WorldWideScience

Sample records for spectral tuning studies

  1. A variable-tune spatial heterodyne spectrometer for broadband spectral line studies in the visible and near-UV

    Science.gov (United States)

    Dawson, Olivia R.; Harris, Walter M.

    2017-11-01

    Reflective Spatial Heterodyne Spectroscopy (SHS) is an interferometric technique that combines high resolving power and a large input acceptance angle in a format that is compact enough for use at small telescope focal planes and in spacecraft observations of targets in the visible to far ultra-violet (FUV) spectral range. SHS instruments are well suited to the study of faint, extended emission line sources, particularly in the UV where stellar background continuum becomes weak. Their primary limitation comes from the limited spatial sampling of the output interference pattern generated by the incoming spectral source, which limits their use to narrow bandpass near the central tuning wavelength. We describe a the first light results from a broadband SHS that can be used to scan the tuning wavelength across a bandpass extending from 300 to 700 nm. The limitations on the bandpass are arbitrary and can easily be extended into the UV or near infrared. We discuss the results of these validation program and the potential improvements that could be used to expand and/or improve the broadband spectral response of the instrument.

  2. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.

    Directory of Open Access Journals (Sweden)

    Motohiro Wakakuwa

    Full Text Available The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λ(max = 453 nm and violet receptors (λ(max = 425 nm, respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species.

  3. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  4. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J

    2011-07-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America

  5. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Craig A Atencio

    Full Text Available Spectral integration properties show topographical order in cat primary auditory cortex (AI. Along the iso-frequency domain, regions with predominantly narrowly tuned (NT neurons are segregated from regions with more broadly tuned (BT neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences--and thus distinct physiological functions--for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.

  6. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    Science.gov (United States)

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  7. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  8. Fine-tuning of the spectral collection efficiency in multilayer junctions

    International Nuclear Information System (INIS)

    Fernandes, M.; Fantoni, A.; Louro, P.; Lavareda, G.; Carvalho, N.; Schwarz, R.; Vieira, M.

    2006-01-01

    a-SiC:H/a-Si:H p-i-n/p-i-n tandem cells with different i-layer thickness have been produced by PECVD and tested for a proper fine-tuning of the spectral collection efficiency. The tandem structure takes advantage on the radiation wavelength selectivity due to the different light penetration depth inside the a-Si:H and a-SiC:H absorbers. The thickness and the absorption coefficient of the front p-i-n cell were optimized for blue collection and red transmittance and the thickness of the back one adjusted to achieve full absorption in the green and high collection in the red spectral ranges. Preliminary results show that device optimization for red detection can be obtained by reducing the thickness of the internal recombination junction while by increasing the intrinsic layer of the bottom a-Si:H cell, a better detection of the green color under appropriated applied voltages is foreseen. The physics behind the device functioning is explained through a numerical simulation of the internal electrical configuration of the device in dark and under different wavelength irradiations. Considerations about conduction band offsets, electrical field profiles and inversion layers will be taken into account to explain the optical and voltage bias dependence of the spectral response. Experimental results about the spectral collection efficiency are presented and discussed from the point of view of the color sensor applications

  9. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  10. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.

    Science.gov (United States)

    Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G

    2015-10-06

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).

  11. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  12. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    Science.gov (United States)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  13. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    Science.gov (United States)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  14. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    Science.gov (United States)

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type

  15. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon

    OpenAIRE

    Takenaka, Naomi; Yokoyama, Shozo

    2007-01-01

    At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (λmax’s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76–86%, 14–24%, and ...

  16. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    Science.gov (United States)

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  17. Spectral tuning via multi-phonon-assisted stokes and anti-stokes excitations in LaF{sub 3}: Tm{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dangli, E-mail: gaodangli@163.com [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Shaanxi Key Laboratory of Nano Materials and Technology, Xi' an, Shaanxi 710055 (China); Tian, Dongping, E-mail: dptian@xauat.edu.cn [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Chong, Bo; Li, Long [College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Zhang, Xiangyu [College of Science, Chang' an University, Xi' an, Shaanxi 710064 (China)

    2016-09-05

    We present a facile and highly effective method to tailor upconversion (UC) emission from LaF{sub 3}: Tm{sup 3+} nanoparticles (NPs) by adjusting ambient temperature from 20 K to 400 K accompanied with the pulse laser excitation. Spectral tuning mechanism controlled by ambient temperature at pulse laser excitation is revealed, and a mechanism based on the modification on multi-phonon relaxation rates for the rapid population of intermediate level {sup 3}H{sub 4} and multi-phonon-assisted excited state absorption is proposed. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is reasonable that UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface of NPs. These exciting findings in ambient temperature accompanied with the short-pulse excitation dependent UC selectivity offer a general approach to tailoring lanthanide related UC emissions, which will benefit multicolor displays and imaging. - Graphical abstract: An effective method to tailor upconversion from LaF{sub 3}: Tm{sup 3+} nanoparticles by adjusting ambient temperature accompanied with the short-pulse laser excitation is presented and the spectral tuning mechanism based the modification on multi-phonon relaxation rate and multi-phonon-assisted excited state absorption is also revealed. - Highlights: • The luminescence switching is controlled by temperature and pulse duration. • The mechanism based on the multi-phonon-assisted excitations is proposed. • Blue luminescence under short-pulse excitation originates from the surface ions. • Temperature has a big effect on luminescence color output.

  18. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon

    Science.gov (United States)

    Takenaka, Naomi; Yokoyama, Shozo

    2009-01-01

    At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (λmax’s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76–86%, 14–24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I~IV, V~VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the λmax’s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to thereonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor λmax-shifts individually. PMID:17590287

  19. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon.

    Science.gov (United States)

    Takenaka, Naomi; Yokoyama, Shozo

    2007-09-01

    At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76-86%, 14-24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I-IV, V-VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the lambda(max)'s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to threonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor lambda(max)-shifts individually.

  20. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

    Science.gov (United States)

    Rahman, Shadab A; St Hilaire, Melissa A; Lockley, Steven W

    2017-08-01

    We compared the effects of bedroom-intensity light from a standard fluorescent and a blue- (i.e., short-wavelength) depleted LED source on melatonin suppression, alertness, and sleep. Sixteen healthy participants (8 females) completed a 4-day inpatient study. Participants were exposed to blue-depleted circadian-sensitive (C-LED) light and a standard fluorescent light (FL, 4100K) of equal illuminance (50lx) for 8h prior to a fixed bedtime on two separate days in a within-subject, randomized, cross-over design. Each light exposure day was preceded by a dim light (LED conditions compared to FL 30min prior to bedtime. EEG-based correlates of alertness corroborated the reduced alertness under C-LED conditions as shown by significantly increased EEG spectral power in the delta-theta (0.5-8.0Hz) bands under C-LED as compared to FL exposure. There was no significant difference in total sleep time (TST), sleep efficiency (SE%), and slow-wave activity (SWA) between the two conditions. Unlike melatonin suppression and alertness, a significant order effect was observed on all three sleep variables, however. Individuals who received C-LED first and then FL had increased TST, SE% and SWA averaged across both nights compared to individuals who received FL first and then C-LED. These data show that the spectral characteristics of light can be fine-tuned to attenuate non-visual responses to light in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Reducing the spectral index in supernatural inflation

    International Nuclear Information System (INIS)

    Lin, C.-M.; Cheung, Kingman

    2009-01-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is n s > or approx. 1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to n s =0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  2. Reducing the spectral index in supernatural inflation

    Science.gov (United States)

    Lin, Chia-Min; Cheung, Kingman

    2009-04-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is ns≳1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to ns=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  3. Quantum gravity boundary terms from the spectral action of noncommutative space.

    Science.gov (United States)

    Chamseddine, Ali H; Connes, Alain

    2007-08-17

    We study the boundary terms of the spectral action of the noncommutative space, defined by the spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary term required for consistency of quantum gravity with the correct sign and coefficient. This is a remarkable result given the lack of freedom in the spectral action to tune this term.

  4. Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells

    KAUST Repository

    Paz-Soldan, Daniel

    2013-04-10

    Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over light\\'s propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the sun\\'s spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region. © 2013 American Chemical Society.

  5. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  6. Molecular-level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Jensen, Hans Jørgen Aagaard

    2012-01-01

    the protein. Our results indicate that this mainly is attributable to counter-directional contributions stemming from Lys163 and the conserved Arg95 with the former additionally identified as a key residue in the color tuning mechanism. The results provide new insights into the tuning mechanism of Ds...

  7. Accurate guitar tuning by cochlear implant musicians.

    Directory of Open Access Journals (Sweden)

    Thomas Lu

    Full Text Available Modern cochlear implant (CI users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  8. Photoluminescence excitation measurements using pressure-tuned laser diodes

    Science.gov (United States)

    Bercha, Artem; Ivonyak, Yurii; Medryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-06-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  9. Photoluminescence excitation measurements using pressure-tuned laser diodes

    International Nuclear Information System (INIS)

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-01-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available

  10. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  11. Spectral tuning of the diameter-dependent-chirped Bragg gratings written in microfibers.

    Science.gov (United States)

    Xiao, Peng; Liu, Tong; Feng, Fu-Rong; Sun, Li-Peng; Liang, Hao; Ran, Yang; Jin, Long; Guan, Bai-Ou

    2016-12-26

    Chirped fiber Bragg gratings can straightforwardly and efficiently be fabricated onto microfibers with a uniform phase mask. Due to the variation of the propagating constant, which depends on the fiber diameter, the broadband spectrum of the grating can be formed. Depending on the different responses to the ambient refractive index in different parts of the grating, the bandwidth of the grating can be tuned by changing the surrounding solution. In addition, by being partly immersed in a liquid, the diameter-chirped Bragg grating can act as a broadband Fabry-Perot interferometer, whose spectrum can be tuned by means of controlling the liquid level and ambient refractive index.

  12. Affinement spectral dans les lasers à colorants pulsés.

    Science.gov (United States)

    Flamant, P

    1978-03-15

    Spectral narrowing in pulsed dye lasers is studied theoretically. Fabry-Perot etalons, gratings, and prisms are considered as tuning elements. Each one is characterized by a new parameter: the spectral width associated with a round trip in the laser cavity. Numerical examples show that depending on cavity parameters it is either the round-trip spectral width or the width due to beam divergence which limits the bandwidth of the laser emission. Instantaneous spectral narrowing is found to be proportional to the square root of the time elapsed after the laser onset when a Fabry-Perot etalon or grating is used. When a prism is set in the laser cavity the instantaneous narrowing is proportional to time.

  13. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.; MacKinnon, A.; Schwingenschlö gl, Udo

    2014-01-01

    of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate

  14. Spectral behavior of a terahertz quantum-cascade laser.

    Science.gov (United States)

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  15. Low Emittance Tuning Studies for SuperB

    Energy Technology Data Exchange (ETDEWEB)

    Liuzzo, Simone; /INFN, Pisa; Biagini, Maria; /INFN, Rome; Raimondi, Pantaleo; /INFN, Rome; Donald, Martin; /SLAC

    2012-07-06

    SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specify the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.

  16. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  17. Active tuning of surface phonon polariton resonances via carrier photoinjection

    Science.gov (United States)

    Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.

    2018-01-01

    Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (electronic and phononic excitations.

  18. On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Andreas C., E-mail: andreas.liapis@gmail.com; Gao, Boshen; Siddiqui, Mahmudur R. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Shi, Zhimin [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Boyd, Robert W. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-11

    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.

  19. Evolution and Mechanism of Spectral Tuning of Blue-Absorbing Visual Pigments in Butterflies

    NARCIS (Netherlands)

    Wakakuwa, Motohiro; Terakita, Akihisa; Koyanagi, Mitsumasa; Stavenga, Doekele G.; Shichida, Yoshinori; Arikawa, Kentaro; Warrant, Eric James

    2010-01-01

    The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are

  20. Photoreceptor spectral sensitivity in the bumblebee, Bombus impatiens (Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Peter Skorupski

    Full Text Available The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12-13 nm in B. impatiens compared to B. terrestris.

  1. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  2. Final focus system tuning studies towards Compact Linear Collider feasibility

    Science.gov (United States)

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  3. EYE REGIONALIZATION AND SPECTRAL TUNING OF RETINAL PIGMENTS IN INSECTS

    NARCIS (Netherlands)

    STAVENGA, DG

    The spatial and spectral properties of an eye can often be directly linked to the behaviour and habitat of the animal. In a honey bee (Apis mellifera) society, the drones use the well-developed dorsal part of the eye to detect the queen against the sky during her nuptial flight. Recently it has

  4. Tuning Features of Chinese Folk Song Singing: A Case Study of Hua'er Music.

    Science.gov (United States)

    Yang, Yang; Welch, Graham; Sundberg, Johan; Himonides, Evangelos

    2015-07-01

    The learning and teaching of different singing styles, such as operatic and Chinese folk singing, was often found to be very challenging in professional music education because of the complexity of varied musical properties and vocalizations. By studying the acoustical and musical parameters of the singing voice, this study identified distinctive tuning characteristics of a particular folk music in China-Hua'er music-to inform the ineffective folk singing practices, which were hampered by the neglect of inherent tuning issues in music. Thirteen unaccompanied folk song examples from four folk singers were digitally audio recorded in a sound studio. Using an analyzing toolkit consisting of Praat, PeakFit, and MS Excel, the fundamental frequencies (F0) of these song examples were extracted into sets of "anchor pitches" mostly used, which were further divided into 253 F0 clusters. The interval structures of anchor pitches within each song were analyzed and then compared across 13 examples providing parameters that indicate the tuning preference of this particular singing style. The data analyses demonstrated that all singers used a tuning pattern consisting of five major anchor pitches suggesting a nonequal-tempered bias in singing. This partly verified the pentatonic scale proposed in previous empirical research but also argued a potential misunderstanding of the studied folk music scale that failed to take intrinsic tuning issues into consideration. This study suggests that, in professional music training, any tuning strategy should be considered in terms of the reference pitch and likely tuning systems. Any accompanying instruments would need to be tuned to match the underlying tuning bias. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Self-tuning control studies of the plasma vertical position problem

    International Nuclear Information System (INIS)

    Zheng, Guang Lin; Wellstead, P.E.; Browne, M.L.

    1993-01-01

    The plasma vertical position system in a tokamak device can be open-loop unstable with time-varying dynamics, such that the instability increases with system dynamical changes. Time-varying unstable dynamics makes the plasma vertical position a particularly difficult one to control with traditional fixed-coefficient controllers. A self-tuning technique offers a new solution of the plasma vertical position control problem by an adaptive control approach. Specifically, the self-tuning controller automatically tunes the controller parameters without an a priori knowledge of the system dynamics and continuously tracks dynamical changes within the system, thereby providing the system with auto-tuning and adaptive tuning capabilities. An overview of the self-tuning methods is given, and their applicability to a simulation of the Joint European Torus (JET) vertical plasma positions system is illustrated. Specifically, the applicability of pole-assignment and generalized predictive control self-tuning methods to the vertical plasma position system is demonstrated. 26 refs., 16 figs., 1 tab

  6. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    Science.gov (United States)

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  7. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  8. Investigation into the ways of tuning parametric oscillators of visible and IR ranges

    International Nuclear Information System (INIS)

    Andreev, S A; Andreeva, N P; Barashkov, M S; Demkin, V K; Don, A K; Krymskii, M I; Mitin, Konstantin V; Seregin, A M; Sinaiskii, V V; Talalaev, M A; Shchebetova, N I; Shchetinkina, T A; Badikov, Valerii V; Epikhin, V M; Kalinnikov, Yu K; Chistyakov, A A

    2010-01-01

    Different versions of optical parametric oscillator (OPO) schemes were experimentally realised and investigated, which utilise AgGaS 2 , LiNbO 3 and HgGa 2 S 4 single crystals as well as an Hg 1-x Cd x Ga 2 S 4 solid solution. The OPOs generate radiation in the 1.2-5.7-μm range and make use of different ways of output wavelength tuning, including fast wavelength tuning (in a time shorter than 0.1 ms) with the help of an acoustooptical deflector. The output spectral line was narrowed by means of an intracavity acoustooptical filter. An OPO for the visible range with an electrodynamic tuning to an arbitrary wavelength in this range in a time of 5ms was implemented employing a BBO single crystal. (invited paper)

  9. QCD Monte-Carlo model tuning studies with CMS data at 13 TeV

    CERN Document Server

    Sunar Cerci, Deniz

    2018-01-01

    New CMS PYTHIA 8 event tunes are presented. The new tunes are obtained using minimum bias and underlying event observables using Monte Carlo configurations with consistent parton distribution functions and strong coupling constant values in the matrix element and the parton shower. Validation and performance studies are presented by comparing the predictions of the new tune to various soft- and hard-QCD measurements at 7, 8 and 13 TeV with CMS.

  10. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    Science.gov (United States)

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  11. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters

    Energy Technology Data Exchange (ETDEWEB)

    Merkushev, D.A.; Usoltsev, S.D. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Marfin, Yu.S., E-mail: marfin@isuct.ru [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Pushkarev, A.P., E-mail: pushkarev@iomc.ras.ru [G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinina 49, 603950 Nizhny Novgorod (Russian Federation); Volyniuk, D.; Grazulevicius, J.V. [Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Rumyantsev, E.V. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation)

    2017-02-01

    In the present study four BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes with π-extended substituents in C-8 position were investigated in solvents and polymer mediums. High aggregation degree was observed for the dyes in the solid state. Association and twisted intramolecular charge transfer processes were found to affect the spectral properties of the compounds causing bathochromic shifts in absorption and fluorescence spectra. The extension of substituent π-conjugation gains molecular association evoked presumably by π-π interaction between the substituents of the adjacent molecules. Photostability of the complexes in different forms was analyzed and the distorted form stabilized by polymer matrix was found to be the most stable. The substituent nature did not affect strongly the photostability of dyes. Displacement of monomer-associate equilibrium in hybrid materials with polymethylmethacrylate and poly(9-vinylcarbazole) was exploited for tuning spectral characteristics of the materials. Two dyes readily forming aggregates at the lowest concentrations were applied for the fabrication of organic light-emitting diodes. The fabricated devices exhibited electroluminescence in the appropriate spectral ranges with moderate efficiency. - Highlights: • Four BODIPY dyes with π-extended substituents in 8-position were investigated in solvents and polymers. • Substituent influence on photophysical properties and photostability of the compounds are discussed. • Aggregation induced spectral changes were observed. • Displacement of monomer-aggregate equilibrium was exploited for tuning electroluminescent characteristics of OLED devices.

  12. Tune measurement at GSI SIS-18. Methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul

    2014-05-15

    Two parallel tune measurement systems are installed at GSI SIS-18 based on different principles. The first is called the Tune, Orbit and POSition measurement system TOPOS. Its working principle involves direct digitization of BPM signals at 125 MSa/s, which is used for online bunch-by-bunch position calculation in FPGAs. In the course of this work, position calculation algorithms were developed and studied for real time implementation in the TOPOS FPGAs. The regression fit algorithm is found to be more efficient and robust in comparison to previously used weighted mean algorithm with the baseline restoration procedure. The second system is the Baseband Tune measurement system referred to as BBQ system. The operational principle of this system was conceived at the CERN Beam Instrumentation group and is based on direct diode detection. In the framework of this work, this system was optimized and brought into operation at GSI SIS-18. Front-end data from both systems are used to calculate the tune spectrum every 250-5000 beam revolutions or turns within SIS-18 based on the resolution requirement and the mode of operation. Advanced non-parametric spectrum estimation method like amplitude Capon estimator is compared to the conventional DFT based methods in terms of resolving power and computational requirements for the calculated spectrum. Further the TOPOS and BBQ systems are compared and characterized in terms of sensitivity, reliability and operational usage. The results from both systems are found to be consistent with each other and have their favoured regimes of operation. The effects on tune spectra obtained from both systems were studied with different types of excitations with excitation power levels up to 6 mW/Hz. These systems in association with other beam diagnostic devices at SIS-18 were used to conduct extensive experiments to understand the effect of high intensity beams on the tune spectrum. These careful measurements recorded all the relevant beam

  13. A precision study of the fine tuning in the DiracNMSSM

    International Nuclear Information System (INIS)

    Kaminska, Anna; Ross, Graham G.; Staub, Florian; Bonn Univ.

    2014-01-01

    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.

  14. On the Spectral Entropy of Thermodynamic Paths for Elementary Systems

    Directory of Open Access Journals (Sweden)

    Daniel J. Graham

    2009-12-01

    Full Text Available Systems do not elect thermodynamic pathways on their own. They operate in tandem with their surroundings. Pathway selection and traversal require coordinated work and heat exchanges along with parallel tuning of the system variables. Previous research by the author (Reference [1] focused on the information expressed in thermodynamic pathways. Examined here is how spectral entropy is a by-product of information that depends intricately on the pathway structure. The spectral entropy has proven to be a valuable tool in diverse fields. This paper illustrates the contact between spectral entropy and the properties which distinguish ideal from non-ideal gases. The role of spectral entropy in the first and second laws of thermodynamics and heat → work conversions is also discussed.

  15. Application of coupled nanoscale resonators for spectral sensing

    International Nuclear Information System (INIS)

    Nefedov, N

    2009-01-01

    In this paper we propose a method to perform tunable spectral sensing using globally inhibitory coupled oscillators. The suggested system may operate in the analog radio frequency (RF) domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the system dynamics can be made stable despite the imprecision of the components. Global coupling could be implemented using a common load and controlled by digital means to tune the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

  16. Application of coupled nanoscale resonators for spectral sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, N [Nokia Research Center, Hardturmstrasse 253, CH-8005 Zurich (Switzerland); Swiss Federal Institute of Technology Zurich (ETHZ), ISI Laboratory, Sternwartstrasse 7, CH-8092 Zuerich (Switzerland)], E-mail: nikolai.nefedov@nokia.com

    2009-04-08

    In this paper we propose a method to perform tunable spectral sensing using globally inhibitory coupled oscillators. The suggested system may operate in the analog radio frequency (RF) domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the system dynamics can be made stable despite the imprecision of the components. Global coupling could be implemented using a common load and controlled by digital means to tune the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

  17. Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli.

    Science.gov (United States)

    Hullett, Patrick W; Hamilton, Liberty S; Mesgarani, Nima; Schreiner, Christoph E; Chang, Edward F

    2016-02-10

    The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech. While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior-posterior spatial distribution of spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectrotemporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain specialized for speech perception. Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross organization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectrotemporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic properties of speech stimuli. Copyright © 2016 the authors 0270-6474/16/362014-13$15.00/0.

  18. Spectral transmittance of the spectacle scale of snakes and geckos

    NARCIS (Netherlands)

    Doorn, van K.; Sivak, J.G.

    2015-01-01

    The spectral transmittance of the optical media of the eye plays a substantial role in tuning the spectrum of light available for capture by the retina. Certain squamate reptiles, including snakes and most geckos, shield their eyes beneath a layer of transparent, cornified skin called the

  19. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  20. RF discharge slab carbon monoxide laser: overtone lasing (2.5-4.0 micron) and fundamental band tuning (5.0-6.5 micron)

    Science.gov (United States)

    Ionin, Andrey A.; Kozlov, Andrey Yu.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a slab carbon monoxide laser. The compact slab CO laser with active volume 3×30×250 mm3 was excited by a repetitively pulsed capacitive RF discharge (81.36 MHz) with pulse repetition rate 100-500 Hz. The laser electrodes were cooled down to 120 K. Gas mixture CO:Air:He at gas pressures 15-22 Torr was used. An optical scheme "frequency selective master oscillator - laser amplifier" was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on ~100 rotational-vibrational transitions of CO molecule within the spectral range ~5.0 - 6.5 micron. Multiline overtone lasing was observed on ~80 spectral lines within the spectral range ~2.5 -4.0 micron, with maximum single line average output power 12 mW. Total output power of the slab overtone CO laser came up to 0.3 W, with maximum laser efficiency 0.5%. Results of parametric studies of the overtone CO laser including complicated time behavior for laser pulses on different overtone vibrational-rotational transitions are discussed.

  1. How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving.

    Science.gov (United States)

    Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan

    2018-01-01

    Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. INVITED PAPER: Investigation into the ways of tuning parametric oscillators of visible and IR ranges

    Science.gov (United States)

    Andreev, S. A.; Andreeva, N. P.; Barashkov, M. S.; Badikov, Valerii V.; Demkin, V. K.; Don, A. K.; Epikhin, V. M.; Krymskii, M. I.; Kalinnikov, Yu K.; Mitin, Konstantin V.; Seregin, A. M.; Sinaiskii, V. V.; Talalaev, M. A.; Chistyakov, A. A.; Shchebetova, N. I.; Shchetinkina, T. A.

    2010-06-01

    Different versions of optical parametric oscillator (OPO) schemes were experimentally realised and investigated, which utilise AgGaS2, LiNbO3 and HgGa2S4 single crystals as well as an Hg1-xCdxGa2S4 solid solution. The OPOs generate radiation in the 1.2-5.7-μm range and make use of different ways of output wavelength tuning, including fast wavelength tuning (in a time shorter than 0.1 ms) with the help of an acoustooptical deflector. The output spectral line was narrowed by means of an intracavity acoustooptical filter. An OPO for the visible range with an electrodynamic tuning to an arbitrary wavelength in this range in a time of 5ms was implemented employing a BBO single crystal.

  3. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  4. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  5. A pilot Tuning Project-based national study on recently graduated medical students? self-assessment of competences - the TEST study

    OpenAIRE

    Grilo Diogo, Pedro; Barbosa, Joselina; Am?lia Ferreira, Maria

    2015-01-01

    Background The Tuning Project is an initiative funded by the European Commission that developed core competences for primary medical degrees in Europe. Students' grouped self-assessments are used for program evaluation and improvement of curricula. The TEST study aimed to assess how do Portuguese medical graduates self-assess their acquisition of core competences and experiences of contact with patients in core settings according to the Tuning framework. Methods Translation of the Tuning's co...

  6. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  7. Dynamic Tuning of Plasmon-Exciton Coupling in Arrays of Nanodisk-J-aggregate Complexes

    KAUST Repository

    Zheng, Yue Bing

    2010-07-21

    Figure Presented Dynamic tuning of plasmon-exclton resonant coupling in arrays of nanodisk-J-aggregate complexes is demonstrated. The angle-resolved spectra of an array of bare gold nanodisks exhibit continuous shifting of localized surface plasmon resonance. This characteristic enables the production of real-time, controllable spectral overlap between molecular resonance and plasmóme resonance. The resonant interaction strength as a function of spectral overlap is explored and the coupling strength changes with the incident angle of a probe light, in accord with simulations based on coupled dipóle approximation method. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  9. Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors

    Science.gov (United States)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.

  10. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  11. Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers

    Science.gov (United States)

    Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.

    2018-02-01

    Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system

  12. Using low-loss phase-change materials for mid-infrared antenna resonance tuning.

    Science.gov (United States)

    Michel, Ann-Katrin U; Chigrin, Dmitry N; Maß, Tobias W W; Schönauer, Kathrin; Salinga, Martin; Wuttig, Matthias; Taubner, Thomas

    2013-08-14

    We show tuning of the resonance frequency of aluminum nanoantennas via variation of the refractive index n of a layer of phase-change material. Three configurations have been considered, namely, with the antennas on top of, inside, and below the layer. Phase-change materials offer a huge index change upon the structural transition from the amorphous to the crystalline state, both stable at room temperature. Since the imaginary part of their permittivity is negligibly small in the mid-infrared spectral range, resonance damping is avoided. We present resonance shifting to lower as well as to higher wavenumbers with a maximum shift of 19.3% and a tuning figure of merit, defined as the resonance shift divided by the full-width at half-maximum (FWHM) of the resonance peak, of 1.03.

  13. First-principles study of bandgap tuning in Ge1-xPbxSe

    Science.gov (United States)

    Lohani, Himanshu

    2018-03-01

    Narrow bandgap and its tuning are important aspects of materials for their technological applications. In this context group IV-VI semiconductors are one of the interesting candidates. In this paper, we explore the possibility of bandgap tuning in one of the family member of this family GeSe by using isoelectronic Pb doping. Our study is first-principles based electronic structure calculations of Ge1-xPbxSe. This study reveals that the Ge-p and Se-p states are strongly hybridized in GeSe and shows a gap in the DOS at Ef in GeSe. This gap reduces systematically with simultaneous enhancement of the states in the near Ef region as a function of Pb doping. This leads tuning of the indirect bandgap in GeSe via Pb doping. The results of the indirect bandgap decrement are consistent with the experimental findings. We propose a mechanism where the electrostatic effect of dopant Pb cation could be responsible for these changes in the electronic structure of GeSe.

  14. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    Directory of Open Access Journals (Sweden)

    Mateusz Śmietana

    2013-11-01

    Full Text Available This work presents an application of thin aluminum oxide (Al2O3 films obtained using atomic layer deposition (ALD for fine tuning the spectral response and refractive-index (RI sensitivity of long-period gratings (LPGs induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ~ 0.12 nm of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device’s RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  15. Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)

    2016-09-15

    Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  16. ZIF-8 gate tuning via terminal group modification: a computational study

    KAUST Repository

    Zheng, Bin; Wang, Lian Li; Du, Lifei; Huang, Kuo-Wei; Du, Huiling

    2016-01-01

    Tuning the pore structure of zeolitic imidazolate frameworks (ZIFs) enables unique control of their material properties. In this work, we used computational methods to examine the gate structure of ZIF-8 tuned by substitution terminal groups

  17. A 7-13 GHz low-noise tuned optical front-end amplifier for heterodyne transmission system application

    DEFF Research Database (Denmark)

    Ebskamp, Frank; Schiellerup, Gert; Høgdal, Morten

    1991-01-01

    The authors present a 7-13 GHz low-noise bandpass tuned optical front-end amplifier, showing 46±1 dBΩ transimpedance, and a noise spectral density of about 12 pA/√Hz. This is the first time such a flat response and such low noise were obtained simultaneously at these frequencies, without any...

  18. Spectral reflectance properties of iridescent pierid butterfly wings.

    Science.gov (United States)

    Wilts, Bodo D; Pirih, Primož; Stavenga, Doekele G

    2011-06-01

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies' photoreceptors.

  19. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  20. Nightside studies of coherent HF Radar spectral width behaviour

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2002-09-01

    Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the

  1. Nightside studies of coherent HF Radar spectral width behaviour

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to

  2. Practical tuning for Oracle

    International Nuclear Information System (INIS)

    Kwon, Sun Yong

    2005-02-01

    This book deals with tuning for oracle application, which consists of twenty two chapters. These are the contents of this book : what is tuning?, procedure of tuning, collection of performance data using stats pack, collection of performance data in real time, disk IO dispersion, architecture on Index, partition and IOT, optimization of cluster Factor, optimizer, analysis on plan of operation, selection of Index, tuning of Index, parallel processing architecture, DML, analytic function join method, join type, analysis of application, Lock architecture, SGA architecture and wait event and segment tuning.

  3. Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....

  4. Determinants of Intention to Use Mobile Phone Caller Tunes to Promote Voluntary Blood Donation: Cross-Sectional Study.

    Science.gov (United States)

    Appiah, Bernard; Burdine, James N; Aftab, Ammar; Asamoah-Akuoko, Lucy; Anum, David A; Kretchy, Irene A; Samman, Elfreda W; Appiah, Patience B; Bates, Imelda

    2018-05-04

    Voluntary blood donation rates are low in sub-Saharan Africa. Sociobehavioral factors such as a belief that donated blood would be used for performing rituals deter people from donating blood. There is a need for culturally appropriate communication interventions to encourage individuals to donate blood. Health care interventions that use mobile phones have increased in developing countries, although many of them focus on SMS text messaging (short message service, SMS). A unique feature of mobile phones that has so far not been used for aiding blood donation is caller tunes. Caller tunes replace the ringing sound heard by a caller to a mobile phone before the called party answers the call. In African countries such as Ghana, instead of the typical ringing sound, a caller may hear a message or song. Despite the popularity of such caller tunes, there is a lack of empirical studies on their potential use for promoting blood donation. The aim of this study was to use the technology acceptance model to explore the influence of the factors-perceived ease of use, perceived usefulness, attitude, and free of cost-on intentions of blood or nonblood donors to download blood donation-themed caller tunes to promote blood donation, if available. A total of 478 blood donors and 477 nonblood donors were purposively sampled for an interviewer-administered questionnaire survey at blood donation sites in Accra, Ghana. Data were analyzed using descriptive statistics, exploratory factor analysis, and confirmatory factory analysis or structural equation modeling, leading to hypothesis testing to examine factors that determine intention to use caller tunes for blood donation among blood or nonblood donors who use or do not use mobile phone caller tunes. Perceived usefulness had a significant effect on intention to use caller tunes among blood donors with caller tunes (beta=.293, Pdonation was statistically significant (beta=.169, Pdonation in Ghana. The study found that making caller

  5. ZIF-8 gate tuning via terminal group modification: a computational study

    KAUST Repository

    Zheng, Bin

    2016-06-24

    Tuning the pore structure of zeolitic imidazolate frameworks (ZIFs) enables unique control of their material properties. In this work, we used computational methods to examine the gate structure of ZIF-8 tuned by substitution terminal groups. The substitution position and electron affinity of the added groups were shown to be key factors in gate size. Electrostatic interactions are responsible for the variation in gate opening. These results suggest that the post-modification of terminal group in ZIFs can be used to finely tune the pore gate, opening up new strategies in the design of ZIFs with desired properties.

  6. 3D studies of the NIF symmetry tuning targets

    Science.gov (United States)

    Milovich, J.; Jones, O.; Edwards, M.; Weber, S.; Dewald, E.; Landen, O.; Marinak, M.

    2009-11-01

    Minimizing radiation drive asymmetries is necessary for a successful ignition campaign. Since the ignition capsule symmetry is most sensitive to the foot (first 2 ns) and the peak of the laser pulse, two different targets will be fielded on the NIF: re-emit and symmetry capsules (Sym-Caps). The first measures the incoming flux asymmetries during the foot by observing the re-radiated flux of a high-Z ball in place of the ignition capsule. The Sym-Caps resemble the ignition target with the frozen DT layer replaced by an equivalent mass of ablator material, thus preserving the hydrodynamic implosion properties. By measuring the x-ray self-emission near peak compression the ignition capsule core shape can be tuned. Simulations with 2D radiation-hydrodynamic simulations codes omit 3D effects in the hohlraum such as diagnostic holes, capsule roughness, shot-to-shot variations caused by laser beam power imbalances and pointing errors. We study these effects by performing 3D simulations using HYDRA and found that tuning the laser pulse using a finite number of shots is not substantially compromised.

  7. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  8. SQL Tuning

    CERN Document Server

    Tow, Dan

    2003-01-01

    A poorly performing database application not only costs users time, but also has an impact on other applications running on the same computer or the same network. SQL Tuning provides an essential next step for SQL developers and database administrators who want to extend their SQL tuning expertise and get the most from their database applications.There are two basic issues to focus on when tuning SQL: how to find and interpret the execution plan of an SQL statement and how to change SQL to get a specific alternate execution plan. SQL Tuning provides answers to these questions and addresses a third issue that's even more important: how to find the optimal execution plan for the query to use.Author Dan Tow outlines a timesaving method he's developed for finding the optimum execution plan--rapidly and systematically--regardless of the complexity of the SQL or the database platform being used. You'll learn how to understand and control SQL execution plans and how to diagram SQL queries to deduce the best executio...

  9. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  10. iTunes music

    CERN Document Server

    Katz, Bob

    2013-01-01

    Apple's exciting new Mastered for iTunes (MFiT) initiative, introduced in early 2012, introduces new possibilities for delivering high-quality audio. For the first time, record labels and program producers are encouraged to deliver audio materials to iTunes in a high resolution format, which can produce better-sounding masters. In iTunes Music, author and world-class mastering engineer Bob Katz starts out with the basics, surveys the recent past, and brings you quickly up to the present-where the current state of digital audio is bleak. Katz explains the evolution of

  11. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  12. Using GIS servers and interactive maps in spectral data sharing and administration: Case study of Ahvaz Spectral Geodatabase Platform (ASGP)

    Science.gov (United States)

    Karami, Mojtaba; Rangzan, Kazem; Saberi, Azim

    2013-10-01

    With emergence of air-borne and space-borne hyperspectral sensors, spectroscopic measurements are gaining more importance in remote sensing. Therefore, the number of available spectral reference data is constantly increasing. This rapid increase often exhibits a poor data management, which leads to ultimate isolation of data on disk storages. Spectral data without precise description of the target, methods, environment, and sampling geometry cannot be used by other researchers. Moreover, existing spectral data (in case it accompanied with good documentation) become virtually invisible or unreachable for researchers. Providing documentation and a data-sharing framework for spectral data, in which researchers are able to search for or share spectral data and documentation, would definitely improve the data lifetime. Relational Database Management Systems (RDBMS) are main candidates for spectral data management and their efficiency is proven by many studies and applications to date. In this study, a new approach to spectral data administration is presented based on spatial identity of spectral samples. This method benefits from scalability and performance of RDBMS for storage of spectral data, but uses GIS servers to provide users with interactive maps as an interface to the system. The spectral files, photographs and descriptive data are considered as belongings of a geospatial object. A spectral processing unit is responsible for evaluation of metadata quality and performing routine spectral processing tasks for newly-added data. As a result, by using internet browser software the users would be able to visually examine availability of data and/or search for data based on descriptive attributes associated to it. The proposed system is scalable and besides giving the users good sense of what data are available in the database, it facilitates participation of spectral reference data in producing geoinformation.

  13. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  14. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  15. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  16. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  17. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    Science.gov (United States)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  18. Tuning of Clic accelerating structure prototypes at CERN

    CERN Document Server

    Shi, J; Olyunin, A; Wuensch, W

    2010-01-01

    An RF measurement system has been set up at CERN for use in the X-band accelerating structure development program of the CLIC study. Using the system, S-parameters are measured and the field distribution is obtained automatically using a bead-pull technique. The corrections for tuning the structure are calculated from an initial measurement and cell-by-cell tuning is applied to obtain the correct phase advance and minimum reflection at the operation frequency. The detailed tuning procedure is presented and explained along with an example of measurement and tuning of CLIC accelerating structure prototypes.

  19. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Physik; Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Experimentelle Kernphysik

    2017-03-15

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∝20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  20. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Schmidt-Hoberg, Kai [DESY, Notkestraße 85, D-22607 Hamburg (Germany); Staub, Florian [Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology, Engesserstraße 7, D-76128 Karlsruhe (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2017-03-06

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∼20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  1. Spectral signature barcodes based on S-shaped Split Ring Resonators (S-SRRs

    Directory of Open Access Journals (Sweden)

    Herrojo Cristian

    2016-01-01

    Full Text Available In this paper, it is shown that S-shaped split ring resonators (S-SRRs are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency barcodes based on coplanar waveguide (CPW transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper.

  2. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Underlying Event studies and Monte Carlo tunes for inelastic pp events with the ATLAS detector

    CERN Document Server

    Nurse, E; The ATLAS collaboration

    2010-01-01

    Studies of the momentum flow in inelastic collisions at 900 GeV and 7 TeV recorded with a minimum bias trigger strategy are reported. A single high pT track is selected, and the distribution of other tracks in the event is evaluated relative to this reference track. The evolution of the charged momentum flow in the rest of the event, as a function of the pT of the reference track, gives important information about the transition from minimum bias event structure to the full underlying event observed in high-pT collision events. Results are presented after correction and unfolding of detector effects to allow simpler comparison to Monte Carlo models. In addition, the PYTHIA Monte Carlo generator has been tuned to ATLAS measurements at 900 GeV and 7 TeV. Standard distributions from Minimum Bias events, as well as the Underlying Event studies are included in the first tunes to ATLAS measurements at the LHC. The tunes aim for one consistent description of the new measurements as well as data from the Tevatron and...

  4. Adaptive Self-Tuning Networks

    Science.gov (United States)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  5. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  6. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    International Nuclear Information System (INIS)

    Smietana, M; Koba, M; Mikulic, P; Bock, W J

    2014-01-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs. (paper)

  7. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    Science.gov (United States)

    Smietana, M.; Koba, M.; Mikulic, P.; Bock, W. J.

    2014-11-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs.

  8. Iterative Feedback Tuning in district heating systems; Iterative Feedback Tuning i vaermeproduktionsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat

    2010-10-15

    The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes

  9. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  10. SC tuning fork

    CERN Document Server

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  11. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    Science.gov (United States)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates

  12. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    Science.gov (United States)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  13. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    Science.gov (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  14. Tune modulation due to synchrotron oscillations and chromaticity, and the dynamic aperture

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    A tracking study was done of the effects of a tune modulations, due to synchrotron oscillations and the tune dependence on momentum (chromaticity), on the dynamic aperture. The studies were done using several RHIC lattices and tracking runs of about 1 x 10 6 turns. The dynamic aperture was found to decrease roughly linearly with the amplitude of the tune modulation. Lower order non-linear resonances, like the 1/3 and 1/4 resonance are not crossed because of the tune modulation. Three different cases were studied, corresponding to RHIC lattices with different β*, and with different synchrotron oscillation amplitudes. In each case, the tune modulation amplitude was varied by changing the chromaticity. In each case, roughly the same result, was found. The result found here for the effect of a tune modulation due to chromaticity may be compared with the result found for the effect of a tune modulation due to a gradient ripple in the quadrupoles. The effect of a tune modulation due to a gradient ripple appears to be about 4 times stronger than the effect of a tune modulation due to chromaticity and synchrotron oscillations

  15. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning...... as an approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  16. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  17. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  18. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  19. Comparative Study of the Tuning Performances of the Nominal and Long L* CLIC Final Focus System at √s = 380 GeV

    CERN Document Server

    Plassard, F; Marin, E; Tomás, R

    2017-01-01

    Mitigation of static imperfections for emittance preservation is one of the most important and challenging tasks faced by the Compact Linear Collider (CLIC) beam delivery system. A simulation campaign has been performed to recover the nominal luminosity by means of different alignment procedures. The state of the art of the tuning studies is drawn up. Comparative studies of the tuning performances and a tuning-based final focus system design optimization for two L options are presented. The effectiveness of the tuning techniques applied to these different lattices will be decisive for the final layout of the CLIC final focus system at √s = 380 GeV.

  20. Tuning optical radiation for visual and nonvisual impact

    Science.gov (United States)

    Royer, Michael P.

    2011-12-01

    Spectral tuning---the allocation of radiant energy emitted by a lamp---is a fundamental element of illuminating engineering. Proper placement of optical radiation allows for reduced energy consumption, increased brightness perception, and improved color rendition. It can also result in lamps that have a greater impact on nonvisual human functions such as circadian rhythms, sleep, mood, and cognition. For an architectural lighting system, careful consideration must be given to all of these areas; recent advancements in understanding nonvisual photoreception must be balanced with the traditional emphasis on visual quality and energy efficiency. The three research projects described herein investigated spectral tuning by examining the effects of optical radiation or seeking ideal spectral power distributions. In all three cases, emphasis was placed on developing an architectural lighting system based on red, green, and blue (RGB) light emitting diodes (LEDs) that is capable of providing maximum stimulation to nonvisual systems while maintaining visual quality standards. In particular, the elderly were considered as a target population because they have an increased risk of developing disorders linked to illumination deficits. The three endeavors can be summarized as follows: Light Therapy for Seniors in Long-term Care AIM: To examine the effect of optical radiation on circadian rhythms, sleep, mood, and cognition for frail elderly in a long-term care environment. METHODOLOGY: A double-blind, placebo-controlled clinical trial of light therapy was conducted using circadian-effective short-wavelength (blue) optical radiation to treat a sample of residents recruited for participation without bias for existing medical diagnoses. KEY FINDINGS: Light therapy treatment improved cognitive functioning compared to placebo but no changes were detected in nighttime sleep statistics, reports of daytime sleepiness, circadian rhythms, or depression inventory parameters. Perceived

  1. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  2. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  3. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  4. ATLAS Run 1 Pythia8 tunes

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    We present tunes of the Pythia8 Monte~Carlo event generator's parton shower and multiple parton interaction parameters to a range of data observables from ATLAS Run 1. Four new tunes have been constructed, corresponding to the four leading-order parton density functions, CTEQ6L1, MSTW2008LO, NNPDF23LO, and HERAPDF15LO, each simultaneously tuning ten generator parameters. A set of systematic variations is provided for the NNPDF tune, based on the eigentune method. These tunes improve the modeling of observables that can be described by leading-order + parton shower simulation, and are primarily intended for use in situations where next-to-leading-order and/or multileg parton-showered simulations are unavailable or impractical.

  5. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  6. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  7. Neural Tuning Functions Underlie Both Generalization and Interference.

    Directory of Open Access Journals (Sweden)

    Ian S Howard

    Full Text Available In sports, the role of backswing is considered critical for generating a good shot, even though it plays no direct role in hitting the ball. We recently demonstrated the scientific basis of this phenomenon by showing that immediate past movement affects the learning and recall of motor memories. This effect occurred regardless of whether the past contextual movement was performed actively, passively, or shown visually. In force field studies, it has been shown that motor memories generalize locally and that the level of compensation decays as a function of movement angle away from the trained movement. Here we examine if the contextual effect of past movement exhibits similar patterns of generalization and whether it can explain behavior seen in interference studies. Using a single force-field learning task, the directional tuning curves of both the prior contextual movement and the subsequent force field adaptive movements were measured. The adaptation movement direction showed strong directional tuning, decaying to zero by 90° relative to the training direction. The contextual movement direction exhibited a similar directional tuning, although the effect was always above 60%. We then investigated the directional tuning of the passive contextual movement using interference tasks, where the contextual movements that uniquely specified the force field direction were separated by ±15° or ±45°. Both groups showed a pronounced tuning effect, which could be well explained by the directional tuning functions for single force fields. Our results show that contextual effect of past movement influences predictive force compensation, even when adaptation does not require contextual information. However, when such past movement contextual information is crucial to the task, such as in an interference study, it plays a strong role in motor memory learning and recall. This work demonstrates that similar tuning responses underlie both generalization of

  8. Pre-tuning of TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Furuya, Takaaki; Suzuki, Toshiji; Iino, Yohsuke.

    1990-01-01

    Pre-tuning of thirty-two TRISTAN superconducting cavities has been done. In this paper are described the pre-tuning system and the results of all the cavities. The average field flatness was 1.4 % after pre-tuning. From our experience, the followings are important, 1) to evacuate the cavity during the process of the pre-tuning to avoid the uncertainty in evacuation, 2) pre-tuning is needed after annealing because it causes changes of the cell length and the field profile and 3) field flatness sometimes changes when expanded and 4) cells should not be expanded more than 1.5 mm after pre-tuning since inelastic deformation occurs. (author)

  9. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  10. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 1 go-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  11. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel l0-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  12. Upgrades to PEP-II tune measurements

    International Nuclear Information System (INIS)

    Fisher, Alan S.; Petree, Mark; Wienands, Uli; Allison, Stephanie; Laznovsky, Michael; Seeman, Michael; Robin, Jolene

    2002-01-01

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement

  13. Enlargement of Tuning Range in a Ferrite-Tuned Cavity Through Superposed Orthogonal and Parallel Magnetic Bias

    CERN Document Server

    Vollinger, C

    2013-01-01

    Conventional ferrite-tuned cavities operate either with bias fields that are orthogonal or parallel to the magnetic RF-field. For a cavity that tunes rapidly over an overall frequency range around 100-400 MHz with high Q, we use ferrite garnets exposed to an innovative new biasing method consisting of a superposition of perpendicular and parallel magnetic fields. This method leads to a significant enlargement of the high-Q cavity tuning range by defining an operation point close to the magnetic saturation and thus improving ferrite material behaviour. A further advantage of this technique is the fast tuning speed resulting from the fact that tuning is carried out either with pure parallel biasing, or together with a very small change of operating point from perpendicular bias. In this paper, several scaled test models of ferrite-filled resonators are shown; measurements on the set-ups are compared and discussed.

  14. Automatic tuning of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Ilya; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL, Schenefeld (Germany); Tomin, Sergey [European XFEL, Schenefeld (Germany); NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-04-07

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  15. Automatic tuning of free electron lasers

    International Nuclear Information System (INIS)

    Agapov, Ilya; Zagorodnov, Igor; Geloni, Gianluca; Tomin, Sergey

    2017-01-01

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  16. Comparison of the Efficiency of Tuned Mass and Tuned Liquid Dampers at High-Rise Structures under Near and Far Fault Earthquakes

    Directory of Open Access Journals (Sweden)

    Hamed Rahman Shokrgozar

    2017-02-01

    Full Text Available Tuned mass and tuned liquid dampers are most common passive control systems that used for decrease of seismic responses of buildings. In this study, the performance of high-rise buildings with TM and TL dampers are evaluated under seven near-fault and seven far-fault earthquakes. For this purpose, a twenty-four stories steel moment frame building has been considered and the time history dynamic analyses are performed for both of controlled and uncontrolled states. Moreover, this building has been also modelled with five various mass, stiffness and damping ratios.The results have been shown that decreasing the structural responses at tall buildings against near-fault earthquakes are more than far-fault earthquakes due to the effect of higher modes. Furthermore, the tuned mass damper has better performance at decreasing of the responses in comparison of tuned liquid dampers.

  17. Finite size scaling and spectral density studies

    International Nuclear Information System (INIS)

    Berg, B.A.

    1991-01-01

    Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)

  18. Model-independent particle accelerator tuning

    Directory of Open Access Journals (Sweden)

    Alexander Scheinker

    2013-10-01

    Full Text Available We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: (1 it has the ability to handle unknown, time-varying systems, (2 it gives known bounds on parameter update rates, (3 we give an analytic proof of its convergence and its stability, and (4 it has a simple digital implementation through a control system such as the experimental physics and industrial control system (EPICS. Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multiparticle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of 22 quadrupole magnets and two rf buncher cavities in the Los Alamos Neutron Science Center (LANSCE Linear Accelerator’s transport region, while the beam properties and rf phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  19. Tuning and backreaction in F-term axion monodromy inflation

    Directory of Open Access Journals (Sweden)

    Arthur Hebecker

    2015-05-01

    Full Text Available We continue the development of axion monodromy inflation, focusing in particular on the backreaction of complex structure moduli. In our setting, the shift symmetry comes from a partial large complex structure limit of the underlying type IIB orientifold or F-theory fourfold. The coefficient of the inflaton term in the superpotential has to be tuned small to avoid conflict with Kähler moduli stabilisation. To allow such a tuning, this coefficient necessarily depends on further complex structure moduli. At large values of the inflaton field, these moduli are then in danger of backreacting too strongly. To avoid this, further tunings are necessary. In weakly coupled type IIB theory at the orientifold point, implementing these tunings appears to be difficult if not impossible. However, fourfolds or models with mobile D7-branes provide enough structural freedom. We calculate the resulting inflaton potential and study the feasibility of the overall tuning given the limited freedom of the flux landscape. Our preliminary investigations suggest that, even imposing all tuning conditions, the remaining choice of flux vacua can still be large enough for such models to provide a promising path to large-field inflation in string theory.

  20. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J.

    1997-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  1. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J

    1998-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  2. A Study of Spectral Integration and Normalization in NMR-based Metabonomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Lowry, David F.; Jarman, Kristin H.; Harbo, Sam J.; Meng, Quanxin; Fuciarelli, Alfred F.; Pounds, Joel G.; Lee, Monica T.

    2005-09-15

    Metabonomics involves the quantitation of the dynamic multivariate metabolic response of an organism to a pathological event or genetic modification (Nicholson, Lindon and Holmes, 1999). The analysis of these data involves the use of appropriate multivariate statistical methods. Exploratory Data Analysis (EDA) linear projection methods, primarily Principal Component Analysis (PCA), have been documented as a valuable pattern recognition technique for 1H NMR spectral data (Brindle et al., 2002, Potts et al., 2001, Robertson et al., 2000, Robosky et al., 2002). Prior to PCA the raw data is typically processed through four steps; (1) baseline correction, (2) endogenous peak removal, (3) integration over spectral regions to reduce the number of variables, and (4) normalization. The effect of the size of spectral integration regions and normalization has not been well studied. We assess the variability structure and classification accuracy on two distinctly different datasets via PCA and a leave-one-out cross-validation approach under two normalization approaches and an array of spectral integration regions. This study indicates that independent of the normalization method the classification accuracy achieved from metabonomic studies is not highly sensitive to the size of the spectral integration region. Additionally, both datasets scaled to mean zero and unity variance (auto-scaled) has higher variability within classification accuracy over spectral integration window widths than data scaled to the total intensity of the spectrum.

  3. Gain and frequency tuning within the mouse cochlear apex

    Energy Technology Data Exchange (ETDEWEB)

    Oghalai, John S.; Raphael, Patrick D. [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Gao, Simon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Bioengineering, Rice University, Houston, Texas (United States); Lee, Hee Yoon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Electrical Engineering, Stanford University, Stanford, California (United States); Groves, Andrew K. [Department of Neuroscience, Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas (United States); Zuo, Jian [Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  4. Gain and frequency tuning within the mouse cochlear apex

    International Nuclear Information System (INIS)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon; Lee, Hee Yoon; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2015-01-01

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering

  5. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  6. Studies on atom deceleration process by using the Zeeman-tuned technique

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1990-01-01

    The Zeeman-tuned technique to slow an atomic beam of sodium atoms was detailed studied. A new technique to study the deceleration which consists in monitoring the fluorescence along the deceleration path is used. This allows a direct observation of the process and open possibilities to investigate the adiabatic following of atoms in the magnetic field, and others very important aspects of the process. With a single laser and some modification of the magnetic field profile it is possible stop atoms outside the slower solenoid, which make a lot of experiments much simpler. A systematic study of the optical pumping effects and adiabatic following conditions allow to produce a very strong slow motion atomic beam. (author)

  7. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  8. Tuning the cathodoluminescence of porous silicon films

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A.; Fonseca, L.F.; Resto, O.; Balberg, I.

    2008-01-01

    We have obtained intense cathodoluminescence (CL) emission from electron beam modified porous silicon films by excitation with electrons with kinetic energies below 2 keV. Two types of CL emissions were observed, a stable one and a non-stable one. The first type is obtained in well-oxidized samples and is characterized by a spectral peak that is red shifted with respect to the photoluminescence (PL) peak. The physically interesting and technologically promising CL is however the CL that correlates closely with the PL. Tuning of this CL emission was achieved by controlling the average size of the nanostructure thus showing that the origin of this CL emission is associated with the quantum confinement and the surface chemistry effects that are known to exist in the porous silicon system. We also found that the electron bombardment causes microscale morphological modifications of the films, but the nanoscale features appear to be unchanged. The structural changes are manifested by the increase in the density of the nanoparticles which explains the significant enhancement of the PL that follows the electron irradiation

  9. Trace formulae and spectral statistics for discrete Laplacians on regular graphs (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oren, Idan; Godel, Amit; Smilansky, Uzy [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: idan.oren@weizmann.ac.il, E-mail: amit.godel@weizmann.ac.il, E-mail: uzy.smilansky@weizmann.ac.il

    2009-10-16

    Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w = 1, the only periodic orbits which contribute are the non-back-scattering orbits, and the smooth part in the trace formula coincides with the Kesten-McKay expression. As w deviates from unity, non-vanishing weights are assigned to the periodic walks with backscatter, and the smooth part is modified in a consistent way. The trace formulae presented here are the tools to be used in the second paper in this sequence, for showing the connection between the spectral properties of d-regular graphs and the theory of random matrices.

  10. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    Science.gov (United States)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σbrands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  11. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  12. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad; Bootharaju, Megalamane Siddaramappa; Bakr, Osman

    2015-01-01

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  13. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    Science.gov (United States)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  14. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    Science.gov (United States)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  15. ATLAS Monte Carlo tunes for MC09

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.

  16. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  17. A Caveat Note on Tuning in the Development of Coupled Climate Models

    Science.gov (United States)

    Dommenget, Dietmar; Rezny, Michael

    2018-01-01

    State-of-the-art coupled general circulation models (CGCMs) have substantial errors in their simulations of climate. In particular, these errors can lead to large uncertainties in the simulated climate response (both globally and regionally) to a doubling of CO2. Currently, tuning of the parameterization schemes in CGCMs is a significant part of the developed. It is not clear whether such tuning actually improves models. The tuning process is (in general) neither documented, nor reproducible. Alternative methods such as flux correcting are not used nor is it clear if such methods would perform better. In this study, ensembles of perturbed physics experiments are performed with the Globally Resolved Energy Balance (GREB) model to test the impact of tuning. The work illustrates that tuning has, in average, limited skill given the complexity of the system, the limited computing resources, and the limited observations to optimize parameters. While tuning may improve model performance (such as reproducing observed past climate), it will not get closer to the "true" physics nor will it significantly improve future climate change projections. Tuning will introduce artificial compensating error interactions between submodels that will hamper further model development. In turn, flux corrections do perform well in most, but not all aspects. A main advantage of flux correction is that it is much cheaper, simpler, more transparent, and it does not introduce artificial error interactions between submodels. These GREB model experiments should be considered as a pilot study to motivate further CGCM studies that address the issues of model tuning.

  18. An efficient automated parameter tuning framework for spiking neural networks.

    Science.gov (United States)

    Carlson, Kristofor D; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier.

  19. Apple iTunes music store

    OpenAIRE

    Lenzi, R.; Schmucker, M.; Spadoni, F.

    2003-01-01

    This technical report analyses the Apple iTunes Music Store and its success factors. Besides the technical aspects, user and customer aspects as well as content aspects are considered. Furthermore, iTunes Music Store's impact to online music distribution services is analysed and a short outlook to future music online distribution is given.

  20. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  1. Minimization of spin tune spread by matching dispersion prime at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-31

    At RHIC, the spin polarization is preserved with a pair of Siberian snakes on the oppo- site sides in each ring. The polarized proton beam with finite spin tune spread might cross spin resonances multiple times in two cases, one is when beam going through strong spin intrinsic resonances during acceleration, the other is when sweeping spin flipper’ frequency across the spin tune to flip the direction of spin polarization. The consequence is loss of spin polarization in both cases. Therefore, a scheme of min- imizing the spin tune spread by matching the dispersion primes at the two snakes was introduced based on the fact that the spin tune spread is proportional to the difference of dispersion primes at the two snakes. The scheme was implemented at fixed energies for the spin flipper study and during beam acceleration for better spin polarization transmission efficiency. The effect of minimizing the spin tune spread by matching the dispersion primes was observed and confirmed experimentally. The principle of minimizing the spin tune spread by matching the dispersion primes, the impact on the beam optics, and the effect of a narrower spin tune spread are presented in this report.

  2. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Rubtsov, Grigory I. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  3. The multi-spectral line-polarization MSE system on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Scott, S. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  4. The multi-spectral line-polarization MSE system on Alcator C-Mod

    International Nuclear Information System (INIS)

    Mumgaard, R. T.; Khoury, M.; Scott, S. D.

    2016-01-01

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  5. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  6. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  7. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  8. A mechanism for tuning 5 GHz HTS filters

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaka, M.; Takeuchi, S.; Ono, S.; Lee, J.H.; Saito, A. [Department of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan); Akasegawa, A.; Yamanaka, K.; Kurihara, K. [Fujitsu LTD., 10-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0197 (Japan); Ohshima, S. [Department of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)], E-mail: ohshima@yz.yamagata-u.ac.jp

    2008-09-15

    We developed a tuning mechanism of HTS filter with a dielectric tuning plate, dielectric trimming rods, and conducting trimming rods. The tuning plate has windows through which the dielectric and conducting trimming rods pass. The tuning plate was designed for a 3-pole filter with 5 GHz center frequency (f{sub c}) and 100 MHz bandwidth (BW) using a 3-dimensional electromagnetic simulator. We were able to shift the f{sub c} to frequencies below 500 MHz using the tuning plate with a dielectric constant of 45. However, the insertion loss (IL) and the pass-band ripple of the filter became more severe and the BW of the filter was narrower after tuning. We tried to improve the filter properties after tuning using the dielectric and conducting trimming rods. We decreased the IL and the pass-band ripple by adjusting the height of the dielectric trimming rods to above the resonators. Also, the BW was improved by using copper (Cu) trimming rods above the spaces between the resonators. The tuning plate and the trimming rods did not affect the IL. So, we simulated 500 MHz tuning without the filter properties deteriorating at f{sub c} = 5 GHz. Also, we experimentally evaluated that the f{sub c} could be shifted to 340 MHz using the dielectric plate, the pass-band ripple could be decreased by ripple trimming using the dielectric rods, and the BW could be increased 31 MHz by BW trimming using the Cu rods.

  9. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    Science.gov (United States)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in

  10. Summary of ATLAS Pythia 8 tunes

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    We summarize the latest ATLAS Pythia 8 minimum bias and underlying event tunes. The Pythia 8 MPI tunes in this note have been constructed for nine different PDFs, making use of a new x-dependent hadronic matter distribution model.

  11. RESONANT BPM FOR CONTINUOUS TUNE MEASUREMENT IN RHIC

    International Nuclear Information System (INIS)

    KESSELMAN, M.; CAMERON, P.; CUPOLO, J.

    2001-01-01

    A movable Beam Position Monitor (BPM) using shorted stripline Pick-Up Electrode (NE) elements has been resonated using matching stub techniques to achieve a relatively high Q resonance at about 230MHz. This PUE has been used in a feasibility study of phase-locked-loop tune measurement [1], using a lock-in amplifier and variable frequency generator to continuously track betatron tune in RHIC, as well as to observe Schottky signals of the Gold beam. The approach to providing a high Q PUE for difference mode signals, simulation studies, and the results of initial tests will be presented

  12. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    Science.gov (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  13. Automatic Monte-Carlo tuning for minimum bias events at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kama, Sami

    2010-06-22

    The Large Hadron Collider near Geneva Switzerland will ultimately collide protons at a center-of-mass energy of 14 TeV and 40 MHz bunch crossing rate with a luminosity of L=10{sup 34} cm{sup -2}s{sup -1}. At each bunch crossing about 20 soft proton-proton interactions are expected to happen. In order to study new phenomena and improve our current knowledge of the physics these events must be understood. However, the physics of soft interactions are not completely known at such high energies. Different phenomenological models, trying to explain these interactions, are implemented in several Monte-Carlo (MC) programs such as PYTHIA, PHOJET and EPOS. Some parameters in such MC programs can be tuned to improve the agreement with the data. In this thesis a new method for tuning the MC programs, based on Genetic Algorithms and distributed analysis techniques have been presented. This method represents the first and fully automated MC tuning technique that is based on true MC distributions. It is an alternative to parametrization-based automatic tuning. This new method is used in finding new tunes for PYTHIA 6 and 8. These tunes are compared to the tunes found by alternative methods, such as the PROFESSOR framework and manual tuning, and found to be equivalent or better. Charged particle multiplicity, dN{sub ch}/d{eta}, Lorentz-invariant yield, transverse momentum and mean transverse momentum distributions at various center-of-mass energies are generated using default tunes of EPOS, PHOJET and the Genetic Algorithm tunes of PYTHIA 6 and 8. These distributions are compared to measurements from UA5, CDF, CMS and ATLAS in order to investigate the best model available. Their predictions for the ATLAS detector at LHC energies have been investigated both with generator level and full detector simulation studies. Comparison with the data did not favor any model implemented in the generators, but EPOS is found to describe investigated distributions better. New data from ATLAS and

  14. Automatic Monte-Carlo tuning for minimum bias events at the LHC

    International Nuclear Information System (INIS)

    Kama, Sami

    2010-01-01

    The Large Hadron Collider near Geneva Switzerland will ultimately collide protons at a center-of-mass energy of 14 TeV and 40 MHz bunch crossing rate with a luminosity of L=10 34 cm -2 s -1 . At each bunch crossing about 20 soft proton-proton interactions are expected to happen. In order to study new phenomena and improve our current knowledge of the physics these events must be understood. However, the physics of soft interactions are not completely known at such high energies. Different phenomenological models, trying to explain these interactions, are implemented in several Monte-Carlo (MC) programs such as PYTHIA, PHOJET and EPOS. Some parameters in such MC programs can be tuned to improve the agreement with the data. In this thesis a new method for tuning the MC programs, based on Genetic Algorithms and distributed analysis techniques have been presented. This method represents the first and fully automated MC tuning technique that is based on true MC distributions. It is an alternative to parametrization-based automatic tuning. This new method is used in finding new tunes for PYTHIA 6 and 8. These tunes are compared to the tunes found by alternative methods, such as the PROFESSOR framework and manual tuning, and found to be equivalent or better. Charged particle multiplicity, dN ch /dη, Lorentz-invariant yield, transverse momentum and mean transverse momentum distributions at various center-of-mass energies are generated using default tunes of EPOS, PHOJET and the Genetic Algorithm tunes of PYTHIA 6 and 8. These distributions are compared to measurements from UA5, CDF, CMS and ATLAS in order to investigate the best model available. Their predictions for the ATLAS detector at LHC energies have been investigated both with generator level and full detector simulation studies. Comparison with the data did not favor any model implemented in the generators, but EPOS is found to describe investigated distributions better. New data from ATLAS and CMS show higher

  15. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  16. Integrated spectral study of small angular diameter galactic open clusters

    Science.gov (United States)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  17. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment

    Science.gov (United States)

    Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing

    2017-10-01

    Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.

  18. MKID digital readout tuning with deep learning

    Science.gov (United States)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  19. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  20. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    Science.gov (United States)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  1. Dynamic Performance Tuning Supported by Program Specification

    Directory of Open Access Journals (Sweden)

    Eduardo César

    2002-01-01

    Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

  2. Tuned and Balanced Redistributed Charge Scheme for Combined Quantum Mechanical and Molecular Mechanical (QM/MM) Methods and Fragment Methods: Tuning Based on the CM5 Charge Model.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2013-02-12

    Tuned and balanced redistributed charge schemes have been developed for modeling the electrostatic fields of bonds that are cut by a quantum mechanical-molecular mechanical boundary in combined quantum mechanical and molecular mechanical (QM/MM) methods. First, the charge is balanced by adjusting the charge on the MM boundary atom to conserve the total charge of the entire QM/MM system. In the balanced smeared redistributed charge (BSRC) scheme, the adjusted MM boundary charge is smeared with a smearing width of 1.0 Å and is distributed in equal portions to the midpoints of the bonds between the MM boundary atom and the MM atoms bonded to it; in the balanced redistributed charge-2 (BRC2) scheme, the adjusted MM boundary charge is distributed as point charges in equal portions to the MM atoms that are bonded to the MM boundary atom. The QM subsystem is capped by a fluorine atom that is tuned to reproduce the sum of partial atomic charges of the uncapped portion of the QM subsystem. The new aspect of the present study is a new way to carry out the tuning process; in particular, the CM5 charge model, rather than the Mulliken population analysis applied in previous studies, is used for tuning the capping atom that terminates the dangling bond of the QM region. The mean unsigned error (MUE) of the QM/MM deprotonation energy for a 15-system test suite of deprotonation reactions is 2.3 kcal/mol for the tuned BSRC scheme (TBSRC) and 2.4 kcal/mol for the tuned BRC2 scheme (TBRC2). As was the case for the original tuning method based on Mulliken charges, the new tuning method performs much better than using conventional hydrogen link atoms, which have an MUE on this test set of about 7 kcal/mol. However, the new scheme eliminates the need to use small basis sets, which can be problematic, and it allows one to be more consistent by tuning the parameters with whatever basis set is appropriate for applications. (Alternatively, since the tuning parameters and partial charges

  3. A tuning method for nonuniform traveling-wave accelerating structures

    International Nuclear Information System (INIS)

    Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi

    2013-01-01

    The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)

  4. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  5. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  6. An equivalent method for optimization of particle tuned mass damper based on experimental parametric study

    Science.gov (United States)

    Lu, Zheng; Chen, Xiaoyi; Zhou, Ying

    2018-04-01

    A particle tuned mass damper (PTMD) is a creative combination of a widely used tuned mass damper (TMD) and an efficient particle damper (PD) in the vibration control area. The performance of a one-storey steel frame attached with a PTMD is investigated through free vibration and shaking table tests. The influence of some key parameters (filling ratio of particles, auxiliary mass ratio, and particle density) on the vibration control effects is investigated, and it is shown that the attenuation level significantly depends on the filling ratio of particles. According to the experimental parametric study, some guidelines for optimization of the PTMD that mainly consider the filling ratio are proposed. Furthermore, an approximate analytical solution based on the concept of an equivalent single-particle damper is proposed, and it shows satisfied agreement between the simulation and experimental results. This simplified method is then used for the preliminary optimal design of a PTMD system, and a case study of a PTMD system attached to a five-storey steel structure following this optimization process is presented.

  7. Small Commercial Building Re-tuning: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  8. Oracle SQL Tuning pocket Reference

    CERN Document Server

    Gurry, Mark

    2002-01-01

    One of the most important challenges faced by Oracle database administrators and Oracle developers is the need to tune SQL statements so that they execute efficiently. Poorly tuned SQL statements are one of the leading causes of substandard database performance and poor response time. SQL statements that perform poorly result in frustration for users, and can even prevent a company from serving its customers in a timely manner

  9. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio......The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community....... The TLDs studied in this thesis essentially consist of a rectangular container partially filled with liquid in the form of plain tap water. The frequency of the liquid sloshing motion, which is adjusted by varying the length of the tank and the depth of the wa- ter, is tuned to the structural frequency...

  10. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    Science.gov (United States)

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  11. Spatially tuned normalization explains attention modulation variance within neurons.

    Science.gov (United States)

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical

  12. Stress-tuned conductor-polymer composite for use in sensors

    Science.gov (United States)

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  13. New ATLAS event generator tunes to 2010 data

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    This note describes the Monte Carlo event generator tunings for the Pythia 6 and Herwig/Jimmy generators in the ATLAS MC11 simulation production. New tunes have been produced for these generators, making maximal use of available published data from ATLAS and from the Tevatron and LEP experiments. Particular emphasis has been placed on improvement of the description of e+ e− event shape and jet rate data, and on description of hadron collider event shape observables in Pythia, as well as the established procedure of tuning the multiple parton interactions of both models to describe underlying event and minimum bias data. The tuning of Pythia is provided at this time for the MRST LO∗∗ PDF, while the purely MPI tune of Herwig/Jimmy is performed for ten different PDFs.

  14. Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens.

    Directory of Open Access Journals (Sweden)

    Peter Skorupski

    Full Text Available Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm, drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width were 11.3 ± 1.6 ms for green photoreceptors compared with 18.6 ± 4.4 ms and 15.6 ± 4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value in green photoreceptors, compared to blue and UV (41% and 49%, respectively. Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed

  15. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2016-05-01

    Full Text Available Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes.

  16. Tuning and History: A Personal Overview

    Science.gov (United States)

    Isaacs, Ann Katherine

    2017-01-01

    The text places Tuning History in the context of the rapidly developing international collaboration among historians which began in Europe in 1989, with the ECTS Pilot project, and continued, from 2000 on, with the European History Networks (for research and for curriculum development) working in parallel and in collaboration with Tuning, in…

  17. Linear beam-beam tune shift calculations for the Tevatron Collider

    International Nuclear Information System (INIS)

    Johnson, D.

    1989-01-01

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs

  18. Tevatron B0 low beta tuning report

    International Nuclear Information System (INIS)

    Johnson, D.E.

    1982-01-01

    A detailed study of the low beta insertion for the B0 experimental area has been carried out and is described below. This insertion is similar to the Type C low beta previously report, anti p Note 169, although some changes have been made to the quadrupole lengths and positions. This insertion is designated Type E. The purpose of the study was to see if it is possible to turn the insertion on in a smooth and continuous manner and tune the insertion to a value of β* of less than one meter while maintaining the overall tune of the j Tevatron to a constant value. This was found to be possible. An examination of chromaticity corrections for the Tevatron with the low beta insertion on in various configurations was also undertaken

  19. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  20. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  1. Social cognition in autism: Face tuning.

    Science.gov (United States)

    Pavlova, Marina A; Guerreschi, Michele; Tagliavento, Lucia; Gitti, Filippo; Sokolov, Alexander N; Fallgatter, Andreas J; Fazzi, Elisa

    2017-05-26

    Faces convey valuable information for social cognition, effective interpersonal interaction, and non-verbal communication. Face perception is believed to be atypical in autism, but the origin of this deficit is controversial. Dominant featural face encoding is suggested to be responsible for face tuning scarcity. Here we used a recently developed Face-n-Food paradigm for studying face tuning in individuals with autistic spectrum disorders (ASD). The key benefit of these images is that single components do not explicitly trigger face processing. In a spontaneous recognition task, adolescents with autism and typically developing matched controls were presented with a set of Face-n-Food images in different degree resembling a face (slightly bordering on the Giuseppe Arcimboldo style). The set of images was shown in a predetermined order from the least to most resembling a face. Thresholds for recognition of the Face-n-Food images as a face in ASD individuals were substantially higher than in typically developing controls: they did not report seeing a face on the images, which controls easily recognized as a face, and gave overall fewer face responses. This outcome not only lends support to atypical face tuning, but provides novel insights into the origin of face encoding deficits in autism.

  2. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  3. Tuning Nursing Educational in an Italian academic context.

    Science.gov (United States)

    Marchetti, Anna; Venturini, Giulia; Virgolesi, Michele; Gobbi, Mary; Rocco, Gennaro; Pulimeno, Ausilia Maria Lucia; Stievano, Alessandro; Piredda, Michela; De Marinis, Maria Grazia

    2015-09-01

    The European Union Bologna Process has laid the foundation for a common European competence-based educational framework. In many countries, nursing education is in transition from vocational to higher education, with many diverse systems. The competence-based approach provided by the project Tuning Educational Structures offers a common and coherent framework able to facilitate the implementation of the principles underpinning the Bologna Process reform. This study aimed to ascertain the relevance that Italian nursing university lecturers attributed to the 40 competences of the Italian version of the nursing Bachelor's and Master's Degrees. These competences were developed through adoption of the Tuning Methodology in the nursing context. The study was conducted in the 4 universities of one region of Italy which offer nursing Bachelor's and Master's Degrees. A total of 164 Italian university nursing lecturers. Using a four point scale, a cross sectional survey was conducted from March 2011 to April 2012. Participants evaluated each competence according to its relevance for Bachelor's or Master's Education. Frequency analysis was conducted. The significance for each competence of Tuning was rated very high by Italian lecturers and appeared to overlap partially with the original European study. In Italy, the most relevant competences for Bachelor's Degree were the skills associated with the use of appropriate interventions, activities and skills in nursing and the skills associated with nursing practice and clinical decision-making. For Master's Degree, leadership, management and team competences were the most important. The Tuning Nursing Project was accepted by the Italian lecturers. The competence-based approach was considered by Italian lectures as a support enabling to reflect on the current Italian nursing education cycles of study and to ensure shared visions and common approaches between Italian and European lecturers. Copyright © 2015 Elsevier Ltd. All

  4. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  5. Efficient Thermal Tuning Employing Metallic Microheater With Slow Light Effect

    DEFF Research Database (Denmark)

    Yan, Siqi; Chen, Hao; Gao, Shengqian

    2018-01-01

    Thermal tuning acts as one of the most fundamental roles in integrated silicon photonics since it can provide flexibility and reconfigurability. Low tuning power and fast tuning speed are long-term pursuing goals in terms of the performance of the thermal tuning. Here we propose and experimentall...

  6. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  7. Online control loop tuning in Pickering Nuclear Generating Stations

    International Nuclear Information System (INIS)

    Yu, K.X.; Harrington, S.

    2008-01-01

    Most analog controllers in the Pickering B Nuclear Generating Stations adopted PID control scheme. In replacing the analog controllers with digital controllers, the PID control strategies, including the original tuning parameters were retained. The replacement strategy resulted in minimum effort on control loop tuning. In a few cases, however, it was found during commissioning that control loop tuning was required as a result of poor control loop performance, typically due to slow response and controlled process oscillation. Several factors are accounted for the necessities of control loop re-tuning. Our experience in commissioning the digital controllers showed that online control tuning posted some challenges in nuclear power plant. (author)

  8. A New Global Mascon Solution Tuned for High-Latitude Ice Studies

    Science.gov (United States)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D> McCarthy, J. J.; Loomis, B.

    2011-01-01

    A new global mascon solution has been developed with I-arc-degree spatial and IO-day temporal sampling. The global mas cons are estimated from the reduction of nearly 8 years of GRACE K-band range-rate data. Temporal and anisotropic spatial constraints have been applied for land, ocean and ice regions. The solution construction and tuning is focused towards the Greenland and Antarctic ice sheets (GIS and AIS) as well as the Gulf of Alaska mountain glaciers (GoA). Details of the solution development will be discussed, including the mascon parameter definitions, constraints, and the tuning of the constraint damping factor. Results will be presented, exploring the spatial and temporal variability of the ice sheets and GoA regions. A detailed error analysis will be discussed, including solution dependence on iteration, damping factor, forward modeling, and multitechnique comparisons. We also investigate the fundamental resolution of the solution and the spatial correlation of ice sheet inter-annual change. Finally, we discuss future improvements, including specific constraint application for the rest of the major land ice regions and improvements in solution regularization.

  9. Closed-loop step response for tuning PID-fractional-order-filter controllers.

    Science.gov (United States)

    Amoura, Karima; Mansouri, Rachid; Bettayeb, Maâmar; Al-Saggaf, Ubaid M

    2016-09-01

    Analytical methods are usually applied for tuning fractional controllers. The present paper proposes an empirical method for tuning a new type of fractional controller known as PID-Fractional-Order-Filter (FOF-PID). Indeed, the setpoint overshoot method, initially introduced by Shamsuzzoha and Skogestad, has been adapted for tuning FOF-PID controller. Based on simulations for a range of first order with time delay processes, correlations have been derived to obtain PID-FOF controller parameters similar to those obtained by the Internal Model Control (IMC) tuning rule. The setpoint overshoot method requires only one closed-loop step response experiment using a proportional controller (P-controller). To highlight the potential of this method, simulation results have been compared with those obtained with the IMC method as well as other pertinent techniques. Various case studies have also been considered. The comparison has revealed that the proposed tuning method performs as good as the IMC. Moreover, it might offer a number of advantages over the IMC tuning rule. For instance, the parameters of the fractional controller are directly obtained from the setpoint closed-loop response data without the need of any model of the plant to be controlled. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Spectrally- and Time-Resolved Sum Frequency Generation (STiR-SFG): a new tool for ultrafast hydrogen bond dynamics at interfaces.

    Science.gov (United States)

    Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika

    2006-03-01

    The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.

  11. Graphene Dirac point tuned by ferroelectric polarization field

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  12. Heavy superpartners with less tuning from hidden sector renormalisation

    International Nuclear Information System (INIS)

    Hardy, Edward

    2014-01-01

    In supersymmetric extensions of the Standard Model, superpartner masses consistent with collider bounds typically introduce significant tuning of the electroweak scale. We show that hidden sector renormalisation can greatly reduce such a tuning if the supersymmetry breaking, or mediating, sector runs through a region of strong coupling not far from the weak scale. In the simplest models, only the tuning due to the gaugino masses is improved, and a weak scale gluino mass in the region of 5 TeV may be obtained with an associated tuning of only one part in ten. In models with more complex couplings between the visible and hidden sectors, the tuning with respect to sfermions can also be reduced. We give an example of a model, with low scale gauge mediation and superpartner masses allowed by current LHC bounds, that has an overall tuning of one part in twenty

  13. Spectral characterization in deep UV of an improved imaging KDP acousto-optic tunable filter

    International Nuclear Information System (INIS)

    Gupta, Neelam; Voloshinov, Vitaly

    2014-01-01

    Recently, we developed a number of high quality noncollinear acousto-optic tunable filter (AOTF) cells in different birefringent materials with UV imaging capability. Cells based on a single crystal of KDP (potassium dihydrophosphate) had the best transmission efficiency and the optical throughput needed to acquire high quality spectral images at wavelengths above 220 nm. One of the main limitations of these imaging filters was their small angular aperture in air, limited to about 1.0°. In this paper, we describe an improved imaging KDP AOTF operating from the deep UV to the visible region of the spectrum. The linear and angular apertures of the new filter are 10 × 10 mm 2 and 1.8°, respectively. The spectral tuning range is 205–430 nm with a 60 cm −1 spectral resolution. We describe the filter and present experimental results on imaging using both a broadband source and a number of light emitting diodes (LEDs) in the UV, and include the measured spectra of these LEDs obtained with a collinear SiO 2 filter-based spectrometer operating above 255 nm. (paper)

  14. Mammalian odorant receptor tuning breadth persists across distinct odorant panels.

    Directory of Open Access Journals (Sweden)

    Devin Kepchia

    Full Text Available The molecular receptive range (MRR of a mammalian odorant receptor (OR is the set of odorant structures that activate the OR, while the distribution of these odorant structures across odor space is the tuning breadth of the OR. Variation in tuning breadth is thought to be an important property of ORs, with the MRRs of these receptors varying from narrowly to broadly tuned. However, defining the tuning breadth of an OR is a technical challenge. For practical reasons, a screening panel that broadly covers odor space must be limited to sparse coverage of the many potential structures in that space. When screened with such a panel, ORs with different odorant specificities, but equal tuning breadths, might appear to have different tuning breadths due to chance. We hypothesized that ORs would maintain their tuning breadths across distinct odorant panels. We constructed a new screening panel that was broadly distributed across an estimated odor space and contained compounds distinct from previous panels. We used this new screening panel to test several murine ORs that were previously characterized as having different tuning breadths. ORs were expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. MOR256-17, an OR previously characterized as broadly tuned, responded to nine novel compounds from our new screening panel that were structurally diverse and broadly dispersed across an estimated odor space. MOR256-22, an OR previously characterized as narrowly tuned, responded to a single novel compound that was structurally similar to a previously known ligand for this receptor. MOR174-9, a well-characterized receptor with a narrowly tuned MRR, did not respond to any novel compounds in our new panel. These results support the idea that variation in tuning breadth among these three ORs is not an artifact of the screening protocol, but is an intrinsic property of the receptors.

  15. Improving Spectral Image Classification through Band-Ratio Optimization and Pixel Clustering

    Science.gov (United States)

    O'Neill, M.; Burt, C.; McKenna, I.; Kimblin, C.

    2017-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) seeks to characterize non-prompt observables from underground nuclear explosions (UNE). As part of this effort, we evaluated the ability of DigitalGlobe's WorldView-3 (WV3) to detect and map UNE signatures. WV3 is the current state-of-the-art, commercial, multispectral imaging satellite; however, it has relatively limited spectral and spatial resolutions. These limitations impede image classifiers from detecting targets that are spatially small and lack distinct spectral features. In order to improve classification results, we developed custom algorithms to reduce false positive rates while increasing true positive rates via a band-ratio optimization and pixel clustering front-end. The clusters resulting from these algorithms were processed with standard spectral image classifiers such as Mixture-Tuned Matched Filter (MTMF) and Adaptive Coherence Estimator (ACE). WV3 and AVIRIS data of Cuprite, Nevada, were used as a validation data set. These data were processed with a standard classification approach using MTMF and ACE algorithms. They were also processed using the custom front-end prior to the standard approach. A comparison of the results shows that the custom front-end significantly increases the true positive rate and decreases the false positive rate.This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-3283.

  16. Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran

    Science.gov (United States)

    Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin

    2014-10-01

    This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.

  17. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  18. Spatial Tuning of a RF Frequency Selective Surface through Origami (Postprint)

    Science.gov (United States)

    2016-05-12

    computational tools to systematically predict optimal folds. 15. SUBJECT TERMS origami, frequency selective surface, tuning, radio frequency 16...experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response...folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas

  19. Growth, spectral, dielectric and antimicrobial studies on 4-piperidinium carboxylamide picrate crystals

    Science.gov (United States)

    Dhanabal, T.; Tharanitharan, V.; Amirthaganesan, G.; Dhandapani, M.

    2014-07-01

    Single crystal of 4-piperidinium carboxylamide picrate was grown by slow evaporation solution growth technique at ambient temperature. The average dimensions of grown crystal were 0.7 × 0.3 × 0.2 cm3. The solubility of the compound was analyzed using methanol and acetone. Optical property of the compound was ascertained by UV-visible absorption spectral study. The sharp and well defined Bragg peaks observed in the powder X-ray diffraction pattern confirm its crystallinity. The different kinds of protons and carbons in the compound were confirmed by 1H and 13C NMR spectral analyses. The presence of various functional groups in the compound was assigned through polarized Raman spectral study. The mechanical property of the crystal was measured by Vicker's microhardness test and the compound was found to be soft material. The dielectric constant and dielectric loss of the crystal decrease with increase in frequency. The antibacterial and antifungal activities of the crystal were studied by disc diffusion method and found that the compound shows good inhibition efficiency against various bacteria and fungi species.

  20. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes

    Science.gov (United States)

    Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.

    Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  1. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  2. A new PI tuning method for an industrial process: A case study from a micro-cogeneration system

    International Nuclear Information System (INIS)

    Sağlam, Gaye; Tutum, Cem Celal; Kurtulan, Salman

    2013-01-01

    minimize the integral time-weighted absolute error (ITAE) and the integral time-weighted absolute derivative (ITAD) objectives. This results in multiple trade-off solutions that enable user to observe the overall range of possible controller parameters and to choose any option between diverse solutions. Finally, a brief post-optimality study was manually performed to find out the common relations in the PI controller parameter sets of these multiple Pareto-optimal solutions. The proposed controller was applied to the hydrogen production process model. The simulation results indicate that the proposed tuning rules are as effective as NSGA-II and eliminates the need for an iterative optimization run to get the optimal PI controller parameters

  3. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    Science.gov (United States)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  4. 70 MeV injector auto tuning system handbook

    International Nuclear Information System (INIS)

    Ellis, J.E.; Munn, R.W.; Sandels, E.G.

    1976-06-01

    The handbook is in three sections: (1) description and location; (2) operating instructions; and (3) design notes on the tank and debuncher auto tuning systems for the 70 MeV injector. The purpose of the auto tuning system is to maintain the 'tune' of the four tanks and debuncher to within a few Hz, stabilizing against changes of temperature and other physical factors affecting the resonant frequency of the tanks. (U.K.)

  5. Tune-shift with amplitude due to nonlinear kinematic effect

    CERN Document Server

    Wan, W

    1999-01-01

    Tracking studies of the Muon Collider 50 on 50 GeV collider ring show that the on-momentum dynamic aperture is limited to around 10 sigma even with the chromaticity sextupoles turned off. Numerical results from the normal form algorithm show that the tune-shift with amplitude is surprisingly large. Both analytical and numerical results are presented to show that nonlinear kinematic effect originated from the large angles of particles in the interaction region is responsible for the large tune-shift which in turn limits the dynamic aperture. A comparative study of the LHC collider ring is also presented to demonstrate the difference between the two machines. (14 refs).

  6. Broader visual orientation tuning in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Ariel eRokem

    2011-11-01

    Full Text Available Reduced gamma-aminobutyric acid (GABA levels in cerebral cortex are thought to contribute to information processing deficits in patients with schizophrenia (SZ, and we have previously reported lower in vivo GABA levels in the visual cortex of patients with SZ. GABA-mediated inhibition plays a role in sharpening orientation tuning of visual cortical neurons. Therefore, we predicted that tuning for visual stimulus orientation would be wider in SZ. We measured orientation tuning with a psychophysical procedure in which subjects performed a target detection task of a low-contrast oriented grating, following adaptation to a high-contrast grating. Contrast detection thresholds were determined for a range of adapter-target orientation offsets. For both SZ and healthy controls, contrast thresholds decreased as orientation offset increased, suggesting that this tuning curve reflects the selectivity of visual cortical neurons for stimulus orientation. After accounting for generalized deficits in task performance in SZ, there was no difference between patients and controls for detection of target stimuli having either the same orientation as the adapter or orientations far from the adapter. However, patients’ thresholds were significantly higher for intermediate adapter-target offsets. In addition, the mean width parameter of a Gaussian fit to the psychophysical orientation tuning curves was significantly larger for the patient group. We also present preliminary data relating visual cortical GABA levels, as measured with magnetic resonance spectroscopy, and orientation tuning width. These results suggest that our finding of broader orientation tuning in SZ may be due to diminished visual cortical GABA levels.

  7. ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    We present the latest developments of the ATLAS MC generator tuning project for the Pythia family of event generators, including the C++ Pythia 8 code for the first time. The PYTHIA 6 tunes presented here, titled AMBT2B and AUET2B and constructed for a variety of PDFs, constitute alternatives to the AMBT2/AUET2 tunes previously presented as a candidate for MC11 event simulation. They systematically differ from the AMBT2/AUET2 PYTHIA 6 tunes in the treatment of alpha_S, to address concerns with those tunes. Systematic tune variations are also presented. The Pythia 8 tunes have been constructed for two different PDFs, and are aimed at an optimal description of minimum bias, for use in pile-up simulation. PDF-sensitive effects are observed and discussed in the MPI tunings of both generators.

  8. A frequency domain approach for MPC tuning

    NARCIS (Netherlands)

    Özkan, L.; Meijs, J.B.; Backx, A.C.P.M.; Karimi, I.A.; Srinivasan, R.

    2012-01-01

    This paper presents a frequency domain based approach to tune the penalty weights in the model predictive control (MPC) formulation. The two-step tuning method involves the design of a favourite controller taking into account the model-plant mismatch followed by the controller matching. We implement

  9. Natural tuning: towards a proof of concept

    Science.gov (United States)

    Dubovsky, Sergei; Gorbenko, Victor; Mirbabayi, Mehrdad

    2013-09-01

    The cosmological constant problem and the absence of new natural physics at the electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-tuned or that a refined notion of naturalness is required. We construct a family of toy UV complete quantum theories providing a proof of concept for the second possibility. Low energy physics is described by a tuned effective field theory, which exhibits relevant interactions not protected by any symmetries and separated by an arbitrary large mass gap from the new "gravitational" physics, represented by a set of irrelevant operators. Nevertheless, the only available language to describe dynamics at all energy scales does not require any fine-tuning. The interesting novel feature of this construction is that UV physics is not described by a fixed point, but rather exhibits asymptotic fragility. Observation of additional unprotected scalars at the LHC would be a smoking gun for this scenario. Natural tuning also favors TeV scale unification.

  10. Further ATLAS tunes of PYTHIA6 and Pythia 8

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    We present the latest developments of the ATLAS MC generator tuning project for the Pythia family of event generators, including the C++ Pythia 8 code. The PYTHIA 6 tunes presented here complete the ``AUET2B'' set by addition of parton shower and multi-parton interaction model tunings with three next-to-leading order (NLO) PDFs in addition to the leading-order and MC-adapted PDFs previously presented. This note also presents systematic variation ``eigentunes'' for the parton shower configurations in the AMBT2B/AUET2B tune series. The Pythia 8 MPI tunes in this note have been constructed for six different PDFs, making use of a new $x$-dependent hadronic matter distribution model. MPI eigentunes are constructed for the PDFs intended for use in ATLAS bulk MC production.

  11. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2014-05-04

    Graphics Processing Units (GPUs) are gradually becoming mainstream in supercomputing as their capabilities to significantly accelerate a large spectrum of scientific applications have been clearly identified and proven. Moreover, with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually requires an in-depth knowledge of the hardware and software specifications. We suggest a prediction-based performance tuning mechanism [3] to quickly tune OpenACC parameters for a given application to dynamically adapt to the execution environment on a given system. This approach is applied to a finite difference kernel to tune the OpenACC gang and vector clauses for mapping the compute kernels into the underlying accelerator architecture. Our experiments show a significant performance improvement against the default compiler parameters and a faster tuning by an order of magnitude compared to the brute force search tuning.

  12. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems

    Directory of Open Access Journals (Sweden)

    Arturo Y. Jaen-Cuellar

    2013-09-01

    Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.

  13. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter

    KAUST Repository

    De Busserolles, Fanny; Hart, Nathan S.; Hunt, David M.; Davies, Wayne I.; Marshall, N. Justin; Clarke, Michael W.; Hahne, Dorothee; Collin, Shaun P.

    2015-01-01

    Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field. © 2015 S. Karger AG, Basel.

  14. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter

    KAUST Repository

    De Busserolles, Fanny

    2015-03-06

    Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world\\'s most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species\\' visual field. © 2015 S. Karger AG, Basel.

  15. Reducing the fine-tuning of gauge-mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Casas, J.A.; Moreno, Jesus M. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Robles, Sandra [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2016-08-15

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A{sub t} = 0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A{sub t} ≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A{sub t} at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called ''little A{sub t}{sup 2}/m{sup 2} problem'', i.e. the fact that a large A{sub t}-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning. (orig.)

  16. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-23

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  17. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    International Nuclear Information System (INIS)

    Lopez, J. Gonzalez; Jansen, K.; Renner, D.B.; Shindler, A.

    2012-01-01

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  18. Multivariable PID controller design tuning using bat algorithm for activated sludge process

    Science.gov (United States)

    Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan

    2018-04-01

    The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.

  19. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  20. Improving the Fine-Tuning of Metaheuristics: An Approach Combining Design of Experiments and Racing Algorithms

    Directory of Open Access Journals (Sweden)

    Eduardo Batista de Moraes Barbosa

    2017-01-01

    Full Text Available Usually, metaheuristic algorithms are adapted to a large set of problems by applying few modifications on parameters for each specific case. However, this flexibility demands a huge effort to correctly tune such parameters. Therefore, the tuning of metaheuristics arises as one of the most important challenges in the context of research of these algorithms. Thus, this paper aims to present a methodology combining Statistical and Artificial Intelligence methods in the fine-tuning of metaheuristics. The key idea is a heuristic method, called Heuristic Oriented Racing Algorithm (HORA, which explores a search space of parameters looking for candidate configurations close to a promising alternative. To confirm the validity of this approach, we present a case study for fine-tuning two distinct metaheuristics: Simulated Annealing (SA and Genetic Algorithm (GA, in order to solve the classical traveling salesman problem. The results are compared considering the same metaheuristics tuned through a racing method. Broadly, the proposed approach proved to be effective in terms of the overall time of the tuning process. Our results reveal that metaheuristics tuned by means of HORA achieve, with much less computational effort, similar results compared to the case when they are tuned by the other fine-tuning approach.

  1. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    International Nuclear Information System (INIS)

    Kim, Yoon Hwa; Arunkumar, Paulraj; Park, Seung Hyok; Yoon, Ho Shin; Im, Won Bin

    2015-01-01

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce 3+ at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr 3 MgSi 2 O 8 :Eu 2+ blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce 3+ white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED

  2. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad; Canini, Marco

    2017-01-01

    for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing

  3. Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-06-01

    Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.

  4. Self tuning fuzzy PID type load and frequency controller

    International Nuclear Information System (INIS)

    Yesil, E.; Guezelkaya, M.; Eksin, I.

    2004-01-01

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  5. Developing reflection on competence-based learning: the Russian experience with the Tuning approach

    Directory of Open Access Journals (Sweden)

    Anna Serbati

    2014-07-01

    Full Text Available The paper focuses on the Tuning Russia project. It aims at providing an overview of the impact of the Tuning methodology and outcomes concerning University teaching, learning, and assessment activities. It identifies: the most relevant results and “lesson learnt” during the project; tools/concepts/experiences that involved teachers found most interesting; strengths and weaknesses; the usefulness of working with colleagues from different Russian universities; and the level of sharing of the Tuning methodology with other colleagues within participating Universities. The empirical data for the study were drawn from a qualitative questionnaire with open questions filled-in by the members of the subject area group “Social Work” involved in the Tuning Russia project. The respondents were six academic teachers from different Russian universities and two European Tuning experts. This reflection by academic teachers upon the initial implementation of the Tuning approach in Russia highlights the opportunities to explore methods of establishing and improving communities of practice in the field of competence-based higher education curriculum development. Results highlight the need to develop further work concerning both summative and formative evaluation in relation to competence-based curricula review in higher education

  6. Visualisation to enhance biomechanical tuning of ankle-foot orthoses (AFOs in stroke: study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Carse Bruce

    2011-12-01

    Full Text Available Abstract Background There are a number of gaps in the evidence base for the use of ankle-foot orthoses for stroke patients. Three dimensional motion analysis offers an ideal method for objectively obtaining biomechanical gait data from stroke patients, however there are a number of major barriers to its use in routine clinical practice. One significant problem is the way in which the biomechanical data generated by these systems is presented. Through the careful design of bespoke biomechanical visualisation software it may be possible to present such data in novel ways to improve clinical decision making, track progress and increase patient understanding in the context of ankle-foot orthosis tuning. Methods A single-blind randomised controlled trial will be used to compare the use of biomechanical visualisation software in ankle-foot orthosis tuning against standard care (tuning using observation alone. Participants (n = 70 will have experienced a recent hemiplegia (1-12 months and will be identified by their care team as being suitable candidates for a rigid ankle-foot orthosis. The primary outcome measure will be walking velocity. Secondary outcome measures include; lower limb joint kinematics (thigh and shank global orientations & kinetics (knee and hip flexion/extension moments, ground reaction force FZ2 peak magnitude, step length, symmetry ratio based on step length, Modified Ashworth Scale, Modified Rivermead Mobility Index and EuroQol (EQ-5D. Additional qualitative measures will also be taken from participants (patients and clinicians at the beginning and end of their participation in the study. The main aim of the study is to determine whether or not the visualisation of biomechanical data can be used to improve the outcomes of tuning ankle-foot orthoses for stroke patients. Discussion In addition to answering the primary research question the broad range of measures that will be taken during this study are likely to contribute to a

  7. Study of periodic tune modulation with the beam-beam effect

    International Nuclear Information System (INIS)

    Neuffer, D.; Riddiford, A.; Ruggerio, A.G.

    1983-01-01

    Simulations of weak-strong pp - collisions with a periodic tune modulation show the possiblity of beam blowup at sufficiently strong modulation amplitudes. This beam blowup is associated with the appearance of nonrepeatable ''chaotic'' trajectories and occurs when low order resonances are crossed by the modulation. In this paper the authors report results of an investigation of the dependence of this blowup upon the modulation frequency, with the modulation amplitude fixed. It is determined that if a threshold frequency exists, modulations at frequencies greater than the threshold do not lead to beam blowup

  8. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  9. Tuning thermal conduction via extended defects in graphene

    Science.gov (United States)

    Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui

    2013-05-01

    Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.

  10. Reducing Children Behavior Problems: A Pilot Study of Tuning in to Kids in Iran

    Directory of Open Access Journals (Sweden)

    Fateme Aghaie Meybodi

    2017-09-01

    Discussion: The Tuning in to Kids program appears to be a promising parenting intervention for mothers and children with disruptive behavior problems, offering a useful addition to usual programs used in Iran.

  11. Ankle foot orthosis-footwear combination tuning: an investigation into common clinical practice in the United Kingdom.

    Science.gov (United States)

    Eddison, Nicola; Chockalingam, Nachiappan; Osborne, Stephen

    2015-04-01

    Ankle foot orthoses are used to treat a wide variety of gait pathologies. Ankle foot orthosis-footwear combination tuning should be routine clinical practice when prescribing an ankle foot orthosis. Current research suggests that failure to tune ankle foot orthosis-footwear combinations can lead to immediate detrimental effect on function, and in the longer term, it may actually contribute to deterioration. The purpose of this preliminary study was to identify the current level of knowledge clinicians have in the United Kingdom regarding ankle foot orthosis-footwear combination tuning and to investigate common clinical practice regarding ankle foot orthosis-footwear combination tuning among UK orthotists. Cross-sectional survey. A prospective study employing a multi-item questionnaire was sent out to registered orthotists and uploaded on to the official website of British Association of Prosthetists and Orthotists to be accessed by their members. A total of 41 completed questionnaires were received. The results demonstrate that only 50% of participants use ankle foot orthosis-footwear combination tuning as standard clinical practice. The most prevalent factors preventing participants from carrying out ankle foot orthosis-footwear combination tuning are a lack of access to three-dimensional gait analysis equipment (37%) and a lack of time available in their clinics (27%). Although, ankle foot orthosis-footwear combination tuning has been identified as an essential aspect of the prescription of ankle foot orthoses, the results of this study show a lack of understanding of the key principles behind ankle foot orthosis-footwear combination tuning. © The International Society for Prosthetics and Orthotics 2014.

  12. Broad electrical tuning of plasmonic nanoantennas at visible frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thang B. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708 (United States); Mikkelsen, Maiken H., E-mail: m.mikkelsen@duke.edu [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2016-05-02

    We report an experimental demonstration of electrical tuning of plasmon resonances of optical nanopatch antennas over a wide wavelength range. The antennas consist of silver nanocubes separated from a gold film by a thin 8 nm polyelectrolyte spacer layer. By using ionic liquid and indium tin oxide coated glass as a top electrode, we demonstrate dynamic and reversible tuning of the plasmon resonance over 100 nm in the visible wavelength range using low applied voltages between −3.0 V and 2.8 V. The electrical potential is applied across the nanoscale gap causing changes in the gap thickness and dielectric environment which, in turn, modifies the plasmon resonance. The observed tuning range is greater than the full-width-at-half-maximum of the plasmon resonance, resulting in a tuning figure of merit of 1.05 and a tuning contrast greater than 50%. Our results provide an avenue to create active and reconfigurable integrated nanophotonic components for applications in optoelectronics and sensing.

  13. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling. PMID:24098853

  14. Study of the spectral and energy characteristics of lasing in the green spectral region by lithium fluoride with radiation color centers

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P.; Kalinov, V.S.; Mikhnov, S.A.; Ovseichuk, S.I.

    1987-06-01

    The spectral and energy characteristics of lasers utilizing lithium fluoride with F2 and F3(+) color centers in transverse and longitudinal pumping schemes are studied. The feasibility of obtaining stable narrow-band radiation in the 510-570 nm range using a selective resonator is demonstrated. Consideration is given to the effect of lithium-fluoride crystal processing by excimer laser radiation at a wavelength of 308 nm on the spectroscopic and lasing characteristics of the F3(+) color center. After this processing, the laser efficiency in the green spectral region increases by more than a factor of two (reaching an efficiency of 14 percent). 7 references.

  15. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  16. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    International Nuclear Information System (INIS)

    Edstrom, Dean R.

    2009-01-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron

  17. Application of Evolutionary Computation in Automotive Powertrain Mount Tuning

    Directory of Open Access Journals (Sweden)

    Anab Akanda

    2006-01-01

    Full Text Available Engine mount tuning is a multi-disciplinary exercise since it affects Idle-shake, Road-shake and power-train noise response. Engine inertia is often used as a tuned absorber for controlling suspension resonance related road-shake issues. Last but not least, vehicle ride and handling may also be affected by mount tuning. In this work, Torque-Roll-Axis (TRA decoupling of the rigid powertrain was used as a starting point for mount tuning. Nodal point of flexible powertrain bending was used to define the envelop for transmission mount locations. The frequency corresponding to the decoupled roll mode of the rigid powertrain was then adjusted for idle-shake and road-shake response management.

  18. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  19. Lightweight linear alternators with and without capacitive tuning

    Science.gov (United States)

    Niedra, Janis M.

    1993-06-01

    Permanent magnet excited linear alternators rated tens of kW and coupled to free-piston Stirling engines are presently viewed as promising candidates for long term generation of electric power in both space and terrestrial applications. Series capacitive cancellation of the internal inductive reactance of such alternators was considered a viable way to both increase power extraction and to suppress unstable modes of the thermodynamic oscillation. Idealized toroidal and cylindrical alternator geometries are used for a comparative study of the issues of specific mass and capacitive tuning, subject to stability criteria. The analysis shows that the stator mass of an alternator designed to be capacitively tuned is always greater than the minimum achievable stator mass of an alternator designed with no capacitors, assuming equal utilization of materials ratings and the same frequency and power to a resistive load. This conclusion is not substantially altered when the usually lesser masses of the magnets and of any capacitors are added. Within the reported stability requirements and under circumstances of normal materials ratings, this study finds no clear advantage to capacitive tuning. Comparative plots of the various constituent masses are presented versus the internal power factor taken as a design degree of freedom. The explicit formulas developed for stator core, coil, capacitor, and magnet masses and for the degree of magnet utilization provide useful estimates of scaling effects.

  20. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  1. Fine-tuning and the stability of recurrent neural networks.

    Directory of Open Access Journals (Sweden)

    David MacNeil

    Full Text Available A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems.

  2. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    International Nuclear Information System (INIS)

    Duan, X; Arbique, G; Guild, J; Anderson, J; Yagil, Y

    2016-01-01

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  3. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Arbique, G; Guild, J; Anderson, J [UT Southwestern Medical Center, Dallas, TX (United States); Yagil, Y [Philips Healthcare, Haifa (Israel)

    2016-06-15

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  4. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    Science.gov (United States)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  5. Cosmologically safe QCD axion without fine-tuning

    International Nuclear Information System (INIS)

    Yamada, Masaki; Yanagida, Tsutomu T.; Yonekura, Kazuya

    2015-10-01

    Although QCD axion models are widely studied as solutions to the strong CP problem, they generically confront severe fine-tuning problems to guarantee the anomalous PQ symmetry. In this letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop the chiral symmetry breaking and the PQ symmetry is broken. In contrast to the original Kim's model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of the chiral symmetry breaking in the Abelian gauge theory.

  6. Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad

    2008-01-01

    Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...

  7. Evaluation of Controller Tuning Methods Applied to Distillation Column Control

    DEFF Research Database (Denmark)

    Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens

    A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope of this is to ex......A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope...

  8. Tuning of PID load frequency controller for power systems

    International Nuclear Information System (INIS)

    Tan Wen

    2009-01-01

    PID tuning of load frequency controllers for power systems is discussed in this paper. The tuning method is based on a two-degree-of-freedom internal model control (IMC) design method, and the performance of the resulting PID controller is related to two tuning parameters thus detuning is easy when necessary. Then an anti-GRC scheme is proposed to overcome the generation rate constraints. Finally, the method is extended to two-area cases.

  9. A Tuned Single Parameter for Representing Conjunction Risk

    Science.gov (United States)

    Plakaloic, D.; Hejduk, M. D.; Frigm, R. C.; Newman, L. K.

    2011-01-01

    Satellite conjunction assessment risk analysis is a subjective enterprise that can benefit from quantitative aids and, to this end, NASA/GSFC has developed a fuzzy logic construct - called the F-value - to attempt to provide a statement of conjunction risk that amalgamates multiple indices and yields a more stable intra-event assessment. This construct has now sustained an extended tuning procedure against heuristic analyst assessment of event risk. The tuning effort has resulted in modifications to the calculation procedure and the adjustment of tuning coefficients, producing a construct with both more predictive force and a better statement of its error.

  10. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  11. A novel tuning approach for offset-free MPC

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted

    2015-01-01

    , if a nominal plant and overall objective are known, the tuning can become straightforward. However, as soon as disturbances have to be taken into account, the tuning effort increases and becomes less intuitive. Against this background, a novel strategy to address the issues with unknown disturbances...

  12. Accurate automatic tuning circuit for bipolar integrated filters

    NARCIS (Netherlands)

    de Heij, Wim J.A.; de Heij, W.J.A.; Hoen, Klaas; Hoen, Klaas; Seevinck, Evert; Seevinck, E.

    1990-01-01

    An accurate automatic tuning circuit for tuning the cutoff frequency and Q-factor of high-frequency bipolar filters is presented. The circuit is based on a voltage controlled quadrature oscillator (VCO). The frequency and the RMS (root mean square) amplitude of the oscillator output signal are

  13. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  14. Automatic Tuning of Control Parameters for Single Speed Engines

    OpenAIRE

    Olsson, Johan

    2004-01-01

    In Scania’s single speed engines for industrial and marine use, the engine speed is controlled by a PI-controller. This controller is tuned independent of engine type and application. This brings certain disadvantages since the engines are used in a wide range of applications where the dynamics may differ. In this thesis, the possibility to tune the controller automatically for a specific engine installation has been investigated. The work shows that automatic tuning is possible. By performin...

  15. Fluorescence spectral studies of Gum Arabic: Multi-emission of Gum Arabic in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dhenadhayalan, Namasivayam, E-mail: ndhena@gmail.com [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mythily, Rajan, E-mail: rajanmythily@gmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India); Kumaran, Rajendran, E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India)

    2014-11-15

    Gum Arabic (GA), a food hydrocolloid is a natural composite obtained from the stems and branches of Acacia Senegal and Acacia Seyal trees. GA structure is made up of highly branched arabinogalactan polysaccharides. Steady-state absorption, fluorescence, and time-resolved fluorescence spectral studies of acid hydrolyzed GA solutions were carried out at various pH conditions. The fluorescence in GA is predominantly attributed to the presence of tyrosine and phenylalanine amino acids. The presence of multi-emissive peaks at different pH condition is attributed to the exposure of the fluorescing amino acids to the aqueous phase, which contains several sugar units, hydrophilic and hydrophobic moieties. Time-resolved fluorescence studies of GA exhibits a multi-exponential decay with different fluorescence lifetime of varying amplitude which confirms that tyrosine is confined to a heterogeneous microenvironment. The existence of multi-emissive peaks with large variation in the fluorescence intensities were established by 3D emission contour spectral studies. The probable location of the fluorophore in a heterogeneous environment was further ascertained by constructing a time-resolved emission spectrum (TRES) and time-resolved area normalized emission spectrum (TRANES) plots. Fluorescence spectral technique is used as an analytical tool in understanding the photophysical properties of a water soluble complex food hydrocolloid containing an intrinsic fluorophore located in a multiple environment is illustrated. - Highlights: • The Manuscript deals with the steady state absorption, emission, fluorescence lifetime and time-resolved emission spectrum studies of Gum Arabic in aqueous medium at various pH conditions. • The fluorescence emanates from the tyrosine amino acid present in GA. • Change in pH results in marked variation in the fluorescence spectral properties of tyrosine. • Fluorescence spectral techniques are employed as a tool in establishing the

  16. Required accuracy of tune measurement and parametrization of chromaticity control

    International Nuclear Information System (INIS)

    Maas, R.

    1991-02-01

    The betatron tunes v x and v y will be measured by Fourier-analyzing a BPM signal generated by a beam which received a fast ( kick /f rev ) equals the fractional part of the tune, a beam blow-up can be observed. In this note the required accuracy of such a tune measurement is discussed. (author). 6 schemes

  17. Application of tuned mass dampers in high-rise construction

    Science.gov (United States)

    Teplyshev, Vyacheslav; Mylnik, Alexey; Pushkareva, Maria; Agakhanov, Murad; Burova, Olga

    2018-03-01

    The article considers the use of tuned mass dampers in high-rise construction for significant acceleration and amplitude of vibrations of the upper floors under dynamic wind influences. The susceptibility of people to accelerations in high-rise buildings and possible means of reducing wind-induced fluctuations in buildings are analyzed. The statistics of application of tuned mass dampers in high-rise construction all over the world is presented. The goal of the study is to identify an economically attractive solution that allows the fullest use of the potential of building structures in high-rise construction, abandoning the need to build massive frames leading to over-consumption of materials.

  18. Performance-based parameter tuning method of model-driven PID control systems.

    Science.gov (United States)

    Zhao, Y M; Xie, W F; Tu, X W

    2012-05-01

    In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Tune measurements with high intensity ion beams at GSI SIS-18

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul [GSI, Darmstadt (Germany); TEMF, TU Darmstadt (Germany); Forck, Peter; Kowina, Piotr; Kaufmann, Wolfgang [GSI, Darmstadt (Germany); Weiland, Thomas [TEMF, TU Darmstadt (Germany)

    2012-07-01

    A precise tune measurement during a full accelerating cycle is required to achieve stable high current operation. A new system has been commissioned at GSI for position, orbit and tune measurements. It consists of three distinct parts; an exciter which provides power to excite coherent betatron oscillations in the bunched beam; Fast ADCs to digitize the BPM signals at 125 MSa/s; the post processing electronics uses digitized BPM signals to acquire one position value per bunch. Subsequently the baseband tune is determined by Fourier transformation of the position data. Experiments were conducted to understand the effects of high beam intensity on tune at injection plateau (11.4 MeV/u) and during acceleration ramp (11.4-600 MeV/u). These experiments were performed with U{sup 73+} and Ar{sup 18+} ion beam at highest achievable intensities of 2.10{sup 9} and 2.5.10{sup 10} respectively. Tune shift with increased intensity was observed. The working principle of the tune measurement system and observed high intensity effects on tune will be reported in this contribution.

  20. Self-Tuning Speed Regulator for CVC Induction Motor Drive

    DEFF Research Database (Denmark)

    Bidstrup, N.; Rasmussen, Henrik; Knudsen, Torben

    1994-01-01

    A self-tuning speed regulator for a current vector controlled induction motor drive has been designed.......A self-tuning speed regulator for a current vector controlled induction motor drive has been designed....

  1. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  2. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  3. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  4. Driving the Power of AIX Performance Tuning on IBM Power

    CERN Document Server

    Milberg, Ken

    2009-01-01

    A concise reference for IT professionals, this book goes beyond the rules and contains the best practices and strategies for solid tuning methodology. Tips based on years of experience from an AIX tuning master show specific steps for monitoring and tuning CPU, virtual memory, disk I/O, and network components. Also offering techniques for tuning Oracle and Linux structures that run on an IBM power system-as well as for the new AIX 6.1-this manual discusses what tools are available, how to best use them to collect historical data, and when to analyze trends and results. The only comprehensive,

  5. Historic Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2015-04-17

    The performance optimization of scientific applications usually requires an in-depth knowledge of the hardware and software. A performance tuning mechanism is suggested to automatically tune OpenACC parameters to adapt to the execution environment on a given system. A historic learning based methodology is suggested to prune the parameter search space for a more efficient auto-tuning process. This approach is applied to tune the OpenACC gang and vector clauses for a better mapping of the compute kernels onto the underlying architecture. Our experiments show a significant performance improvement against the default compiler parameters and drastic reduction in tuning time compared to a brute force search-based approach.

  6. Study on spectral entropy of two-phase flow density wave instability

    International Nuclear Information System (INIS)

    Zhang Zuoyi

    1992-05-01

    By using mathematic proof, spectral entropy calculations for simple examples and a practical two-phase flow system, it has been proved that under the same stochastic input, the output spectral entropy of a stable linear system is in maximum, while for an unstable linear system, its entropy is in relative lower level. Because the spectral entropy describes the output uncertainty of a system and the second law of thermodynamics rules the direction of natural tendency, the spontaneous process can develop only toward the direction of uncertainty increasing, and the opposite is impossible. It seems that the physical mechanism of the stability of a system can be explained as following: Any deviation from its original state of a stable system will reduce the spectral entropy and violate the natural tendency so that the system will return to original state. On the contrary, the deviation from its original state of an unstable system will increase the spectral entropy that will enhance the deviation and the system will be further away from its original state

  7. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  8. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  9. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming

    Science.gov (United States)

    de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok

    2018-04-01

    Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.

  10. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hwa [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Arunkumar, Paulraj [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Park, Seung Hyok; Yoon, Ho Shin [Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Im, Won Bin, E-mail: imwonbin@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2015-03-15

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce{sup 3+} at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr{sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+} blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce{sup 3+} white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED.

  11. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  12. Possible dendritic contribution to unimodal numerosity tuning and Weber-Fechner law-dependent numerical cognition

    Directory of Open Access Journals (Sweden)

    Kenji Morita

    2009-08-01

    Full Text Available Humans and animals are known to share an ability to estimate or compare the numerosity of visual stimuli, and this ability is considered to be supported by the cortical neurons that have unimodal tuning for numerosity, referred to as the numerosity detector neurons. How such unimodal numerosity tuning is shaped through plasticity mechanisms is unknown. Here I propose a testable hypothetical mechanism based on recently revealed features of the neuronal dendrite, namely, cooperative plasticity induction and nonlinear input integration at nearby dendritic sites, on the basis of the existing proposal that individual visual stimuli are represented as similar localized activities regardless of the size or the shape in a cortical region in the dorsal visual pathway. Intriguingly, the proposed mechanism naturally explains a prominent feature of the numerosity detector neurons, namely, the broadening of the tuning curve in proportion to the preferred numerosity, which is considered to underlie the known Weber-Fechner law-dependent accuracy of numerosity estimation and comparison. The simulated tuning curves are less sharp than reality, however, and together with the evidence from human imaging studies that numerical representation is a distributed phenomenon, it may not be likely that the proposed mechanism operates by itself. Rather, the proposed mechanism might facilitate the formation of hierarchical circuitry proposed in the previous studies, which includes neurons with monotonic numerosity tuning as well as those with sharp unimodal tuning, by serving as an efficient initial condition.

  13. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  14. Elastomeric composites with tuned electromagnetic characteristics

    International Nuclear Information System (INIS)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V; Nemat-Nasser, Sia

    2013-01-01

    This paper presents a novel elastomeric composite that exhibits a deformation-induced change in chirality. Previous efforts primarily dealt with a coil array in air without chiral tuning. Here, a composite is created that consists of an array of parallel, metallic helices of the same handedness embedded in a polymer matrix. The chiral response of the composite depends on pitch, coil diameter, wire thickness and coil spacing; however, pitch has the greatest effect on electromagnetic performance. The present study explores this effect by using helical elements to construct a chiral medium that can be mechanically stretched to adjust pitch. This adjustment directly affects the overall chirality of the composite. A prototype sample of the composite, fabricated for operation between 5.5–12.5 GHz, demonstrates repeatable elastic deformation. Using a transmit/receive measurement setup, the composite scattering response is measured over the frequency interval. The results indicate substantial tuning of chirality through deformation. An increase in axial strain of up to 30% yields a ∼18% change in axial chirality. (paper)

  15. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  16. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  17. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.

    2016-01-06

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  18. Double-tuned radiofrequency coil for (19)F and (1)H imaging.

    Science.gov (United States)

    Otake, Yosuke; Soutome, Yoshihisa; Hirata, Koji; Ochi, Hisaaki; Bito, Yoshitaka

    2014-01-01

    We developed a double-tuned radiofrequency (RF) coil using a novel circuit method to double tune for fluorine-19 (19F) and 1H magnetic resonance imaging, whose frequencies are very close to each other. The RF coil consists of 3 parallel-connected series inductor capacitor circuits. A computer simulation for our double-tuned RF coil with a phantom demonstrated that the coil has tuned resonant frequency and high sensitivity for both 19F and 1H. Drug distribution was visualized at 7 tesla using this RF coil and a rat administered perfluoro 15-crown-5-ether emulsion. The double-tune RF coil we developed may be a powerful tool for 19F and 1H imaging.

  19. Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets

    Science.gov (United States)

    Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.

    2012-01-01

    This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  1. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  2. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  3. Application of digital beam position processor Libera on tune measurement

    International Nuclear Information System (INIS)

    Zhang Chunhui; Sun Baogen; Cao Yong; Lu Ping; Li Jihao

    2006-01-01

    Digital signal processing (DSP) is widely used in the field of beam diagnostics. Especially, DSP achieves very good performance in beam position signal analysis and betatron tune measurement. In Hefei light source, when beam was excited by narrow-band Gaussian white nose, Libera, a digital beam position processor, was used to process the signals from beam position monitor (BPM), which contained betatron oscillation. Fast Fourier transform (FFT) was applied to finding out betatron resonance frequency, from which the decimal part of betatron oscillation tune was calculated. By this means, the measure of horizontal tune was 3.5352 and the measure of vertical tune is 2.6299. (authors)

  4. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study

    International Nuclear Information System (INIS)

    Mao Zhongquan; Chen Xi; Zhan Xiaozhi

    2012-01-01

    The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications. (paper)

  5. [Study on spectral detection of green plant target].

    Science.gov (United States)

    Deng, Wei; Zhao, Chun-jiang; He, Xiong-kui; Chen, Li-ping; Zhang, Lu-da; Wu, Guang-wei; Mueller, J; Zhai, Chang-yuan

    2010-08-01

    Weeds grow scatteredly in fields, where many insentient objects exist, for example, withered grasses, dry twig and barriers. In order to improve the precision level of spraying, it is important to study green plant detecting technology. The present paper discussed detecting method of green plant by using spectral recognizing technology, because of the real-time feature of spectral recognition. By analyzing the reflectivity difference between each of the two sides of the "red edge" of the spectrum from plants and surrounding environment, green plant discriminat index (GPDI) is defined as the value which equals the reflectivity ratio at the wavelength of 850 nm divided by the reflectivity ratio at the wavelength of 650 nm. The original spectral data of green plants and the background were measured by using the handhold FieldSpec 3 Spectroradiometer manufactured by ASD Inc. in USA. The spectral data were processed to get the reflectivity of each measured objects and to work out the GPDI thereof as well. The classification model of green plant and its background was built up using decision tree method in order to obtain the threshold of GPDI to distinguish green plants and the background. The threshold of GPDI was chosen as 5.54. The detected object was recognized as green plant when it is GPDI>GPDITH, and vice versa. Through another test, the accuracy rate was verified which was 100% by using the threshold. The authors designed and developed the green plant detector based on single chip microcomputer (SCM) "AT89S51" and photodiode "OPT101" to realize detecting green plants from the background. After passing through two optical filters, the center wavelengths of which are 650 and 850 nm respectively, the reflected light from measured targets was detected by two photodiodes and converted into electrical signals. These analog signals were then converted to digital signals via an analog-to-digital converter (ADS7813) after being amplified by a signal amplifier (OP400

  6. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations

    Science.gov (United States)

    Lu, Zheng; Huang, Biao; Zhang, Qi; Lu, Xilin

    2018-05-01

    Eddy-current tuned mass dampers (EC-TMDs) are non-contacting passive control devices and are developed on the basis of conventional tuned mass dampers. They comprise a solid mass, a stiffness element, and a damping element, wherein the damping mechanism originates from eddy currents. By relative motion between a non-magnetic conductive metal and a permanent magnet in a dynamic system, a time-varying magnetic field is induced in the conductor, thereby generating eddy currents. The eddy currents induce a magnetic field with opposite polarity, causing repulsive forces, i.e., damping forces. This technology can overcome the drawbacks of conventional tuned mass dampers, such as limited service life, deterioration of mechanical properties, and undesired additional stiffness. The experimental and analytical study of this system installed on a multi-degree-of-freedom structure is presented in this paper. A series of shaking table tests were conducted on a five-story steel-frame model with/without an EC-TMD to evaluate the effectiveness and performance of the EC-TMD in suppressing the vibration of the model under seismic excitations. The experimental results show that the EC-TMD can effectively reduce the displacement response, acceleration response, interstory drift ratio, and maximum strain of the columns under different earthquake excitations. Moreover, an analytical method was proposed on the basis of electromagnetic and structural dynamic theories. A comparison between the test and simulation results shows that the simulation method can be used to estimate the response of structures with an EC-TMD under earthquake excitations with acceptable accuracy.

  7. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  8. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  9. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-jun [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China); Zhang, Ning; Wang, Jingyuan [The First Affiliated Hospital of Xi’an Jiaotong University, Department of Clinical Laboratory (China); Yang, Chun-yu; Zhu, Jian, E-mail: nanoptzj@163.com; Zhao, Jun-wu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China)

    2016-02-15

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity.

  10. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-01-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity

  11. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  12. Collective Mind: Towards Practical and Collaborative Auto-Tuning

    Directory of Open Access Journals (Sweden)

    Grigori Fursin

    2014-01-01

    Full Text Available Empirical auto-tuning and machine learning techniques have been showing high potential to improve execution time, power consumption, code size, reliability and other important metrics of various applications for more than two decades. However, they are still far from widespread production use due to lack of native support for auto-tuning in an ever changing and complex software and hardware stack, large and multi-dimensional optimization spaces, excessively long exploration times, and lack of unified mechanisms for preserving and sharing of optimization knowledge and research material. We present a possible collaborative approach to solve above problems using Collective Mind knowledge management system. In contrast with previous cTuning framework, this modular infrastructure allows to preserve and share through the Internet the whole auto-tuning setups with all related artifacts and their software and hardware dependencies besides just performance data. It also allows to gradually structure, systematize and describe all available research material including tools, benchmarks, data sets, search strategies and machine learning models. Researchers can take advantage of shared components and data with extensible meta-description to quickly and collaboratively validate and improve existing auto-tuning and benchmarking techniques or prototype new ones. The community can now gradually learn and improve complex behavior of all existing computer systems while exposing behavior anomalies or model mispredictions to an interdisciplinary community in a reproducible way for further analysis. We present several practical, collaborative and model-driven auto-tuning scenarios. We also decided to release all material at c-mind.org/repo to set up an example for a collaborative and reproducible research as well as our new publication model in computer engineering where experimental results are continuously shared and validated by the community.

  13. Computation of undulator tuning curves

    International Nuclear Information System (INIS)

    Dejus, Roger J.

    1997-01-01

    Computer codes for fast computation of on-axis brilliance tuning curves and flux tuning curves have been developed. They are valid for an ideal device (regular planar device or a helical device) using the Bessel function formalism. The effects of the particle beam emittance and the beam energy spread on the spectrum are taken into account. The applicability of the codes and the importance of magnetic field errors of real insertion devices are addressed. The validity of the codes has been experimentally verified at the APS and observed discrepancies are in agreement with predicted reduction of intensities due to magnetic field errors. The codes are distributed as part of the graphical user interface XOP (X-ray OPtics utilities), which simplifies execution and viewing of the results

  14. Human face processing is tuned to sexual age preferences

    DEFF Research Database (Denmark)

    Ponseti, J; Granert, O; van Eimeren, T

    2014-01-01

    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating....... In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (f......MRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more...

  15. Recommendations for the tuning of rare event probability estimators

    International Nuclear Information System (INIS)

    Balesdent, Mathieu; Morio, Jérôme; Marzat, Julien

    2015-01-01

    Being able to accurately estimate rare event probabilities is a challenging issue in order to improve the reliability of complex systems. Several powerful methods such as importance sampling, importance splitting or extreme value theory have been proposed in order to reduce the computational cost and to improve the accuracy of extreme probability estimation. However, the performance of these methods is highly correlated with the choice of tuning parameters, which are very difficult to determine. In order to highlight recommended tunings for such methods, an empirical campaign of automatic tuning on a set of representative test cases is conducted for splitting methods. It allows to provide a reduced set of tuning parameters that may lead to the reliable estimation of rare event probability for various problems. The relevance of the obtained result is assessed on a series of real-world aerospace problems

  16. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad

    2017-09-27

    Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.

  17. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  18. Tuning of JET transmission line/antenna system during ICRH

    International Nuclear Information System (INIS)

    Oeberg, J.

    1993-05-01

    The launched toroidal wave spectrum for ICRH and ICRH current drive is controlled by the phasing of the antenna currents. This causes imbalance in the transmission lines, which makes it more difficult to use the full power of the ICRH generators. Further, the generators are sensitive to the amount of reflected power. To reduce the amount of reflected power the transmission lines have to be constantly tuned. To study the tuning three models of the antenna are developed and compared with experimental results. A method is suggested which enables better usage of the generated power using a power correction unit to evenly distribute the power load between the generators. 4 refs, 24 figs

  19. Optimization of spectral printer modeling based on a modified cellular Yule-Nielsen spectral Neugebauer model.

    Science.gov (United States)

    Liu, Qiang; Wan, Xiaoxia; Xie, Dehong

    2014-06-01

    The study presented here optimizes several steps in the spectral printer modeling workflow based on a cellular Yule-Nielsen spectral Neugebauer (CYNSN) model. First, a printer subdividing method was developed that reduces the number of sub-models while maintaining the maximum device gamut. Second, the forward spectral prediction accuracy of the CYNSN model for each subspace of the printer was improved using back propagation artificial neural network (BPANN) estimated n values. Third, a sequential gamut judging method, which clearly reduced the complexity of the optimal sub-model and cell searching process during printer backward modeling, was proposed. After that, we further modified the use of the modeling color metric and comprehensively improved the spectral and perceptual accuracy of the spectral printer model. The experimental results show that the proposed optimization approaches provide obvious improvements in aspects of the modeling accuracy or efficiency for each of the corresponding steps, and an overall improvement of the optimized spectral printer modeling workflow was also demonstrated.

  20. Stereoselective synthesis and spectral studies of some benzotriazolylacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones

    Science.gov (United States)

    Pillai, M. Velayutham; Rajeswari, K.; Kumar, C. Udhaya; Krishnan, K. Gokula; Mahendran, S.; Ramalingan, C.; Nagarajan, E. R.; Vidhyasagar, T.

    2017-12-01

    An effort to include biologically potent benzotriazole nucleus into piperidine ring is achieved through hydrazone formation. The characterization of the synthesized compounds was carried out using FT-IR, 1H &13C NMR, 1H-1H COSY, 1H-13C COSY, NOESY spectral techniques and GC-Mass spectrum. The spectral assignments were done without ambiguity using 2D-NMR techniques. The conformational preference of the piperidine ring deduced from the spectral studies is 'chair'. The diastereotopic nature of the methylene protons/methyl groups present in the molecules is revealed clearly in their spectral pattern observed.

  1. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  2. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  3. Optimal tuning of a GCM using modern and glacial constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Lauren J.; Valdes, Paul J.; Payne, Antony J.; Kahana, Ron [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2011-08-15

    In climate models, many parameters used to resolve subgrid scale processes can be adjusted through a tuning exercise to fit the model's output to target climatologies. We present an objective tuning of a low resolution Atmosphere-Ocean General Circulation Model (GCM) called FAMOUS where ten model parameters are varied together using a Latin hypercube sampling method to create an ensemble of 100 models. The target of the tuning consists of a wide range of modern climate diagnostics and also includes glacial tropical sea surface temperature. The ensemble of models created is compared to the target using an Arcsin Mielke score. We investigate how the tuning method used and the addition of glacial constraints impact on the present day and glacial climates of the chosen models. Rather than selecting a single configuration which optimises the metric in all the diagnostics, we obtain a subset of nine 'good' models which display great differences in their climate but which, in some sense, are all better than the original configuration. In those simulations, the global temperature response to last glacial maximum forcings is enhanced compared to the control simulation and the glacial Atlantic Ocean circulation is more in agreement with observations. Our study demonstrates that selecting a single 'optimal' configuration, relying only on present day constraints may lead to misrepresenting climates different to that of today. (orig.)

  4. Implementation through Innovation: A Literature-Based Analysis of the Tuning Project

    Science.gov (United States)

    Pálvölgyi, Krisztián

    2017-01-01

    Tuning Educational Structures in Europe is perhaps the most important higher education innovation platform nowadays. The main objective of the Tuning Project is to develop a tangible approach to implement the action lines of the Bologna Process; thus, implementation and innovation are closely linked in Tuning. However, during its development,…

  5. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning.

    Science.gov (United States)

    Zhou, Ning; Cadmus, Matthew; Dong, Lixue; Mathews, Juliana

    2018-04-25

    Prior research has shown that in electrical hearing, cochlear implant (CI) users' speech recognition performance is related in part to their ability to detect temporal modulation (i.e., modulation sensitivity). Previous studies have also shown better speech recognition when selectively stimulating sites with good modulation sensitivity rather than all stimulation sites. Site selection based on channel interaction measures, such as those using imaging or psychophysical estimates of spread of neural excitation, has also been shown to improve speech recognition. This led to the question of whether temporal modulation sensitivity and spatial selectivity of neural excitation are two related variables. In the present study, CI users' modulation sensitivity was compared for sites with relatively broad or narrow neural excitation patterns. This was achieved by measuring temporal modulation detection thresholds (MDTs) at stimulation sites that were significantly different in their sharpness of the psychophysical spatial tuning curves (PTCs) and measuring MDTs at the same sites in monopolar (MP) and bipolar (BP) stimulation modes. Nine postlingually deafened subjects implanted with Cochlear Nucleus® device took part in the study. Results showed a significant correlation between the sharpness of PTCs and MDTs, indicating that modulation detection benefits from a more spatially restricted neural activation pattern. There was a significant interaction between stimulation site and mode. That is, using BP stimulation only improved MDTs at stimulation sites with broad PTCs but had no effect or sometimes a detrimental effect on MDTs at stimulation sites with sharp PTCs. This interaction could suggest that a criterion number of nerve fibers is needed to achieve optimal temporal resolution, and, to achieve optimized speech recognition outcomes, individualized selection of site-specific current focusing strategies may be necessary. These results also suggest that the removal of

  6. Realtime tune measurements in slow-cycling accelerators

    International Nuclear Information System (INIS)

    Herrup, D.

    1997-01-01

    Measurement and control of the tunes, coupling, and chromaticities in storage rings is essential to efficient operation of these accelerators. Yet it has been very difficult to make reliable realtime measurements of these quantities. We have built and commissioned the microprocessor-based Generic Finite State Data Acquisition (GFSDA) system. GFSDA provides turn-by-turn data acquisition and analysis of accelerator signals in a way that can be easily related to accelerator operations. The microprocessor is capable of calculating FFTs and correlations in real time. Both the Fermilab Main Ring and Tevatron use open loop tune, chromaticity, and coupling control, and the GFSDA measurements can easily be used to improve the open loop tables. We can add realtime feedback control with simple extensions of the system. We have used this system to make tune measurements closely spaced in time over an entire Tevatron ramp cycle

  7. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  8. Proportional–Integral–Derivative (PID Controller Tuning using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    J. S. Bassi

    2012-08-01

    Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.

  9. New design concepts for ferrite-tuned low-energy-booster cavities

    International Nuclear Information System (INIS)

    Schaffer, G.

    1991-05-01

    The design concepts for ferrite-tuned accelerating cavities discussed in this paper differ from conventional solutions using thick ferrite toroids for frequency tuning. Instead, tuners consisting of an array of ferrite-loaded striplines are investigated. These promise more efficient cooling and higher operational reliability. Layout examples for the SSC-LEB rf system are presented (tuning range 47.5 to 59.8 MHz, repetition frequency 10 Hz). 15 refs., 4 figs., 1 tab

  10. Application research of tune measurement system in Hefei light source

    International Nuclear Information System (INIS)

    Sun Baogen; He Duohui; Xu Hongliang; Lu Ping; Wang Junhua; Gao Yunfeng; Wang Lin; Liu Jinying

    2002-01-01

    The author introduces the measurement and research of some beam parameters using tune measurement system for Hefei Light Source (HLS), which include the betatron tune, beta function, natural chromaticity, corrected chromaticity, and central frequency. Additionally, it also describes the measurement of the influence of DC clearing electrodes on the betatron tune shift and gives some measurement results. The measurement results are compared with the theoretical values and they are in good agreement

  11. Efficient receiver tuning using differential evolution strategies

    Science.gov (United States)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  12. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  13. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    Science.gov (United States)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  14. Tuning of light-graphene interactions

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    — Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through Fermi-level tuning enables electrooptical modulation......, optical-optical switching, and other optoelectronics applications. Except for the statistic gating and chemical doping, the Fermi level of graphene can also be optically tuned. With the aid of external optical pumping, electrons can be excited in the substrate, then move to the graphene layer, leading...... to the electrical doping in graphene. In this talk, I will firstly discuss how the graphene property changes when applying the optical pumping with different incident power. Then I will discuss graphene-silicon microring devices with having a high modulation depth and with a relatively low bias voltage. Finally, I...

  15. Impact of spectral nudging and domain size in studies of RCM response to parameter modification

    Energy Technology Data Exchange (ETDEWEB)

    Separovic, Leo; Laprise, Rene [Universite du Quebec a Montreal, Centre pour l' Etude et la Simulation du Climat a l' Echelle Regionale (ESCER), Montreal, QC (Canada); Universite du Quebec a Montreal (UQAM), Montreal, QC (Canada); Elia, Ramon de [Universite du Quebec a Montreal, Centre pour l' Etude et la Simulation du Climat a l' Echelle Regionale (ESCER), Montreal, QC (Canada); Consortium Ouranos, Montreal, QC (Canada)

    2012-04-15

    The paper aims at finding an RCM configuration that facilitates studies devoted to quantifying RCM response to parameter modification. When using short integration times, the response of the time-averaged variables to RCM modification tend to be blurred by the noise originating in the lack of predictability of the instantaneous atmospheric states. Two ways of enhancing the signal-to-noise ratio are studied in this work: spectral nudging and reduction of the computational domain size. The approach followed consists in the analysis of the sensitivity of RCM-simulated seasonal averages to perturbations of two parameters controlling deep convection and stratiform condensation, perturbed one at a time. Sensitivity is analyzed within different simulation configurations obtained by varying domain size and using the spectral nudging option. For each combination of these factors multiple members of identical simulations that differ exclusively in initial conditions are also generated to provide robust estimates of the sensitivities (the signal) and sample the noise. Results show that the noise magnitude is decreased both by reduction of domain size and the spectral nudging. However, the reduction of domain size alters some sensitivity signals. When spectral nudging is used significant alterations of the signal are not found. (orig.)

  16. Effective spectral densities for system-environment dynamics at conical intersections: S{sub 2}-S{sub 1} conical intersection in pyrazine

    Energy Technology Data Exchange (ETDEWEB)

    Martinazzo, Rocco [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martelli, Fausto [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Burghardt, Irene, E-mail: irene.burghardt@ens.fr [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France)

    2010-11-25

    Graphical abstract: The effect of high-dimensional environments on conical intersections can be described by hierarchies of approximate spectral densities, which translate to truncated effective-mode chains in the time domain. Abstract: A recently developed effective-mode representation is employed to characterize the influence of a multi-dimensional environment on the S{sub 2}-S{sub 1} conical intersection in pyrazine, taken as a paradigm case of high-dimensional dynamics at a conical intersection. We consider a simplified model by which four modes are strongly coupled to the electronic subsystem while a number of weakly coupled tuning modes, inducing energy gap fluctuations, are sampled from a spectral density. The latter is approximated by a series of simplified spectral densities which can be cast into a continued-fraction form, as previously demonstrated in Hughes et al. (K.H. Hughes, C.D. Christ, I. Burghardt, J. Chem. Phys. 131 (2009) 124108). In the time domain, the hierarchy of spectral densities translates to truncated effective-mode chains with a Markovian or quasi-Markovian (Rubin type) closure. A sequential deconvolution procedure is employed to generate this chain representation. The implications for the ultrafast dynamics and its representation in terms of reduced-dimensional models are discussed.

  17. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  18. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  19. Dielectric Screening Meets Optimally Tuned Density Functionals.

    Science.gov (United States)

    Kronik, Leeor; Kümmel, Stephan

    2018-04-17

    A short overview of recent attempts at merging two independently developed methods is presented. These are the optimal tuning of a range-separated hybrid (OT-RSH) functional, developed to provide an accurate first-principles description of the electronic structure and optical properties of gas-phase molecules, and the polarizable continuum model (PCM), developed to provide an approximate but computationally tractable description of a solvent in terms of an effective dielectric medium. After a brief overview of the OT-RSH approach, its combination with the PCM as a potentially accurate yet low-cost approach to the study of molecular assemblies and solids, particularly in the context of photocatalysis and photovoltaics, is discussed. First, solvated molecules are considered, with an emphasis on the challenge of balancing eigenvalue and total energy trends. Then, it is shown that the same merging of methods can also be used to study the electronic and optical properties of molecular solids, with a similar discussion of the pros and cons. Tuning of the effective scalar dielectric constant as one recent approach that mitigates some of the difficulties in merging the two approaches is considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  1. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  2. Effects of Stimulus Octave and Timbre on the Tuning Accuracy of Advanced College Instrumentalists

    Science.gov (United States)

    Byo, James L.; Schlegel, Amanda L.

    2016-01-01

    The purpose of this study was to test the effects of octave and timbre on advanced college musicians' (N = 63) ability to tune their instruments. We asked: "Are there differences in tuning accuracy due to octave (B-flat 2, B-flat 4) and stimulus timbre (oboe, clarinet, electronic tuner, tuba)?" and "To what extent do participants'…

  3. Monopoly provision of tune-ins

    Czech Academy of Sciences Publication Activity Database

    Celik, Levent

    -, č. 362 (2008), s. 1-31 ISSN 1211-3298 Institutional research plan: CEZ:MSM0021620846 Keywords : informative advertising * tune-ins * television station Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp362.pdf

  4. Modernising educational programmes in ICT based on the Tuning methodology

    Directory of Open Access Journals (Sweden)

    Alexander Bedny

    2014-07-01

    Full Text Available An analysis is presented of the experience of modernising undergraduate educational programs using the TUNING methodology, based on the example of the area of studies “Fundamental computer science and information technology” (FCSIT implemented at Lobachevsky State University of Nizhni Novgorod (Russia. The algorithm for reforming curricula for the subject area of information technology in accordance with the TUNING methodology is explained. A comparison is drawn between the existing Russian and European standards in the area of ICT education, including the European e-Competence Framework, with the focus on relevant competences. Some guidelines for the preparation of educational programmes are also provided.

  5. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  6. Cochlear implant users' spectral ripple resolution.

    Science.gov (United States)

    Jeon, Eun Kyung; Turner, Christopher W; Karsten, Sue A; Henry, Belinda A; Gantz, Bruce J

    2015-10-01

    This study revisits the issue of the spectral ripple resolution abilities of cochlear implant (CI) users. The spectral ripple resolution of recently implanted CI recipients (implanted during the last 10 years) were compared to those of CI recipients implanted 15 to 20 years ago, as well as those of normal-hearing and hearing-impaired listeners from previously published data from Henry, Turner, and Behrens [J. Acoust. Soc. Am. 118, 1111-1121 (2005)]. More recently, implanted CI recipients showed significantly better spectral ripple resolution. There is no significant difference in spectral ripple resolution for these recently implanted subjects compared to hearing-impaired (acoustic) listeners. The more recently implanted CI users had significantly better pre-operative speech perception than previously reported CI users. These better pre-operative speech perception scores in CI users from the current study may be related to better performance on the spectral ripple discrimination task; however, other possible factors such as improvements in internal and external devices cannot be excluded.

  7. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao; Zhang, Xi; Yu, Bang-Yao; Xi, Bao-Jia; Wang, Xue; Feng, Huan-Xue; Zhang, Meng, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Dong [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.

  8. Disorder-tuned charge transport in organic semiconductors

    Science.gov (United States)

    Xu, Feng; Qiu, Dong; Yan, Dadong

    2013-02-01

    We propose that the polaron transport in organic semiconductors is remarkably tuned by the fluctuation of polarization energy. The tuning effect of energetic fluctuation not only causes a continuous transition from non-Arrhenius to Arrhenius temperature activated charge transport with increasing moderate disorder strengths but also results in a band-like conduction in the low disorder regime which benefits from the enhanced mobilities in shallow trap states. As a result, a unified description of polaron transport is obtained for a set of typical organic semiconductors.

  9. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  10. A microcontroller based tuning mechanism for the magnetron

    International Nuclear Information System (INIS)

    Khan, A.M.; Mahfooz, M.; Hanumaiah, B.; Ganesh; Siddappa, K.

    2006-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in the microtron (electron accelerator facility at Mangalore University). The control system so designed consists of a microcontroller, a phase locked loop (PLL) and a digital to analog converter (DAC) to control the magnetron frequency. The voltage value given by the microcontroller through the DAC decides the reference frequency. The PLL gives the error voltage whenever there is difference between the reference and the magnetron frequencies. The microcontroller unit tracks the error voltage and tunes the magnetron with the help of a tuner mechanism connected through a stepper motor. The microcontroller also monitors the beam current level and accordingly adjusts the reference frequency to successfully tune the magnetron. (author)

  11. SOCl2 catalyzed cyclization of chalcones: Synthesis and spectral studies of some bio-potent 1H pyrazoles

    Directory of Open Access Journals (Sweden)

    K. Ranganathan

    2014-05-01

    Full Text Available Some aryl-aryl 1H pyrazoles have been synthesised by cyclization of aryl chalcones and hydrazine hydrate in the presence of SOCl2. The yields of the pyrazoles are more than 85%. These pyrazoles are characterized by their physical constants and spectral data. The infrared, NMR spectral group frequencies of these pyrazolines have been correlated with Hammett substituent constants, F and R parameters. From the results of statistical analyses the effects of substituent on the spectral frequencies have been studied. The antimicrobial activities of all synthesised pyrazolines have been studied using Bauer-Kirby method. DOI: http://dx.doi.org/10.4314/bcse.v28i2.11

  12. Syntheses and spectral studies of novel ciprofloxacin derivatives

    Directory of Open Access Journals (Sweden)

    Pradeep Yadav

    2008-12-01

    Full Text Available Reaction of 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl-1,4-dihydroquinoline-3-carboxylic acid (ciprofloxacin with thiazole/benzothiazole diazonium chloride afforded piperazine substituted ciprofloxacin derivative. The acid part of these derivatives was further condensed with various β-diketones to get 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(thiazol-2-yldiazenylpiperazin-1-yl-1,4-dihydroquinoline-3-carboxylic acid derivatives (5a-e and 7-(4-(benzo[d]thiazol-2-yldiazenylpiperazin-1-yl-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives (5f-j. Structures of these compounds were established on the basis of spectral studies.

  13. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  14. Tuning and optimization of the field distribution for 4-rod Radio Frequency Quadrupole linacs

    International Nuclear Information System (INIS)

    Schmidt, Janet Susan

    2014-01-01

    In this thesis, the tuning process of the 4-rod Radio Frequency Quadrupole has been analyzed and a theory for the prediction of the tuning plate's influence on the longitudinal voltage distribution was developed together with RF design options for the optimization of the fringe fields. The basic principles of the RFQ's particle dynamics and resonant behavior are introduced in the theory part of this thesis. All studies that are presented are based on the work on four RFQs of recent linac projects. These RFQs are described in one chapter. Here, the projects are introduced together with details about the RFQ parameters and performance. In the meantime two of these RFQs are in full operation at NSCL at MSU and FNAL. One is operating in the test phase of the MedAustron Cancer Therapy Center and the fourth one for LANL is about to be built. The longitudinal voltage distribution has been studied in detail with a focus on the influence of the RF design with tuning elements and parameters like the electrodes overlap or the distance between stems. The theory for simulation methods for the field flatness that were developed as part of this thesis, as well as its simulation with CST MWS have been analyzed and compared to measurements. The lumped circuit model has proven to predict results with an accuracy that can be used in the tuning process of 4-rod RFQs. Together with results from the tuning studies, the studies on the fringe fields of the 4-rod structure lead to a proposal for a 4-rod RFQ model with an improved field distribution in the transverse and longitudinal electric field.

  15. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.

    Directory of Open Access Journals (Sweden)

    Patrick Arbogast

    Full Text Available A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2 and cone densities of 3000-6500/mm(2. Two cone opsins, shortwave sensitive (S and middle-to-longwave sensitive (M, are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones. In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2. Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.

  16. Iterative Controller Tuning for Process with Fold Bifurcations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2007-01-01

    Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....

  17. Tuning and matching of the BPX ICH system

    International Nuclear Information System (INIS)

    Swain, D.W.

    1991-01-01

    Two methods of tuning and matching the ion cyclotron heating (ICH) antennas for the Burning Plasma Experiment (BPX) to the BPX plasma have been analyzed. Both appear to provide adequate tuning and matching capabilities. However, there are trade-offs between the frequency range that can be covered and the compactness of the high-voltage region of the transmission lines that makes up of the matching network. 4 refs., 5 figs

  18. Tuning controllers using the dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2000-01-01

    This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla parameteriza......This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla...

  19. Java EE 7 performance tuning and optimization

    CERN Document Server

    Oransa, Osama

    2014-01-01

    The book adopts a step-by-step approach, starting from building the basics and adding to it gradually by using different tools and examples. The book sequence is easy to follow and all topics are fully illustrated showing you how to make good use of different performance diagnostic tools. If you are an experienced Java developer, architect, team leader, consultant, support engineer, or anyone else who needs performance tuning in your Java applications, and in particular, Java enterprise applications, this book is for you. No prior experience of performance tuning is required.

  20. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  1. A 21st Century Imperative: integrating intercultural competence in Tuning

    Directory of Open Access Journals (Sweden)

    Darla K. Deardorff

    2015-12-01

    Full Text Available Given the increasing demand for interculturally competent graduates and employees, it is incumbent upon the Tuning community to incorporate intercultural competence into Tuning Frameworks. With the growing diversity in the world today, beyond national diversity, intercultural competence cuts across disciplines, subjects, and contexts. This essay highlights the first research-based definition and framework of intercultural competence which can be translated into any subject and context and makes the case for why intercultural competence must be embedded into Tuning Frameworks around the world.

  2. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Science.gov (United States)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  3. Long-range beam-beam interactions in the Tevatron: Comparing simulation to tune shift data

    International Nuclear Information System (INIS)

    Saritepe, S.; Michelotti, L.; Peggs, S.

    1990-07-01

    Fermilab upgrade plans for the collider operation include a separation scheme in the Tevatron, in which protons and antiprotons are placed on separate helical orbits. The average separation distance between the closed orbits will be 5σ (σ of the proton bunch) except at the interaction regions, B0 and D0, where they collide head-on. The maximum beam-beam total tune shift in the Tevatron is approximately 0.024 (the workable tune space between 5th and 7th order resonances), which was reached in the 1988--1989 collider tun. Helical separation scheme allows us to increase the luminosity by reducing the total beam-beam tune shift. The number of bunches per beam will be 6 in the 1991 collider tun, to be increased to 36 in the following collider runs. To test the viability of this scenario, helical orbit studies are being conducted. The most recent studies concentrated on the injection of 36 proton bunches, procedures related to opening and closing of the helix, the feed-down circuits and the beam-beam interaction. In this paper, we present the results of the beam-beam interaction studies only. Our emphasis is on the tune shift measurements and the comparison to simulation. 4 refs., 9 figs., 2 tabs

  4. Fine tuning and MOND in a metamaterial "multiverse".

    Science.gov (United States)

    Smolyaninov, Igor I; Smolyaninova, Vera N

    2017-08-14

    We consider the recently suggested model of a multiverse based on a ferrofluid. When the ferrofluid is subjected to a modest external magnetic field, the nanoparticles inside the ferrofluid form small hyperbolic metamaterial domains, which from the electromagnetic standpoint behave as individual "Minkowski universes" exhibiting different "laws of physics", such as different strength of effective gravity, different versions of modified Newtonian dynamics (MOND) and different radiation lifetimes. When the ferrofluid "multiverse" is populated with atomic or molecular species, and these species are excited using an external laser source, the radiation lifetimes of atoms and molecules in these "universes" depend strongly on the individual physical properties of each "universe" via the Purcell effect. Some "universes" are better fine-tuned than others to sustain the excited states of these species. Thus, the ferrofluid-based metamaterial "multiverse" may be used to study models of MOND and to illustrate the fine-tuning mechanism in cosmology.

  5. A pilot Tuning Project-based national study on recently graduated medical students' self-assessment of competences--the TEST study.

    Science.gov (United States)

    Grilo Diogo, Pedro; Barbosa, Joselina; Ferreira, Maria Amélia

    2015-12-19

    The Tuning Project is an initiative funded by the European Commission that developed core competences for primary medical degrees in Europe. Students' grouped self-assessments are used for program evaluation and improvement of curricula. The TEST study aimed to assess how do Portuguese medical graduates self-assess their acquisition of core competences and experiences of contact with patients in core settings according to the Tuning framework. Translation of the Tuning's competences (Clinical Practice - CP), Knowledge (K) items and Clinical Settings (CS) was performed. Questionnaires were created in paper and electronic formats and distributed to 1591 graduates from seven Portuguese medical schools (July 2014). Items were rated in a 6-point Likert scale (0-5) of levels of competence. Exploratory factor analysis (EFA) was conducted and Cronbach's alpha was used to evaluate the internal consistency of the questionnaire. Kruskal-Wallis and Dunn's tests were used for multiple comparisons. Three hundred eighty seven questionnaires were analyzed, corresponding to 24% of the target population. EFA yielded an 11-factor solution for CP and a 6-factor solution for K items. The median value of CP factors was 2.8 (p25 = 2.0; p75 = 3.5) and the median value of K factors was 2.6 (2.0; 3.2). Factor scores ranged from 1.3 (Legal principles) to 4.0 (Ethical principles). Clinical presentations, psychological aspects of illness, evidence-based medicine and promotion of health showed the highest results. Lower scores were detected in medical emergencies, practical procedures, prescribing drugs and legal principles. More than 90% of graduates experienced having contact with patients in 8 CS but only 24% of graduates had contact in all 14 CS. Graduates had the least contact with patients in the emergency rooms, intensive care units, palliative, rehabilitation and anesthetic care. Significant differences (p competences in medical education. Results suggest that Portuguese

  6. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  7. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  8. The Magnetically-Tuned Transition-Edge Sensor

    Science.gov (United States)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2014-01-01

    We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.

  9. Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)

    1983-04-28

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  10. Automated tune measurements in the Advanced Light Source storage ring using a LabVIEW application

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Chin, M.; Kim, C.H.; Nishimura, H.

    1994-06-01

    Horizontal and vertical betatron tunes and the synchrotron tune are measured frequently during storage ring commissioning. The measurements are tedious and subject to human errors. Automating this kind of repetitive measurement is underway using LabVIEW for Windows, a software application supplied by National Instruments Corporation, that provides acquisition, graphing, and analysis of data as well as instrument control through the General Purpose Interface Bus (GPIB). We have added LabVIEW access to the Advanced Light Source (ALS) data base and control system. LabVIEW is a fast and efficient tool for accelerator commissioning and beam physics studies. Hardware used to perform tune measurements include a tracking generator (or a white noise generator), strip line electrodes for external ''citation of the beam, button monitors, and a spectrum analyzer. All three tunes are displayed simultaneously on the spectrum analyzer. Our program automatically identifies three tunes by applying and analyzing small variations and reports the results. This routine can be encapsulated in other applications, for instance, in a chromaticity measurement and correction program

  11. Basic controller tuning for large offshore wind turbines

    Directory of Open Access Journals (Sweden)

    K. O. Merz

    2016-09-01

    Full Text Available When a wind turbine operates above the rated wind speed, the blade pitch may be governed by a basic single-input–single-output PI controller, with the shaft speed as input. The performance of the wind turbine depends upon the tuning of the gains and filters of this controller. Rules of thumb, based upon pole placement, with a rigid model of the rotor, are inadequate for tuning the controller of large, flexible, offshore wind turbines. It is shown that the appropriate controller tuning is highly dependent upon the characteristics of the aeroelastic model: no single reference controller can be defined for use with all models. As an example, the ubiquitous National Renewable Energy Laboratory (NREL 5 MW wind turbine controller is unstable when paired with a fully flexible aeroelastic model. A methodical search is conducted, in order to find models with a minimum number of degrees of freedom, which can be used to tune the controller for a fully flexible aeroelastic model; this can be accomplished with a model containing 16–20 states. Transient aerodynamic effects, representing rotor-average properties, account for five of these states. A simple method is proposed to reduce the full transient aerodynamic model, and the associated turbulent wind spectra, to the rotor average. Ocean waves are also an important source of loading; it is recommended that the shaft speed signal be filtered such that wave-driven tower side-to-side vibrations do not appear in the PI controller output. An updated tuning for the NREL 5 MW controller is developed using a Pareto front technique. This fixes the instability and gives good performance with fully flexible aeroelastic models.

  12. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  13. Cyto-molecular Tuning of Quantum Dots

    Science.gov (United States)

    Lee, Bong; Suresh, Sindhuja; Ekpenyong, Andrew

    Quantum dots (QDs) are semiconductor nanoparticles composed of groups II-VI or III-V elements, with physical dimensions smaller than the exciton Bohr radius, and between 1-10 nm. Their applications and promising myriad applications in photovoltaic cells, biomedical imaging, targeted drug delivery, quantum computing, etc, have led to much research on their interactions with other systems. For biological systems, research has focused on biocompatibility and cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems might be used to tune QDs. Here, we hypothesize that the photo-electronic properties of QDs can be tuned by biological macromolecules following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, we perform spectroscopic analysis of optically excited colloidal QDs with and without promyelocytic HL60 cells. Preliminary results show shifts in the emission spectra of the colloidal dispersions with and without cells. We will present results for activated HL60-derived cells where specific macromolecules produced by these cells perturb the electric dipole moments of the excited QDs and the associated electric fields, in ways that constitute what we describe as cyto-molecular tuning. Startup funds from the College of Arts and Sciences, Creighton University (to AEE).

  14. AGS tune jump power supply design and test

    International Nuclear Information System (INIS)

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-01-01

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  15. Self-tuning fuzzy logic nuclear reactor controller

    International Nuclear Information System (INIS)

    Sharif Heger, A.; Alang-Rashid, N.K.

    1996-01-01

    We present a method for self-tuning of fuzzy logic controllers based on the estimation of the optimum value of the centroids of its output fuzzy set. The method can be implemented on-line and does not require modification of membership functions and control rules. The main features of this method are: the rules are left intact to retain the operator's expertise in the FLC rule base, and the parameters that require any adjustment are identifiable in advance and their number is kept at a minimum. Therefore, the use of this method preserves the control statements in the original form. Results of simulation and actual tests show that this tuning method improves the performance of fuzzy logic controllers in following the desired reactor power level trajectories. In addition, this method demonstrates a similar improvement for power up and power down experiments, based on both simulation and actual case studies. For these experiments, the control rules for the fuzzy logic controller were derived from control statements that expressed the relationships between error, rate of error change, and duration of direction of control rod movements

  16. NMC and the Fine-Tuning Problem on the Brane

    Directory of Open Access Journals (Sweden)

    A. Safsafi

    2014-01-01

    Full Text Available We propose a new solution to the fine-tuning problem related to coupling constant λ of the potential. We study a quartic potential of the form λϕ4 in the framework of the Randall-Sundrum type II braneworld model in the presence of a Higgs field which interacts nonminimally with gravity via a possible interaction term of the form -(ξ/2ϕ2R. Using the conformal transformation techniques, the slow-roll parameters in high energy limit are reformulated in the case of a nonminimally coupled scalar field. We show that, for some value of a coupling parameter ξ and brane tension T, we can eliminate the fine-tuning problem. Finally, we present graphically the solutions of several values of the free parameters of the model.

  17. Effect of tune modulation on the transverse stability of storage ring

    International Nuclear Information System (INIS)

    Yang Jiancheng; Xia Jiawen; Wu Junxia; Xia Guoxing; Liu Wei; Yin Xuejun; Liu Yong; Zhou Xuemei; Mao Lijun

    2004-01-01

    The transverse stability is a critical issue in circular accelerator. In this paper, authors analysed the effect of tune modulation on a FODO lattice with sextupole nonlinear through estimating the dynamic aperture including the influence of the distortion along the phase. It turned out that the tune modulation decreases the stability of particle in storage ring, the extent of this decrease depends largely on the amplitude and tune of modulation. (author)

  18. Spectral studies of coordination compounds of cobalt(II) with thiosemicarbazone of heterocyclic ketone

    Science.gov (United States)

    Chandra, Sulekh; Kumar, Umendra

    2005-12-01

    The paper presents the spectral analysis of cobalt(II) complexes with indoxyl thiosemicarbazone (ITSC) of general composition [CoL 2X 2] (where L = ITSC, X = Cl -, NO 3-, (1/2)SO 42-, NCS -). The geometry of the complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR, mass) studies. The various physico-chemical techniques suggested a coordination number of six (octahedral) for chloro, nitrato and thiocyanato complexes. Whereas sulfato complex was found to have five coordinate trigonal-bipyramidal geometry. All the complexes are of high spin type showing magnetic moment corresponding to three unpaired electrons.

  19. Algorithms for a Precise Determination of the Betatron Tune

    CERN Document Server

    Bartolini, R; Giovannozzi, Massimo; Todesco, Ezio; Scandale, Walter

    1996-01-01

    In circular accelerators the precise knowledge of the betatron tune is of paramount importance both for routine operation and for theoretical investigations. The tune is measured by sampling the transverse position of the beam for N turns and by performing the FFT of the stored data. One can also evaluate it by computing the Average Phase Advance (APA) over N turns. These approaches have an intrinsic error proportional to 1/N. However, there are special cases where either a better precision or a faster measurement is desired. More efficient algorithms can be used, as those suggested by E.Asseo [1] and recently by J. Laskar [2]. They provide tune estimates by far more precise than those of a plain FFT, as discussed in Ref. [3]. Another important isssue is the effect of the finite resolution of the instrumentation used to measure the beam position. This introduces a noise and the frequency response of the beam is modified [4,5} thus reducing the precision by which the tune is determined. In Section 2 we recall ...

  20. Tune and Orbit feedbacks performance: a user perspective

    CERN Document Server

    Ponce, L

    2012-01-01

    The presentation will present the performance and issues of tune and orbit feedbacks seen from the user (operation) perspective. Some statistics on the beam dumps causes will be presented to emphasize the two main limitations of the system : the issue on the tune measurement and the triggering of the QPS system of RQTs circuits. The possible improvements for 2012 will then be discussed together with the foreseen software changes for the orbit reference management.

  1. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  2. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    Science.gov (United States)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  3. Design of fast tuning elements for the ITER ICH system

    International Nuclear Information System (INIS)

    Swain, D.W.; Goulding, R.H.

    1996-05-01

    The coupling between the ion cyclotron (IC) antenna and the ITER plasma (as expressed by the load resistance the antenna sees) will experience relatively fast variations due to plasma edge profile modifications. If uncompensated, these will cause an increase in the amount of power reflected back to the transmitter and ultimately a decrease in the amount of radio frequency (rf) power to the plasma caused by protective suppression of the amount of rf power generated by the transmitter. The goals of this task were to study several alternate designs for a tuning and matching (T ampersand M) system and to recommend some research and development (R ampersand D) tasks that could be carried out to test some of the most promising concepts. Analyses of five different T ampersand M configurations are presented in this report. They each have different advantages and disadvantages, and the choice among them must be made depending on the requirements for the IC system. Several general conclusions emerge from our study: The use of a hybrid splitter as a passive reflected-power dump [''edge localized mode (ELM)-dump''] appears very promising; this configuration will protect the rf power sources from reflected power during changes in plasma loading due to plasma motion or profile changes (e.g., ELM- induced changes in the plasma scrape-off region) and requires no active control of the rf system. Trade-offs between simplicity of design and capability of the system must be made. Simple system designs with few components near the antenna either have high voltages over considerable distances of transmission lines, or they are not easily tuned to operate at different frequencies. Designs using frequency shifts and/or fast tuning elements can provide fast matching over a wide range of plasma loading; however, the designs studied here require components near the antenna, complicating assembly and maintenance. Capacitor-tuned resonant systems may offer a good compromise

  4. Resource-Efficient, Hierarchical Auto-Tuning of a Hybrid Lattice Boltzmann Computation on the Cray XT4

    International Nuclear Information System (INIS)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine

    2009-01-01

    We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads per MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications

  5. PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan [Tomas Bata University in Zlín, Faculty of Applied Informatics Department of Informatics and Artificial Intelligence nám. T.G. Masaryka 5555, 760 01 Zlín (Czech Republic)

    2015-03-10

    In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.

  6. PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment

    International Nuclear Information System (INIS)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan

    2015-01-01

    In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated

  7. Light stops and fine-tuning in MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Cici, Ali; Kirca, Zerrin; Uen, Cem Salih [Uludag Univ., Department of Physics, Bursa (Turkey)

    2018-01-15

    We discuss the fine-tuning issue within the MSSM framework. Following the idea that the fine-tuning can measure effects of some missing mechanism, we impose non-universal gaugino masses at the GUT scale, and explore the low scale implications. We realize that the fine-tuning parametrized with Δ{sub EW} can be as low as zero. We consider the stop mass with a special importance and focus on the mass scales as m{sub t} ≤ 700 GeV, which are excluded by the current experiments when the stop decays into a neutralino along with a top quark or a chargino along with a bottom quark. We find that the stop mass can be as low as about 250 GeV with Δ{sub EW} ∝ 50. We find that the solutions in this region can be excluded only up to 60% when stop decays into a neutralino-top quark, and 50% when it decays into a chargino-b quark. Setting 65% CL to be potential exclusion and 95% to be pure exclusion limit such solutions will be tested in near future experiments, which are conducted with higher luminosity. In addition to stop, the region with low fine-tuning and light stops predicts masses for the other supersymmetric particles such as m{sub b} >or similar 700 GeV, m{sub τ} >or similar 1 TeV, m{sub χ{sub 1}{sup {sub ±}}} >or similar 120 GeV. The details for the mass scales and decay rates are also provided by tables of benchmark points. (orig.)

  8. Light stops and fine-tuning in MSSM

    Science.gov (United States)

    Çiçi, Ali; Kırca, Zerrin; Ün, Cem Salih

    2018-01-01

    We discuss the fine-tuning issue within the MSSM framework. Following the idea that the fine-tuning can measure effects of some missing mechanism, we impose non-universal gaugino masses at the GUT scale, and explore the low scale implications. We realize that the fine-tuning parametrized with Δ _{EW} can be as low as zero. We consider the stop mass with a special importance and focus on the mass scales as m_{\\tilde{t}} ≤ 700 GeV, which are excluded by the current experiments when the stop decays into a neutralino along with a top quark or a chargino along with a bottom quark. We find that the stop mass can be as low as about 250 GeV with Δ _{EW} ˜ 50. We find that the solutions in this region can be exluded only up to 60% when stop decays into a neutralino-top quark, and 50% when it decays into a chargino-b quark. Setting 65% CL to be potential exclusion and 95% to be pure exclusion limit such solutions will be tested in near future experiments, which are conducted with higher luminosity. In addition to stop, the region with low fine-tuning and light stops predicts masses for the other supersymmetric particles such as m_{\\tilde{b}} ≳ 700 GeV, m_{\\tilde{τ }} ≳ 1 TeV, m_{\\tilde{χ }1^{± }} ≳ 120 GeV. The details for the mass scales and decay rates are also provided by tables of benchmark points.

  9. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    Science.gov (United States)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  10. Synthesis and Spectral Study of Novel Norfloxacin Derivatives

    Directory of Open Access Journals (Sweden)

    Pradeep Yadav

    2008-01-01

    Full Text Available Reaction of [1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl-quinolone-3-carboxylic acid (norfloxacin with thiazole / benzothiazole diazonium chloride to get new piperazine substituted norfloxacin derivative. These norfloxacin derivatives were further condensed with various β-diketone to get novel acid derivatives of 1-Ethyl-6-fluoro-4-oxo-7- [4 (thiazol-2-yldiazenyl-piperzin-1-yl]-1,4-dihydro-quinoline-3-carboxylic acid (6a-e and 7-(4-(benzo[d]thiazol-2-yldiazenylpiperazin-1-yl-1-ethyl-6-fluoro-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid (6 f-j. Structures of these compounds were established on the basis of spectral studies viz. IR, 1H NMR etc.

  11. Implications for new physics from fine-tuning arguments: II. Little Higgs models

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Hidalgo, I.

    2005-01-01

    We examine the fine-tuning associated to electroweak breaking in Little Higgs scenarios and find it to be always substantial and, generically, much higher than suggested by the rough estimates usually made. This is due to implicit tunings between parameters that can be overlooked at first glance but show up in a more systematic analysis. Focusing on four popular and representative Little Higgs scenarios, we find that the fine-tuning is essentially comparable to that of the Little Hierarchy problem of the Standard Model (which these scenarios attempt to solve) and higher than in supersymmetric models. This does not demonstrate that all Little Higgs models are fine-tuned, but stresses the need of a careful analysis of this issue in model-building before claiming that a particular model is not fine-tuned. In this respect we identify the main sources of potential fine-tuning that should be watched out for, in order to construct a successful Little Higgs model, which seems to be a non-trivial goal. (author)

  12. From Single- to Multi-Objective Auto-Tuning of Programs: Advantages and Implications

    Directory of Open Access Journals (Sweden)

    Juan Durillo

    2014-01-01

    Full Text Available Automatic tuning (auto-tuning of software has emerged in recent years as a promising method that tries to automatically adapt the behaviour of a program to attain different performance objectives on a given computing system. This method is gaining momentum due to the increasing complexity of modern multicore-based hardware architectures. Many solutions to auto-tuning have been explored ranging from simple random search to more sophisticate methods like machine learning or evolutionary search. To this day, it is still unclear whether these approaches are general enough to encompass all the complexities of the problem (e.g. search space, parameters influencing the search space, input data sensitivity, etc., or which approach is best suited for a given problem. Furthermore, the growing interest in auto-tuning a program for several objectives is increasing this confusion even further. The goal of this paper is to formally describe the problem addressed by auto-tuning programs and review existing solutions highlighting the advantages and drawbacks of different techniques for single-objective as well as multi-objective auto-tuning approaches.

  13. A new two-step tuning procedure for a photocathode gun

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K.K.; Krishnagopal, S.

    2008-01-01

    An important aspect of the development of multi-cell RF accelerating structures is tuning the resonant frequency f of the operating mode, field balance e b , and waveguide to cavity coupling coefficient β to the desired values. Earlier theoretical analyses have not been able to predict all three parameters simultaneously for a coupled-cavity system. We have developed a generalized circuit analysis to predict f, e b , and β of a coupled structure, based on the RF properties of the individual, uncoupled, cells. This has been used to develop a simplified two-step tuning procedure to tune a BNL/SLAC/UCLA type 1.6 cell S-band photocathode gun by varying RF properties of individual half and full cells, which are easily measurable. This procedure has been validated by tuning two true-to-scale prototypes made of aluminum and ETP copper to the desired values of the RF parameters

  14. Tuned Normalization Explains the Size of Attention Modulations

    OpenAIRE

    Ni, Amy M.; Ray, Supratim; Maunsell, John H.R.

    2012-01-01

    The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking as...

  15. Nano-fillers to tune Young’s modulus of silicone matrix

    International Nuclear Information System (INIS)

    Xia Lijin; Xu Zhonghua; Sun Leming; Caveney, Patrick M.; Zhang Mingjun

    2013-01-01

    In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.

  16. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2013-01-01

    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  17. Fine tuning support vector machines for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Zhou Junyi; Shi Jing; Li Gong

    2011-01-01

    Research highlights: → A systematic approach to tuning SVM models for wind speed prediction is proposed. → Multiple kernel functions and a wide range of tuning parameters are evaluated, and optimal parameters for each kernel function are obtained. → It is found that the forecasting performance of SVM is closely related to the dynamic characteristics of wind speed. → Under the optimal combination of parameters, different kernels give comparable forecasting accuracy. -- Abstract: Accurate forecasting of wind speed is critical to the effective harvesting of wind energy and the integration of wind power into the existing electric power grid. Least-squares support vector machines (LS-SVM), a powerful technique that is widely applied in a variety of classification and function estimation problems, carries great potential for the application of short-term wind speed forecasting. In this case, tuning the model parameters for optimal forecasting accuracy is a fundamental issue. This paper, for the first time, presents a systematic study on fine tuning of LS-SVM model parameters for one-step ahead wind speed forecasting. Three SVM kernels, namely linear, Gaussian, and polynomial kernels, are implemented. The SVM parameters considered include the training sample size, SVM order, regularization parameter, and kernel parameters. The results show that (1) the performance of LS-SVM is closely related to the dynamic characteristics of wind speed; (2) all parameters investigated greatly affect the performance of LS-SVM models; (3) under the optimal combination of parameters after fine tuning, the three kernels give comparable forecasting accuracy; (4) the performance of linear kernel is worse than the other two kernels when the training sample size or SVM order is small. In addition, LS-SVMs are compared against the persistence approach, and it is found that they can outperform the persistence model in the majority of cases.

  18. Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1- xW xTe2.

    Science.gov (United States)

    Aslan, Ozgur Burak; Datye, Isha M; Mleczko, Michal J; Sze Cheung, Karen; Krylyuk, Sergiy; Bruma, Alina; Kalish, Irina; Davydov, Albert V; Pop, Eric; Heinz, Tony F

    2018-04-11

    Ultrathin transition metal dichalcogenides (TMDCs) have recently been extensively investigated to understand their electronic and optical properties. Here we study ultrathin Mo 0.91 W 0.09 Te 2 , a semiconducting alloy of MoTe 2 , using Raman, photoluminescence (PL), and optical absorption spectroscopy. Mo 0.91 W 0.09 Te 2 transitions from an indirect to a direct optical band gap in the limit of monolayer thickness, exhibiting an optical gap of 1.10 eV, very close to its MoTe 2 counterpart. We apply tensile strain, for the first time, to monolayer MoTe 2 and Mo 0.91 W 0.09 Te 2 to tune the band structure of these materials; we observe that their optical band gaps decrease by 70 meV at 2.3% uniaxial strain. The spectral widths of the PL peaks decrease with increasing strain, which we attribute to weaker exciton-phonon intervalley scattering. Strained MoTe 2 and Mo 0.91 W 0.09 Te 2 extend the range of band gaps of TMDC monolayers further into the near-infrared, an important attribute for potential applications in optoelectronics.

  19. Buckling feedback of the spectral calculations

    International Nuclear Information System (INIS)

    Jing Xingqing; Shan Wenzhi; Luo Jingyu

    1992-01-01

    This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module

  20. Evaluation Study of Fast Spectral Estimators Using In-vivo Data

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Gran, Fredrik; Pedersen, Mads Møller

    2009-01-01

    Spectrograms in medical ultrasound are usually estimated with Welch's method (WM). To achieve sufficient spectral resolution and contrast, WM uses an observation window (OW) of up to 256 emissions per estimate. Two adaptive filterbank methods have been suggested to reduce the OW: Blood spectral...... Power Capon (BPC) and the Blood Amplitude and Phase EStimation method (BAPES). Ten volunteers were scanned over the carotid artery. From each dataset, 28 spectrograms were produced by combining four approaches (WM with a Hanning window (W.HAN), WM with a boxcar window (W.BOX), BPC and BAPES) and seven...

  1. A PLL based automated magnetron tuning mechanism for electron accelerators

    International Nuclear Information System (INIS)

    Khan, A M; Mahfooz, Mohammed; Sanjeev, Ganesh

    2008-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  2. A PLL based automated magnetron tuning mechanism for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Mahfooz, Mohammed [Dept. of Electronics, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India); Sanjeev, Ganesh [Microtron Centre, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India)], E-mail: mahfooz_81@yahoo.com

    2008-09-15

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  3. A Design Algorithm using External Perturbation to Improve Iterative Feedback Tuning Convergence

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkan; Poulsen, Niels Kjølstad

    2011-01-01

    Iterative Feedback Tuning constitutes an attractive control loop tuning method for processes in the absence of process insight. It is a purely data driven approach for optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost function...... gradient, which is used in a search algorithm for minimizing the performance cost. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the data...

  4. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan

    2014-01-01

    With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.

  5. Spectral and photometric study of the symbiotic nova RS ophiuchus in quiet phase

    Science.gov (United States)

    Kondratyeva, L.; Rspaev, F.; Krugov, M.; Serebryanskiy, A.

    2017-07-01

    The results of spectral and photometric study of the recurrent Nova RS Ophiuchus are presented and discussed. Observations were carried out in 2009-2016. During these eight years the fluxes of HI and FeII emission lines have slightly decreased by a factor of 3 - 4. Hα and Hβ exhibit double-peaked profiles with a central absorption. The ratio of the blue and red peaks intensities(V/R) varies from 0.3 to 1.0 for Hβ and from 0.4 to 0.7 for Hα. Possible correlations between changes of the ratio and other spectral parameters were investigated. Dependence of V/R on the radial velocity of absorbtion component is found out.

  6. A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters

    Directory of Open Access Journals (Sweden)

    Weiyi Zhang

    2016-09-01

    Full Text Available High level penetration of renewable energy sources has reshaped modern electrical grids. For the future grid, distributed renewable power generation plants can be integrated in a larger scale. Control of grid-connected converters is required to achieve fast power reference tracking and further to present grid-supporting and fault ride-through performance. Among all of the aspects for converter control, the inner current loop for grid-connected converters characterizes the system performance considerably. This paper proposes a unified current loop tuning approach for grid-connected converters that is generally applicable in different cases. A direct discrete-time domain tuning procedure is used, and particularly, the selection of the phase margin and crossover frequency is analyzed, which acts as the main difference compared with the existing studies. As a general method, the approximation in the modeling of the controller and grid filter is avoided. The effectiveness of the tuning approach is validated in both simulation and experimental results with respect to power reference tracking, frequency and voltage supporting.

  7. Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans - a mismatch negativity study.

    Science.gov (United States)

    Tervaniemi, M; Schröger, E; Saher, M; Näätänen, R

    2000-08-18

    The pitch of a spectrally rich sound is known to be more easily perceived than that of a sinusoidal tone. The present study compared the importance of spectral complexity and sound duration in facilitated pitch discrimination. The mismatch negativity (MMN), which reflects automatic neural discrimination, was recorded to a 2. 5% pitch change in pure tones with only one sinusoidal frequency component (500 Hz) and in spectrally rich tones with three (500-1500 Hz) and five (500-2500 Hz) harmonic partials. During the recordings, subjects concentrated on watching a silent movie. In separate blocks, stimuli were of 100 and 250 ms in duration. The MMN amplitude was enhanced with both spectrally rich sounds when compared with pure tones. The prolonged sound duration did not significantly enhance the MMN. This suggests that increased spectral rather than temporal information facilitates pitch processing of spectrally rich sounds.

  8. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  9. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  10. Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains

    Science.gov (United States)

    Qin, Chuan

    As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser

  11. The effect of the inner-hair-cell mediated transduction on the shape of neural tuning curves

    Science.gov (United States)

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-05-01

    The inner hair cells of the mammalian cochlea transform the vibrations of their stereocilia into releases of neurotransmitter at the ribbon synapses, thereby controlling the activity of the afferent auditory fibers. The mechanical-to-neural transduction is a highly nonlinear process and it introduces differences between the frequency-tuning of the stereocilia and that of the afferent fibers. Using a computational model of the inner hair cell that is based on in vitro data, we estimated that smaller vibrations of the stereocilia are necessary to drive the afferent fibers above threshold at low (≤0.5 kHz) than at high (≥4 kHz) driving frequencies. In the base of the cochlea, the transduction process affects the low-frequency tails of neural tuning curves. In particular, it introduces differences between the frequency-tuning of the stereocilia and that of the auditory fibers resembling those between basilar membrane velocity and auditory fibers tuning curves in the chinchilla base. For units with a characteristic frequency between 1 and 4 kHz, the transduction process yields shallower neural than stereocilia tuning curves as the characteristic frequency decreases. This study proposes that transduction contributes to the progressive broadening of neural tuning curves from the base to the apex.

  12. Angular tuning of the magnetic birefringence in rippled cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A., E-mail: MiguelAngel.Arranz@uclm.es [Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, José M. [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain)

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  13. Angular tuning of the magnetic birefringence in rippled cobalt films

    International Nuclear Information System (INIS)

    Arranz, Miguel A.; Colino, José M.

    2015-01-01

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes

  14. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a

  15. Tune-control improvements on the rapid-cycling synchrotron

    International Nuclear Information System (INIS)

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981

  16. Architecture of Automated Database Tuning Using SGA Parameters

    Directory of Open Access Journals (Sweden)

    Hitesh KUMAR SHARMA

    2012-05-01

    Full Text Available Business Data always growth from kilo byte, mega byte, giga byte, tera byte, peta byte, and so far. There is no way to avoid this increasing rate of data till business still running. Because of this issue, database tuning be critical part of a information system. Tuning a database in a cost-effective manner is a growing challenge. The total cost of ownership (TCO of information technology needs to be significantly reduced by minimizing people costs. In fact, mistakes in operations and administration of information systems are the single most reasons for system outage and unacceptable performance [3]. One way of addressing the challenge of total cost of ownership is by making information systems more self-managing. A particularly difficult piece of the ambitious vision of making database systems self-managing is the automation of database performance tuning. In this paper, we will explain the progress made thus far on this important problem. Specifically, we will propose the architecture and Algorithm for this problem.

  17. Study on the effects of sample selection on spectral reflectance reconstruction based on the algorithm of compressive sensing

    International Nuclear Information System (INIS)

    Zhang, Leihong; Liang, Dong

    2016-01-01

    In order to solve the problem that reconstruction efficiency and precision is not high, in this paper different samples are selected to reconstruct spectral reflectance, and a new kind of spectral reflectance reconstruction method based on the algorithm of compressive sensing is provided. Four different color numbers of matte color cards such as the ColorChecker Color Rendition Chart and Color Checker SG, the copperplate paper spot color card of Panton, and the Munsell colors card are chosen as training samples, the spectral image is reconstructed respectively by the algorithm of compressive sensing and pseudo-inverse and Wiener, and the results are compared. These methods of spectral reconstruction are evaluated by root mean square error and color difference accuracy. The experiments show that the cumulative contribution rate and color difference of the Munsell colors card are better than those of the other three numbers of color cards in the same conditions of reconstruction, and the accuracy of the spectral reconstruction will be affected by the training sample of different numbers of color cards. The key technology of reconstruction means that the uniformity and representation of the training sample selection has important significance upon reconstruction. In this paper, the influence of the sample selection on the spectral image reconstruction is studied. The precision of the spectral reconstruction based on the algorithm of compressive sensing is higher than that of the traditional algorithm of spectral reconstruction. By the MATLAB simulation results, it can be seen that the spectral reconstruction precision and efficiency are affected by the different color numbers of the training sample. (paper)

  18. The Fine-Tuning of the Universe for Intelligent Life

    Science.gov (United States)

    Barnes, L. A.

    2012-06-01

    The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger's recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger's claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time. I also provide an assessment of the multiverse, noting the significant challenges that it must face. I do not attempt to defend any conclusion based on the fine-tuning of the universe for intelligent life. This paper can be viewed as a critique of Stenger's book, or read independently.

  19. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.

    Science.gov (United States)

    Brede, Markus; Kalloniatis, Alexander C

    2016-06-01

    We present an analysis of conditions under which the dynamics of a frustrated Kuramoto-or Kuramoto-Sakaguchi-model on sparse networks can be tuned to enhance synchronization. Using numerical optimization techniques, linear stability, and dimensional reduction analysis, a simple tuning scheme for setting node-specific frustration parameters as functions of native frequencies and degrees is developed. Finite-size scaling analysis reveals that even partial application of the tuning rule can significantly reduce the critical coupling for the onset of synchronization. In the second part of the paper, a codynamics is proposed, which allows a dynamic tuning of frustration parameters simultaneously with the ordinary Kuramoto dynamics. We find that such codynamics enhance synchronization when operating on slow time scales, and impede synchronization when operating on fast time scales relative to the Kuramoto dynamics.

  20. Improve performance of scanning probe microscopy by balancing tuning fork prongs

    International Nuclear Information System (INIS)

    Ng, Boon Ping; Zhang Ying; Wei Kok, Shaw; Chai Soh, Yeng

    2009-01-01

    This paper presents an approach for improving the Q-factor of tuning fork probe used in scanning probe microscopes. The improvement is achieved by balancing the fork prongs with extra mass attachment. An analytical model is proposed to characterize the Q-factor of a tuning fork probe with respect to the attachment of extra mass on the tuning fork prongs, and based on the model, the Q-factors of the unbalanced and balanced tuning fork probes are derived and compared. Experimental results showed that the model fits well the experimental data and the approach can improve the Q-factor by more than a factor of three. The effectiveness of the approach is further demonstrated by applying the balanced probe on an atomic force microscope to obtain improved topographic images.

  1. Auto-tuning Non-blocking Collective Communication Operations

    KAUST Repository

    Barigou, Youcef; Venkatesan, Vishwanath; Gabriel, Edgar

    2015-01-01

    Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.

  2. Auto-tuning Non-blocking Collective Communication Operations

    KAUST Repository

    Barigou, Youcef

    2015-05-01

    Collective operations are widely used in large scale scientific applications, and critical to the scalability of these applications for large process counts. It has also been demonstrated that collective operations have to be carefully tuned for a given platform and application scenario to maximize their performance. Non-blocking collective operations extend the concept of collective operations by offering the additional benefit of being able to overlap communication and computation. This paper presents the automatic run-time tuning of non-blocking collective communication operations, which allows the communication library to choose the best performing implementation for a non-blocking collective operation on a case by case basis. The paper demonstrates that libraries using a single algorithm or implementation for a non-blocking collective operation will inevitably lead to suboptimal performance in many scenarios, and thus validate the necessity for run-time tuning of these operations. The benefits of the approach are further demonstrated for an application kernel using a multi-dimensional Fast Fourier Transform. The results obtained for the application scenario indicate a performance improvement of up to 40% compared to the current state of the art.

  3. Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Deepak Gautam

    2013-11-01

    Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra's algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.

  4. The fine-tuning cost of the likelihood in SUSY models

    International Nuclear Information System (INIS)

    Ghilencea, D.M.; Ross, G.G.

    2013-01-01

    In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γ i ={m 0 ,m 1/2 ,μ 0 ,A 0 ,B 0 ,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γ i }, that can be written as a surface integral of the ratio L/Δ, with the surface in γ i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χ new 2 =χ old 2 +2lnΔ. This shows the fine-tuning cost to the likelihood (χ new 2 ) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χ new 2 /d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ 2 /d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.

  5. Neural Networks for Self-tuning Control Systems

    Directory of Open Access Journals (Sweden)

    A. Noriega Ponce

    2004-01-01

    Full Text Available In this paper, we presented a self-tuning control algorithm based on a three layers perceptron type neural network. The proposed algorithm is advantageous in the sense that practically a previous training of the net is not required and some changes in the set-point are generally enough to adjust the learning coefficient. Optionally, it is possible to introduce a self-tuning mechanism of the learning coefficient although by the moment it is not possible to give final conclusions about this possibility. The proposed algorithm has the special feature that the regulation error instead of the net output error is retropropagated for the weighting coefficients modifications. 

  6. Adaptive control for a PWR using a self-tuning reference model concept

    International Nuclear Information System (INIS)

    Miley, G.H.; Park, G.T.; Kim, B.S.

    1992-01-01

    Possible applications of an adaptive control method to a pressurized-water reactor nuclear power plant are investigated. The self-tuning technique with a reference model concept is employed. This control algorithm is developed by combining the self-tuning controller with the model reference adaptive control. This approach overcomes the difficulties in choosing the appropriate weighting polynomials in the cost function of the self-tuning control

  7. Contrast invariance of orientation tuning in the lateral geniculate nucleus of the feline visual system.

    Science.gov (United States)

    Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R

    2015-09-01

    Responses of most neurons in the primary visual cortex of mammals are markedly selective for stimulus orientation and their orientation tuning does not vary with changes in stimulus contrast. The basis of such contrast invariance of orientation tuning has been shown to be the higher variability in the response for low-contrast stimuli. Neurons in the lateral geniculate nucleus (LGN), which provides the major visual input to the cortex, have also been shown to have higher variability in their response to low-contrast stimuli. Parallel studies have also long established mild degrees of orientation selectivity in LGN and retinal cells. In our study, we show that contrast invariance of orientation tuning is already present in the LGN. In addition, we show that the variability of spike responses of LGN neurons increases at lower stimulus contrasts, especially for non-preferred orientations. We suggest that such contrast- and orientation-sensitive variability not only explains the contrast invariance observed in the LGN but can also underlie the contrast-invariant orientation tuning seen at the level of the primary visual cortex. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    Science.gov (United States)

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  9. Tuning the LEDA RFQ 6.7 MeV accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Rybarcyk, L.

    1998-01-01

    This paper presents the results of tuning the 8 meter long Radio Frequency Quadrupole (RFQ) built for the Low Energy Demonstration Accelerator (LEDA). This 350-MHz RFQ is split into four 2-meter-long-RFQs. Then they are joined with resonant coupling to form an 8-meter-long RFQ. This improves both the longitudinal stability and the transverse stability of this long RFQ. The frequencies of the modes near the RFQ mode are measured. The authors show the effect on the RF fields of an error in the temperature of each one of the 2-meter-long-RFQs. Slug tuners distributed along the outer walls tune the RFQ. The program RFQTUNE is used to determine the length of the tuners. The tuners are machined to length when the final tuning is complete

  10. A tuning approach for offset-free MPC with conditional reference adaptation

    DEFF Research Database (Denmark)

    Waschl, Harald; Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted

    2014-01-01

    Model predictive control has become a widely accepted strategy in industrial applications in the recent years. Often mentioned reasons for the success are the optimization based on a system model, consideration of constraints and an intuitive tuning process. However, as soon as unknown disturbances...... properties these controllers can be tuned separate and by known guidelines. To address conditions with active input constraints, additionally a conditional reference adaptation scheme is introduced. The tuning strategy is evaluated on a simulated linear Wood-Berry binary distillation column example....

  11. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaushik, E-mail: ghoshfcy@iitr.ac.in; Rathi, Sweety; Arora, Deepshikha

    2016-07-15

    Interaction of 2-(1-(naphthale-1-ylimino)ethyl)phenol (1), 2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (2) and 2-methoxy-4-((naphthalene-1-ylimino)methyl)phenol (3) with Bovine Serum Albumin (BSA) was examined. Fluorescence spectral data were obtained from the probes by varying the concentration of BSA as well as from BSA by varying the concentration of probes. Synchronous fluorescence measurements were performed and binding constants of the probes were calculated. To understand mode of quenching, Stern–Volmer plot, absorption spectral studies and life time measurements were performed. Förster resonance energy transfer (FRET) was also scrutinized. - Highlights: • Schiff bases with pendant phenolato function and interaction with BSA. • Synchronous fluorescence studies and a preferred interaction with tryptophan. • Probable interaction of probes with Trp-213 residue in the hydrophobic cavity. • 1:1 binding stoichiometry of probes and BSA in Benesi–Hildebrand graph.

  12. The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)

  13. Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrO{sub x} cermet coatings on aluminium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gaouyat, Lucie, E-mail: lucie.gaouyat@fundp.ac.be [Solid State Physics Laboratory, Research Center in Physics of Matter and Radiation (PMR), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur (Belgium); Mirabella, Frédéric [CRM Group – AC and CS, 57b boulevard de Colonster, B-4000 Liège (Belgium); Deparis, Olivier [Solid State Physics Laboratory, Research Center in Physics of Matter and Radiation (PMR), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur (Belgium)

    2013-04-15

    NiCrO{sub x} ceramic–metal composites (i.e. cermets) exhibit not only oxidation and moisture resistances, which are very important for industrial applications, but also remarkable solar selective absorption properties. In order to reach the best optical performances with only one coating layer, tuning of the magnetron sputtering process parameters (O{sub 2} flow rate, pressure and deposition time) was performed systematically. The process window turned out to be very narrow implying a critical tuning of the parameters. The optimal operating point was determined for a single layer coating of NiCrO{sub x} on an aluminium substrate, leading to a spectrally integrated solar absorption as high as 78%. Among various material properties, the focus was put on the optical reflectance of the coating/substrate system, which was measured by UV–vis–NIR spectrophotometry. Using complex refractive index data from the literature, the theoretical reflectance spectra were calculated and found to be in good agreement with the measurements. Chemical analysis combined with scanning electronic and atomic force microscopies suggested a cermet structure consisting of metallic Ni particles and a compound matrix made of a mixture of chromium oxide, nickel oxide and nickel hydroxide.

  14. Quantum-Tuned Two-Junction Solar Cells

    KAUST Repository

    Wang, Xihua

    2011-01-01

    We report quantum-size-effect tuned tandem solar cells. Our two-junction photovoltaic devices employ light-absorbing material of a single composition and use two rationally-selected nanoparticle sizes to harvest the sun’s broad spectrum.

  15. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  16. Study of the diffuse spectral series of boron-like atomic systems

    International Nuclear Information System (INIS)

    Lavin, C.; Martin, I.; Vallejo, M.J.

    1992-01-01

    The diffuse spectral series, 2S 2 np 2 P-2s 2 nd 2 D, of the boron isoelectronic sequence has been studied through a one-particle scheme, by explicitly treating only the active electron. Oscillator strengths for various transitions (n = 2,3; n' = 3-16) have been computed with the quantum defect and relativistic quantum defect formalisms, and results comparing very satisfactory with other theoretical data have been obtained

  17. An inter-hemispheric, statistical study of nightside spectral width distributions from coherent HF scatter radars

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2002-12-01

    Full Text Available A statistical investigation of the Doppler spectral width parameter routinely observed by HF coherent radars has been conducted between the Northern and Southern Hemispheres for the nightside ionosphere. Data from the SuperDARN radars at Thykkvibær, Iceland and Syowa East, Antarctica have been employed for this purpose. Both radars frequently observe regions of high (>200 ms-1 spectral width polewards of low (<200 ms-1 spectral width. Three years of data from both radars have been analysed both for the spectral width and line of sight velocity. The pointing direction of these two radars is such that the flow reversal boundary may be estimated from the velocity data, and therefore, we have an estimate of the open/closed field line boundary location for comparison with the high spectral widths. Five key observations regarding the behaviour of the spectral width on the nightside have been made. These are (i the two radars observe similar characteristics on a statistical basis; (ii a latitudinal dependence related to magnetic local time is found in both hemispheres; (iii a seasonal dependence of the spectral width is observed by both radars, which shows a marked absence of latitudinal dependence during the summer months; (iv in general, the Syowa East spectral width tends to be larger than that from Iceland East, and (v the highest spectral widths seem to appear on both open and closed field lines. Points (i and (ii indicate that the cause of high spectral width is magnetospheric in origin. Point (iii suggests that either the propagation of the HF radio waves to regions of high spectral width or the generating mechanism(s for high spectral width is affected by solar illumination or other seasonal effects. Point (iv suggests that the radar beams from each of the radars are subject either to different instrumental or propagation effects, or different geophysical conditions due to their locations, although we suggest that this result is more likely to

  18. A novel technique for tuning of co-axial cavity of multi-beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sukalyan, E-mail: sstechno18@gmail.com; Bandyopadhyay, Ayan Kumar; Pal, Debashis; Kant, Deepender; Joshi, Lalit Mohan; Kumar, Bijendra; Meena, Rakesh; Rawat, Vikram [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India)

    2016-03-09

    Multi-beam Klystrons (MBKs) have gained wide acceptances in the research sector for its inherent advantages. But developing a robust tuning technique for an MBK cavity of coaxial type has still remained a challenge as these designs are very prone to suffer from asymmetric field distribution with inductive tuning of the cavity. Such asymmetry leads to inhomogeneous beam-wave interaction, an undesirable phenomenon. Described herein is a new type of coaxial cavity that has the ability to suppress the asymmetry, thereby allowing tuning of the cavity with a single tuning post.

  19. ON-LINE NONLINEAR CHROMATICITY CORRECTION USING OFF-MOMENTUM TUNE RESPONSE MATRIX

    International Nuclear Information System (INIS)

    LUO, Y.; FISCHER, W.; MALISKY, N.; TEPIKIAN, S.; TROBJEVIC, D.

    2007-01-01

    In this article, we propose a method for the online nonlinear chromaticity correction at store in the Relativistic Heavy Ion Collider (RHIC). With 8 arc sextupole families in each RHIC ring, the nonlinear chromaticities can be minimized online by matching the off-momentum tunes onto the wanted tunes given by the linear chromaticities. The Newton method is used for this multi-dimensional nonlinear optimization, where the off-momentum tune response matrix with respect to sextupole strength changes is adopted. The off-momentum tune response matrix can be calculated with the online accelerator optics model or directly measured with the real beam. In this article, the correction algorithm for the RHIC is presented. Simulations are also carried out to verify the method. The preliminary results from the beam experiments taken place in the RHIC 2007 Au run are reviewed

  20. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms

    Directory of Open Access Journals (Sweden)

    Xin-Ping Wu

    2018-05-01

    Full Text Available Combined quantum mechanical and molecular mechanical (QM/MM methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  1. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    Science.gov (United States)

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  2. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Noor-Ul-Ain

    2016-11-01

    Full Text Available Tuning the emission energy of graphene quantum dots (GQDs and understanding the reason of tunability is essential for the GOD function in optoelectronic devices. Besides material-based challenges, the way to realize chemical doping and band gap tuning also pose a serious challenge. In this study, we tuned the emission energy of GQDs by substitutional doping using chlorine, nitrogen, boron, sodium, and potassium dopants in solution form. Photoluminescence data obtained from (Cl- and N-doped GQDs and (B-, Na-, and K-doped GQDs, respectively exhibited red- and blue-shift with respect to the photoluminescence of the undoped GQDs. X-ray photoemission spectroscopy (XPS revealed that oxygen functional groups were attached to GQDs. We qualitatively correlate red-shift of the photoluminescence with the oxygen functional groups using literature references which demonstrates that more oxygen containing groups leads to the formation of more defect states and is the reason of observed red-shift of luminescence in GQDs. Further on, time resolved photoluminescence measurements of Cl- and N-GQDs demonstrated that Cl substitution in GQDs has effective role in radiative transition whereas in N-GQDs leads to photoluminescence (PL quenching with non-radiative transition to ground state. Presumably oxidation or reduction processes cause a change of effective size and the bandgap.

  3. Tune shift and betatron modulations due to insertion devices in SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1989-12-01

    SPEAR will soon operate as a dedicated synchrotron radiation source with up to 5 beamlines fed from insertion devices. These magnets introduce additional focusing forces into the storage ring lattice which increase the vertical betatron tune and modulate the beam envelope in the vertical plane. The lattice simulation code 'GEMINI' is used to evaluate the tune shifts and estimate the degree of betatron modulation as each magnetic insertion device is brought up to full power. A program is recommended to correct the tunes with the FODO cell quadrupoles. 4 refs., 8 figs., 1 tab

  4. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  5. Self-tuning regulator for an interacting CSTR process

    Science.gov (United States)

    Rajendra Mungale, Niraj; Upadhyay, Akshay; Jaganatha Pandian, B.

    2017-11-01

    In the paper we have laid emphasis on STR that is Self Tuning Regulator and its application for an interacting process. CSTR has a great importance in Chemical Process when we deal with controlling different parameters of a process using CSTR. Basically CSTR is used to maintain a constant liquid temperature in the process. The proposed method called self-tuning regulator, is a different scheme where process parameters are updated and the controller parameters are obtained from the solution of a design problem. The paper deals with STR and methods associated with it.

  6. PID controller tuning using the magnitude optimum criterion

    CERN Document Server

    Papadopoulos, Konstantinos

    2014-01-01

    An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model

  7. Control System Design for Automatic Cavity Tuning Machines

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; /Fermilab; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  8. Control System Design for Automatic Cavity Tuning Machines

    International Nuclear Information System (INIS)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.

    2009-01-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  9. On the MSSM Higgsino mass and fine tuning

    CERN Document Server

    Ross, Graham G.

    2016-08-10

    It is often argued that low fine tuning in the MSSM necessarily requires a rather light Higgsino. In this note we show that this need not be the case when a more complete set of soft SUSY breaking mass terms are included. In particular an Higgsino mass term, that correlates the $\\mu-$term contribution with the soft SUSY-breaking Higgsino masses, significantly reduces the fine tuning even for Higgsinos in the TeV mass range where its relic abundance means it can make up all the dark matter.

  10. A resonant beam detector for TEVATRON tune monitoring

    International Nuclear Information System (INIS)

    Martin, D.; Fellenz, B.; Hood, C.; Johnson, M.; Shafer, R.; Siemann, R.; Zurawski, J.

    1989-03-01

    An inductively resonated, balanced stripline pickup has been constructed for observing tune spectra. The device is a sensitive betatron oscillation and Schottky noise pickup, providing 25 dB gain over untuned detectors of like geometry. The electrodes are motorized so the device center and aperture may be remotely adjusted. To tune the resonator onto the 21.4 MHz operating frequency, a motorized capacitor is employed. Quadrature signals from a pair of detectors has enabled observation of individual p and p coherent motions to nanometer levels. 8 refs., 5 figs

  11. Nanoparticle-enhanced spectral photoacoustic tomography: effect of oxygen saturation and tissue heterogeneity

    Science.gov (United States)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2016-03-01

    Molecular imaging for breast cancer detection, infectious disease diagnostics and preclinical animal research may be achievable through combined use of targeted exogenous agents - such as nanoparticles - and spectral Photoacoustic Tomography (PAT). However, tissue heterogeneity can alter fluence distributions and acoustic propagation, corrupting measured PAT absorption spectra and complicating in vivo nanoparticle detection and quantitation. Highly absorptive vascular structures represent a common confounding factor, and variations in vessel hemoglobin saturation (SO2) may alter spectral content of signals from adjacent/deeper regions. To evaluate the impact of this effect on PAT nanoparticle detectability, we constructed heterogeneous phantoms with well-characterized channel-inclusion geometries and biologically relevant optical and acoustic properties. Phantoms contained an array of tubes at several depths filled with hemoglobin solutions doped with varying concentrations of gold nanorods with an absorption peak at 780 nm. Both overlying and target network SO2 was tuned using sodium dithionite. Phantoms were imaged from 700 to 900 nm using a custom PAT system comprised of a tunable pulsed laser and a research-grade ultrasound system. Recovered nanoparticle spectra were analyzed and compared with results from both spectrophotometry and PAT data from waterimmersed tubes containing blood and nanoparticle solutions. Results suggested that nanoparticle selection for a given PAT application should take into account expected oxygenation states of both target blood vessel and background tissue oxygenation to achieve optimal performance.

  12. Neural network based approach for tuning of SNS feedback and feedforward controllers

    International Nuclear Information System (INIS)

    Kwon, Sung-Il; Prokop, Mark S.; Regan, Amy H.

    2002-01-01

    The primary controllers in the SNS low level RF system are proportional-integral (PI) feedback controllers. To obtain the best performance of the linac control systems, approximately 91 individual PI controller gains should be optimally tuned. Tuning is time consuming and requires automation. In this paper, a neural network is used for the controller gain tuning. A neural network can approximate any continuous mapping through learning. In a sense, the cavity loop PI controller is a continuous mapping of the tracking error and its one-sample-delay inputs to the controller output. Also, monotonic cavity output with respect to its input makes knowing the detailed parameters of the cavity unnecessary. Hence the PI controller is a prime candidate for approximation through a neural network. Using mean square error minimization to train the neural network along with a continuous mapping of appropriate weights, optimally tuned PI controller gains can be determined. The same neural network approximation property is also applied to enhance the adaptive feedforward controller performance. This is done by adjusting the feedforward controller gains, forgetting factor, and learning ratio. Lastly, the automation of the tuning procedure data measurement, neural network training, tuning and loading the controller gain to the DSP is addressed.

  13. Orientation tuning of contrast masking caused by motion streaks.

    Science.gov (United States)

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  14. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  15. Comparison of tuning methods for design of PID controller as an A VR

    International Nuclear Information System (INIS)

    Sheikh, S.A.; Ahmed, I.; Unar, M.A.

    2009-01-01

    The primary means of generator reactive power control is the generator-excitation Control, using Automatic Voltage Regulator (A VR). The role of A VR is to hold the terminal voltage magnitude of Synchronous generator at a specified level. This paper presents the design of a proportional integral-derivative (PID) controller as an A VR. The PID controller has been tuned by various tuning methods. From all methods, PID parameters are computed through various techniques i.e. Process-reaction curve, Closed-loop system, open-loop system gain margin and phase-margin specifications. From these methods, it has been found that Zhaung- Atherton method and Ho, Hang and Cao method are much superior to the conventional Ziegler-Nichols rules. The performance of the controller has been evaluated through Simulation Studies in MATLAB environment. It has been demonstrated that the PID controller, tuned with the said methods, yields highly satisfactory closed-loop performance. (author)

  16. Beyond Fine Tuning: Adding capacity to leverage few labels

    Energy Technology Data Exchange (ETDEWEB)

    Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem; Corley, Courtney D.; Anderson, Aryk L.

    2017-12-09

    In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning. Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.

  17. Development and evaluation of a Gamma Camera tuning system

    International Nuclear Information System (INIS)

    Arista Romeu, E. J.; Diaz Garcia, A.; Osorio Deliz, J. F.

    2015-01-01

    Correct operation of conventional analogue Gamma Cameras implies a good conformation of the position signals that correspond to a specific photo-peak of the radionuclide of interest. In order to achieve this goal the energy spectrum from each photo multiplier tube (PMT) has to be set within the same energy window. For this reason a reliable tuning system is an important part of all gamma cameras processing systems. In this work is being tested and evaluated a new prototype of tuning card that was developed and setting up for this purpose. The hardware and software of the circuit allow the regulation if each PMT high voltage. By this means a proper gain control for each of them is accomplished. The Tuning Card prototype was simulated in a virtual model and its satisfactory operation was proven in a Siemens Orbiter Gamma Camera. (Author)

  18. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  19. Comparative Study Between Support Vector Machines And Neural Networks For Lithological Discrimination Using Hyper spectral Data

    International Nuclear Information System (INIS)

    Naguib, A.M.; Abd Elwahab, M.S.; Farag, M.A.; Yahia, M.A.; Ramadan, H.H.

    2009-01-01

    Remote sensing hyper spectral data has many applications especially in the field of , earth science. Utilization of this technology has shown a rapid increase in many areas of economic and scientific significance. Hyper spectral sensors capture the detailed spectral signatures that uniquely characterize a great number of diverse surface materials. Classification, clustering, and visualization of these very high dimensional signatures need untraditional methods. Different approaches for spectral image interpretation have been studied using Artificial Neural Networks (ANNs) and Support Vector Machines (SVM) to meet the challenge of high dimensionality. The study used SVMs for geological mapping of hyper spectral imagery at Abu Zenima area, western Sinai, Egypt, the hyper spectral data has been captured in 2003 by Hyperion instrument on the United States Geological survey (USGS) Earth Observing 1 (EO-I) satellite. Precisely the study compares between the use of SVMs and a neural network built on the concept of SVMs, this network uses the Kernel-Adatron algorithm with the Gaussian kernel for the process of training. The SVMs also uses the Gaussian kernel with different bandwidths to enhance the performance of the interpretation process; the results are compared in details. The Neural Network was trained with four data sets, the first consists of 11310 samples, gives recognition rate of 84%, the second has 22620 samples, recognition rate was 91.5%; the third has 33930 samples, recognition rate was 94.6%; finally the fourth has 45240 samples, recognition rate of 99.2%. The previous results fall in comparison with the results of SVMs which use two algorithms for training the first is the one against one algorithm which gave a recognition rate of 84% for the first data set, a recognition rate of 76.9% for the second data set, a recognition rate of 95.2% for the third one and 98.5% for the fourth one. and the other is one against many algorithms which gave a recognition

  20. Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification

    KAUST Repository

    Winokur, J.

    2015-12-19

    We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a finer control of the resolution along two distinct subsets of model parameters. The control of the error along different subsets of parameters may be needed for instance in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid PSP is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error. In addition, the global approach is better suited for generalization to more than two subsets of directions.

  1. Experimental study and numerical simulations of the spectral properties of XUV lasers pumped by collisional excitation

    International Nuclear Information System (INIS)

    Meng, L.

    2012-01-01

    -like Ar and quasi-steady state pumping in Ne-like Zn. Besides the accurate measurement of the temporal coherence of the laser in each case, we have studied the spectral behaviour when the laser is operated in the saturation regime and (in Ni-like Mo) when it is seeded with high-order harmonic radiation. We have also investigated the temporal behaviour of the Ni-like Mo transient XUV laser, using an ultrafast X-ray streak camera. Our linewidth measurements are compared with detailed numerical calculations including relevant broadening mechanisms as well as radiative transfer effects. The evolution of the spectral profile with amplification and saturation was studied for different plasma parameters, and corresponding Fourier-transform limit duration were evaluated.The shortest temporal coherence (i.e. the largest bandwidth) is measured for the quasi-steady state pumping XUV laser, which operates at the highest density and ionic temperature. (author)

  2. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  3. Betatron tune correction schemes in nuclotron

    International Nuclear Information System (INIS)

    Shchepunov, V.A.

    1992-01-01

    Algorithms of the betatron tune corrections in Nuclotron with sextupolar and octupolar magnets are considered. Second order effects caused by chromaticity correctors are taken into account and sextupolar compensation schemes are proposed to suppress them. 6 refs.; 1 tab

  4. Tuning History in Latin America

    Science.gov (United States)

    Velázquez Albo, Marco

    2017-01-01

    This article analyses the development and achievements of the area of History in the Tuning-Latin America Project from its launch in 2004 to its completion in 2013. Through two phases and nine general meetings, academics from Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Guatemala, Mexico and Peru, along with academics from Spain, Portugal…

  5. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines

    Science.gov (United States)

    Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.

    2017-01-01

    Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445

  6. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  7. Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

    Institute of Scientific and Technical Information of China (English)

    Chao Ji; Jing Wang; Liulin Cao; Qibing Jin

    2014-01-01

    Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.

  8. Beam beam tune shifts for 36 bunch operation in the Tevatron

    International Nuclear Information System (INIS)

    Bagley, P.

    1996-10-01

    We are preparing to upgrade the Tevatron Collider from 6 to 36 bunch operation. The 36 bunches are in 3 ''trains'' of 12 bunches. The spacing between bunches within a train is 21 RF buckets (53.106 MHz) and 139 empty buckets separate the trains. Because the 36 bunches are not evenly spaced around the machine, the different bunches within a train pass the opposing bunches at different points in the ring and so feel different beam beam effects. Through most of the machine the beams have helical separation, so these are mainly long range beam beam effects. As a first, very simple step, we've looked at the differences in the tunes of the different anti-proton (anti p) bunches. During the 36 bunch studies in Fall 1995, we used a new tune measurement system to measure these in several different machine conditions. We compare these measurements to calculations of the tunes for a anti p with zero transverse and longitudinal oscillation amplitudes. We discuss experimental problems, and the assumptions, approximations, and effects included in the calculations. Our main intent is to gain confidence that we can accurately model beam beam effects in the Tevatron

  9. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  10. PERI - auto-tuning memory-intensive kernels for multicore

    International Nuclear Information System (INIS)

    Williams, S; Carter, J; Oliker, L; Shalf, J; Yelick, K; Bailey, D; Datta, K

    2008-01-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to sparse matrix vector multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the high-performance computing literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4x improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications

  11. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H; Williams, Samuel; Datta, Kaushik; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine; Bailey, David H

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.

  12. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    Science.gov (United States)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  13. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  14. Precision tests and fine tuning in twin Higgs models

    Science.gov (United States)

    Contino, Roberto; Greco, Davide; Mahbubani, Rakhi; Rattazzi, Riccardo; Torre, Riccardo

    2017-11-01

    We analyze the parametric structure of twin Higgs (TH) theories and assess the gain in fine tuning which they enable compared to extensions of the standard model with colored top partners. Estimates show that, at least in the simplest realizations of the TH idea, the separation between the mass of new colored particles and the electroweak scale is controlled by the coupling strength of the underlying UV theory, and that a parametric gain is achieved only for strongly-coupled dynamics. Motivated by this consideration we focus on one of these simple realizations, namely composite TH theories, and study how well such constructions can reproduce electroweak precision data. The most important effect of the twin states is found to be the infrared contribution to the Higgs quartic coupling, while direct corrections to electroweak observables are subleading and negligible. We perform a careful fit to the electroweak data including the leading-logarithmic corrections to the Higgs quartic up to three loops. Our analysis shows that agreement with electroweak precision tests can be achieved with only a moderate amount of tuning, in the range 5%-10%, in theories where colored states have mass of order 3-5 TeV and are thus out of reach of the LHC. For these levels of tuning, larger masses are excluded by a perturbativity bound, which makes these theories possibly discoverable, hence falsifiable, at a future 100 TeV collider.

  15. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    Science.gov (United States)

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm 2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm 2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However

  16. Historic Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications

    KAUST Repository

    Siddiqui, Shahzeb; Alzayer, Fatemah; Feki, Saber

    2015-01-01

    on a given system. A historic learning based methodology is suggested to prune the parameter search space for a more efficient auto-tuning process. This approach is applied to tune the OpenACC gang and vector clauses for a better mapping of the compute

  17. Political Tunings of the Piano

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.

    According to Timothy Morton the creation of ambient art posses an inherent critical potential similar to the ambiguity of the dialectical image found in the writings of Walter Benjamin. Subscribing to an object-oriented ontological understanding of how objects are riven between essence and appear......) as unfolding the ambiguity of various political tunings of the piano....

  18. Harmonic reduction by using single-tuned passive filter in plastic processing industry

    Science.gov (United States)

    Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.

    2018-02-01

    The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.

  19. Can an Eternal Life Start From the Minimal Fine-Tuning for Intelligence?

    Directory of Open Access Journals (Sweden)

    Ward Blondé

    2016-10-01

    Full Text Available Since modern physicists made more and more advances in precisely measuring the fundamental constants in nature, cosmologists have been confronted with this problem: how do we declare that nature’s constants are fine-tuned for the emergence of life? Many cosmologists assume nowadays that the big bang universe originates from a multiverse that consists of very many universes. Some of these must be fine-tuned for life. A fascinating question arises: Would there be any chance on a life after our death in this multiverse? In this paper, I show two things about the multiverse. First, universes in the multiverse acquire an unlimited amount of additional fine-tuning for intelligent life over the course of many universe generations. Such additional fine-tuning may consist of travelling between universes and an afterlife on a distant planet. Second, evolutionary conservation in the evolution of universes in the multiverse provides a declaration why we observe a universe that roughly has the minimal fine-tuning to support intelligent life.

  20. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    Science.gov (United States)

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  2. Phosphatase activity tunes two-component system sensor detection threshold.

    Science.gov (United States)

    Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J

    2018-04-12

    Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.

  3. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  4. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  5. Tilt-tuned etalon locking for tunable laser stabilization.

    Science.gov (United States)

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  6. Active tuned mass damper for damping of offshore wind turbine vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Bjørke, Ann-Sofie; Høgsberg, Jan Becker

    2017-01-01

    An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent to the ...

  7. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

    Science.gov (United States)

    Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait

    2012-01-01

    This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917

  8. Waste minimization of a process fluid through effective control under various controllers tuning

    International Nuclear Information System (INIS)

    Younas, M.; Gul, S.; Naveed, S.

    2005-01-01

    Whenever a process is disturbed either by servo system or regulatory system, the control action is applied to trace the desired point. An efficient controller setting should be selected in order to get speedy response under the pattern or constraints of quality of the product. The effective control action is desired to utilize the maximum of raw material and to minimize the waste. This is a critical problem in cases where the raw material or product is valuable and costly, e.g. pharmaceuticals. This problem has been addressed in this work on a laboratory scale plant. The plant consists of feed tank, pumps, plate and frame heat exchanger and hot water re-circulator tank. The system responses were logged with computer while the controller was tuned with Ziegler-Nichols (Z-N) and Cohen-Coon (C-C) tunings. A detailed study indicates that Ziegler-Nichols Controller tunings is better than Cohen-Coon as waste production was minimized. (author)

  9. I Tune, You Tube, We Rule

    Science.gov (United States)

    Shida, R. Y.; Gater, W.

    2007-10-01

    The website YouTube was created in 2005 and has rapidly become one of the most popular entertainment websites on the internet. It is riding the online video wave today like few other online companies and is currently more popular than the video sections of either Yahoo or Google. iTunes, a digital media application created by Apple in 2001, where one can download and play music and videos, has had a similar success. There is little doubt that they both represent important communication channels in a world heavily influenced by online media, especially among teenagers and young adults. As science communicators we can use this direct route to a younger audience to our advantage. This article aims to give a taste of these applications with a few selected examples demonstrating that both YouTube and iTunes are excellent tools to teach and inspire the general public.

  10. I Tune, You Tube, We Rule

    Directory of Open Access Journals (Sweden)

    Shida, R. Y.

    2007-10-01

    Full Text Available The website YouTube was created in 2005 and has rapidly become one ofthe most popular entertainment websites on the internet. It is riding the online video wave today like few other online companies and is currently more popular than the video sections of either Yahoo or Google. iTunes, a digital media application created by Apple in 2001, where one can download and play music and videos, has had a similar success. There is little doubt that they both represent important communication channels in a world heavily influenced by online media, especially among teenagers and young adults. As science communicators we can use this direct route to a younger audience to our advantage. This article aims to give a taste of these applications with a fewselected examples demonstrating that both YouTube and iTunes are excellent tools to teach and inspire the general public.

  11. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    Science.gov (United States)

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  12. Masonic Song in Scotland: Folk Tunes and Community

    Directory of Open Access Journals (Sweden)

    Katherine Campbell

    2012-03-01

    Full Text Available This article explores the place of Masonic songs historically in Scotland, assessing the oral culture surrounding the genre. The article further shows that folk tunes were commonly used and investigates aspects of the group performance that was central to the Lodges. Finally, the study concludes with an examination of a Masonic procession in Northeast Scotland that survives to the present day, focusing especially on the role of music and song within it.

  13. EEG spectral coherence data distinguish chronic fatigue syndrome patients from healthy controls and depressed patients--a case control study.

    Science.gov (United States)

    Duffy, Frank H; McAnulty, Gloria B; McCreary, Michelle C; Cuchural, George J; Komaroff, Anthony L

    2011-07-01

    Previous studies suggest central nervous system involvement in chronic fatigue syndrome (CFS), yet there are no established diagnostic criteria. CFS may be difficult to differentiate from clinical depression. The study's objective was to determine if spectral coherence, a computational derivative of spectral analysis of the electroencephalogram (EEG), could distinguish patients with CFS from healthy control subjects and not erroneously classify depressed patients as having CFS. This is a study, conducted in an academic medical center electroencephalography laboratory, of 632 subjects: 390 healthy normal controls, 70 patients with carefully defined CFS, 24 with major depression, and 148 with general fatigue. Aside from fatigue, all patients were medically healthy by history and examination. EEGs were obtained and spectral coherences calculated after extensive artifact removal. Principal Components Analysis identified coherence factors and corresponding factor loading patterns. Discriminant analysis determined whether spectral coherence factors could reliably discriminate CFS patients from healthy control subjects without misclassifying depression as CFS. Analysis of EEG coherence data from a large sample (n = 632) of patients and healthy controls identified 40 factors explaining 55.6% total variance. Factors showed highly significant group differentiation (p EEG spectral coherence analysis identified unmedicated patients with CFS and healthy control subjects without misclassifying depressed patients as CFS, providing evidence that CFS patients demonstrate brain physiology that is not observed in healthy normals or patients with major depression. Studies of new CFS patients and comparison groups are required to determine the possible clinical utility of this test. The results concur with other studies finding neurological abnormalities in CFS, and implicate temporal lobe involvement in CFS pathophysiology.

  14. Thermo-optically tuned photonic resonators with concurrent electrical connection and thermal isolation

    Science.gov (United States)

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.; Savignon, Daniel J.

    2016-06-14

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.

  15. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  16. The fine-tuning cost of the likelihood in SUSY models

    CERN Document Server

    Ghilencea, D M

    2013-01-01

    In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood ...

  17. A novel auto-tuning PID control mechanism for nonlinear systems.

    Science.gov (United States)

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    Science.gov (United States)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  19. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  20. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    Science.gov (United States)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.