Chebyshev super spectral viscosity method for water hammer analysis
Hongyu Chen
2013-09-01
Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.
Chebyshev super spectral viscosity method for a fluidized bed model
Sarra, Scott A.
2003-01-01
A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc
2011-05-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan
2011-01-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Entropy viscosity method applied to Euler equations
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-01-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
Gravimetric capillary method for kinematic viscosity measurements
Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing
1992-01-01
A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
Methods of viscosity measurements in sealed ampoules
Mazuruk, Konstantin
1999-07-01
Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.
Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-02-01
We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
Convergence of spectral methods for nonlinear conservation laws. Final report
Tadmor, E.
1987-08-01
The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows
Microfluidic method for measuring viscosity using images from smartphone
Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop
2018-05-01
The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.
2010-09-17
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.; Pasquetti, R.
2010-01-01
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Tensor viscosity method for convection in numerical fluid dynamics
Dukowicz, J.K.; Ramshaw, J.D.
1979-01-01
A new method, called the tensor viscosity method, is described for differencing the convective terms in multidimensional numerical fluid dynamics. The method is the proper generalization to two or three dimensions of interpolated donor cell differencing in one dimension, and is designed to achieve numerical stability with minimal numerical damping. It is a single-step method that is distinguished by simplicity and case of implementation, even in the case of an arbitrary non-rectangular mesh. It should therefore be useful in finite-element as well as finite-difference formulations
High viscosity fluid simulation using particle-based method
Chang, Yuanzhang
2011-03-01
We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.
Spectral methods. Fundamentals in single domains
Canuto, C.
2006-01-01
Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)
Implementation of the entropy viscosity method with the discontinuous Galerkin method
Zingan, Valentin
2013-01-01
The notion of entropy viscosity method introduced in Guermond and Pasquetti [21] is extended to the discontinuous Galerkin framework for scalar conservation laws and the compressible Euler equations. © 2012 Elsevier B.V.
Various methods for determination of liquid viscosity with nuclear track membranes
Guo Shilun
1991-01-01
A systematic study has been performed of the methods for determination of liquid viscosity with nuclear track membranes. Absolute and relative measurements have been suggested, the latter including relative measurements of absolute viscosity and kinematic viscosity. The study shows that the nuclear track membrane is a unique element for determination of liquid viscosity because it is small in volume, accurate in results and easy to manipulate in industries and laboratories
Effective viscosity of dispersions approached by a statistical continuum method
Mellema, J.; Willemse, M.W.M.
1983-01-01
The problem of the determination of the effective viscosity of disperse systems (emulsions, suspensions) is considered. On the basis of the formal solution of the equations governing creeping flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion
Yi, Sang Duk; Yang, Jae Seung
2000-01-01
A study was carried out to compare viscosity and maximum viscosity methods for the detection of irradiated sweet potato starch. The viscosity of all samples decreased by increasing stirring speeds and irradiation doses. This trend was similar for maximum viscosity. Regression coefficients and expressions of viscosity and maximum viscosity with increasing irradiation dose were 0.9823 (y=335.02e -0. 3 366x ) at 120 rpm and 0.9939 (y =-42.544x+730.26). This trend in viscosity was similar for all stirring speeds. Parameter A, B and C values showed a dose dependent relation and were a better parameter for detecting irradiation treatment than maximum viscosity and the viscosity value it self. These results suggest that the detection of irradiated sweet potato starch is possible by both the viscometric and maximum visosity method. Therefore, the authors think that the maximum viscosity method can be proposed as one of the new methods to detect the irradiation treatment for sweet potato starch
Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan
2017-11-01
Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.
Spectral Methods in Numerical Plasma Simulation
Coutsias, E.A.; Hansen, F.R.; Huld, T.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
High pressure changes of the castor oil viscosity by ultrasonic method
Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M
2008-01-01
The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours
Spectral/hp element methods for CFD
Karniadakis, George Em
1999-01-01
Traditionally spectral methods in fluid dynamics were used in direct and large eddy simulations of turbulent flow in simply connected computational domains. The methods are now being applied to more complex geometries, and the spectral/hp element method, which incorporates both multi-domain spectral methods and high-order finite element methods, has been particularly successful. This book provides a comprehensive introduction to these methods. Written by leaders in the field, the book begins with a full explanation of fundamental concepts and implementation issues. It then illustrates how these methods can be applied to advection-diffusion and to incompressible and compressible Navier-Stokes equations. Drawing on both published and unpublished material, the book is an important resource for experienced researchers and for those new to the field.
Bonito, Andrea; Guermond, Jean-Luc; Popov, Bojan
2013-01-01
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method
Spectral shift reactor control method
Impink, A.J. Jr.
1981-01-01
A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits
Spectral shift reactor control method
Impink, A.J.
1982-01-01
A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core where there is established a reactor coolant temperature set point at which it is desired to operate the reactor and first reactor coolant temperature band limits within which the set point is characterized. The reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in the core as the reactor coolant temperature approaches the first band limits to maintain the reactor coolant temperature near the set point and within the first band limits. The reactivity charges associated with movement of respective coolant displacer element clusters is calculated and compared with a calculated derived reactivity charge in order to select the cluster to be moved. (author)
Zhang, Yong; Otani, Akihito; Maginn, Edward J
2015-08-11
Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.
Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method
Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.
2015-01-01
We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas
Spectral methods in numerical plasma simulation
Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)
Logarithmic compression methods for spectral data
Dunham, Mark E.
2003-01-01
A method is provided for logarithmic compression, transmission, and expansion of spectral data. A log Gabor transformation is made of incoming time series data to output spectral phase and logarithmic magnitude values. The output phase and logarithmic magnitude values are compressed by selecting only magnitude values above a selected threshold and corresponding phase values to transmit compressed phase and logarithmic magnitude values. A reverse log Gabor transformation is then performed on the transmitted phase and logarithmic magnitude values to output transmitted time series data to a user.
Imaging by the SSFSE single slice method at different viscosities of bile
Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi [Kawasaki Hospital, Kobe (Japan)
2001-11-01
The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T{sub 2}. However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T{sub 2} value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T{sub 2} value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T{sub 1}- and T{sub 2}-weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T{sub 2} values of the bile samples showing relatively high signal intensities on the T{sub 1}-weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T{sub 1}-weighted images should be avoided, and combination with other MRC sequences should be used. (author)
Imaging by the SSFSE single slice method at different viscosities of bile
Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi
2001-01-01
The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T 2 . However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T 2 value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T 2 value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T 1 - and T 2 -weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T 2 values of the bile samples showing relatively high signal intensities on the T 1 -weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T 1 -weighted images should be avoided, and combination with other MRC sequences should be used. (author)
High viscosity fluid simulation using particle-based method
Chang, Yuanzhang; Bao, Kai; Zhu, Jian; Wu, Enhua
2011-01-01
the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry
2018-02-11
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter
2018-01-01
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-01-01
. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
Evolutionary Computing Methods for Spectral Retrieval
Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna
2009-01-01
A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.
Applicability of Stokes method for measuring viscosity of mixtures with concentration gradient
César Medina
2017-12-01
Full Text Available After measuring density and viscosity of a mixture of glycerin and water contained in a vertical pipe, a variation of these properties according to depth is observed. These gradients are typical of non-equilibrium states related to the lower density of water and the fact that relatively long times are necessary to achieve homogeneity. In the same pipe, the falling velocity of five little spheres is measured as a function of depth, and then a numerical fit is performed which agrees very well with experimental data. Based on the generalization of these results, the applicability of Stokes method is discussed for measuring viscosity of mixtures with a concentration gradient.
Bonito, Andrea
2013-10-03
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.
Spectral Analysis Methods of Social Networks
P. G. Klyucharev
2017-01-01
Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work
Viscosity of dilute suspensions of rodlike particles: A numerical simulation method
Yamamoto, Satoru; Matsuoka, Takaaki
1994-02-01
The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system
Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V
2007-01-01
A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)
Numerical Methods for Stochastic Computations A Spectral Method Approach
Xiu, Dongbin
2010-01-01
The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth
Estimation of structural film viscosity based on the bubble rise method in a nanofluid.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-15
When a single bubble moves at a very low capillary number (10 -7 ) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film. Copyright © 2018 Elsevier Inc. All rights reserved.
The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method
Cui, S. T.; Cummings, P. T.; Cochran, H. D.
This short commentary presents the result of long molecular dynamics simulation calculations of the shear viscosity of liquid n-decane and n-hexadecane using the Green-Kubo integration method. The relaxation time of the stress-stress correlation function is compared with those of rotation and diffusion. The rotational and diffusional relaxation times, which are easy to calculate, provide useful guides for the required simulation time in viscosity calculations. Also, the computational time required for viscosity calculations of these systems by the Green-Kubo method is compared with the time required for previous non-equilibrium molecular dynamics calculations of the same systems. The method of choice for a particular calculation is determined largely by the properties of interest, since the efficiencies of the two methods are comparable for calculation of the zero strain rate viscosity.
Spectral element method for wave propagation on irregular domains
Yan Hui Geng
2018-03-14
Mar 14, 2018 ... Abstract. A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the ...
Orthogonal feature selection method. [For preprocessing of man spectral data
Kowalski, B R [Univ. of Washington, Seattle; Bender, C F
1976-01-01
A new method of preprocessing spectral data for extraction of molecular structural information is desired. This SELECT method generates orthogonal features that are important for classification purposes and that also retain their identity to the original measurements. A brief introduction to chemical pattern recognition is presented. A brief description of the method and an application to mass spectral data analysis follow. (BLM)
Spectral element method for wave propagation on irregular domains
A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the physical space are ...
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method
Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic
2011-08-01
We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.
Skerovic, V; Zarubica, V; Aleksic, M; Zekovic, L; Belca, I
2010-01-01
Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.
Skerovic, V; Zarubica, V; Aleksic, M [Directorate of measures and precious metals, Optical radiation Metrology department, Mike Alasa 14, 11000 Belgrade (Serbia); Zekovic, L; Belca, I, E-mail: vladanskerovic@dmdm.r [Faculty of Physics, Department for Applied physics and metrology, Studentski trg 12-16, 11000 Belgrade (Serbia)
2010-10-15
Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.
Stability estimates for hp spectral element methods for general ...
We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...
Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang
2015-06-01
In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.
Gates, I.D. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R.; Adams, J.J.; Snowdon, L.; Jiang, C. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., Calgary, AB (Canada). Dept. of Geoscience
2008-10-15
This study investigated preconditioning techniques for altering reservoir fluid properties prior to steam assisted gravity drainage (SAGD) recovery processes. Viscosity-reducing agents were distributed in mobile reservoir water. Simulations were conducted to demonstrate the method's ability to modify oil viscosity prior to steam injection. The study simulated the action of water soluble organic solvents that preferentially partitioned in the oil phase. The solvent was injected with water into the reservoir in a slow waterflood that did not displace oil from the near wellbore region. A reservoir simulation model was used to investigate the technique. Shu's correlation was used to establish a viscosity correlation for the bitumen and solvent mixtures. Solvent injection was modelled by converting the oil phase viscosity through time. Over the first 2 years, oil rates of the preconditioned case were double that of the non-preconditioned case study. However, after 11 years, the preconditioned case's rates declined below rates observed in the non-preconditioned case. The model demonstrated that oil viscosity distributions were significantly altered using the preconditioners. The majority of the most viscous oil surrounding the production well was significantly reduced. It was concluded that accelerated steam chamber growth provided faster access to lower viscosity materials at the top of the reservoir. 12 refs., 9 figs.
Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E.
2016-01-01
This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.
Fraysse, F., E-mail: francois.fraysse@rs2n.eu [RS2N, St. Zacharie (France); E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid (Spain); Redondo, C.; Rubio, G.; Valero, E. [E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid (Spain)
2016-12-01
This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.
The spectral volume method as applied to transport problems
McClarren, Ryan G.
2011-01-01
We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author)
Sharifzadeh, Sara; Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann
2012-01-01
Statistical solutions find wide spread use in food and medicine quality control. We investigate the effect of different regression and sparse regression methods for a viscosity estimation problem using the spectro-temporal features from new Sub-Surface Laser Scattering (SLS) vision system. From...... with sparse LAR, lasso and Elastic Net (EN) sparse regression methods. Due to the inconsistent measurement condition, Locally Weighted Scatter plot Smoothing (Loess) has been employed to alleviate the undesired variation in the estimated viscosity. The experimental results of applying different methods show...
Gharagheizi, Farhad; Ilani-Kashkouli, Poorandokht; Mohammadi, Amir H.
2012-01-01
In this study, a wide literature survey has been carried out to collect an extensive set of liquid viscosity data for ionic liquids (ILs). A data set consisting of 1672 viscosity values and comprising 443 ILs was collated from 204 different literature sources. Using this data set, a reliable grou...
Nuernberger, E.; Heide, L.; Boegl, K.W.
1991-01-01
The viscosity of a foodstuff depends mainly on the composition and the amount of starch, pectins and cellulose, which may undergo changes after irradiation. The investigation on the applicability of viscosity measurement for the identification of irradiated foods showed so far that this method seems to be applicable only to a definite number of spices and foods. The optimal method has to be determined empirically, because the reason is still unknown, why in some cases, the viscosity values decrease and in other cases increase after irradiation - and why sometimes no changes occur at all. Until now, the following irradiated spices can be identified by this method: cardamom, cinnamon, curcuma, horse-radish, nutmeg, mustard-seed and white pepper. (21 figs, 2 tabs, 10 refs)
Performance of spectral fitting methods for vegetation fluorescence quantification
Meroni, M.; Busetto, D.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W.
2010-01-01
The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance
Spectral Methods for Immunization of Large Networks
Muhammad Ahmad
2017-11-01
Full Text Available Given a network of nodes, minimizing the spread of a contagion using a limited budget is a well-studied problem with applications in network security, viral marketing, social networks, and public health. In real graphs, virus may infect a node which in turn infects its neighbour nodes and this may trigger an epidemic in the whole graph. The goal thus is to select the best k nodes (budget constraint that are immunized (vaccinated, screened, filtered so as the remaining graph is less prone to the epidemic. It is known that the problem is, in all practical models, computationally intractable even for moderate sized graphs. In this paper we employ ideas from spectral graph theory to define relevance and importance of nodes. Using novel graph theoretic techniques, we then design an efficient approximation algorithm to immunize the graph. Theoretical guarantees on the running time of our algorithm show that it is more efficient than any other known solution in the literature. We test the performance of our algorithm on several real world graphs. Experiments show that our algorithm scales well for large graphs and outperforms state of the art algorithms both in quality (containment of epidemic and efficiency (runtime and space complexity.
A divisive spectral method for network community detection
Cheng, Jianjun; Li, Longjie; Yao, Yukai; Chen, Xiaoyun; Leng, Mingwei; Lu, Weiguo
2016-01-01
Community detection is a fundamental problem in the domain of complex network analysis. It has received great attention, and many community detection methods have been proposed in the last decade. In this paper, we propose a divisive spectral method for identifying community structures from networks which utilizes a sparsification operation to pre-process the networks first, and then uses a repeated bisection spectral algorithm to partition the networks into communities. The sparsification operation makes the community boundaries clearer and sharper, so that the repeated spectral bisection algorithm extract high-quality community structures accurately from the sparsified networks. Experiments show that the combination of network sparsification and a spectral bisection algorithm is highly successful, the proposed method is more effective in detecting community structures from networks than the others. (paper: interdisciplinary statistical mechanics)
A Spectral Conjugate Gradient Method for Unconstrained Optimization
Birgin, E. G.; Martinez, J. M.
2001-01-01
A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented
Spectral method and its high performance implementation
Wu, Zedong
2014-01-01
We have presented a new method that can be dispersion free and unconditionally stable. Thus the computational cost and memory requirement will be reduced a lot. Based on this feature, we have implemented this algorithm on GPU based CUDA for the anisotropic Reverse time migration. There is almost no communication between CPU and GPU. For the prestack wavefield extrapolation, it can combine all the shots together to migration. However, it requires to solve a bigger dimensional problem and more meory which can\\'t fit into one GPU cards. In this situation, we implement it based on domain decomposition method and MPI for distributed memory system.
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis
2011-04-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis; Mouhot, Clé ment
2011-01-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Spectral/ hp element methods: Recent developments, applications, and perspectives
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
Spectral methods for quantum Markov chains
Szehr, Oleg
2014-05-08
The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.
Spectral methods for quantum Markov chains
Szehr, Oleg
2014-01-01
The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.
Spectral methods in quantum field theory
Graham, Noah; Quandt, Markus; Weigel, Herbert
2009-01-01
This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Spectral radiative property control method based on filling solution
Jiao, Y.; Liu, L.H.; Hsu, P.-F.
2014-01-01
Controlling thermal radiation by tailoring spectral properties of microstructure is a promising method, can be applied in many industrial systems and have been widely researched recently. Among various property tailoring schemes, geometry design of microstructures is a commonly used method. However, the existing radiation property tailoring is limited by adjustability of processed microstructures. In other words, the spectral radiative properties of microscale structures are not possible to change after the gratings are fabricated. In this paper, we propose a method that adjusts the grating spectral properties by means of injecting filling solution, which could modify the thermal radiation in a fabricated microstructure. Therefore, this method overcomes the limitation mentioned above. Both mercury and water are adopted as the filling solution in this study. Aluminum and silver are selected as the grating materials to investigate the generality and limitation of this control method. The rigorous coupled-wave analysis is used to investigate the spectral radiative properties of these filling solution grating structures. A magnetic polaritons mechanism identification method is proposed based on LC circuit model principle. It is found that this control method could be used by different grating materials. Different filling solutions would enable the high absorption peak to move to longer or shorter wavelength band. The results show that the filling solution grating structures are promising for active control of spectral radiative properties. -- Highlights: • A filling solution grating structure is designed to adjust spectral radiative properties. • The mechanism of radiative property control is studied for engineering utilization. • Different grating materials are studied to find multi-functions for grating
Convergence analysis of spectral element method for electromechanical devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2017-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the
Convergence analysis of spectral element method for magnetic devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2018-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with
A conjugate gradient method for the spectral partitioning of graphs
Kruyt, Nicolaas P.
1997-01-01
The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and
High order spectral difference lattice Boltzmann method for incompressible hydrodynamics
Li, Weidong
2017-09-01
This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.
The spectral cell method in nonlinear earthquake modeling
Giraldo, Daniel; Restrepo, Doriam
2017-12-01
This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.
Wooseok Jung
2015-09-01
Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor
Spectral methods for time dependent partial differential equations
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
Spectral anomaly methods for aerial detection using KUT nuisance rejection
Detwiler, R.S.; Pfund, D.M.; Myjak, M.J.; Kulisek, J.A.; Seifert, C.E.
2015-01-01
This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land–water interfaces
A modified sliding spectral method and its application to COSMIC ...
A modified sliding spectral method and its application to COSMIC radio occultation data 1751. The window length with 300 samples is supposed to provide a reasonable resolution. In a spherically symmetric atmosphere, the refractive index n as a function of tangent radius r0 can be computed from the bending angle α as.
Deconvolution of EPR spectral lines with an approximate method
Jimenez D, H.; Cabral P, A.
1990-10-01
A recently reported approximation expression to deconvolution Lorentzian-Gaussian spectral lines. with small Gaussian contribution, is applied to study an EPR line shape. The potassium-ammonium solution line reported in the literature by other authors was used and the results are compared with those obtained by employing a precise method. (Author)
Nonconforming h-p spectral element methods for elliptic problems
In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems on polygonal ... Let M denote the number of corner layers and W denote the number of degrees of .... β is given by Theorem 2.2 of [3] which can be stated.
Spectral calculations in magnetohydrodynamics using the Jacobi-Davidson method
Belien, A. J. C.; van der Holst, B.; Nool, M.; van der Ploeg, A.; Goedbloed, J. P.
2001-01-01
For the solution of the generalized complex non-Hermitian eigenvalue problems Ax = lambda Bx occurring in the spectral study of linearized resistive magnetohydrodynamics (MHD) a new parallel solver based on the recently developed Jacobi-Davidson [SIAM J. Matrix Anal. Appl. 17 (1996) 401] method has
[An improved low spectral distortion PCA fusion method].
Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong
2013-10-01
Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.
INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES
H. Shen
2012-08-01
Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.
Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity
Meysam Dabiri-Atashbeyk
2018-01-01
Full Text Available Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In recent years, neural network has been applied to a large number of petroleum engineering problems. In this paper, a multi-layer perception neural network and radial basis function network (both optimized by a genetic algorithm were used to evaluate the dead oil viscosity of crude oil, and it was found out that the estimated dead oil viscosity by the multi-layer perception neural network was more accurate than the one obtained by radial basis function network.
Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems
Hassan Saberi Nik
2014-01-01
Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.
Nguyen, T T; Biadillah, Y; Mongrain, R; Brunette, J; Tardif, J C; Bertrand, O F
2004-08-01
In this work, we propose a simple method to simultaneously match the refractive index and kinematic viscosity of a circulating blood analog in hydraulic models for optical flow measurement techniques (PIV, PMFV, LDA, and LIF). The method is based on the determination of the volumetric proportions and temperature at which two transparent miscible liquids should be mixed to reproduce the targeted fluid characteristics. The temperature dependence models are a linear relation for the refractive index and an Arrhenius relation for the dynamic viscosity of each liquid. Then the dynamic viscosity of the mixture is represented with a Grunberg-Nissan model of type 1. Experimental tests for acrylic and blood viscosity were found to be in very good agreement with the targeted values (measured refractive index of 1.486 and kinematic viscosity of 3.454 milli-m2/s with targeted values of 1.47 and 3.300 milli-m2/s).
High order spectral volume and spectral difference methods on unstructured grids
Kannan, Ravishekar
The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed
International Conference on Spectral and High-Order Methods
Dumont, Ney; Hesthaven, Jan
2017-01-01
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu
2014-01-01
Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on
Majstorović, Divna M.; Živković, Emila M.; Matija, Lidija R.; Kijevčanin, Mirjana Lj.
2017-01-01
Highlights: • Densitis and viscosities of four ester + alcohol binary mixtures were measured. • Excess and deviation functions were calculated. • Fourier transform infrared (FT-IR) spectroscopy analysis was conducted. • Molecular interactions present in the mixture were analyzed. • Viscosity modelling was performed. - Abstract: Density, viscosity and refractive index of four binary mixtures consisting of diethyl succinate or ethyl octanoate + 2-methyl-1-propanol or 3-methyl-1-butanol have been measured at atmospheric pressure and over the temperature range from 288.15 K to 323.15 K. Excess and deviation functions have been calculated from these data and fitted to the Redlich-Kister equation. The values of excess molar volume and deviation functions, with FT-IR study, were further used in the analysis of molecular interactions present in the mixture as well as the temperature influence on them. Molar excess Gibbs free energies of activation of viscous flow were additionally calculated from measured density and viscosity data for better understanding of present molecular interactions. Viscosity modelling was done with two approaches, predictive by group contribution models (UNIFAC-VISCO and ASOG-VISCO), and correlative by one to three-parameter models (Teja-Rice, Grunberg–Nissan, McAlister, Eyring-UNIQUAC and Eyring-NRTL). The obtained results were compared with experimental data and conclusions about applied approaches and models were made.
A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate
Djenidi, L.; Antonia, R.A. [The University of Newcastle, School of Engineering, Newcastle, NSW (Australia)
2012-10-15
We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate left angle {epsilon}right angle in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301-305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity {nu} and left angle {epsilon}right angle at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynolds number R{sub {lambda}} is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 {<=} R{sub {lambda}}{<=} 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of left angle {epsilon}right angle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall. (orig.)
Spectral analysis of mammographic images using a multitaper method
Wu Gang; Mainprize, James G.; Yaffe, Martin J.
2012-01-01
Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.
Solution of the Schroedinger equation by a spectral method
Feit, M.D.; Fleck, J.A. Jr.; Steiger, A.
1982-01-01
A new computational method for determining the eigenvalues and eigenfunctions of the Schroedinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schroedinger equation. The method requires the computation of a correlation function from a numerical solution psi(r, t). Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to the stationary states of the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. Additional Fourier transforms of psi(r, t) with respect to time generate the eigenfunctions. The effectiveness of the method is demonstrated for a one-dimensional asymmetric double well potential and for the two-dimensional Henon--Heiles potential
High temperature spectral emissivity measurement using integral blackbody method
Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter
2016-10-01
Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.
Spectral/hp element methods: Recent developments, applications, and perspectives
Xu, Hui; Cantwell, Chris; Monteserin, Carlos
2018-01-01
regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain...
Terahertz spectral unmixing based method for identifying gastric cancer
Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin
2018-02-01
At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.
Schuettler, C.; Gebhardt, G.; Stock, A.; Helle, N.; Boegl, K.W.
1993-01-01
Chemiluminescence, electron spin resonance, thermoluminescence and viscosity measurements have been investigated for their suitability as detection method for the irradiation of the medicinal herbs anise seeds (anisi fructus), valerian roots (valerianae radix), redberry leaves (uvae ursi folium), birch leaves (betulae folium), greek hay seeds (foenugraeci semen), cayenne pepper (capsici fructus acer), black-aldertee bark (frangulae cortex), fennel fruits (feoniculi fructus), rose hip shells (cynosbati fructus), coltsfoot (farfarae folium), acorus roots (calami rhizoma), chamomile flowers (matricariae flos), caraway (carvi fructus), lavender flowers (lavandulae flos), linseed (lini semen), lime tree flowers (tiliae flos), St. Mary's thistle fruit (cardui mariae herba), lemon balm (melissae folium), java tea (orthosiphonis folium), peppermint (menthae piperitae folium), sage leaves (salviae folium), scouring rush (equiseti herba), senna leaves (sennae folium), plantain herbs (plantaginis lanceolata herba), thyme herbs (thymi herba), juniper berries (juniperi fructus), hawthorne herbs (crataegi folium), wheat starch (amylum tritici) and wormwood (absinthii herba). Depending on the herbs, the methods used were more or less suitable. Chemiluminescence measurements showed the smallest differences between untreated and irradiated samples whereas thermoluminescence measurements on isolated minerals from the vegetable drugs gave better results. In some herbs radiation-specific radicals could be identified by ESR spectroscopy. Viscosity measurement is suitable for some herbs as fast and inexpensive method for screening. (orig.) [de
Advances in Spectral Methods for UQ in Incompressible Navier-Stokes Equations
Le Maitre, Olivier
2014-01-06
In this talk, I will present two recent contributions to the development of efficient methodologies for uncertainty propagation in the incompressible Navier-Stokes equations. The first one concerns the reduced basis approximation of stochastic steady solutions, using Proper Generalized Decompositions (PGD). An Arnoldi problem is projected to obtain a low dimensional Galerkin problem. The construction then amounts to the resolution of a sequence of uncoupled deterministic Navier-Stokes like problem and simple quadratic stochastic problems, followed by the resolution of a low-dimensional coupled quadratic stochastic problem, with a resulting complexity which has to be contrasted with the dimension of the whole Galerkin problem for classical spectral approaches. An efficient algorithm for the approximation of the stochastic pressure field is also proposed. Computations are presented for uncertain viscosity and forcing term to demonstrate the effectiveness of the reduced method. The second contribution concerns the computation of stochastic periodic solutions to the Navier-Stokes equations. The objective is to circumvent the well-known limitation of spectral methods for long-time integration. We propose to directly determine the stochastic limit-cycles through the definition of its stochastic period and an initial condition over the cycle. A modified Newton method is constructed to compute iteratively both the period and initial conditions. Owing to the periodic character of the solution, and by introducing an appropriate time-scaling, the solution can be approximated using low-degree polynomial expansions with large computational saving as a result. The methodology is illustrated for the von-Karman flow around a cylinder with stochastic inflow conditions.
Advances in Spectral Methods for UQ in Incompressible Navier-Stokes Equations
Le Maitre, Olivier
2014-01-01
In this talk, I will present two recent contributions to the development of efficient methodologies for uncertainty propagation in the incompressible Navier-Stokes equations. The first one concerns the reduced basis approximation of stochastic steady solutions, using Proper Generalized Decompositions (PGD). An Arnoldi problem is projected to obtain a low dimensional Galerkin problem. The construction then amounts to the resolution of a sequence of uncoupled deterministic Navier-Stokes like problem and simple quadratic stochastic problems, followed by the resolution of a low-dimensional coupled quadratic stochastic problem, with a resulting complexity which has to be contrasted with the dimension of the whole Galerkin problem for classical spectral approaches. An efficient algorithm for the approximation of the stochastic pressure field is also proposed. Computations are presented for uncertain viscosity and forcing term to demonstrate the effectiveness of the reduced method. The second contribution concerns the computation of stochastic periodic solutions to the Navier-Stokes equations. The objective is to circumvent the well-known limitation of spectral methods for long-time integration. We propose to directly determine the stochastic limit-cycles through the definition of its stochastic period and an initial condition over the cycle. A modified Newton method is constructed to compute iteratively both the period and initial conditions. Owing to the periodic character of the solution, and by introducing an appropriate time-scaling, the solution can be approximated using low-degree polynomial expansions with large computational saving as a result. The methodology is illustrated for the von-Karman flow around a cylinder with stochastic inflow conditions.
Kim, Mooeung; Chung, Hoeil
2013-03-07
The use of selectivity-enhanced Raman spectra of lube base oil (LBO) samples achieved by the spectral collection under frozen conditions at low temperatures was effective for improving accuracy for the determination of the kinematic viscosity at 40 °C (KV@40). A collection of Raman spectra from samples cooled around -160 °C provided the most accurate measurement of KV@40. Components of the LBO samples were mainly long-chain hydrocarbons with molecular structures that were deformable when these were frozen, and the different structural deformabilities of the components enhanced spectral selectivity among the samples. To study the structural variation of components according to the change of sample temperature from cryogenic to ambient condition, n-heptadecane and pristane (2,6,10,14-tetramethylpentadecane) were selected as representative components of LBO samples, and their temperature-induced spectral features as well as the corresponding spectral loadings were investigated. A two-dimensional (2D) correlation analysis was also employed to explain the origin for the improved accuracy. The asynchronous 2D correlation pattern was simplest at the optimal temperature, indicating the occurrence of distinct and selective spectral variations, which enabled the variation of KV@40 of LBO samples to be more accurately assessed.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
The spectral method and ergodic theorems for general Markov chains
Nagaev, S V
2015-01-01
We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space
Spectral Karyotyping. An new method for chromosome analysis
Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying
2006-01-01
Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)
Spectral analysis methods for vehicle interior vibro-acoustics identification
Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal
2009-02-01
Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.
Spectral element method for vector radiative transfer equation
Zhao, J.M.; Liu, L.H.; Hsu, P.-F.; Tan, J.Y.
2010-01-01
A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.
Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems
Streett, C. L.
1987-01-01
Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.
Transport survey calculations using the spectral collocation method
Painter, S.L.; Lyon, J.F.
1989-01-01
A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs
Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization
David W. Freeman
2000-01-01
A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community
Methods of total spectral radiant flux realization at VNIIOFI
Ivashin, Evgeniy; Lalek, Jan; Rybczyński, Andrzej; Ogarev, Sergey; Khlevnoy, Boris; Dobroserdov, Dmitry; Sapritsky, Victor
2018-02-01
VNIIOFI carries out works on realization of independent methods for realization of the total spectral radiant flux (TSRF) of incoherent optical radiation sources - reference high-temperature blackbodies (BB), halogen lamps, and LED with quasi-Lambert spatial distribution of radiance. The paper describes three schemes for measuring facilities using photometers, spectroradiometers and computer-controlled high class goniometer. The paper describes different approaches for TSRF realization at the VNIIOFI National radiometric standard on the basis of high-temperature BB and LED sources, and gonio-spectroradiometer. Further, they are planned to be compared, and the use of fixed-point cells (in particular, based on the high-temperature δ(MoC)-C metal-carbon eutectic with a phase transition temperature of 2583 °C corresponding to the metrological optical “source-A”) as an option instead of the BB is considered in order to enhance calibration accuracy.
Standard Test Method for Normal Spectral Emittance at Elevated Temperatures
American Society for Testing and Materials. Philadelphia
1972-01-01
1.1 This test method describes a highly accurate technique for measuring the normal spectral emittance of electrically conducting materials or materials with electrically conducting substrates, in the temperature range from 600 to 1400 K, and at wavelengths from 1 to 35 μm. 1.2 The test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is suitable for research laboratories where the highest precision and accuracy are desired, but is not recommended for routine production or acceptance testing. However, because of its high accuracy this test method can be used as a referee method to be applied to production and acceptance testing in cases of dispute. 1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this stan...
The use of spectral methods in bidomain studies.
Trayanova, N; Pilkington, T
1992-01-01
A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.
Variational Multi-Scale method with spectral approximation of the sub-scales.
Dia, Ben Mansour
2015-01-07
A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.
Spectral-Product Methods for Electronic Structure Calculations (Preprint)
Langhoff, P. W; Mills, J. E; Boatz, J. A
2006-01-01
.... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...
Spectral-Product Methods for Electronic Structure Calculations (Postprint)
Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A
2007-01-01
.... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...
Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki
2017-08-01
Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.
Use of new spectral analysis methods in gamma spectra deconvolution
Pinault, J.L.
1991-01-01
A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)
Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method
Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.
2005-01-01
The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.
Yi, S.D.; Chang, K.S.; Oh, M.J.
2005-01-01
This study was carried out to establish methods for irradiation detection of irradiation in Korean wheat flour by pulsed photostimulated luminescence (PPSL) and viscometric methods. The photon counts of the irradiated Korean wheat flour measured by PPSL immediately after irradiation increased with increasing irradiation dose. The photon counts in the irradiated Korean wheat flour almost disappeared with lapse of time after storage in normal room conditions, but irradiation detection was still possible after 6 months in darkroom conditions
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Rapid simulation of spatial epidemics: a spectral method.
Brand, Samuel P C; Tildesley, Michael J; Keeling, Matthew J
2015-04-07
Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended 'image' of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.
2016-01-01
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell
2016-06-14
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
Visual Method for Spectral Energy Distribution Calculation of ...
Abstract. In this work, we propose to use 'The Geometer's Sketchpad' to the fitting of a spectral energy distribution of blazar based on three effective spectral indices, αRO, αOX, and αRX and the flux density in the radio band. It can make us to see the fitting in detail with both the peak frequency and peak luminosity given ...
Towards spectral geometric methods for Euclidean quantum gravity
Panine, Mikhail; Kempf, Achim
2016-04-01
The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.
Hemmat Esfe, Mohammad; Tatar, Afshin; Ahangar, Mohammad Reza Hassani; Rostamian, Hossein
2018-02-01
Since the conventional thermal fluids such as water, oil, and ethylene glycol have poor thermal properties, the tiny solid particles are added to these fluids to increase their heat transfer improvement. As viscosity determines the rheological behavior of a fluid, studying the parameters affecting the viscosity is crucial. Since the experimental measurement of viscosity is expensive and time consuming, predicting this parameter is the apt method. In this work, three artificial intelligence methods containing Genetic Algorithm-Radial Basis Function Neural Networks (GA-RBF), Least Square Support Vector Machine (LS-SVM) and Gene Expression Programming (GEP) were applied to predict the viscosity of TiO2/SAE 50 nano-lubricant with Non-Newtonian power-law behavior using experimental data. The correlation factor (R2), Average Absolute Relative Deviation (AARD), Root Mean Square Error (RMSE), and Margin of Deviation were employed to investigate the accuracy of the proposed models. RMSE values of 0.58, 1.28, and 6.59 and R2 values of 0.99998, 0.99991, and 0.99777 reveal the accuracy of the proposed models for respective GA-RBF, CSA-LSSVM, and GEP methods. Among the developed models, the GA-RBF shows the best accuracy.
hp Spectral element methods for three dimensional elliptic problems
This is the first of a series of papers devoted to the study of h-p spec- .... element functions defined on mesh elements in the new system of variables with a uni- ... the spectral element functions on these elements and give construction of the stability .... By Hm( ), we denote the usual Sobolev space of integer order m ≥ 0 ...
hp Spectral element methods for three dimensional elliptic problems
elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems, ... of variable degree bounded by W. Let N denote the number of layers in the geomet- ric mesh ... We prove a stability theorem for mixed problems when the spectral element functions vanish ..... Applying Theorem 3.1,. ∫ r l. |Mu|2dx −.
The viscosity of dimethyl ether
Sivebæk, Ion Marius; Jakobsen, Jørgen
2007-01-01
and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...
Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.
2017-09-01
Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.
Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra
Shirley, T.E.; Laster, S.J.; Meek, R.A.
1987-01-01
The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis
Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.
2011-01-01
An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.
Quareni, F.; Yuen, D.A.; Eby, H.E.
1983-01-01
The effects due to departures from local similarity in steady-state boundary layers ascending through a fluid with strongly variable viscosity are examined with the local-nonsimilarity method. Both the absolute temperature and the hydrostatic pressure appear in the argument of an exponential in the viscosity function. The fluid-dynamical system studied here is that which characterizes plume structures in the Earth's mantle. By means of an iterative approach, two successive nonlinear boundary value problems are solved simultaneously and the errors incurred in the locally similar solutions are then assessed from a comparison between the first (locally similar) and the second level of a system of truncated equations. Three different sources of nonsimilarity have been considered: 1) localized radiogenic hearting within the plume, 2) ambient thermal stratification, 3) pressure dependence of mantle rheology. Of particular interest is an appraisal of the degree of accuracy of the locally similar solutions as a function of viscosity contrast within the boundary layer. For the range of viscosity contrast examined, up to 10 8 , the velocity and temperature fields between the first- and second-level solutions differ at most by 20 to 30%, for the rheological parameter values relevant to the Earth's mantle
Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification
Winokur, J.; Kim, D.; Bisetti, Fabrizio; Le Maî tre, O. P.; Knio, Omar
2015-01-01
We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a
Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem
Xuqing Zhang
2013-01-01
Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.
Zou, Peng; Cheng, Jiubing
2017-01-01
-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using
Variational Multi-Scale method with spectral approximation of the sub-scales.
Dia, Ben Mansour; Chá con-Rebollo, Tomas
2015-01-01
A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization
Jinkui Liu
2012-01-01
Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.
A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results
Larsen, Curtis E.; Irvine, Tom
2013-01-01
A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.
Establishing a method to measure bone structure using spectral CT
Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.
2017-03-01
Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.
Norzita Yacob; Norhashidah Talip; Maznah Mahmud
2011-01-01
Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)
2015-06-04
a faster and more scalable code, which is of vital importance as we approach the exascale range of computing. 15. SUBJECT TERMS 16. SECURITY...importance as we approach the exascale range of computing. Keywords: Residual-based Stabilization, Variational Mulstiscale Method, VMS, VMM, Crosswind...VMS + DC √ √ √ Improved As ∇2 HV × √ √ × As ∇2α and DC than by high order dissipative operators. As we try to approach the exascale range of
Tomar, S.K.
2002-01-01
It is well known that elliptic problems when posed on non-smooth domains, develop singularities. We examine such problems within the framework of spectral element methods and resolve the singularities with exponential accuracy.
Fourier spectral methods for fractional-in-space reaction-diffusion equations
Bueno-Orovio, Alfonso; Kay, David; Burrage, Kevin
2014-01-01
approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction
An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks
Zhao, Peng-yuan; Huang, Xiao-ping
2018-03-01
Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.
Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B
2015-01-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)
Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.
2015-08-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.
Fedorchenko, Alexander I.; Stachiv, Ivo
2011-01-01
Roč. 9, č. 2 (2011), s. 741-744 ISSN 1546-198X R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR GA106/09/1573 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : viscosity determination * bend loss sensor * resonance Subject RIV: BK - Fluid Dynamics Impact factor: 0.819, year: 2011 http://www.ingentaconnect.com/content/asp/senlet/2011/00000009/00000002/art00059
Multi-spectral lifetime imaging: methods and applications
Fereidouni, F.
2013-01-01
The aim of this PhD project is to further develop multispectral life time imaging hardware and analyses methods. The hardware system, Lambda-Tau, generates a considerable amount of data at high speed. To fully exploit the power of this new hardware, fast and reliable data analyses methods are
无
2000-01-01
@@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.
Modified Spectral Fatigue Methods for S-N Curves With MIL-HDBK-5J Coefficients
Irvine, Tom; Larsen, Curtis
2016-01-01
The rainflow method is used for counting fatigue cycles from a stress response time history, where the fatigue cycles are stress-reversals. The rainflow method allows the application of Palmgren-Miner's rule in order to assess the fatigue life of a structure subject to complex loading. The fatigue damage may also be calculated from a stress response power spectral density (PSD) using the semi-empirical Dirlik, Single Moment, Zhao-Baker and other spectral methods. These methods effectively assume that the PSD has a corresponding time history which is stationary with a normal distribution. This paper shows how the probability density function for rainflow stress cycles can be extracted from each of the spectral methods. This extraction allows for the application of the MIL-HDBK-5J fatigue coefficients in the cumulative damage summation. A numerical example is given in this paper for the stress response of a beam undergoing random base excitation, where the excitation is applied separately by a time history and by its corresponding PSD. The fatigue calculation is performed in the time domain, as well as in the frequency domain via the modified spectral methods. The result comparison shows that the modified spectral methods give comparable results to the time domain rainflow counting method.
Continuous non-invasive blood glucose monitoring by spectral image differencing method
Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing
2018-01-01
Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.
New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams
Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.
2011-04-27
An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.
Multi-spectral temperature measurement method for gas turbine blade
Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong
2016-02-01
One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.
Methods for deconvoluting and interpreting complex gamma- and x-ray spectral regions
Gunnink, R.
1983-06-01
Germanium and silicon detectors are now widely used for the detection and measurement of x and gamma radiation. However, some analysis situations and spectral regions have heretofore been too complex to deconvolute and interpret by techniques in general use. One example is the L x-ray spectrum of an element taken with a Ge or Si detector. This paper describes some new tools and methods that were developed to analyze complex spectral regions; they are illustrated with examples
Incompressible spectral-element method: Derivation of equations
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
Spectral Analysis of Large Finite Element Problems by Optimization Methods
Luca Bergamaschi
1994-01-01
Full Text Available Recently an efficient method for the solution of the partial symmetric eigenproblem (DACG, deflated-accelerated conjugate gradient was developed, based on the conjugate gradient (CG minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In this article four different choices of the coefficient βk required at each DACG iteration for the computation of the new search direction Pk are discussed. The “optimal” choice is the one that yields the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Numerical results point out that the optimal βk leads to a very cost effective algorithm in terms of CPU time in all the sample problems presented. Various preconditioners are also analyzed. It is found that DACG using the optimal βk and (LLT−1 as a preconditioner, L being the incomplete Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element problems, and particularly for the largest problem, with size equal to 4560, for which the speed gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.
Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.
Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.
Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics
Shizgal, Bernard
2015-01-01
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...
A stabilised nodal spectral element method for fully nonlinear water waves
Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele
2016-01-01
can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...
A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas
Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.
2013-01-01
Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods
Hicks, D.L.
1978-01-01
The artification viscosity method of von Neumann and Richtmyer was originally designed and analyzed for stability in the case when the material was an ideal gas. Recently a hydrocode (WONDY) based on the von Neumann-Richymyer scheme was used in calculating wave progagation problems in materials obeying a form of Maxwell's material law; signs of an unstable difference scheme appeared. A stability analysis shows that the timestep restrictions required for stability in certain cases can be more stringent for material laws of the Maxwell type than they are for material laws of the ideal gas type
Generalized spectral method for near-field optical microscopy
Jiang, B.-Y.; Zhang, L. M.; Basov, D. N.; Fogler, M. M. [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Castro Neto, A. H. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore 117542 (Singapore)
2016-02-07
Electromagnetic interaction between a sub-wavelength particle (the “probe”) and a material surface (the “sample”) is studied theoretically. The interaction is shown to be governed by a series of resonances corresponding to surface polariton modes localized near the probe. The resonance parameters depend on the dielectric function and geometry of the probe as well as on the surface reflectivity of the material. Calculation of such resonances is carried out for several types of axisymmetric probes: spherical, spheroidal, and pear-shaped. For spheroids, an efficient numerical method is developed, capable of handling cases of large or strongly momentum-dependent surface reflectivity. Application of the method to highly resonant materials, such as aluminum oxide (by itself or covered with graphene), reveals a rich structure of multi-peak spectra and nonmonotonic approach curves, i.e., the probe-sample distance dependence. These features also strongly depend on the probe shape and optical constants of the model. For less resonant materials such as silicon oxide, the dependence is weak, so that the spheroidal model is reliable. The calculations are done within the quasistatic approximation with radiative damping included perturbatively.
Methodes spectrales paralleles et applications aux simulations de couches de melange compressibles
Male , Jean-Michel; Fezoui , Loula ,
1993-01-01
La resolution des equations de Navier-Stokes en methodes spectrales pour des ecoulements compressibles peut etre assez gourmande en temps de calcul. On etudie donc ici la parallelisation d'un tel algorithme et son implantation sur une machine massivement parallele, la connection-machine CM-2. La methode spectrale s'adapte bien aux exigences du parallelisme massif, mais l'un des outils de base de cette methode, la transformee de Fourier rapide (lorsqu'elle doit etre appliquee sur les deux dime...
Spectral methods for a nonlinear initial value problem involving pseudo differential operators
Pasciak, J.E.
1982-01-01
Spectral methods (Fourier methods) for approximating the solution of a nonlinear initial value problem involving pseudo differential operators are defined and analyzed. A semidiscrete approximation to the nonlinear equation based on an L 2 projection is described. The semidiscrete L 2 approximation is shown to be a priori stable and convergent under sufficient decay and smoothness assumptions on the initial data. It is shown that the semidiscrete method converges with infinite order, that is, higher order decay and smoothness assumptions imply higher order error bounds. Spectral schemes based on spacial collocation are also discussed
A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images
Yi Wang
2016-11-01
Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.
Application of Least-Squares Spectral Element Methods to Polynomial Chaos
Vos, P.E.J.; Gerritsma, M.I.
2006-01-01
This papers describes the use of the Least-Squares Spectral Element Method to polynomial Chaos to solve stochastic partial differential equations. The method will be described in detail and a comparison will be presented between the least-squares projection and the conventional Galerkin projection.
Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah
2013-01-01
Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)
A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems
A. Karimi Dizicheh
2013-01-01
wavelet suitable for large intervals, and then the Legendre-Guass collocation points of the Legendre wavelet are derived. Using this strategy, the iterative spectral method converts the differential equation to a set of algebraic equations. Solving these algebraic equations yields an approximate solution for the differential equation. The proposed method is illustrated by some numerical examples, and the result is compared with the exponentially fitted Runge-Kutta method. Our proposed method is simple and highly accurate.
Application of the spectral correction method to reanalysis data in South Africa
Larsén, Xiaoli Guo; Kruger, Andries C.
2014-01-01
of this study is to evaluate the applicability of the method to the relevant region. The impacts from the two aspects are investigated for interior and coastal locations. Measurements from five stations from South Africa are used to evaluate the results from the spectral model S(f)=af−5/3 together...... with the hourly time series of the Climate Forecast System Reanalysis (CFSR) 10 m wind at 38 km resolution over South Africa. The results show that using the spectral correction method to the CFSR wind data produce extreme wind atlases in acceptable agreement with the atlas made from limited measurements across...
The analysis of toxic connections content in water by spectral methods
Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.
2017-08-01
The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.
Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.
2009-05-01
Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral
Spectral analysis of an algebraic collapsing acceleration for the characteristics method
Le Tellier, R.; Hebert, A.
2005-01-01
A spectral analysis of a diffusion synthetic acceleration called Algebraic Collapsing Acceleration (ACA) was carried out in the context of the characteristics method to solve the neutron transport equation. Two analysis were performed in order to assess the ACA performances. Both a standard Fourier analysis in a periodic and infinite slab-geometry and a direct spectral analysis for a finite slab-geometry were investigated. In order to evaluate its performance, ACA was compared with two competing techniques used to accelerate the convergence of the characteristics method, the Self-Collision Re-balancing technique and the Asymptotic Synthetic Acceleration. In the restricted framework of 1-dimensional slab-geometries, we conclude that ACA offers a good compromise between the reduction of the spectral radius of the iterative matrix and the resources to construct, store and solve the corrective system. A comparison on a monoenergetic 2-dimensional benchmark was performed and tends to confirm these conclusions. (authors)
Ostachowicz, W; Kudela, P
2010-01-01
A Spectral Element Method is used for wave propagation modelling. A 3D solid spectral element is derived with shape functions based on Lagrange interpolation and Gauss-Lobatto-Legendre points. This approach is applied for displacement approximation suited for fundamental modes of Lamb waves as well as potential distribution in piezoelectric transducers. The novelty is the model geometry extension from flat to curved elements for application in shell-like structures. Exemplary visualisations of waves excited by the piezoelectric transducers in curved shell structure made of aluminium alloy are presented. Simple signal analysis of wave interaction with crack is performed. The crack is modelled by separation of appropriate nodes between elements. An investigation of influence of the crack length on wave propagation signals is performed. Additionally, some aspects of the spectral element method implementation are discussed.
Nobe, Kazuki; Yoshimoto, Kayo; Yamada, Kenji; Takahashi, Hideya
2018-02-01
Functional gastrointestinal disorders (FGID) are the most common gastrointestinal disorders. The term "functional" is generally applied to disorders where there are no structural abnormalities. One of the major factors for FGID is abnormal gastrointestinal motility. We have proposed a system for assessing the function of gastric motility using a 3D endoscope. In this previous study, we established a method for estimating characteristics of contraction wave extracted from a 3D shape include contraction wave obtained from stereo endoscope. Because it is difficult to fix the tip position of the endoscope during the examination, estimation of the 3D position between the endoscope and the gastric wall is necessary for the accurate assessment. Then, we have proposed a motion compensation method using 3D scene flow. However, since mucosa has few feature points, it is difficult to obtain 3D scene flow from RGB images. So, we focused on spectral imaging that can enhance visualization of mucosal structure. Spectral image can be obtained without switching optical filters by using technique to estimate spectral reflectance by image processing. In this paper, we propose registration method of measured 3D shape in time series using estimated spectral image. The spectral image is estimated from the RGB image for each frame. 3D scene flow of feature points, that is, enhanced mucosal structure calculated by spectral images in a time series. The position change between the endoscope and gastric wall is estimated by 3D scene flow. We experimented to confirm the validity of the proposed method using papers with a grid of colors close to the background color.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
The next step in coastal numerical models: spectral/hp element methods?
Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.
2005-01-01
In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....
The application of the Chebyshev-spectral method in transport phenomena
Guo, Weidong; Narayanan, Ranga
2012-01-01
Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character. When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer. To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems. The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs. The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interes...
A new approach to passivity preserving model reduction : the dominant spectral zero method
Ionutiu, R.; Rommes, J.; Antoulas, A.C.; Roos, J.; Costa, L.R.J.
2010-01-01
A new model reduction method for circuit simulation is presented, which preserves passivity by interpolating dominant spectral zeros. These are computed as poles of an associated Hamiltonian system, using an iterative solver: the subspace accelerated dominant pole algorithm (SADPA). Based on a
Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method
Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno
2015-01-01
SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....
Spectral mimetic least-squares method for div-curl systems
Gerritsma, Marc; Palha, Artur; Lirkov, I.; Margenov, S.
2018-01-01
In this paper the spectral mimetic least-squares method is applied to a two-dimensional div-curl system. A test problem is solved on orthogonal and curvilinear meshes and both h- and p-convergence results are presented. The resulting solutions will be pointwise divergence-free for these test
Stability Estimates for h-p Spectral Element Methods for Elliptic Problems
Dutt, Pravir; Tomar, S.K.; Kumar, B.V. Rathish
2002-01-01
In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which
The spectral method and the central limit theorem for general Markov chains
Nagaev, S. V.
2017-12-01
We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.
Evaluation of methods to determine the spectral variations of aerosol optical thickness
Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.
The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...
Testing the accuracy and stability of spectral methods in numerical relativity
Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.
2007-01-01
The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test
Fiebig, H. Rudolf
2002-01-01
We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach
Teodorovich, E. V.
2018-03-01
In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-01-01
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations
Multiscale finite element methods for high-contrast problems using local spectral basis functions
Efendiev, Yalchin
2011-02-01
In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.
Development and validation of a new fallout transport method using variable spectral winds
Hopkins, A.T.
1984-01-01
A new method was developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using spectral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud
A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA
Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan
2016-11-01
The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.
High-precision solution to the moving load problem using an improved spectral element method
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei
2011-04-01
An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.
Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas
Lisitsa, V.S.
2009-01-01
An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)
Schuettler, C.; Gebhardt, G.; Stock, A.; Helle, N.; Boegl, K.W.
1993-12-31
Chemiluminescence, electron spin resonance, thermoluminescence and viscosity measurements have been investigated for their suitability as detection method for the irradiation of the medicinal herbs anise seeds (anisi fructus), valerian roots (valerianae radix), redberry leaves (uvae ursi folium), birch leaves (betulae folium), greek hay seeds (foenugraeci semen), cayenne pepper (capsici fructus acer), black-aldertee bark (frangulae cortex), fennel fruits (feoniculi fructus), rose hip shells (cynosbati fructus), coltsfoot (farfarae folium), acorus roots (calami rhizoma), chamomile flowers (matricariae flos), caraway (carvi fructus), lavender flowers (lavandulae flos), linseed (lini semen), lime tree flowers (tiliae flos), St. Mary`s thistle fruit (cardui mariae herba), lemon balm (melissae folium), java tea (orthosiphonis folium), peppermint (menthae piperitae folium), sage leaves (salviae folium), scouring rush (equiseti herba), senna leaves (sennae folium), plantain herbs (plantaginis lanceolata herba), thyme herbs (thymi herba), juniper berries (juniperi fructus), hawthorne herbs (crataegi folium), wheat starch (amylum tritici) and wormwood (absinthii herba). Depending on the herbs, the methods used were more or less suitable. Chemiluminescence measurements showed the smallest differences between untreated and irradiated samples whereas thermoluminescence measurements on isolated minerals from the vegetable drugs gave better results. In some herbs radiation-specific radicals could be identified by ESR spectroscopy. Viscosity measurement is suitable for some herbs as fast and inexpensive method for screening. (orig.) [Deutsch] Die Eignung von Chemilumineszenz-, ESR-, Thermolumineszenz- und Viskositaetsmessungen als Nachweismethode fuer die Behandlung von Arzneidrogen mit ionisierenden Strahlen wurde an Anis, Baldrianwurzel, Baerentraubenblaettern, Birkenblaettern, Bockshornsamen, Cayennepfeffer, Faulbaumrinde, Fenchel, Hagebuttenschalen, Huflattichblaettern
A sparse-mode spectral method for the simulation of turbulent flows
Meneguzzi, M.; Politano, H.; Pouquet, A.; Zolver, M.
1996-01-01
We propose a new algorithm belonging to the family of the sparsemode spectral method to simulate turbulent flows. In this method the number of Fourier modes k increases with k more slowly than k D-1 in dimension D, while retaining the advantage of the fast Fourier transform. Examples of applications of the algorithm are given for the one-dimensional Burger's equation and two-dimensional incompressible MHD flows
Z. Pashazadeh Atabakan
2013-01-01
Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.
Evaluation of Relative Blood Viscosity During Menstruation in ...
USER
ABSTRACT. The changes in blood viscosity, plasma viscosity, haematocrit and erythrocyte sedimentation rate before ... higher (6.78±0.18mm/hr) during the menstrual phase than during the premenstrual phase ... MATERIALS AND METHODS.
Reduction of Musical Noise in Spectral Subtraction Method Using Subframe Phase Randomization
Seok, J.W.; Bae, K.S. [Kyungpook National University, Taegu (Korea)
1999-06-01
The Subframe phase randomization method is applied to the spectral subtraction method to reduce the musical noise in nonvoicing region after speech enhancement. The musical noise in the spectral subtraction method is the result of the narrowband tonal components that appearing somewhat periodically in the spectrogram of unvoiced and silence regions. Thus each synthesis frame in nonvoicing region is divided into several subframes to broaden the narrowband spectrum, and then phases of silence and unvoiced regions are randomized to eliminate the tonal components in the spectrum while keeping the shape of the amplitude spectrum. Performance assessments based on visual inspection of spectrogram, objective measure, and informal subjective listening tests demonstrate the superiority of the proposed algorithm. (author). 7 refs., 5 figs.
Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa
2018-05-01
In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.
Measurement of viscosity of slush at high shear rates
小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru
1988-01-01
Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.
Zhao, Li-Ting; Xiang, Yu-Hong; Dai, Yin-Mei; Zhang, Zhuo-Yong
2010-04-01
Near infrared spectroscopy was applied to measure the tissue slice of endometrial tissues for collecting the spectra. A total of 154 spectra were obtained from 154 samples. The number of normal, hyperplasia, and malignant samples was 36, 60, and 58, respectively. Original near infrared spectra are composed of many variables, for example, interference information including instrument errors and physical effects such as particle size and light scatter. In order to reduce these influences, original spectra data should be performed with different spectral preprocessing methods to compress variables and extract useful information. So the methods of spectral preprocessing and wavelength selection have played an important role in near infrared spectroscopy technique. In the present paper the raw spectra were processed using various preprocessing methods including first derivative, multiplication scatter correction, Savitzky-Golay first derivative algorithm, standard normal variate, smoothing, and moving-window median. Standard deviation was used to select the optimal spectral region of 4 000-6 000 cm(-1). Then principal component analysis was used for classification. Principal component analysis results showed that three types of samples could be discriminated completely and the accuracy almost achieved 100%. This study demonstrated that near infrared spectroscopy technology and chemometrics method could be a fast, efficient, and novel means to diagnose cancer. The proposed methods would be a promising and significant diagnosis technique of early stage cancer.
Rapid screening of guar gum using portable Raman spectral identification methods.
Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D
2016-01-25
Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
Spectral element method for elastic and acoustic waves in frequency domain
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)
2016-12-15
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.
Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems
Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da
2001-01-01
Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
Mitsuyasu, T.; Ishii, K.; Hino, T.; Aoyama, M.
2009-01-01
Spectral history methods for pin-by-pin core analysis method using the three-dimensional direct response matrix have been developed. The direct response matrix is formalized by four sub-response matrices in order to respond to a core eigenvalue k and thus can be recomposed at each outer iteration in the core analysis. For core analysis, it is necessary to take into account the burn-up effect related to spectral history. One of the methods is to evaluate the nodal burn-up spectrum obtained using the out-going neutron current. The other is to correct the fuel rod neutron production rates obtained the pin-by-pin correction. These spectral history methods were tested in a heterogeneous system. The test results show that the neutron multiplication factor error can be reduced by half during burn-up, the nodal neutron production rates errors can be reduced by 30% or more. The root-mean-square differences between the relative fuel rod neutron production rate distributions can be reduced within 1.1% error. This means that these methods can accurately reflect the effects of intra- and inter-assembly heterogeneities during burn-up and can be used for core analysis. Core analysis with the DRM method was carried out for an ABWR quarter core and it was found that both thermal power and coolant-flow distributions were smoothly converged. (authors)
Mihai V. Putz
2012-11-01
Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.
Barros, R.C.; Filho, H.A.; Oliveira, F.B.S.; Silva, F.C. da
2004-01-01
Presented here are the advances in spectral nodal methods for discrete ordinates (SN) eigenvalue problems in Cartesian geometry. These coarse-mesh methods are based on three ingredients: (i) the use of the standard discretized spatial balance SN equations; (ii) the use of the non-standard spectral diamond (SD) auxiliary equations in the multiplying regions of the domain, e.g. fuel assemblies; and (iii) the use of the non-standard spectral Green's function (SGF) auxiliary equations in the non-multiplying regions of the domain, e.g., the reflector. In slab-geometry the hybrid SD-SGF method generates numerical results that are completely free of spatial truncation errors. In X,Y-geometry, we obtain a system of two 'slab-geometry' SN equations for the node-edge average angular fluxes by transverse-integrating the X,Y-geometry SN equations separately in the y- and then in the x-directions within an arbitrary node of the spatial grid set up on the domain. In this paper, we approximate the transverse leakage terms by constants. These are the only approximations considered in the SD-SGF-constant nodal method, as the source terms, that include scattering and eventually fission events, are treated exactly. Moreover, we describe in this paper the progress of the approximate SN albedo boundary conditions for substituting the non-multiplying regions around the nuclear reactor core. We show numerical results to typical model problems to illustrate the accuracy of spectral nodal methods for coarse-mesh SN criticality calculations. (Author)
Spectral feature characterization methods for blood stain detection in crime scene backgrounds
Yang, Jie; Mathew, Jobin J.; Dube, Roger R.; Messinger, David W.
2016-05-01
Blood stains are one of the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Blood spectral signatures containing unique reflectance or absorption features are important both for forensic on-site investigation and laboratory testing. They can be used for target detection and identification applied to crime scene hyperspectral imagery, and also be utilized to analyze the spectral variation of blood on various backgrounds. Non-blood stains often mislead the detection and can generate false alarms at a real crime scene, especially for dark and red backgrounds. This paper measured the reflectance of liquid blood and 9 kinds of non-blood samples in the range of 350 nm - 2500 nm in various crime scene backgrounds, such as pure samples contained in petri dish with various thicknesses, mixed samples with different colors and materials of fabrics, and mixed samples with wood, all of which are examined to provide sub-visual evidence for detecting and recognizing blood from non-blood samples in a realistic crime scene. The spectral difference between blood and non-blood samples are examined and spectral features such as "peaks" and "depths" of reflectance are selected. Two blood stain detection methods are proposed in this paper. The first method uses index to denote the ratio of "depth" minus "peak" over"depth" add"peak" within a wavelength range of the reflectance spectrum. The second method uses relative band depth of the selected wavelength ranges of the reflectance spectrum. Results show that the index method is able to discriminate blood from non-blood samples in most tested crime scene backgrounds, but is not able to detect it from black felt. Whereas the relative band depth method is able to discriminate blood from non-blood samples on all of the tested background material types and colors.
Methods for measuring the spectral reflectivity of advanced materials at high temperature
Salikhov, T.P.; Kan, V.V.
1993-01-01
For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)
Spectral decomposition in advection-diffusion analysis by finite element methods
Nickell, R.E.; Gartling, D.K.; Strang, G.
1978-01-01
In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies
A spectral measurement method for determining white OLED average junction temperatures
Zhu, Yiting; Narendran, Nadarajah
2016-09-01
The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.
High-order multi-implicit spectral deferred correction methods for problems of reactive flow
Bourlioux, Anne; Layton, Anita T.; Minion, Michael L.
2003-01-01
Models for reacting flow are typically based on advection-diffusion-reaction (A-D-R) partial differential equations. Many practical cases correspond to situations where the relevant time scales associated with each of the three sub-processes can be widely different, leading to disparate time-step requirements for robust and accurate time-integration. In particular, interesting regimes in combustion correspond to systems in which diffusion and reaction are much faster processes than advection. The numerical strategy introduced in this paper is a general procedure to account for this time-scale disparity. The proposed methods are high-order multi-implicit generalizations of spectral deferred correction methods (MISDC methods), constructed for the temporal integration of A-D-R equations. Spectral deferred correction methods compute a high-order approximation to the solution of a differential equation by using a simple, low-order numerical method to solve a series of correction equations, each of which increases the order of accuracy of the approximation. The key feature of MISDC methods is their flexibility in handling several sub-processes implicitly but independently, while avoiding the splitting errors present in traditional operator-splitting methods and also allowing for different time steps for each process. The stability, accuracy, and efficiency of MISDC methods are first analyzed using a linear model problem and the results are compared to semi-implicit spectral deferred correction methods. Furthermore, numerical tests on simplified reacting flows demonstrate the expected convergence rates for MISDC methods of orders three, four, and five. The gain in efficiency by independently controlling the sub-process time steps is illustrated for nonlinear problems, where reaction and diffusion are much stiffer than advection. Although the paper focuses on this specific time-scales ordering, the generalization to any ordering combination is straightforward
Radulovic, Branka; Stojanovic, Maja
2015-01-01
The use of different teaching methods has resulted in different quality and quantity of students' knowledge. For this reason, it is important to constantly review the teaching methods and applied most effectively. One way of determining instruction efficiency is by using cognitive load and student achievement. Cognitive load can be generally…
Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.
1987-01-01
Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics
Stable multi-domain spectral penalty methods for fractional partial differential equations
Xu, Qinwu; Hesthaven, Jan S.
2014-01-01
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.
Feit, M.D.; Fleck, J.A. Jr.
1989-01-01
We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo
2009-01-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...
Application of the spectral-correlation method for diagnostics of cellulose paper
Kiesewetter, D.; Malyugin, V.; Reznik, A.; Yudin, A.; Zhuravleva, N.
2017-11-01
The spectral-correlation method was described for diagnostics of optically inhomogeneous biological objects and materials of natural origin. The interrelation between parameters of the studied objects and parameters of the cross correlation function of speckle patterns produced by scattering of coherent light at different wavelengths is shown for thickness, optical density and internal structure of the material. A detailed study was performed for cellulose electric insulating paper with different parameters.
Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)
Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.
1988-01-01
In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr
The spectral induced polarisation method and its application to hydrogeological problems
Hoerdt, A.
2007-01-01
The spectral induced polarisation (SIP) method is an extension of the DC resistivity technique, where an alternating current is injected and the phase shift between voltage and current is measured in addition to the amplitude. In unconsolidated sediments, the phase shift includes complementary information on the structure of the pore space, and thus it should be possible to estimate hydraulic parameters from SIP measurements. Here, I describe some recent developments and give one example where hydraulic conductivity was estimated at the field scale
Performance Evaluation of the Spectral Centroid Downshift Method for Attenuation Estimation
Samimi, Kayvan; Varghese, Tomy
2015-01-01
Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequency-domain approaches applied to this problem. In this study, a statistical analysis of this method’s performance was carried out based on a parametric m...
Alchimov, A B; Drobot, S I; Drokov, V G; Zarubin, V P; Kazmirov, A D; Skodaev, Y D; Podrezov, A M [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)
1998-12-31
The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.
Alchimov, A.B.; Drobot, S.I.; Drokov, V.G.; Zarubin, V.P.; Kazmirov, A.D.; Skodaev, Y.D.; Podrezov, A.M. [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)
1997-12-31
The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.
Detection of the power lines in UAV remote sensed images using spectral-spatial methods.
Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham
2018-01-15
In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vidyasagar, A.; Tan, W. L.; Kochmann, D. M.
2017-09-01
Understanding the electromechanical response of bulk polycrystalline ferroelectric ceramics requires scale-bridging approaches. Recent advances in fast numerical methods to compute the homogenized mechanical response of materials with heterogeneous microstructure have enabled the solution of hitherto intractable systems. In particular, the use of a Fourier-based spectral method as opposed to the traditional finite element method has gained significant interest in the homogenization of periodic microstructures. Here, we solve the periodic, electro-mechanically-coupled boundary value problem at the mesoscale of polycrystalline ferroelectrics in order to extract the effective response of barium titanate (BaTiO3) and lead zirconate titanate (PZT) under applied electric fields. Results include the effective electric hysteresis and the associated butterfly curve of strain vs. electric field for mean stress-free electric loading. Computational predictions of the 3D polycrystalline response show convincing agreement with our experimental electric cycling and strain hysteresis data for PZT-5A. In addition to microstructure-dependent effective physics, we also show how finite-difference-based approximations in the spectral solution scheme significantly reduce instability and ringing phenomena associated with spectral techniques and lead to spatial convergence with h-refinement, which have been major challenges when modeling high-contrast systems such as polycrystals.
Rapid viscosity measurements of powdered thermosetting resins
Price, H. L.; Burks, H. D.; Dalal, S. K.
1978-01-01
A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.
Seiffert, Betsy R.; Ducrozet, Guillaume
2018-01-01
We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation
Viscosity measurement techniques in Dissipative Particle Dynamics
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
A spectral nodal method for discrete ordinates problems in x,y geometry
Barros, R.C. de; Larsen, E.W.
1991-06-01
A new nodal method is proposed for the solution of S N problems in x- y-geometry. This method uses the Spectral Green's Function (SGF) scheme for solving the one-dimensional transverse-integrated nodal transport equations with no spatial truncation error. Thus, the only approximations in the x, y-geometry nodal method occur in the transverse leakage terms, as in diffusion theory. We approximate these leakage terms using a flat or constant approximation, and we refer to the resulting method as the SGF-Constant Nodal (SGF-CN) method. We show in numerical calculations that the SGF-CN method is much more accurate than other well-known transport nodal methods for coarse-mesh deep-penetration S N problems, even though the transverse leakage terms are approximated rather simply. (author)
Kupka, F.
1997-11-01
This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)
2013-07-01
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.
2013-01-01
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)
Analysing flow structures around a blade using spectral/hp method and HPIV
Stoevesandt, Bernhard; Steigerwald, Christian; Shishkin, Andrei; Wagner, Claus; Peinke, Joachim
2007-01-01
A still difficult, yet pressing task for blade manufacturers and turbine producers is the correct prediction of the effects of turbulent winds on the blade. Reynolds Averaged Numerical Simulations (RANS) are a limited tool for calculating the effects. For large eddy simulations (LES) boundary layer calculation are still difficult therefore the spectral element method seems to be an approach to improve numerical calculations of flow separation. The flow field around an fx79-w151a airfoil has been calculated by the spectral element code NεκTαrusing a direct numerical simulation (DNS) solver. In a first step a laminar inflow on the airfoil at angle of attack of α = 12 0 and a Reynolds number of Re= 33000 was simulated using the 2D Version of the code. The flow pattern was compared to measurements using holographic particle induced velocimetry (HPIV) in a wind tunnel
Spectral element method for band-structure calculations of 3D phononic crystals
Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Liu, Qing Huo
2016-01-01
The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss–Lobatto–Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals. (paper)
Khan, Sami Ullah; Ali, Ishtiaq
2018-03-01
Explicit solutions to delay differential equation (DDE) and stochastic delay differential equation (SDDE) can rarely be obtained, therefore numerical methods are adopted to solve these DDE and SDDE. While on the other hand due to unstable nature of both DDE and SDDE numerical solutions are also not straight forward and required more attention. In this study, we derive an efficient numerical scheme for DDE and SDDE based on Legendre spectral-collocation method, which proved to be numerical methods that can significantly speed up the computation. The method transforms the given differential equation into a matrix equation by means of Legendre collocation points which correspond to a system of algebraic equations with unknown Legendre coefficients. The efficiency of the proposed method is confirmed by some numerical examples. We found that our numerical technique has a very good agreement with other methods with less computational effort.
Jovanovic, S.; Stormark, E.
1966-01-01
Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method
Parsani, Matteo
2012-01-01
Optimal explicit Runge-Kutta (ERK) schemes with large stable step sizes are developed for method-of-lines discretizations based on the spectral difference (SD) spatial discretization on quadrilateral grids. These methods involve many stages and provide the optimal linearly stable time step for a prescribed SD spectrum and the minimum leading truncation error coefficient, while admitting a low-storage implementation. Using a large number of stages, the new ERK schemes lead to efficiency improvements larger than 60% over standard ERK schemes for 4th- and 5th-order spatial discretization.
The Spectral/hp-Finite Element Method for Partial Differential Equations
Engsig-Karup, Allan Peter
2009-01-01
dimensions. In the course the chosen programming environment is Matlab, however, this is by no means a necessary requirement. The mathematical level needed to grasp the details of this set of notes requires an elementary background in mathematical analysis and linear algebra. Each chapter is supplemented......This set of lecture notes provides an elementary introduction to both the classical Finite Element Method (FEM) and the extended Spectral/$hp$-Finite Element Method for solving Partial Differential Equations (PDEs). Many problems in science and engineering can be formulated mathematically...
Dilz, R.J.; van Beurden, M.C.
2016-01-01
We propose a mixed spatial spectral method aimed directly at aperiodic, finite scatterers in a layered medium. By using a Gabor frame to discretize the problem a straightforward and fast way to Fourier transform is available. The poles and branchcuts in the spectral-domain Green function can be
Spectral functions and transport coefficients from the functional renormalization group
Tripolt, Ralf-Arno
2015-06-03
In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.
Laboratory Tests for Dispersive Soil Viscosity Determining
Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.
2017-11-01
There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.
Viscosity of liquid sulfur under high pressure
Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S
2004-01-01
The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry
The spectral element method for static neutron transport in AN approximation. Part I
Barbarino, A.; Dulla, S.; Mund, E.H.; Ravetto, P.
2013-01-01
Highlights: ► Spectral elements methods (SEMs) are extended for the neutronics of nuclear reactor cores. ► The second-order, A N formulation of neutron trasport is adopted. ► Results for classical benchmark cases in 2D are presented and compared to finite elements. ► The advantages of SEM in terms of precision and convergence rate are illustrated. ► SEM consitutes a promising approach for the solution of neutron transport problems. - Abstract: Spectral elements methods provide very accurate solutions of elliptic problems. In this paper we apply the method to the A N (i.e. SP 2N−1 ) approximation of neutron transport. Numerical results for classical benchmark cases highlight its performance in comparison with finite element computations, in terms of accuracy per degree of freedom and convergence rate. All calculations presented in this paper refer to two-dimensional problems. The method can easily be extended to three-dimensional cases. The results illustrate promising features of the method for more complex transport problems
A spatial discretization of the MHD equations based on the finite volume - spectral method
Miyoshi, Takahiro
2000-05-01
Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)
Matsushima, Toshiki; Ishioka, Keiichi, E-mail: matsushima@kugi.kyoto-u.ac.jp, E-mail: ishioka@gfd-dennou.org [Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)
2017-04-15
This paper presents a spectral method for numerically solving the Navier–Stokes equations in a semi-infinite domain bounded by a flat plane: the aim is to obtain high accuracy with flexible boundary conditions. The proposed use is for numerical simulations of small-scale atmospheric phenomena near the ground. We introduce basis functions that fit the semi-infinite domain, and an integral condition for vorticity is used to reduce the computational cost when solving the partial differential equations that appear when the viscosity term is treated implicitly. Furthermore, in order to ensure high accuracy, two iteration techniques are applied when solving the system of linear equations and in determining boundary values. This significantly reduces numerical errors, and the proposed method enables high-resolution numerical experiments. This is demonstrated by numerical experiments showing the collision of a vortex ring into a wall; these were performed using numerical models based on the proposed method. It is shown that the time evolution of the flow field is successfully obtained not only near the boundary, but also in a region far from the boundary. The applicability of the proposed method and the integral condition is discussed. (paper)
Wang, Zhiheng
2015-01-01
A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.
Validation of spectral methods for the seismic analysis of multi-supported structures
Viola, B.
1999-01-01
There are many methodologies for the seismic analysis of buildings. When a seism occurs, structures such piping systems in nuclear power plants are subjected to motions that may be different at each support point. Therefore it is necessary to develop methods that take into account the multi-supported effect. In a first time, a bibliography analysis on the different methods that exist has been carried out. The aim was to find a particular method applicable to the study of piping systems. The second step of this work consisted in developing a program that may be used to test and make comparisons on different selected methods. So spectral methods have the advantage to give an estimation of the maximum values for strain in the structure, in reduced calculation time. The time history analysis is used as the reference for the tests. (author)
Spectral methods for the detection of network community structure: a comparative analysis
Shen, Hua-Wei; Cheng, Xue-Qi
2010-01-01
Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity
Overdetermined shooting methods for computing standing water waves with spectral accuracy
Wilkening, Jon; Yu Jia
2012-01-01
A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss the existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In the numerical method, robustness is achieved by posing the problem as an overdetermined nonlinear system and using either adjoint-based minimization techniques or a quadratically convergent trust-region method to minimize the objective function. Efficiency is achieved in the trust-region approach by parallelizing the Jacobian computation, so the setup cost of computing the Dirichlet-to-Neumann operator in the variational equation is not repeated for each column. Updates of the Jacobian are also delayed until the previous Jacobian ceases to be useful. Accuracy is maintained using spectral collocation with optional mesh refinement in space, a high-order Runge–Kutta or spectral deferred correction method in time and quadruple precision for improved navigation of delicate regions of parameter space as well as validation of double-precision results. Implementation issues for transferring much of the computation to a graphic processing units are briefly
A Guide on Spectral Methods Applied to Discrete Data in One Dimension
Martin Seilmayer
2017-01-01
Full Text Available This paper provides an overview about the usage of the Fourier transform and its related methods and focuses on the subtleties to which the users must pay attention. Typical questions, which are often addressed to the data, will be discussed. Such a problem can be the origin of frequency or band limitation of the signal or the source of artifacts, when a Fourier transform is carried out. Another topic is the processing of fragmented data. Here, the Lomb-Scargle method will be explained with an illustrative example to deal with this special type of signal. Furthermore, the time-dependent spectral analysis, with which one can evaluate the point in time when a certain frequency appears in the signal, is of interest. The goal of this paper is to collect the important information about the common methods to give the reader a guide on how to use these for application on one-dimensional data. The introduced methods are supported by the spectral package, which has been published for the statistical environment R prior to this article.
American Society for Testing and Materials. Philadelphia
1971-01-01
1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less. 1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute. 1.3 This test metho...
Gamba, Irene M.; Haack, Jeffrey R.
2014-01-01
We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit to the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation
An Excel‐based implementation of the spectral method of action potential alternans analysis
Pearman, Charles M.
2014-01-01
Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439
An Excel-based implementation of the spectral method of action potential alternans analysis.
Pearman, Charles M
2014-12-01
Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate
Djenidi, L.; Antonia, R. A.
2012-10-01
We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 ≤ R λ ≤ 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of < \\varepsilon rangle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.
Spectral-element Method for 3D Marine Controlled-source EM Modeling
Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.
2017-12-01
As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).
Performance evaluation of the spectral centroid downshift method for attenuation estimation.
Samimi, Kayvan; Varghese, Tomy
2015-05-01
Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.
A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models
Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li
2014-01-01
Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.
Buican, Tudor N.; Martin, John C.
1990-01-01
An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.
Spectral methods in machine learning and new strategies for very large datasets
Belabbas, Mohamed-Ali; Wolfe, Patrick J.
2009-01-01
Spectral methods are of fundamental importance in statistics and machine learning, because they underlie algorithms from classical principal components analysis to more recent approaches that exploit manifold structure. In most cases, the core technical problem can be reduced to computing a low-rank approximation to a positive-definite kernel. For the growing number of applications dealing with very large or high-dimensional datasets, however, the optimal approximation afforded by an exact spectral decomposition is too costly, because its complexity scales as the cube of either the number of training examples or their dimensionality. Motivated by such applications, we present here 2 new algorithms for the approximation of positive-semidefinite kernels, together with error bounds that improve on results in the literature. We approach this problem by seeking to determine, in an efficient manner, the most informative subset of our data relative to the kernel approximation task at hand. This leads to two new strategies based on the Nyström method that are directly applicable to massive datasets. The first of these—based on sampling—leads to a randomized algorithm whereupon the kernel induces a probability distribution on its set of partitions, whereas the latter approach—based on sorting—provides for the selection of a partition in a deterministic way. We detail their numerical implementation and provide simulation results for a variety of representative problems in statistical data analysis, each of which demonstrates the improved performance of our approach relative to existing methods. PMID:19129490
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo
Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.
2016-05-01
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and
A practical material decomposition method for x-ray dual spectral computed tomography.
Hu, Jingjing; Zhao, Xing
2016-03-17
X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.
A Method of Particle Swarm Optimized SVM Hyper-spectral Remote Sensing Image Classification
Liu, Q J; Jing, L H; Wang, L M; Lin, Q Z
2014-01-01
Support Vector Machine (SVM) has been proved to be suitable for classification of remote sensing image and proposed to overcome the Hughes phenomenon. Hyper-spectral sensors are intrinsically designed to discriminate among a broad range of land cover classes which may lead to high computational time in SVM mutil-class algorithms. Model selection for SVM involving kernel and the margin parameter values selection which is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyper-spectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, particle swarm algorithm is introduced to the optimal selection of SVM (PSSVM) kernel parameter σ and margin parameter C to improve the modelling efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for evaluating the novel PSSVM, as well as traditional SVM classifier with general Grid-Search cross-validation method (GSSVM). And then, evaluation indexes including SVM model training time, classification Overall Accuracy (OA) and Kappa index of both PSSVM and GSSVM are all analyzed quantitatively. It is demonstrated that OA of PSSVM on test samples and whole image are 85% and 82%, the differences with that of GSSVM are both within 0.08% respectively. And Kappa indexes reach 0.82 and 0.77, the differences with that of GSSVM are both within 0.001. While the modelling time of PSSVM can be only 1/10 of that of GSSVM, and the modelling. Therefore, PSSVM is an fast and accurate algorithm for hyper-spectral image classification and is superior to GSSVM
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm
Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data
Trung Nghia Vu
2013-04-01
Full Text Available One of the most significant challenges in the comparative analysis of Nuclear Magnetic Resonance (NMR metabolome profiles is the occurrence of shifts between peaks across different spectra, for example caused by fluctuations in pH, temperature, instrument factors and ion content. Proper alignment of spectral peaks is therefore often a crucial preprocessing step prior to downstream quantitative analysis. Various alignment methods have been developed specifically for this purpose. Other methods were originally developed to align other data types (GC, LC, SELDI-MS, etc., but can also be applied to NMR data. This review discusses the available methods, as well as related problems such as reference determination or the evaluation of alignment quality. We present a generic alignment framework that allows for comparison and classification of different alignment approaches according to their algorithmic principles, and we discuss their performance.
Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method
Zhang Xu; Tan Duowang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)
A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems
Efendiev, Yalchin R.
2015-08-01
We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.
Direct Numerical Simulation of the Rayleigh−Taylor Instability with the Spectral Element Method
Xu, Zhang; Duo-Wang, Tan
2009-01-01
A novel method is proposed to simulate Rayleigh−Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier–Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh−Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh–Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh−Taylor instabilities of turbulent flows. (fundamental areas of phenomenology (including applications))
A multi-domain spectral method for time-fractional differential equations
Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.
2015-07-01
This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.
Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad
2008-01-01
The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.
A method for spectral DNS of low Rm channel flows based on the least dissipative modes
Kornet, Kacper; Pothérat, Alban
2015-10-01
We put forward a new type of spectral method for the direct numerical simulation of flows where anisotropy or very fine boundary layers are present. The main idea is to take advantage of the fact that such structures are dissipative and that their presence should reduce the number of degrees of freedom of the flow, when paradoxically, their fine resolution incurs extra computational cost in most current methods. The principle of this method is to use a functional basis with elements that already include these fine structures so as to avoid these extra costs. This leads us to develop an algorithm to implement a spectral method for arbitrary functional bases, and in particular, non-orthogonal ones. We construct a basic implementation of this algorithm to simulate magnetohydrodynamic (MHD) channel flows with an externally imposed, transverse magnetic field, where very thin boundary layers are known to develop along the channel walls. In this case, the sought functional basis can be built out of the eigenfunctions of the dissipation operator, which incorporate these boundary layers, and it turns out to be non-orthogonal. We validate this new scheme against numerical simulations of freely decaying MHD turbulence based on a finite volume code and it is found to provide accurate results. Its ability to fully resolve wall-bounded turbulence with a number of modes close to that required by the dynamics is demonstrated on a simple example. This opens the way to full-blown simulations of MHD turbulence under very high magnetic fields. Until now such simulations were too computationally expensive. In contrast to traditional methods the computational cost of the proposed method, does not depend on the intensity of the magnetic field.
A spectral nudging method for the ACCESS1.3 atmospheric model
Uhe, P.; Thatcher, M.
2015-06-01
A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS) version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10-30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.
Haaland, D.M.; Easterling, R.G.; Vopicka, D.A.
1985-01-01
In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures, The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectra baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentration was <1%
Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J
2017-05-01
The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.
Research on the strong optical feedback effects based on spectral analysis method
Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo
2018-01-01
The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.
A spectral nudging method for the ACCESS1.3 atmospheric model
P. Uhe
2015-06-01
Full Text Available A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10–30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.
Zou, Peng
2017-05-10
Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.
Frequency-dependant homogenized properties of composite using spectral analysis method
Ben Amor, M; Ben Ghozlen, M H; Lanceleur, P
2010-01-01
An inverse procedure is proposed to determine the material constants of multilayered composites using a spectral analysis homogenization method. Recursive process gives interfacial displacement perpendicular to layers in term of deepness. A fast-Fourier transform (FFT) procedure has been used in order to extract the wave numbers propagating in the multilayer. The upper frequency bound of this homogenization domain is estimated. Inside the homogenization domain, we discover a maximum of three planes waves susceptible to propagate in the medium. A consistent algorithm is adopted to develop an inverse procedure for the determination of the materials constants of multidirectional composite. The extracted wave numbers are used as the inputs for the procedure. The outputs are the elastic constants of multidirectional composite. Using this method, the frequency dependent effective elastic constants are obtained and example for [0/90] composites is given.
Parallelizing the spectral transform method: A comparison of alternative parallel algorithms
Foster, I.; Worley, P.H.
1993-01-01
The spectral transform method is a standard numerical technique for solving partial differential equations on the sphere and is widely used in global climate modeling. In this paper, we outline different approaches to parallelizing the method and describe experiments that we are conducting to evaluate the efficiency of these approaches on parallel computers. The experiments are conducted using a testbed code that solves the nonlinear shallow water equations on a sphere, but are designed to permit evaluation in the context of a global model. They allow us to evaluate the relative merits of the approaches as a function of problem size and number of processors. The results of this study are guiding ongoing work on PCCM2, a parallel implementation of the Community Climate Model developed at the National Center for Atmospheric Research
Application of spectral Lanczos decomposition method to large scale problems arising geophysics
Tamarchenko, T. [Western Atlas Logging Services, Houston, TX (United States)
1996-12-31
This paper presents an application of Spectral Lanczos Decomposition Method (SLDM) to numerical modeling of electromagnetic diffusion and elastic waves propagation in inhomogeneous media. SLDM approximates an action of a matrix function as a linear combination of basis vectors in Krylov subspace. I applied the method to model electromagnetic fields in three-dimensions and elastic waves in two dimensions. The finite-difference approximation of the spatial part of differential operator reduces the initial boundary-value problem to a system of ordinary differential equations with respect to time. The solution to this system requires calculating exponential and sine/cosine functions of the stiffness matrices. Large scale numerical examples are in a good agreement with the theoretical error bounds and stability estimates given by Druskin, Knizhnerman, 1987.
Membership determination of open clusters based on a spectral clustering method
Gao, Xin-Hua
2018-06-01
We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral
A spectral element-FCT method for the compressible Euler equations
Giannakouros, J.; Karniadakis, G.E.
1994-01-01
A new algorithm based on spectral element discretizations and flux-corrected transport concepts is developed for the solution of the Euler equations of inviscid compressible fluid flow. A conservative formulation is proposed based on one- and two-dimensional cell-averaging and reconstruction procedures, which employ a staggered mesh of Gauss-Chebyshev and Gauss-Lobatto-Chebyshev collocation points. Particular emphasis is placed on the construction of robust boundary and interfacial conditions in one- and two-dimensions. It is demonstrated through shock-tube problems and two-dimensional simulations that the proposed algorithm leads to stable, non-oscillatory solutions of high accuracy. Of particular importance is the fact that dispersion errors are minimal, as show through experiments. From the operational point of view, casting the method in a spectral element formulation provides flexibility in the discretization, since a variable number of macro-elements or collocation points per element can be employed to accomodate both accuracy and geometric requirements
Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P
2014-03-01
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Making of a solar spectral irradiance dataset I: observations, uncertainties, and methods
Schöll Micha
2016-01-01
Full Text Available Context. Changes in the spectral solar irradiance (SSI are a key driver of the variability of the Earth’s environment, strongly affecting the upper atmosphere, but also impacting climate. However, its measurements have been sparse and of different quality. The “First European Comprehensive Solar Irradiance Data Exploitation project” (SOLID aims at merging the complete set of European irradiance data, complemented by archive data that include data from non-European missions. Aims. As part of SOLID, we present all available space-based SSI measurements, reference spectra, and relevant proxies in a unified format with regular temporal re-gridding, interpolation, gap-filling as well as associated uncertainty estimations. Methods. We apply a coherent methodology to all available SSI datasets. Our pipeline approach consists of the pre-processing of the data, the interpolation of missing data by utilizing the spectral coherency of SSI, the temporal re-gridding of the data, an instrumental outlier detection routine, and a proxy-based interpolation for missing and flagged values. In particular, to detect instrumental outliers, we combine an autoregressive model with proxy data. We independently estimate the precision and stability of each individual dataset and flag all changes due to processing in an accompanying quality mask. Results. We present a unified database of solar activity records with accompanying meta-data and uncertainties. Conclusions. This dataset can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous SSI record.
Duckwitz, Hannah [Institut fuer Kernphysik, Koeln Univ. (Germany); Petkov, Pavel [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
2016-07-01
In this new approach to lifetime measurements via Doppler attenuated line shapes, the spectra of a feeding f and a deexciting transition d of the level of interest are used to determine the lifetime without any lineshape analysis of the feeding transition (direct or indirect). Similarly to the DDC method, the decay function λ{sub d}n{sub d}(t) of the deexciting transition is determined. The feeding of the level is included via the spectral difference of the two successive decays. Consequently, the determined lifetime is the real lifetime. After transforming both transitions into the same energy region, their spectral difference D(v{sub θ}) = S{sub d}(v{sub θ})-S{sub f}(v{sub θ}) = ∫{sub 0}{sup ∞}(∂P{sub θ}(t,v{sub θ}))/(∂t)n{sub d}(t) dt, is solved for n{sub d}(t). Dividing n{sub d}(t) by the decay function λ{sub d}n{sub d}(t) should yield a constant τ value for the level lifetime as a function of the time t. After the development and test of the procedure in 2015, it is now applied for the first time. Two level lifetimes are determined in {sup 86}Sr for the 2{sup +}{sub 2} and the 2{sup +}{sub 3} levels.
Vanel, Florence O.; Baysal, Oktay
1995-01-01
Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.
Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method
Chu, Chunlei
2012-07-01
Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.
Technological characteristics of meat - viscosity
DIBĎÁK, Tomáš
2012-01-01
This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...
A numerical study of viscous vortex rings using a spectral method
Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.
1988-01-01
Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.
Struts, A. V.; Barmasov, A. V.; Brown, M. F.
2016-02-01
This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.
Arvieu, R.
The assumptions and principles of the spectral distribution method are reviewed. The object of the method is to deduce information on the nuclear spectra by constructing a frequency function which has the same first few moments, as the exact frequency function, these moments being then exactly calculated. The method is applied to subspaces containing a large number of quasi particles [fr
Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.
2015-01-01
Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Spectral Imaging by Upconversion
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....
Using spectral element method to solve variational inequalities with applications in finance
Moradipour, M.; Yousefi, S.A.
2015-01-01
Under the Black–Scholes model, the value of an American option solves a time dependent variational inequality problem (VIP). In this paper, first we discretize the variational inequality of American option in temporal direction by applying the Rannacher time stepping and achieve a sequence of elliptic variational inequalities. Second we discretize the spatial domain of variational inequalities by using spectral element methods with high order Lagrangian polynomials introduced on Gauss–Legendre–Lobatto points. Also by computing integrals by the Gauss–Legendre–Lobatto quadrature rule we derive a sequence of the linear complementarity problems (LCPs) having a positive definite sparse coefficient matrix. To find the unique solutions of the LCPs, we use the projected successive over-relaxation (PSOR) algorithm. Furthermore we present some existence and uniqueness theorems for the variational inequalities and LCPs. Finally, theoretical results are verified on the relevant numerical examples.
Statistical learning method in regression analysis of simulated positron spectral data
Avdic, S. Dz.
2005-01-01
Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-01-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Carella, Alfredo Raul
2012-09-15
Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)
Rudolf Naef
2017-12-01
Full Text Available The application of a commonly used computer algorithm based on the group-additivity method for the calculation of the liquid viscosity coefficient at 293.15 K and the activity coefficient at infinite dilution in water at 298.15 K of organic molecules is presented. The method is based on the complete breakdown of the molecules into their constituting atoms, further subdividing them by their immediate neighborhood. A fast Gauss–Seidel fitting method using experimental data from literature is applied for the calculation of the atom groups’ contributions. Plausibility tests have been carried out on each of the calculations using a ten-fold cross-validation procedure which confirms the excellent predictive quality of the method. The goodness of fit (Q2 and the standard deviation (σ of the cross-validation calculations for the viscosity coefficient, expressed as log(η, was 0.9728 and 0.11, respectively, for 413 test molecules, and for the activity coefficient log(γ∞ the corresponding values were 0.9736 and 0.31, respectively, for 621 test compounds. The present approach has proven its versatility in that it enabled the simultaneous evaluation of the liquid viscosity of normal organic compounds as well as of ionic liquids.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays
Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division
2015-02-24
This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements
Substructure identification for shear structures: cross-power spectral density method
Zhang, Dongyu; Johnson, Erik A
2012-01-01
In this paper, a substructure identification method for shear structures is proposed. A shear structure is divided into many small substructures; utilizing the dynamic equilibrium of a one-floor substructure, an inductive identification problem is formulated, using the cross-power spectral densities between structural floor accelerations and a reference response, to estimate the parameters of that one story. Repeating this procedure, all story parameters of the shear structure are identified from top to bottom recursively. An identification error analysis is performed for the proposed substructure method, revealing how uncertain factors (e.g. measurement noise) in the identification process affect the identification accuracy. According to the error analysis, a smart reference selection rule is designed to choose the optimal reference response that further enhances the identification accuracy. Moreover, based on the identification error analysis, explicit formulae are developed to calculate the variances of the parameter identification errors. A ten-story shear structure is used to illustrate the effectiveness of the proposed substructure method. The simulation results show that the method, combined with the reference selection rule, can very accurately identify structural parameters despite large measurement noise. Furthermore, the proposed formulae provide good predictions for the variances of the parameter identification errors, which are vital for providing accurate warnings of structural damage. (paper)
A new physics-based method for detecting weak nuclear signals via spectral decomposition
Chan, Kung-Sik; Li, Jinzheng; Eichinger, William; Bai, Erwei
2012-01-01
We propose a new physics-based method to determine the presence of the spectral signature of one or more nuclides from a poorly resolved spectra with weak signatures. The method is different from traditional methods that rely primarily on peak finding algorithms. The new approach considers each of the signatures in the library to be a linear combination of subspectra. These subspectra are obtained by assuming a signature consisting of just one of the unique gamma rays emitted by the nuclei. We propose a Poisson regression model for deducing which nuclei are present in the observed spectrum. In recognition that a radiation source generally comprises few nuclear materials, the underlying Poisson model is sparse, i.e. most of the regression coefficients are zero (positive coefficients correspond to the presence of nuclear materials). We develop an iterative algorithm for a penalized likelihood estimation that prompts sparsity. We illustrate the efficacy of the proposed method by simulations using a variety of poorly resolved, low signal-to-noise ratio (SNR) situations, which show that the proposed approach enjoys excellent empirical performance even with SNR as low as to -15 db.
Gu Yi; Xiong Shengqing; Zhou Jianxin; Fan Zhengguo; Ge Liangquan
2014-01-01
γ-ray released by the radon daughter has severe impact on airborne γ-ray spectrometry. The spectral-ratio method is one of the best mathematical methods for radon background deduction in airborne γ-ray spectrometry. In this paper, an advanced spectral-ratio method was proposed which deducts Compton scattering ray by the fast Fourier transform rather than tripping ratios, the relationship between survey height and correction coefficient of the advanced spectral-ratio radon background correction method was studied, the advanced spectral-ratio radon background correction mathematic model was established, and the ground saturation model calibrating technology for correction coefficient was proposed. As for the advanced spectral-ratio radon background correction method, its applicability and correction efficiency are improved, and the application cost is saved. Furthermore, it can prevent the physical meaning lost and avoid the possible errors caused by matrix computation and mathematical fitting based on spectrum shape which is applied in traditional correction coefficient. (authors)
Dynamic viscosity of polymer solutions
Peterlin, A
1982-03-01
The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.
Spectral map-analysis: a method to analyze gene expression data
Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc
2004-01-01
bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis
A spectral/B-spline method for the Navier-Stokes equations in unbounded domains
Dufresne, L.; Dumas, G.
2003-01-01
The numerical method presented in this paper aims at solving the incompressible Navier-Stokes equations in unbounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin approximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the θ and z directions while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the particular analytical behaviors at both end points r=0 and r→∞. A modal reduction algorithm has also been implemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme. Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the local character of the B-splines allows for a great flexibility in node positioning while keeping narrow bandwidth matrices. Numerical tests show that the present method compares advantageously with other similar methodologies using purely global expansions
Omar Eldwaik
2018-01-01
Full Text Available Wind induced noise is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. In this paper, a new method to mitigate wind induced noise in microphone signals is developed. Instead of applying filtering techniques, wind induced noise is statistically separated from wanted signals in a singular spectral subspace. The paper is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling. The method includes two complementary stages, namely decomposition and reconstruction. The first stage decomposes mixed signals in eigen-subspaces, selects and groups the principal components according to their contributions to wind noise and wanted signals in the singular spectrum domain. The second stage reconstructs the signals in the time domain, resulting in the separation of wind noise and wanted signals. Results show that microphone wind noise is separable in the singular spectrum domain evidenced by the weighted correlation. The new method might be generalized to other outdoor sound acquisition applications.
Applicability of viscosity measurement to the detection of irradiated peppers
Hayashi, T.; Todoriki, S.; Kohyama, K.
1996-01-01
Starch is degraded by ionising radiation, resulting in a decrease in viscosity. The viscosities of black and white peppers which contain large amounts of starch are reduced by irradiation so, therefore, viscosity measurement has been proposed as a method to detect the irradiation treatment of these food products. Although detection of irradiated spices by thermoluminescence measurement has been established, it is useful to establish the viscosity measuring technique for detecting irradiated peppers, as this method is carried out widely in the laboratories of food controlling authorities and food processing companies. (author)
Kim, Bom Soo
2018-05-01
We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.
Measuring Viscosities of Gases at Atmospheric Pressure
Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini
1987-01-01
Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.
Temperature dependence of shear viscosity of SU(3)-gluodynamics within lattice simulation
Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Moscow Institute of Physics and Technology,9 Institutskii per., 141700, Dolgoprudny (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,1 Pobedy St., Protvino, 142281 (Russian Federation); School of Biomedicine, Far Eastern Federal University,8 Sukhanova St., 690950, Vladivostok (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation)
2017-04-18
In this paper we study the SU(3)-gluodynamics shear viscosity temperature dependence on the lattice. To do so, we measure the correlation functions of the energy-momentum tensor in the range of temperatures T/T{sub c}∈[0.9,1.5]. To extract the shear viscosity we used two approaches. The first one is to fit the lattice data with a physically motivated ansatz for the spectral function with unknown parameters and then determine the shear viscosity. The second approach is to apply the Backus-Gilbert method allowing to extract the shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the range T/T{sub c}∈[0.9,1.5] the SU(3)-gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s close to the value 1/4π of the N=4 Supersymmetric Yang-Mills theory.
Gilli, L.
2013-01-01
This thesis presents the development and the implementation of an uncertainty propagation algorithm based on the concept of spectral expansion. The first part of the thesis is dedicated to the study of uncertainty propagation methodologies and to the analysis of spectral techniques. The concepts
Vojtíšek, Petr; Květoň, M.; Richter, I.
2016-01-01
Roč. 11, February (2016), č. článku 16009. ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Photopolymers * diffraction gratings * angular-spectral maps * spectral selectivity * angular selectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.975, year: 2016
Data preprocessing methods of FT-NIR spectral data for the classification cooking oil
Ruah, Mas Ezatul Nadia Mohd; Rasaruddin, Nor Fazila; Fong, Sim Siong; Jaafar, Mohd Zuli
2014-12-01
This recent work describes the data pre-processing method of FT-NIR spectroscopy datasets of cooking oil and its quality parameters with chemometrics method. Pre-processing of near-infrared (NIR) spectral data has become an integral part of chemometrics modelling. Hence, this work is dedicated to investigate the utility and effectiveness of pre-processing algorithms namely row scaling, column scaling and single scaling process with Standard Normal Variate (SNV). The combinations of these scaling methods have impact on exploratory analysis and classification via Principle Component Analysis plot (PCA). The samples were divided into palm oil and non-palm cooking oil. The classification model was build using FT-NIR cooking oil spectra datasets in absorbance mode at the range of 4000cm-1-14000cm-1. Savitzky Golay derivative was applied before developing the classification model. Then, the data was separated into two sets which were training set and test set by using Duplex method. The number of each class was kept equal to 2/3 of the class that has the minimum number of sample. Then, the sample was employed t-statistic as variable selection method in order to select which variable is significant towards the classification models. The evaluation of data pre-processing were looking at value of modified silhouette width (mSW), PCA and also Percentage Correctly Classified (%CC). The results show that different data processing strategies resulting to substantial amount of model performances quality. The effects of several data pre-processing i.e. row scaling, column standardisation and single scaling process with Standard Normal Variate indicated by mSW and %CC. At two PCs model, all five classifier gave high %CC except Quadratic Distance Analysis.
Parsani, Matteo
2011-09-01
The main goal of this paper is to develop an efficient numerical algorithm to compute the radiated far field noise provided by an unsteady flow field from bodies in arbitrary motion. The method computes a turbulent flow field in the near fields using a high-order spectral difference method coupled with large-eddy simulation approach. The unsteady equations are solved by advancing in time using a second-order backward difference formulae scheme. The nonlinear algebraic system arising from the time discretization is solved with the nonlinear lowerupper symmetric GaussSeidel algorithm. In the second step, the method calculates the far field sound pressure based on the acoustic source information provided by the first step simulation. The method is based on the Ffowcs WilliamsHawkings approach, which provides noise contributions for monopole, dipole and quadrupole acoustic sources. This paper will focus on the validation and assessment of this hybrid approach using different test cases. The test cases used are: a laminar flow over a two-dimensional (2D) open cavity at Re = 1.5 × 10 3 and M = 0.15 and a laminar flow past a 2D square cylinder at Re = 200 and M = 0.5. In order to show the application of the numerical method in industrial cases and to assess its capability for sound field simulation, a three-dimensional turbulent flow in a muffler at Re = 4.665 × 10 4 and M = 0.05 has been chosen as a third test case. The flow results show good agreement with numerical and experimental reference solutions. Comparison of the computed noise results with those of reference solutions also shows that the numerical approach predicts noise accurately. © 2011 IMACS.
Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No
2017-02-01
In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.
A spectral/B-spline method for the Navier-Stokes equations in unbounded domains
Dufresne, L
2003-01-01
The numerical method presented in this paper aims at solving the incompressible Navier-Stokes equations in unbounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin approximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the theta and z directions while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the particular analytical behaviors at both end points r=0 and r-> infinity. A modal reduction algorithm has also been implemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme. Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the lo...
The Sternheimer-GW method and the spectral signatures of plasmonic polarons
Giustino, Feliciano
During the past three decades the GW method has emerged among the most promising electronic structure techniques for predictive calculations of quasiparticle band structures. In order to simplify the GW work-flow while at the same time improving the calculation accuracy, we developed the Sternheimer-GW method. In Sternheimer-GW both the screened Coulomb interaction and the electron Green's function are evaluated by using exclusively occupied Kohn-Sham states, as in density-functional perturbation theory. In this talk I will review the basics of Sternheimer-GW, and I will discuss two recent applications to semiconductors and superconductors. In the case of semiconductors we calculated complete energy- and momentum-resolved spectral functions by combining Sternheimer-GW with the cumulant expansion approach. This study revealed the existence of band structure replicas which arise from electron-plasmon interactions. In the case of superconductors we calculated the Coulomb pseudo-potential from first principles, and combined this approach with the Eliashberg theory of the superconducting critical temperature. This work was supported by the Leverhulme Trust (RL-2012-001), the European Research Council (EU FP7/ERC 239578), the UK Engineering and Physical Sciences Research Council (EP/J009857/1), and the Graphene Flagship (EU FP7/604391).
Tarasenko Alexandr
2016-01-01
Full Text Available The paper is aimed at determining the possibility of applying the simplified method proposed by the authors to calculate the tank seismic resistance in compliance with current regulations and scientific provisions. The authors propose a highly detailed numerical model for a common oil storage tank RVSPK-50000 that enables static operational loads and dynamic action of earthquakes to be calculated. Within the modal analysis the natural oscillation frequencies in the range of 0-10 Hz were calculated; the results are given for the first ten modes. The model takes into account the effect of impulsive and convective components of hydrodynamic pressure during earthquakes. Within the spectral analysis by generalized response spectra was calculated a general stress-strain state of a structure during earthquakes of 7, 8, 9 intensity degrees on the MSK-64 scale for a completely filled up, a half-filled up to the mark of 8.5 m and an empty RVSPK-50000 tank. The developed finite element model can be used to perform calculations of seismic resistance by the direct dynamic method, which will give further consideration to the impact of individual structures (floating roof, support posts, adjoined elements of added stiffness on the general stress-strain state of a tank.
A Wavelet-Modified ESPRIT Hybrid Method for Assessment of Spectral Components from 0 to 150 kHz
Luisa Alfieri
2017-01-01
Full Text Available Waveform distortions are an important issue in distribution systems. In particular, the assessment of very wide spectra, that include also components in the 2–150 kHz range, has recently become an issue of great interest. This is due to the increasing presence of high-spectral emission devices like end-user devices and distributed generation systems. This study proposed a new sliding-window wavelet-modified estimation of signal parameters by rotational invariance technique (ESPRIT method, particularly suitable for the spectral analysis of waveforms that have very wide spectra. The method is very accurate and requires reduced computational effort. It can be applied successfully to detect spectral components in the range of 0–150 kHz introduced both by distributed power plants, such as wind and photovoltaic generation systems, and by end-user equipment connected to grids through static converters, such as fluorescent lamps.
Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A
2013-07-01
Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.
Rotational and spin viscosities of water: Application to nanofluidics
Hansen, Jesper Søndergaard; Bruus, Henrik; Todd, B.D.
2010-01-01
In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required....... We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103...
Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification
Winokur, J.
2015-12-19
We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a finer control of the resolution along two distinct subsets of model parameters. The control of the error along different subsets of parameters may be needed for instance in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid PSP is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error. In addition, the global approach is better suited for generalization to more than two subsets of directions.
Fourier spectral methods for fractional-in-space reaction-diffusion equations
Bueno-Orovio, Alfonso
2014-04-01
© 2014, Springer Science+Business Media Dordrecht. Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains of ℝ. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
Analysis of China's real estate prices and macroeconomy based on evolutionary co-spectral method
Juan Li
2015-04-01
Full Text Available Purpose: This paper investigates the dynamic interaction between the real estate market and the macroeconomic environment of China by use of dynamic coherence function based on co-spectral analysis. Design/methodology/approach: Through a theoretical perspective, the dynamic interrelationship among economic variables at different time intervals (both long and short terms is analyzed. Findings: The empirical results show that China’s real estate market features a high coherence with the change of the long-term interest rate, employment rate and money supply, while there is a moderate coherence between the real estate market and the inflation rate and economic growth rate, and the coherence between the short-term rate of interest and the real estate market is the lowest. Research implications: Previous researches have some shortcomings. They do not consider the dependence between nonlinear series, but the latter is crucial to avoid the deviation of results. In this paper, we proposed a new method of experience to overcome these shortcomings. Originality/value: The paper provides a reasonable explanation accordingly to different coherences between the real estate market and the macroeconomic variables.
Quasiparticle self-consistent GW method for the spectral properties of complex materials.
Bruneval, Fabien; Gatti, Matteo
2014-01-01
The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.
A study of flow patterns for staggered cylinders at low Reynolds number by spectral element method
Hsu, Li-Chieh; Chen, Chien-Lin; Ye, Jian-Zhi [National Yunlin University of Science and Technology, Taiwan (China)
2017-06-15
This study investigates the pattern of flow past two staggered array cylinders using the spectral element method by varying the distance between the cylinders and the angle of incidence (α) at low Reynolds numbers (Re = 100-800). Six flow patterns are identified as Shear layer reattachment (SLR), Induced separation (IS), Vortex impingement (VI), Synchronized vortex shedding (SVS), Vortex pairing and enveloping (VPE), and Vortex pairing splitting and enveloping (VPSE). These flow patterns can be transformed from one to another by changing the distance between the cylinders, the angle of incidence, or Re. SLR, IS and VI flow patterns appear in regimes with small angles of incidence (i.e., α ≤ 30° ) and hold only a single von Karman vortex shedding in a wake with one shedding frequency. SVS, VPE and VPSE flow patterns appear in regimes with large angles of incidence (i.e., 30° ≤ α ≤ 50° ) and present two synchronized von Karman vortices. Quantitative analyses and physical interpretation are also conducted to determine the generation mechanisms of the said flow patterns.
Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung Soon; Kim, Jung-Soo; Yoon, Wan-Ki
2008-01-01
In these days, the threats relating to nuclear or radioactive materials have become a matter of internationally increased grave concern. A plastic scintillation detector in radiation portal monitoring (RPM) application has been used to detect radioactive sources in steel scrap entering reprocessing facilities, and to detect illicit transport of radioactive material across border ports-of-entry. The detection systems for RPM application usually are large and can not easily be moved to a different location. For some situations, an inconspicuous and mobile system for the radioactive or nuclear material during road transport is needed. The mobile radiation detection system has employed a NaI- based radiation detector to detect and identify the material hidden in vehicle. There are some operational constraints - short measuring time, weak activity due to heavy shield of illegal source, long distance - of inspection system in such nuclear security applications. Due to these constraints, large area sensor is required to maximize its sensitivity. Large NaI material, however, is extremely expensive. In designing a radiation detector for prevention of illicit trafficking of nuclear or radioactive materials, the trade-off should be carefully optimized between performance and cost in order to achieve cost-effective inspection system. For the cost-effective mobile radiation detection system, this paper describes new spectral analysis method to use the crude spectroscopic information available from a plastic detector to discriminate other man-made radiation source from NORM
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin
2017-09-28
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
Veronese, Mattia; Rizzo, Gaia; Bertoldo, Alessandra; Turkheimer, Federico E
2016-01-01
In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion whereas the measured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating that it is a very flexible and robust method for PET data analysis. Differently from the most common PET quantification approaches that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without defining any specific model configuration and has demonstrated very good sensitivity to the underlying kinetics. This characteristic makes it useful as an investigative tool especially for the analysis of novel PET tracers. The purpose of this work is to offer an overview of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field.
Chacó n Rebollo, Tomá s; Dia, Ben Mansour
2015-01-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
Chacón Rebollo, Tomás
2015-03-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
Role of viscosity in nonlinear effects
Petrov, G V; Peshkin, M A; Polyakov, Ye Ye
1980-01-01
Data are presented on laboratory experiments for filtering of gases of liquids in clay, slightly permeable core samples. A method is proposed for processing the results of experiments which makes it possible to isolate the effect of viscosity of the fluid on the defined quantity of maximum pressure differential.
Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization
Morency, C.
2017-12-01
Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ma, Xiaoke; Wang, Bingbo; Yu, Liang
2018-01-01
Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.
Viscosity of liquids theory, estimation, experiment, and data
Viswanath, Dabir S; Prasad, Dasika HL; Dutt, Nidamarty VK; Rani, Kalipatnapu Y
2007-01-01
Single comprehensive book on viscosity of liquids, as opposed to most of the books in this area which are data books, i.e., a compilation of viscosity data from the literature, where the information is scattered and the description and analysis of the experimental methods and governing theory are not readily available in a single place.
Viscosity measurements of molten refractory metals using an electrostatic levitator
Ishikawa, Takehiko; Paradis, Paul-François; Okada, Junpei T; Watanabe, Yuki
2012-01-01
Viscosities of several refractory metals (titanium, nickel, zirconium, niobium, ruthenium, rhodium, hafnium, iridium and platinum) and terbium have been measured by the oscillation drop method with an improved procedure. The measured data were less scattered than our previous measurements. Viscosities at their melting temperatures showed good agreement with literature values and some predicted values. (paper)
Viscosity Meaurement Technique for Metal Fuels
Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-02-09
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.
Viscosity Meaurement Technique for Metal Fuels
Ban, Heng
2015-01-01
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.
Pressure Effect on Extensional Viscosity
Christensen, Jens Horslund; Kjær, Erik Michael
1999-01-01
The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....
Beyer, Florian; Daszuta, Boris; Frauendiener, Jörg; Whale, Ben
2014-01-01
Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through the use of integer spin-weighted spherical harmonics, we present a method which allows for the implementation of arbitrary tensorial evolution equations. Our method combines two numerical techniques that were originally developed with different applications in mind. The first is Huffenberger and Wandelt’s spectral decomposition algorithm to perform the mapping from physical to spectral space. The second is the application of Luscombe and Luban’s method, to convert numerically divergent linear recursions into stable nonlinear recursions, to the calculation of reduced Wigner d-functions. We give a detailed discussion of the theory and numerical implementation of our algorithm. The properties of our method are investigated by solving the scalar and vectorial advection equation on the sphere, as well as the 2 + 1 Maxwell equations on a deformed sphere. (paper)
A general spectral method for the numerical simulation of one-dimensional interacting fermions
Clason, Christian; von Winckel, Gregory
2012-08-01
This software implements a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient Matlab program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. The new version includes a Python implementation of the presented approach. New version program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 No. of bytes in distributed program, including test data, etc.: 5418 Distribution format: tar.gz Programming language: MATLAB/GNU Octave, Python Computer: Any architecture supported by MATLAB, GNU Octave or Python Operating system: Any supported by MATLAB, GNU Octave or Python RAM: Depends on the data Classification: 4.3, 2.2. External routines: Python 2.7+, NumPy 1.3+, SciPy 0.10+ Catalogue identifier of previous version: AEKO_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 405 Does the new version supersede the previous version?: Yes Nature of problem: The direct numerical
Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.
2014-12-01
Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.
Capillary waves with surface viscosity
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y
2014-01-01
The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.
On the measurement of magnetic viscosity
Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)
2012-08-15
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.
Sadegh Mahmoudi
2013-04-01
Full Text Available This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e., the pressure gradient. The influence of relationship between cohesion and adsorption parameters and the interfacial tension values in Young's equation, pore structure (micro scan image derived porous media response is compared with corresponding porosity and permeability ideal sphere pack structure, and saturation distribution on relative permeability curves are studied with the aim to achieve the realistic stable condition for the simulation of gas-liquid systems with a low viscosity ratio.
A new method of organizing spectral line intensity ratio fluctuations of nightglow emissions
Thelin, B.
1986-02-01
In this paper a new kind of linearization effect between the atmospheric night airglow emissions is presented. The same kind of linearization effect has previously been studied with spectrochemical light sources together with a spectrometer. A linear graph was obtained for atomic spectral lines and vibrational bandspectra when the spectral line intensity ratio fluctuations were plotted versus the photon energies of these emissions. To study this effect data from a number of different photometer investigations of night airglow emissions at different times and places have been used. (author)
Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; Radney, James G.; Kolesar, Katheryn R.; Zhang, Qi; Setyan, Ari; O'Neill, Norman T.; Cappa, Christopher D.
2018-04-01
Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.
D. B. Atkinson
2018-04-01
Full Text Available Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Tailoring Spectral Properties of Binary PT-Symmetric Gratings by Duty-Cycle Methods
Lupu, Anatole T.; Benisty, Henri; Lavrinenko, Andrei
2016-01-01
We explore the frequency selective functionalities of a nonuniform PT-symmetric Bragg grating with modulated complex index profile. We start by assessing the possibility to achieve an efficient apodization of the PT-symmetric Bragg grating spectral response by using direct adaptations of the conv...
Sensor for Viscosity and Shear Strength Measurement
Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.
1998-01-01
Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation
Taneja, Ankur; Higdon, Jonathan
2018-01-01
A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-06-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the
Angga Yustiawan
2013-09-01
Full Text Available One of the components of the Indonesia Tsunami Early Warning System (InaTEWS is a surface buoy. The surface buoy is exposed to dynamic and random loadings while operating at sea, particularly due to waves. Because of the cyclic nature of the wave load, this may result in a fatigue damage of the keel structure, which connects the mooring line with the buoy hull. The operating location of the buoy is off the Java South Coast at the coordinate (10.3998 S, 108.3417 E. To determine the stress transfer function, model tests were performed, measuring the buoy motions and the stress at the mooring line. A spectral fatigue analysis method is applied for the purpose of estimating the fatigue life of the keel structure. Utilizing the model-test results, the S-N curve obtained in a previous study and the wave data at the buoy location, it is found that the fatigue life of the keel structure is approximately 11 years.
Smejkalová Eva
2017-03-01
Full Text Available The possibilities of remote sensing techniques in the field of the Earth surface monitoring and protection specifically for the problems caused by petroleum contaminations, for the mapping of insufficiently plugged and abandoned old oil wells and for the analysis of onshore oil seeps are described. Explained is the methodology for analyzing and detection of potential hydrocarbon contaminations using the Earth observation in the area of interest in Slovakia (Korňa and in Czech Republic (Nesyt, mainly building and calibrating the spectral library for oil seeps. The acquisition of the in-situ field data (ASD, Cropscan spectroradiometers for this purpose, the successful building and verification of hydrocarbon spectral library, the application of hydrocarbon indexes and use of shift in red-edge part of electromagnetic spectra, the spectral analysis of input data are clarified in the paper. Described is approach which could innovate the routine methods for investigating the occurrence of hydrocarbons and can assist during the mapping and locating the potential oil seep sites. Important outcome is the successful establishment of a spectral library (database with calibration data suitable for further application in data classification for identifying the occurrence of hydrocarbons.
Viscosity of iodinated contrast agents during renal excretion
Jost, Gregor; Lengsfeld, Philipp; Lenhard, Diana C.; Pietsch, Hubertus; Huetter, Joachim; Sieber, Martin A.
2011-01-01
Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H 2 O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H 2 O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for the
Viscosity of iodinated contrast agents during renal excretion
Jost, Gregor, E-mail: Gregor.Jost@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, Philipp, E-mail: Philipp.Lengsfeld@bayer.com [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lenhard, Diana C., E-mail: Diana.Lenhard@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Huetter@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Sieber, Martin A., E-mail: Martin.Sieber@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany)
2011-11-15
Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H{sub 2}O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H{sub 2}O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for
Voronov, G. S.; Berezhetskii, M. S.; Bondar’, Yu. F.; Vafin, I. Yu.; Vasil’kov, D. G.; Voronova, E. V.; Grebenshchikov, S. E.; Grishina, I. A.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Meshcheryakov, A. I.; Pleshkov, E. I.; Khol’nov, Yu. V.; Fedyanin, O. I.; Tsygankov, V. A.; Shchepetov, S. V.; Kurnaev, V. A.; Vizgalov, I. V.; Urusov, V. A.
2013-01-01
Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305–310 nm can be detected even at water leakage rates less than 10 −4 Pa m 3 /s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to ∼2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.
Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states
Gamba, Irene M.; Tharkabhushanam, Sri Harsha
2009-01-01
We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d-1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ( )]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously
Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing
2017-09-01
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic
Should you trust your heavy oil viscosity measurement?
Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)
2003-07-01
For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.
Qiao Haoxue; Cai Qingyu; Rao Jianguo; Li Baiwen
2002-01-01
A spectral fitting method for solving the time-dependent Schroedinger equation has been developed and applied to the atom in intense laser fields. This method allows us to obtain a highly accurate time-dependent wave function with a contribution from the high-order term of Δt. Moreover, the time-dependent wave function is determined on a small number of discrete mesh points, thus making calculations simple and accurate. This method is illustrated by computing wave functions and harmonic generation spectra of a model atom in laser fields
A new method of organizing spectral line intensity ratio fluctuations of auroral emissions
Thelin, B.
1986-02-01
In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)
Viscosity of particle laden films
Timounay, Yousra; Rouyer, Florence
2017-06-01
We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
Acuna, A.M.; Kaňa, Radek; Gwizdala, M.; Snellenburg, J.J.; van Alphen, P.; van Oort, B.; Kirilovsky, D.; van Grondelle, R.; van Stokkum, I.H.M.
2016-01-01
Roč. 130, 1-3 SI (2016), s. 237-249 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : Cyanobacteria * Spectrally resolved fluorometry * Singular value decomposition Subject RIV: EF - Botanics Impact factor: 3.864, year: 2016
The optimized gradient method for full waveform inversion and its spectral implementation
Wu, Zedong; Alkhalifah, Tariq Ali
2016-01-01
At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
The optimized gradient method for full waveform inversion and its spectral implementation
Wu, Zedong
2016-03-28
At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
Paccanaro Alberto
2010-03-01
Full Text Available Abstract Background An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. Results SCPS (Spectral Clustering of Protein Sequences is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences. Conclusions Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein
Nepusz, Tamás; Sasidharan, Rajkumar; Paccanaro, Alberto
2010-03-09
An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with
Determination of the viscosity by spherical drop using nuclear tecniques
Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.
1983-01-01
The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 These test methods provide special techniques needed to determine the electrical performance and spectral response of two-terminal, multijunction photovoltaic (PV) devices, both cell and modules. 1.2 These test methods are modifications and extensions of the procedures for single-junction devices defined by Test Methods E948, E1021, and E1036. 1.3 These test methods do not include temperature and irradiance corrections for spectral response and current-voltage (I-V) measurements. Procedures for such corrections are available in Test Methods E948, E1021, and E1036. 1.4 These test methods may be applied to cells and modules intended for concentrator applications. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and ...
Parsani, Matteo
2013-04-10
Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
Parsani, Matteo; Ketcheson, David I.; Deconinck, W.
2013-01-01
Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
Dynamic analysis of smart composite beams by using the frequency domain spectral element method
Park, Il Wook; Lee, Usik [Inha Univ., Incheon (Korea, Republic of)
2012-08-15
To excite or measure the dynamic responses of a laminated composite structure for the active controls of vibrations or noises, wafertype piezoelectric transducers are often bonded on the surface of the composite structure to form a multi layer smart composite structure. Thus, for such smart composite structures, it is very important to develop and use a very reliable mathematical and/or computational model for predicting accurate dynamic characteristics. In this paper, the axial-bending coupled equations of motion and boundary conditions are derived for two layer smart composite beams by using the Hamilton's principle with Lagrange multipliers. The spectral element model is then formulated in the frequency domain by using the variation approach. Through some numerical examples, the extremely high accuracy of the present spectral element model is verified by comparing with the solutions by the conventional finite element model provided in this paper. The effects of the lay up of composite laminates and surface bonded wafer type piezoelectric (PZT) layer on the dynamics and wave characteristics of smart composite beams are investigated. The effective constraint forces at the interface between the base beam and PZT layer are also investigated via Lagrange multipliers.
Measurement of viscosity as a means to identify irradiated food
Nuernberger, E.; Heide, L.; Boegl, K.W.
1990-01-01
The measurement of viscosity is a simple method to identify previous irradiation of some kinds of spices and foods, at least in combination with other methods. A possible change of the soaking capacity was examined up to a storage period of 18 months after irradiation of black pepper, white pepper, cinnamon, ginger and onion powder with a radiation dose of 10 kGy each. After irradiation, either increased or decreased viscosity values were measured; the results showed, also after the 18-months-storage period, considerable differences of the viscosity behaviour in non-irradiated and irradiated samples. The time of storage had no effect to the individual viscosity values, so that this method could also be applied to the examined spices after a longer storage period. (orig.) With 51 figs., 25 tabs [de
Comparison of parallel viscosity with neoclassical theory
Ida, K.; Nakajima, N.
1996-04-01
Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)
Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li Jianbao; Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)
2010-05-15
If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.
Su Xiaoxing; Li Jianbao; Wang Yuesheng
2010-01-01
If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.
Li, Mao; Qiu, Zihua; Liang, Chunlei; Sprague, Michael; Xu, Min
2017-01-13
In the present study, a new spectral difference (SD) method is developed for viscous flows on meshes with a mixture of triangular and quadrilateral elements. The standard SD method for triangular elements, which employs Lagrangian interpolating functions for fluxes, is not stable when the designed accuracy of spatial discretization is third-order or higher. Unlike the standard SD method, the method examined here uses vector interpolating functions in the Raviart-Thomas (RT) spaces to construct continuous flux functions on reference elements. Studies have been performed for 2D wave equation and Euler equa- tions. Our present results demonstrated that the SDRT method is stable and high-order accurate for a number of test problems by using triangular-, quadrilateral-, and mixed- element meshes.
Shear viscosity from Kubo formalism: NJL model study
Lang, Robert; Weise, Wolfram
2014-01-01
A large-N c expansion is combined with the Kubo formalism to study the shear viscosity η of strongly interacting matter in the two-flavor NJL model. We discuss analytical and numerical approaches to η and investigate systematically its strong dependence on the spectral width and the momentum-space cutoff. Thermal effects on the constituent quark mass from spontaneous chiral symmetry breaking are included. The ratio η/s and its thermal dependence are derived for different parameterizations of the spectral width and for an explicit one-loop calculation including mesonic modes within the NJL model. (orig.)
Hall viscosity of hierarchical quantum Hall states
Fremling, M.; Hansson, T. H.; Suorsa, J.
2014-03-01
Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.
Turbulent viscosity optimized by data assimilation
Y. Leredde
Full Text Available As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k + L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.
Key words. Oceanography: general (numerical modelling · Oceanography: physical (turbulence · diffusion · and mixing processes
Yoshihisa Aizu
2013-06-01
Full Text Available A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.
Milagros Loreto
2016-09-01
Full Text Available The Modified Spectral Projected Subgradient (MSPS was proposed to solve Langrangen Dual Problems, and its convergence was shown when the momentum term was zero. The MSPS uses a momentum term in order to speed up its convergence. The momentum term is built on the multiplication of a momentum parameter and the direction of the previous iterate. In this work, we show convergence when the momentum parameter is a non-zero constant. We also propose heuristics to choose the momentum parameter intended to avoid the Zigzagging Phenomenon of Kind I. This phenomenon is present in the MSPS when at an iterate the subgradient forms an obtuse angle with the previous direction. We identify and diminish the Zigzagging Phenomenon of Kind I on Setcovering problems, and compare our numerical results to those of the original MSPS algorithm.
Laser systems configured to output a spectrally-consolidated laser beam and related methods
Koplow, Jeffrey P [San Ramon, CA
2012-01-10
A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.
McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)
2001-01-01
A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.
Calculation of isotope selective excitation of uranium isotopes using spectral simulation method
Al-Hassanieh, O.
2009-06-01
Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)
Zhang, Ping; Yu, Kai Hu; Guo, Rui Min; Ran, Jun; Liu, Yao; Morelli, John; Runge, Val M; Li, Xiao Ming
2016-08-01
To evaluate the diagnostic value of spectral computed tomography (CT) of sacroiliac joints for axial spondyloarthritis (SpA). We retrospectively analyzed the records of 125 patients with low back pain (LBP) suspected of having SpA. Each patient underwent sacroiliac joint spectral CT examination. Water- and calcium-based material decomposition images were reconstructed. After 3-6 months of follow-up, 76 were diagnosed with SpA, and the remaining 49 patients were diagnosed with nonspecific LBP (nLBP). The slope of sacroiliac bone marrow HU (Hounsfield unit) curve (λHU), CT value, and bone marrow to normal muscle ratios of water and calcium concentrations in the ilium and sacrum were calculated and compared between nLBP and SpA patients. The iliac λHU was 8.26 ± 3.91 for nLBP and 9.81 ± 4.92 for SpA. The mean iliac ratios of water and calcium concentrations were 1.04 ± 0.03 and 21.67 ± 4.40, respectively, for nLBP, and 1.07 ± 0.04 and 111.5 ± 358.98, respectively, for SpA. The mean iliac CT values were 311.12 ± 86.52 HU for nLBP and 423.97 ± 127.51 HU for SpA. There were statistically significant differences in iliac ratios of water and calcium concentrations, CT value, and λHU between nLBP and SpA patients (p sacroiliac joints of SpA patients. Copyright © 2015. Published by Elsevier B.V.
Suprathermal viscosity of dense matter
Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai
2010-01-01
Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.
Viscosity calculations at molecular dynamics simulations
Kirova, E M; Norman, G E
2015-01-01
Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)
Design of Oil Viscosity Sensor Based on Plastic Optical Fiber
Yunus, Muhammad; Arifin, A.
2018-03-01
A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.
FEHL, DAVID LEE; BIGGS, F.; CHANDLER, GORDON A.; STYGAR, WILLIAM A.
2000-01-01
The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ((le)2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model
Eulogio Pardo-Igúzquiza
2015-08-01
Full Text Available Many studies have revealed the cyclicity of past ocean/atmosphere dynamics at a wide range of time scales (from decadal to millennial time scales, based on the spectral analysis of time series of climate proxies obtained from deep sea sediment cores. Among the many techniques available for spectral analysis, the maximum entropy method and the Thomson multitaper approach have frequently been used because of their good statistical properties and high resolution with short time series. The novelty of the present study is that we compared the two methods by according to the performance of their statistical tests to assess the statistical significance of their power spectrum estimates. The statistical significance of maximum entropy estimates was assessed by a random permutation test (Pardo-Igúzquiza and Rodríguez-Tovar, 2000, while the statistical significance of the Thomson multitaper method was assessed by an F-test (Thomson, 1982. We compared the results obtained in a case study using simulated data where the spectral content of the time series was known and in a case study with real data. In both cases the results are similar: while the cycles identified as significant by maximum entropy and the permutation test have a clear physical interpretation, the F-test with the Thomson multitaper estimator tends to find as no significant the peaks in the low frequencies and tends to give as significant more spurious peaks in the middle and high frequencies. Nevertheless, the best strategy is to use both techniques and to use the advantages of each of them.
Viscosity Control Experiment Feasibility Study
Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-31
Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.
Clemmensen, Line Katrine Harder; Hansen, M. E.; Ersbøll, Bjarne Kjær
2010-01-01
This paper presents a comparison of dimension reduction methods based on a novel machine vision application for estimating moisture content in sand used to make concrete. For the application in question it is very important to know the moisture content of the sand so as to ensure good-quality...... sand types were examined with 20-60 images for each type. To reduce the amount of data, features were extracted from the multi-spectral images; the features were summary statistics on single bands and pairs of bands as well as morphological summaries. The number of features (2,016) is high in relation...
Debba, Pravesh
2010-11-01
Full Text Available This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm...
Bulk viscosity and cosmological evolution
Beesham, A.
1996-01-01
In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated
Viscosity kernel of molecular fluids
Puscasu, Ruslan; Todd, Billy; Daivis, Peter
2010-01-01
, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...
Singularities and Entropy in Bulk Viscosity Dark Energy Model
Meng Xinhe; Dou Xu
2011-01-01
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)
Spencer, S.; Ogle, S.; Borch, T.; Rock, B.
2008-12-01
Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral
Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses
Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.
2014-01-01
The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses
Thompson, Aidan P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Multiscale Science Dept.; Swiler, Laura P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Optimization and Uncertainty Quantification Dept.; Trott, Christian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Scalable Algorithms Dept.; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Tucker, Garritt J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering
2015-03-15
Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Thompson, A.P., E-mail: athomps@sandia.gov [Multiscale Science Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Swiler, L.P., E-mail: lpswile@sandia.gov [Optimization and Uncertainty Quantification Department, Sandia National Laboratories, PO Box 5800, MS 1318, Albuquerque, NM 87185 (United States); Trott, C.R., E-mail: crtrott@sandia.gov [Scalable Algorithms Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Foiles, S.M., E-mail: foiles@sandia.gov [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Tucker, G.J., E-mail: gtucker@coe.drexel.edu [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States)
2015-03-15
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.
2015-01-01
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum
D. Akbari
2015-12-01
Full Text Available An effective approach based on the Minimum Spanning Forest (MSF, grown from automatically selected markers using Support Vector Machines (SVM, has been proposed for spectral-spatial classification of hyperspectral images by Tarabalka et al. This paper aims at improving this approach by using image segmentation to integrate the spatial information into marker selection process. In this study, the markers are extracted from the classification maps, obtained by both SVM and segmentation algorithms, and then are used to build the MSF. The segmentation algorithms are the watershed, expectation maximization (EM and hierarchical clustering. These algorithms are used in parallel and independently to segment the image. Moreover, the pixels of each class, with the largest population in the classification map, are kept for each region of the segmentation map. Lastly, the most reliable classified pixels are chosen from among the exiting pixels as markers. Two benchmark urban hyperspectral datasets are used for evaluation: Washington DC Mall and Berlin. The results of our experiments indicate that, compared to the original MSF approach, the marker selection using segmentation algorithms leads in more accurate classification maps.
Viscosity of particle laden films
Timounay Yousra
2017-01-01
Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
Effective viscosity of confined hydrocarbons
Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.
2012-01-01
We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...
Bulk viscosity of molecular fluids
Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.
2018-05-01
The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.
Fission hindrance and nuclear viscosity
is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...
On the measurement of magnetic viscosity
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
Cucu, Delia-Irina; Dorobantu, Ioan
2002-01-01
Beta-carotene is part of the class of the carotenoid pigments that have a special function in the pigmentation of flowers and fruits. These pigments are essential in photosynthesis where they are retaining energy and are photoprotectors by forming the redox system. They are also precursors of vitamin A, pigments involved in the process of seeing. Beta-carotene is responsible for the growth and development of organisms, for the protection and recovery of epithelial tissue, etc. Next to chlorophyll, carotenoids are the major components of the complex pigment-protein from the thylacoide membrane, and some of them, such as beta-carotene, were for a long time considered to be protecting the membrane against destructive events caused by the over excitement of the chlorophyll. This paper presents spectral difference method for physico-chemical characterisation of three components (beta-carotene, chlorophyll a and b) from Calendula officinalis leaves and stalks, after irradiation of germinated seeds. The germinated seeds of Calendula officinalis has been irradiated at 8 different doses ( 1 k Rad, 3 k Rad, 5 k Rad, 10 k Rad, 20 k Rad, 50 k Rad, 100 k Rad, 500 krad), one set of seeds remaining unirradiated for comparison. The plants had been grown in the same conditions of light, temperature and humidity. The identification of beta-carotene was performed through thin layer chromatography. The chemical concentrations of beta-carotene, chlorophyll a and b were determined by spectral difference method. (authors)
Brandao, Luis E.B.; Salgado, Cesar M., E-mail: brandaos@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Radiofarmacos; Sicilliano, Umberto C.C.S., E-mail: umberto.cassara@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Metalurgia
2013-07-01
In mineral industry is common to use water to transport pellets inside pipes. In these units, the correct measurement of flow (both solid and liquid phase) is important to guarantee a safe operation. Cross correlation flow meters are devices specially suited to be used in dual-phase flow and they are based on measure the transit time due the disturbances registered between two points, in our case gamma attenuation from radioactive sources. The emphasis of this work is the application of gamma transmission and scattering technique associated with spectral analysis methods to measure the flow of solid phase in a liquid fluid in side the pipe. The detectors and the sources are out side of the tube and are positioned 10.0 cm distant one from the other. The photons of transmission/scattering gamma radiation were registered, and across-correlation method was applied to measure the flow and spectral analysis was used to study the flow profile inside the pipe. (author)
Bä ck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul
2010-01-01
Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods
Wang, Zhiheng; Huang, Zhu; Zhang, Wei; Xi, Guang
2015-01-01
of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated
Effects of the Cr2O3 Content on the Viscosity of CaO-SiO2-10 Pct Al2O3-Cr2O3 Quaternary Slag
Wu, Tuo; Zhang, Yanling; Yuan, Fang; An, Zhuoqing
2018-04-01
The present study experimentally investigates the effect of Cr2O3 on the viscosity of molten slags. The viscosities of CaO-SiO2-10 pct Al2O3-Cr2O3 quaternary slags with two different binary basicities (R, basic slag with R = 1.2 and acidic slag with R = 0.8) were measured by the rotating cylindrical method from 1813 K to 1953 K (1540 °C to 1680 °C). The results showed that the viscosity of both types of slag decreased as the Cr2O3 content increased, but the viscosity of acidic slags exhibited a greater decrease. The slags showed good Newtonian behavior at such high temperatures. Cr2O3 could act as a network modifier to simplify the Si-O-Si tetrahedral structure, as verified by the Raman spectral analysis, which was consistent with the decreasing trend of viscosity. The activation energy of viscous flow decreased slightly with increasing Cr2O3, but increasing the basicity seemed to be more effective in decreasing the viscosity than adding Cr2O3.
Spatio-Spectral Method for Estimating Classified Regions with High Confidence using MODIS Data
Katiyal, Anuj; Rajan, Dr K S
2014-01-01
In studies like change analysis, the availability of very high resolution (VHR)/high resolution (HR) imagery for a particular period and region is a challenge due to the sensor revisit times and high cost of acquisition. Therefore, most studies prefer lower resolution (LR) sensor imagery with frequent revisit times, in addition to their cost and computational advantages. Further, the classification techniques provide us a global estimate of the class accuracy, which limits its utility if the accuracy is low. In this work, we focus on the sub-classification problem of LR images and estimate regions of higher confidence than the global classification accuracy within its classified region. The spectrally classified data was mined into spatially clustered regions and further refined and processed using statistical measures to arrive at local high confidence regions (LHCRs), for every class. Rabi season MODIS data of January 2006 and 2007 was used for this study and the evaluation of LHCR was done using the APLULC 2005 classified data. For Jan-2007, the global class accuracies for water bodies (WB), forested regions (FR) and Kharif crops and barren lands (KB) were 89%, 71.7% and 71.23% respectively, while the respective LHCRs had accuracies of 96.67%, 89.4% and 80.9% covering an area of 46%, 29% and 14.5% of the initially classified areas. Though areas are reduced, LHCRs with higher accuracies help in extracting more representative class regions. Identification of such regions can facilitate in improving the classification time and processing for HR images when combined with the more frequently acquired LR imagery, isolate pure vs. mixed/impure pixels and as training samples locations for HR imagery
Moren, I.; Worman, A. L. E.; Riml, J.
2017-12-01
Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically
Weifang Sun
2017-08-01
Full Text Available Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng
2017-08-09
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
Fehrenbacher, G.; Schuetz, R.; Hahn, K.; Sprunck, M.; Cordes, E.; Biersack, J.P.; Wahl, W.
1999-01-01
A new method for the monitoring of neutron radiation is proposed. It is based on the determination of spectral information on the neutron field in order to derive dose quantities like the ambient dose equivalent, the dose equivalent, or other dose quantities which depend on the neutron energy. The method uses a multi-element system consisting of converter type silicon detectors. The unfolding procedure is based on an artificial neural network (ANN). The response function of each element is determined by a computational model considering the neutron interaction with the dosemeter layers and the subsequent transport of produced ions. An example is given for a multi-element system. The ANN is trained by a given set of neutron spectra and then applied to count responses obtained in neutron fields. Four examples of spectra unfolded using the ANN are presented. (author)
Khader, M M
2013-10-01
In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.
Nguyen, Vu-Hieu; Naili, Salah
2012-08-01
This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.
V. Yu. Kleshnin
2016-01-01
Full Text Available The article describes the matrix algebra libraries based on the modern technologies of parallel programming for the Spectrum software, which can use a spectral method (in the spectral form of mathematical description to analyse, synthesise and identify deterministic and stochastic dynamical systems. The developed matrix algebra libraries use the following technologies for the GPUs: OmniThreadLibrary, OpenMP, Intel Threading Building Blocks, Intel Cilk Plus for CPUs nVidia CUDA, OpenCL, and Microsoft Accelerated Massive Parallelism.The developed libraries support matrices with real elements (single and double precision. The matrix dimensions are limited by 32-bit or 64-bit memory model and computer configuration. These libraries are general-purpose and can be used not only for the Spectrum software. They can also find application in the other projects where there is a need to perform operations with large matrices.The article provides a comparative analysis of the libraries developed for various matrix operations (addition, subtraction, scalar multiplication, multiplication, powers of matrices, tensor multiplication, transpose, inverse matrix, finding a solution of the system of linear equations through the numerical experiments using different CPU and GPU. The article contains sample programs and performance test results for matrix multiplication, which requires most of all computational resources in regard to the other operations.
Wan-You Li
2014-01-01
Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.
Lazeeva, G.S.
1986-01-01
Methods have been devised for the local determination of nitrogen and carbon isotope compositions in plant specimens, which provide separate and joint determination. Local laser evaporation has been combined with spectroscopic determination of the isotope compositions in the gas phase. A continuous-wave CO 2 laser is preferable for the local evaporation; the carbon isotope composition may be determined directly on the sum of the evaporation products, whereas nitrogen must first be separated as N 2 . Methods have also been developed for the local determination of total nitrogen and carbon in a sample with isotope dilution on the basis of laser evaporation. In order to eliminate systematic errors in determining total carbon in plant material, an evaporation method free from a rim has been devised. These methods have been used in determining isotope concentration profiles in plant specimens grown in experiments employing labeled nitrogen and carbon
Parsani, Matteo; Ghorbaniasl, Ghader; Lacor, C.
2011-01-01
. The method is based on the Ffowcs WilliamsHawkings approach, which provides noise contributions for monopole, dipole and quadrupole acoustic sources. This paper will focus on the validation and assessment of this hybrid approach using different test cases
Bäck, Joakim
2010-09-17
Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods. By introducing a suitable generalization of the classical sparse grid SC method, we are able to compare SG and SC on the same underlying multivariate polynomial space in terms of accuracy vs. computational work. The approximation spaces considered here include isotropic and anisotropic versions of Tensor Product (TP), Total Degree (TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical results for linear elliptic SPDEs indicate a slight computational work advantage of isotropic SC over SG, with SC-SM and SG-TD being the best choices of approximation spaces for each method. Finally, numerical results corroborate the optimality of the theoretical estimate of anisotropy ratios introduced by the authors in a previous work for the construction of anisotropic approximation spaces. © 2011 Springer.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration
Second viscosity effects in cosmology
Potupa, A.S.
1978-01-01
The object of the investigation is to draw attention to two important aspects in the choice of a substance model, namely an allowance for the viscosity and behaviour of the metrics at the later stages of cosmological evolution. It is shown that in homogeneous cosmological models taking into account the viscosity there are solutions which realize interpolation between the Fridman and steady-state regimes. In a closed model a solution is obtained which corresponds to the ''curvature compensation'' regime with an unboundedly increasing radius. The problem of compensation of singularity at t → o is discussed as well as the choice of the equations of state for the early (hadron) stages of cosmological evolution in connection with the hydrodynamic theory of multiple hadron production
Negative viscosity can enhance learning of inertial dynamics.
Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A
2009-06-01
We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.
Relaxation-based viscosity mapping for magnetic particle imaging
Utkur, M.; Muslu, Y.; Saritas, E. U.
2017-05-01
Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.
On application of ion-photon emission method in spectral analysis of surface of different materials
Bazhin, A.I.; Buravlev, Yu.M.; Ryzhov, V.N.
1983-01-01
Possibilities of application of ion-photom emission (IPE) method for determining element composition of the aluminium bronzes surface and profiles of distribution of hydrogen and helium implanted in metals (Mon Wn Cun Aln OKh18N10T steel) by ion bombardment have been studied. As ion source duoplasmatron which permits to obtain ions of inert (helium, argon) and active (hydrogenn oxygen) gases with current density 0.1-1 mA/cm 2 in the beam and energy from 5 to 25 keV has been applied. The photomultiplier PEM-79 has been used as a detector of optical radiation arising in the course of ion bombardment of the sample. For spectra recording the two-coordinate recorder has been used. Calibration charts which permit to determine the concentration of the investigated elements with 3-5% accuracy are obtained. The method sensitivity depends on excitation energy of transition observed in the spectrum. By known volumetric element concentration in the sample one can determine its concentration on a sUrface without resorting to a calibration chart in the coUrse of target sputtering. It has been found that the target impurity sputtering coefficient becomes nonselective to their relatiVe content. At wide incidence angles of ion beam. In contrast to other excitation methods (arc, spark) the IPE method possesses locality which constitutes 1 μm at a quite simple method of ion beam focussing (single lens)
Adaptive Spectral Doppler Estimation
Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt
2009-01-01
. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...
Kazantsev, Daniil; Jørgensen, Jakob S.; Andersen, Martin S.; Lionheart, William R. B.; Lee, Peter D.; Withers, Philip J.
2018-06-01
Rapid developments in photon-counting and energy-discriminating detectors have the potential to provide an additional spectral dimension to conventional x-ray grayscale imaging. Reconstructed spectroscopic tomographic data can be used to distinguish individual materials by characteristic absorption peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually correlated it can be advantageous to exploit this additional knowledge. In this paper, we propose a novel method which jointly reconstructs all energy channels while imposing a strong structural correlation. The core of the proposed algorithm is to employ a variational framework of parallel level sets to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction techniques including channel-wise total variation and correlative total nuclear variation regularization. Realistic simulation experiments demonstrate the performance improvements achievable by using correlative regularization methods.
Bawadi Nor Faizah
2016-01-01
Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.
Antoine, Xavier; Levitt, Antoine; Tang, Qinglin
2017-08-01
We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.
Studies on the arctiin and its interaction with DNA by spectral methods
Sun Yantao; Zhang Hanqi; Bi Shuyun; Zhou Xiaofu; Wang Liang; Yan Yongsheng
2011-01-01
The emission spectra of arctiin were determined under various experimental conditions. In addition, a fluorescence method was developed to obtain the binding constants and sites of the interaction between arctiin and DNA. A competitive binding experiment and melting temperature mensuration were carried out to investigate the binding mechanism of arctiin and DNA. The experimental results showed that the interaction between arctiin and DNA belongs to a groove binding mode. - Highlights: → Determined the emission spectra of arctiin by fluorescence spectrometry. → Obtain the binding constants and sites of interaction between arctiin and DNA. → Calculate the binding parameters according an improved calculation method.
Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying
2018-04-01
Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct
Effect of viscosity on learned satiation
Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, C.de
2009-01-01
A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)
1996-10-01
atmospherics temperatura and humidity profiles. Validation tests performed on experimental spectra demonstrate the occuracy of the method with typical...indicated as with the title.) Passive Remota Sensing Infrared Spectra Cloud Temperatura Cloud Transmittance FTIR Spectrometer Icing Hazard Detection (DCD03E.IFO - 95.02.22) UNCLASSIFIED SECURITY CLASSIFICATION OF FORM
Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods
Alistair M. S. Smith; Jan U. H. Eitel; Andrew T. Hudak
2010-01-01
Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char...
Koch, Stephan
2009-01-01
This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The
Expert systems for structure elucidation of organic molecules by spectral methods
Elyashberg, Mikhail E
1999-01-01
The state-of-the-art of the investigations aimed at creating expert systems for establishing the structure of organic molecules from IR, 1 H and 13 C NMR spectra is analysed. Computer methods used for identification of molecular fragments, generation of their structure and spectra prediction are considered. Principles of the creation of modern expert systems and general strategy of solving structural problems are discussed. The bibliography includes 174 references.
D. Baleanu
2013-01-01
fractional derivatives is based on modified generalized Laguerre polynomials Li(α,β(x with x∈Λ=(0,∞, α>−1, and β>0, and i is the polynomial degree. We implement and develop the modified generalized Laguerre collocation method based on the modified generalized Laguerre-Gauss points which is used as collocation nodes for solving nonlinear multiterm FDEs on the half line.
Spectrally accurate contour dynamics
Van Buskirk, R.D.; Marcus, P.S.
1994-01-01
We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use
Numerical resolution of the Navier-Stokes equations for a low Mach number by a spectral method
Frohlich, Jochen
1990-01-01
The low Mach number approximation of the Navier-Stokes equations, also called isobar, is an approximation which is less restrictive than the one due to Boussinesq. It permits strong density variations while neglecting acoustic phenomena. We present a numerical method to solve these equations in the unsteady, two dimensional case with one direction of periodicity. The discretization uses a semi-implicit finite difference scheme in time and a Fourier-Chebycheff pseudo-spectral method in space. The solution of the equations of motion is based on an iterative algorithm of Uzawa type. In the Boussinesq limit we obtain a direct method. A first application is concerned with natural convection in the Rayleigh-Benard setting. We compare the results of the low Mach number equations with the ones in the Boussinesq case and consider the influence of variable fluid properties. A linear stability analysis based on a Chebychev-Tau method completes the study. The second application that we treat is a case of isobaric combustion in an open domain. We communicate results for the hydrodynamic Darrieus-Landau instability of a plane laminar flame front. [fr
Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami
2018-04-01
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami
2018-04-01
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
A spectral method to detect community structure based on distance modularity matrix
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-08-01
There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.
Study of spectral response of a neutron filter. Design of a method to adjust spectra
Colomb-Dolci, F.
1999-02-01
The first part of this thesis describes an experimental method which intends to determine a neutron spectrum in the epithermal range [1 eV -10 keV]. Based on measurements of reaction rates provided by activation foils, it gives flux level in each energy range corresponding to each probe. This method can be used in any reactor location or in a neutron beam. It can determine scepter on eight energy groups, five groups in the epithermal range. The second part of this thesis presents a study of an epithermal neutron beam design, in the frame of Neutron Capture Therapy. A beam tube was specially built to test filters made up of different materials. Its geometry was designed to favour epithermal neutron crossing and to cut thermal and fast neutrons. A code scheme was validated to simulate the device response with a Monte Carlo code. Measurements were made at ISIS reactor and experimental spectra were compared to calculated ones. This validated code scheme was used to simulate different materials usable as shields in the tube. A study of these shields is presented at the end of this thesis. (author)
Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing
2017-06-01
Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem
Longitudinal and bulk viscosities of expanded rubidium
Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K
2003-01-01
First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here
Investigation of viscosity of whole hydrolyze sweetened condensed milk
O. Kalinina
2015-05-01
Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.
Saito, Masatoshi
2007-11-01
Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.
Saito, Masatoshi
2007-01-01
Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm 2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues
Yangfan Deng
2014-03-01
Full Text Available The effective elastic thickness (Te represents the thickness of the elastic layer or the flexural rigidity of the lithosphere, the equivalent of which can be calculated from the spectral analysis of gravity and topographic data. Studies of Te have profound influence on intracontinental deformation, and coupling of the tectonic blocks. In this paper, we use the multitaper spectral estimation method to calculate the coherence between Bouguer gravity and topography data, and to obtain the Te map of South China. Through the process of correction, we discuss the relationships of Te versus heat flow, and Te versus seismicity. The results show that Te distribution of South China is affected by three factors: the original age, which controls the basic feature; the Mesozoic evolution, which affects the Te distribution; and the neotectonic movement, which shaped the final distribution. The crust age has a positive correlation with the first-order Te distribution; thus the Yangtze Craton has a relatively higher Te (about 50 km whereas the Te in Cathaysia block is only 10–20 km. By analysis and comparison among the tectonic models of South China, the Te distribution can be well explained using the flat-subduction model. As is typical with neotectonics, the region with a higher heat flow is related with a lower Te. The seismicity does not have a clear relationship with Te, but the strong seismicity could cause a low Te. Seismogenic layer (Ts has a similar trend as Te in the craton, whereas in other areas the relationship is complex.
The spectral analysis of fuel oils using terahertz radiation and chemometric methods
Zhan, Honglei; Zhao, Kun; Zhao, Hui; Li, Qian; Zhu, Shouming; Xiao, Lizhi
2016-10-01
The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification.
Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J
2009-01-01
High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.
The spectral analysis of fuel oils using terahertz radiation and chemometric methods
Zhan, Honglei; Zhao, Kun; Xiao, Lizhi; Zhao, Hui; Li, Qian; Zhu, Shouming
2016-01-01
The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification. (paper)
Three-dimensional free boundary calculations using a spectral Green's function method
Hirshman, S.P.; van Rij, W.I.; Merkel, P.
1986-01-01
The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented
Coastline change mapping using a spectral band method and Sobel edge operator
Al-Mansoori, Saeed; Al-Marzouqi, Fatima
2016-10-01
Coastline extraction has become an essential activity in wake of the natural disasters taking place in some regions such as tsunami, flooding etc. Salient feature of such catastrophes is lack of reaction time available for combating emergency, thus it is the endeavor of any country to develop constant monitoring mechanism of shorelines. This is a challenging task because of the magnitude of changes taking place to the coastline regularly. Previous research findings highlight a need of formulating automation driven methodology for timely and accurate detection of alterations in the coastline impacting sustainability of mankind operating in the coastal zone. In this study, we propose a new approach for automatic extraction of the coastline using remote sensing data. This approach is composed of three main stages. Firstly, classifying pixels of the image into two categories i.e. land and water body by applying two normalized difference indices i.e. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Then, the process of binary conversion of classified image takes place using a local threshold method. Finally, the coastline is extracted by applying Sobel edge operator with a pair of (3×3) kernels. The approach is tested using 2.5m DubaiSat-1 (DS1) and DubaiSat-2 (DS2) images captured to detect and monitor the changes occurring along Dubai coastal zone within a period of six years from 2009 till 2015. Experimental results prove that the approach is capable of extracting the coastlines from DS1 and DS2 images with moderate human interaction. The results of the study show an increase of 6% in Dubai shoreline resulting on account of numerous man-made infrastructure development projects in tourism and allied sectors.
A. Sadeghi
2012-11-01
Full Text Available The goal of this study was to improve PhytoDOAS, which is a new retrieval method for quantitative identification of major phytoplankton functional types (PFTs using hyper-spectral satellite data. PhytoDOAS is an extension of the Differential Optical Absorption Spectroscopy (DOAS, a method for detection of atmospheric trace gases, developed for remote identification of oceanic phytoplankton groups. Thus far, PhytoDOAS has been successfully exploited to identify cyanobacteria and diatoms over the global ocean from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY hyper-spectral data. This study aimed to improve PhytoDOAS for remote identification of coccolithophores, another functional group of phytoplankton. The main challenge for retrieving more PFTs by PhytoDOAS is to overcome the correlation effects between different PFT absorption spectra. Different PFTs are composed of different types and amounts of pigments, but also have pigments in common, e.g. chl a, causing correlation effects in the usual performance of the PhytoDOAS retrieval. Two ideas have been implemented to improve PhytoDOAS for the PFT retrieval of more phytoplankton groups. Firstly, using the fourth-derivative spectroscopy, the peak positions of the main pigment components in each absorption spectrum have been derived. After comparing the corresponding results of major PFTs, the optimized fit-window for the PhytoDOAS retrieval of each PFT was determined. Secondly, based on the results from derivative spectroscopy, a simultaneous fit of PhytoDOAS has been proposed and tested for a selected set of PFTs (coccolithophores, diatoms and dinoflagellates within an optimized fit-window, proven by spectral orthogonality tests. The method was then applied to the processing of SCIAMACHY data over the year 2005. Comparisons of the PhytoDOAS coccolithophore retrievals in 2005 with other coccolithophore-related data showed similar patterns in their
Y. Zhou
2018-05-01
Full Text Available Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI. A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5 based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI, Enhanced Water Index (EWI, and Automated Water Extraction Index (AWEI. The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.
Separation of gold nanorods by viscosity gradient centrifugation
Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye
2016-01-01
Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)
Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities
Qingsong Bai
2016-01-01
Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.
Struts, A. V.; Barmasov, A. V.; Brown, M. F.
2015-05-01
Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.
Ying, Yingzi; Bean, Christopher J.
2014-05-01
Ocean-generated microseisms are faint Earth tremors associated with the interaction between ocean water waves and the solid Earth. The microseism noise recorded as low frequency ground vibrations by seismometers contains significant information about the Earth's interior and the sea states. In this work, we first aim to investigate the forward propagation of microseisms in a deep-ocean environment. We employ a 3D North-East Atlantic geological model and simulate wave propagation in a coupled fluid-solid domain, using a spectral-element method. The aim is to investigate the effects of the continental shelf on microseism wave propagation. A second goal of this work is to perform noise simulation to calculate synthetic ensemble averaged cross-correlations of microseism noise signals with time reversal method. The algorithm can relieve computational cost by avoiding time stacking and get cross-correlations between the designated master station and all the remaining slave stations, at one time. The origins of microseisms are non-uniform, so we also test the effect of simulated noise source distribution on the determined cross-correlations.
Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.
2011-01-01
The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377
Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng
2018-05-01
Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu Zhe; Greiner, Carsten; Muronga, Azwinndini
2009-01-01
Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling α s ∼0.3 (with η/s≅0.18) and is a factor of 2-3 larger at a small coupling α s ∼0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small α s . On the other hand, we demonstrate that for such small α s , the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large α s (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p T > or approx. 3 GeV but is still a reasonably good approximation.
Drop Spreading with Random Viscosity
Xu, Feng; Jensen, Oliver
2016-11-01
Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.
Viscosity of ring polymer melts
Pasquino, Rossana
2013-10-15
We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.
Viscosity of ring polymer melts
Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris
2013-01-01
We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.
Ou-Yang, Mang; Hsieh, Yao-Fang; Lee, Cheng-Chung
Cytopathological examination through biopsy is very important for carcinoma detection. The embedded relay lens microscopic hyperspectral imaging system (ERL-MHIS) provides a morphological image of a biopsy sample and the spectrum of each pixel in the image simultaneously. Based on the ERL-MHIS, this work develops morphological and spectral methods to diagnose oral carcinoma biopsy. In morphological discrimination, the fractal dimension method is applied to differentiate between normal and abnormal tissues. In spectral identification, normal and cancerous cells are distinguished using five methods. However, the spectra of normal and cancerous cells vary with patient. The diagnostic performances of the five methods are thus not ideal. Hence, the proposed cocktail approach is used to determine the effectiveness of the spectral methods in correlating with the sampling conditions. And then we use a combination of effective spectral methods according to the sample conditions for diagnosing a sample. A total of 68 biopsies from 34 patients are analyzed using the ERL-MHIS. The results demonstrate a sensitivity of 90 ± 4.53 % and a specificity of 87.8 ± 5.21 %. Furthermore, in our survey, this system is the first time utilized to study oral carcinoma biopsies.
Juhasz, A.; Henning, Th.; Bouwman, J.; Dullemond, C. P.; Pascucci, I.; Apai, D.
2009-01-01
The spectral region around 10 μm, showing prominent emission bands from various dust species is commonly used for the evaluation of the chemical composition of protoplanetary dust. Different methods of analysis have been proposed for this purpose, but so far, no comparative test has been performed to test the validity of their assumptions. In this paper, we evaluate how good the various methods are in deriving the chemical composition of dust grains from infrared spectroscopy. Synthetic spectra of disk models with different geometries and central sources were calculated, using a two-dimensional radiative transfer code. These spectra were then fitted in a blind test by four spectral decomposition methods. We studied the effect of disk structure (flared versus flat), inclination angle, size of an inner disk hole, and stellar luminosity on the fitted chemical composition. Our results show that the dust parameters obtained by all methods deviate systematically from the input data of the synthetic spectra. The dust composition fitted by the new two-layer temperature distribution method, described in this paper, differs the least from the input dust composition and the results show the weakest systematic effects. The reason for the deviations of the results given by the previously used methods lies in their simplifying assumptions. Due to the radial extent of the 10 μm emitting region there is dust at different temperatures contributing to the flux in the silicate feature. Therefore, the assumption of a single averaged grain temperature can be a strong limitation of the previously used methods. The continuum below the feature can consist of multiple components (e.g., star, inner rim, and disk midplane), which cannot simply be described by a Planck function at a single temperature. In addition, the optically thin emission of 'featureless' grains (e.g., carbon in the considered wavelength range) produces a degeneracy in the models with the optically thick emission of the