a DT-SIM process and show that its associated T-dimensional self-similar Markov process is fully specified by {R H j (1), R j H (0), j = 0, 1, ..., T - 1}, where R H j (τ) is the covariance function of jth and (j + τ)th observations of the process.

  18. Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer.

    Science.gov (United States)

    Brundavanam, Maruthi M; Viswanathan, Nirmal K; Rao, D Narayana

    2009-12-01

    We report here a detailed experimental study to demonstrate the effect of source spectral characteristics such as spectral bandwidth (Deltalambda), peak wavelength (lambda(0)), and shape of the spectrum on the spectral shifts and spectral switches measured due to temporal correlation in a white-light Michelson interferometer operated in the spectral domain. Behavior of the spectral switch characteristics such as the switch position, switch amplitude, and switch symmetry are discussed in detail as a function of optical path difference between the interfering beams. The experimental results are compared with numerical calculations carried out using interference law in the spectral domain with modified source spectral characteristics. On the basis of our results we feel that our study is of critical importance in the selection of source spectral characteristics to further improve the longitudinal resolution or the measurement sensitivity in spectral-domain optical coherence tomography and microscopy.

  19. Automatic endmember selection and nonlinear spectral unmixing of Lunar analog minerals

    Science.gov (United States)

    Rommel, Daniela; Grumpe, Arne; Felder, Marian Patrik; Wöhler, Christian; Mall, Urs; Kronz, Andreas

    2017-03-01

    While the interpretation of spectral reflectance data has been widely applied to detect the presence of minerals, determining and quantifying the abundances of minerals contained by planetary surfaces is still an open problem. With this paper we address one of the two main questions arising from the spectral unmixing problem. While the mathematical mixture model has been extensively researched, considerably less work has been committed to the selection of endmembers from a possibly huge database or catalog of potential endmembers. To solve the endmember selection problem we define a new spectral similarity measure that is not purely based on the reconstruction error, i.e. the squared difference between the modeled and the measured reflectance spectrum. To select reasonable endmembers, we extend the similarity measure by adding information extracted from the spectral absorption bands. This will allow for a better separation of spectrally similar minerals. Evaluating all possible subsets of a possibly very large catalog that contain at least one endmember leads to an exponential increase in computational complexity, rendering catalogs of 20-30 endmembers impractical. To overcome this computational limitation, we propose the usage of a genetic algorithm that, while initially starting with random subsets, forms new subsets by combining the best subsets and, to some extent, does a local search around the best subsets by randomly adding a few endmembers. A Monte-Carlo simulation based on synthetic mixtures and a catalog size varying from three to eight endmembers demonstrates that the genetic algorithm is expected to require less combinations to be evaluated than an exhaustive search if the catalog comprises 10 or more endmembers. Since the genetic algorithm evaluates some combinations multiple times, we propose a simple modification and store previously evaluated endmember combinations. The resulting algorithm is shown to never require more function evaluations than a

  20. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  1. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    Science.gov (United States)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  2. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  3. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  4. Thyroid Function and Body Weight: A Community-Based Longitudinal Study

    DEFF Research Database (Denmark)

    Bjergved, Lena; Jørgensen, Torben; Perrild, Hans

    2014-01-01

    . Weight increased by 0.3 kg (95% confidence interval [CI] 0.1, 0.4, P = 0.005) in women and 0.8 kg (95% CI 0.1, 1.4, P = 0.02) in men for every one unit TSH (mU/L) increase. Conclusions: TSH levels were not a determinant of future weight changes, and BMI was not a determinant for TSH changes......,102 individuals who participated at 11-year follow-up, without current or former treatment for thyroid disease and with measurements of TSH and weight at both examinations. Multiple linear regression models were used, stratified by sex and adjusted for age, smoking status, and leisure time physical activity....... Results: Baseline TSH concentration was not associated with change in weight (women, P = 0.17; men, P = 0.72), and baseline body mass index (BMI) was not associated with change in TSH (women, P = 0.21; men, P = 0.85). Change in serum TSH and change in weight were significantly associated in both sexes...

  5. Spectral scattering characteristics of space target in near-UV to visible bands.

    Science.gov (United States)

    Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun

    2014-04-07

    In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.

  6. Geometrical Description in Binary Composites and Spectral Density Representation

    Directory of Open Access Journals (Sweden)

    Enis Tuncer

    2010-01-01

    Full Text Available In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ = (εe − εm(εi − εm−1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell

  7. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD

    International Nuclear Information System (INIS)

    Wissel, S.

    2006-10-01

    In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)

  8. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  9. 3D registration method for assessing the gastrointestinal motility using spectral reflectance estimation

    Science.gov (United States)

    Nobe, Kazuki; Yoshimoto, Kayo; Yamada, Kenji; Takahashi, Hideya

    2018-02-01

    Functional gastrointestinal disorders (FGID) are the most common gastrointestinal disorders. The term "functional" is generally applied to disorders where there are no structural abnormalities. One of the major factors for FGID is abnormal gastrointestinal motility. We have proposed a system for assessing the function of gastric motility using a 3D endoscope. In this previous study, we established a method for estimating characteristics of contraction wave extracted from a 3D shape include contraction wave obtained from stereo endoscope. Because it is difficult to fix the tip position of the endoscope during the examination, estimation of the 3D position between the endoscope and the gastric wall is necessary for the accurate assessment. Then, we have proposed a motion compensation method using 3D scene flow. However, since mucosa has few feature points, it is difficult to obtain 3D scene flow from RGB images. So, we focused on spectral imaging that can enhance visualization of mucosal structure. Spectral image can be obtained without switching optical filters by using technique to estimate spectral reflectance by image processing. In this paper, we propose registration method of measured 3D shape in time series using estimated spectral image. The spectral image is estimated from the RGB image for each frame. 3D scene flow of feature points, that is, enhanced mucosal structure calculated by spectral images in a time series. The position change between the endoscope and gastric wall is estimated by 3D scene flow. We experimented to confirm the validity of the proposed method using papers with a grid of colors close to the background color.

  10. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome.

    Science.gov (United States)

    Wang, Jun; Dayem Ullah, Abu Z; Chelala, Claude

    2018-01-30

    The vast majority of germline and somatic variations occur in the noncoding part of the genome, only a small fraction of which are believed to be functional. From the tens of thousands of noncoding variations detectable in each genome, identifying and prioritizing driver candidates with putative functional significance is challenging. To address this, we implemented IW-Scoring, a new Integrative Weighted Scoring model to annotate and prioritise functionally relevant noncoding variations. We evaluate 11 scoring methods, and apply an unsupervised spectral approach for subsequent selective integration into two linear weighted functional scoring schemas for known and novel variations. IW-Scoring produces stable high-quality performance as the best predictors for three independent data sets. We demonstrate the robustness of IW-Scoring in identifying recurrent functional mutations in the TERT promoter, as well as disease SNPs in proximity to consensus motifs and with gene regulatory effects. Using follicular lymphoma as a paradigmatic cancer model, we apply IW-Scoring to locate 11 recurrently mutated noncoding regions in 14 follicular lymphoma genomes, and validate 9 of these regions in an extension cohort, including the promoter and enhancer regions of PAX5. Overall, IW-Scoring demonstrates greater versatility in identifying trait- and disease-associated noncoding variants. Scores from IW-Scoring as well as other methods are freely available from http://www.snp-nexus.org/IW-Scoring/. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Interactions among spectral components of radiation in the growth responses of rice, tomato and strawberry

    International Nuclear Information System (INIS)

    Inada, K.; Matsuno, A.

    1985-01-01

    Effects of spectral components and their ratios of radiation on simultaneous growth responses were investigated with rice, tomato and strawberry plants exposed to lights with a high fluence rate (350 or 408 μmol m -2 s -1 , 400-700 nm) during every daytime. Both elongation growth and Ieaf area development in rice and strawberry were promoted by red (R) but inhibited by blue (B) component depending on the each fluence rate. However, leaf area in tomato responded in opposite direction to these. The elongation growth was remarkably increased with the fluence rate of far-red (FR) in tomato and strawberry, but not in rice. These responses were lineary increased, except FR and UV effects, with logarithmic R/B ratio in rice and strawberry but not in tomato. A very low R/FR ratio caused a strong promotion of both elongation and leaf area in tomato, while it promoted petiole elengation but inhibited leaf area development in strawberry. The elongation and leaf area development responded to R/FR in reverse way between rice and strawberry. Chlorophyll content of leaves was generally decreased with the increase of logarithmic R/B ratio in all the species. Areal weight of leaf and dry weight increment/leaf area were more or less increased with R/B and R/ FR ratios, Dry weight increment varied with the spectral ratios in almost the same way as leaf area, suggesting that spectral dependence of photosynthetic production was not much different between the species. Some discussions were made on the photoreceptor pigments involved in the elongation growth and leaf area development, and on the selection of light quantity to ensure a normal growth of each plant species

  12. Simulating high-frequency seismograms in complicated media: A spectral approach

    International Nuclear Information System (INIS)

    Orrey, J.L.; Archambeau, C.B.

    1993-01-01

    The main attraction of using a spectral method instead of a conventional finite difference or finite element technique for full-wavefield forward modeling in elastic media is the increased accuracy of a spectral approximation. While a finite difference method accurate to second order typically requires 8 to 10 computational grid points to resolve the smallest wavelengths on a 1-D grid, a spectral method that approximates the wavefield by trignometric functions theoretically requires only 2 grid points per minimum wavelength and produces no numerical dispersion from the spatial discretization. The resultant savings in computer memory, which is very significant in 2 and 3 dimensions, allows for larger scale and/or higher frequency simulations

  13. Concurrent weighted logic

    DEFF Research Database (Denmark)

    Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian

    2015-01-01

    We introduce Concurrent Weighted Logic (CWL), a multimodal logic for concurrent labeled weighted transition systems (LWSs). The synchronization of LWSs is described using dedicated functions that, in various concurrency paradigms, allow us to encode the compositionality of LWSs. To reflect these......-completeness results for this logic. To complete these proofs we involve advanced topological techniques from Model Theory....

  14. Spectral flow, and the spectrum of multicenter solutions

    International Nuclear Information System (INIS)

    Bena, Iosif; Bobev, Nikolay; Warner, Nicholas P.

    2008-01-01

    We discuss 'spectral-flow' coordinate transformations that take asymptotically four-dimensional solutions into other asymptotically four-dimensional solutions. We find that spectral flow can relate smooth three-charge solutions with a multicenter Taub-NUT base to solutions where one or several Taub-NUT centers are replaced by two-charge supertubes, and vice versa. We further show that multiparameter spectral flows can map such Taub-NUT centers to more singular centers that are either D2-D0 or pure D0-brane sources. Since supertubes can depend on arbitrary functions, we establish that the moduli space of smooth horizonless black-hole microstate solutions is classically of infinite dimension. We also use the physics of supertubes to argue that some multicenter solutions that appear to be bound states from a four-dimensional perspective are in fact not bound states when considered from a five- or six-dimensional perspective

  15. Weighted-density functional approach for the solid-liquid interfaces in electrolytes

    International Nuclear Information System (INIS)

    Cherepanova, T.A.; Stekolnikov, A.V.

    1991-09-01

    A weighted-density functional method is proposed to describe the atomic structure of the crystal-melt interface in electrolytes based on a charged-hard-sphere model of salt. The contribution of long-range Coulomb interaction is taken into account in the field formulation: the electrostatic field potential is determined from the Poisson equation. The ion density profiles and crystalline order parameter at the crystal-melt interface in the 1:1 symmetric electrolytes are calculated. The structurization of liquid near the solid surface is described. The results are compared to those for the neutral hard sphere system. The impurity distributions of extremely small concentrations are calculated both for the neutral and charged hard sphere systems. (author). 24 refs, 6 figs, 1 tab

  16. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  17. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  18. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  19. Spectral clustering and biclustering learning large graphs and contingency tables

    CERN Document Server

    Bolla, Marianna

    2013-01-01

    Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, mult

  20. Weight history from birth through childhood and youth in relation to adult lung function, in Danish juvenile obese and non-obese men

    DEFF Research Database (Denmark)

    Bua, J; Prescott, E; Schack-Nielsen, L

    2005-01-01

    ) and who participated in a follow-up examination in 1981-1983 (age range: 25-48 y). Birth weight, childhood weight and height measurements from 7 to 13 y of age were obtained from school health records. Current BMI and lung function were assessed at follow-up. SETTING: Copenhagen and adjacent regions......OBJECTIVE: To investigate the associations of birth weight, body mass index (BMI) during childhood and youth, and current BMI with adult lung function. DESIGN: Population-based longitudinal study of juvenile obese and non-obese men, who were identified at draft board examination (age range: 19-27 y......, Denmark. SUBJECTS: In total, 193 juvenile obese men at draft board examination and 205 randomly selected nonobese controls from the same population. MAIN OUTCOME MEASURES: Lung function measured by forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC), adjusted for age and height...