WorldWideScience

Sample records for spectral mixture analysis

  1. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  2. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.

    Directory of Open Access Journals (Sweden)

    Muye Gan

    Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.

  3. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  4. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  5. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Science.gov (United States)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  6. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    Science.gov (United States)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying

  7. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis

    Science.gov (United States)

    Somers, B.; Asner, G. P.

    2014-09-01

    The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.

  8. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    Science.gov (United States)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through optically thin grains in the compacted mixture. Inclusion of loose powder (analysis of TES and Mini-TES data of lithified sedimentary deposits.

  9. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids.

    Science.gov (United States)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of (1)H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections

    Science.gov (United States)

    Duann, Jeng-Ren; Jan, Chia-Ing; Ou-Yang, Mang; Lin, Chia-Yi; Mo, Jen-Feng; Lin, Yung-Jiun; Tsai, Ming-Hsui; Chiou, Jin-Chern

    2013-12-01

    Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).

  11. Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS

    Science.gov (United States)

    Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.

    2015-12-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  12. Continental Spatio-Temporal Data Analysis with Linear Spectral Mixture Model Using FOSS

    Science.gov (United States)

    Kumar, Uttam; Nemani, Ramakrishna; Ganguly, Sangram; Milesi, Cristina; Raja, Kumar; Wang, Weile; Votava, Petr; Michaelis, Andrew

    2015-01-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global end members of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  13. The potential of spectral mixture analysis to improve the estimation accuracy of tropical forest biomass

    NARCIS (Netherlands)

    Basuki, T.M.; Skidmore, A.K.; Laake, van P.E.; Duren, van I.C.; Hussin, Y.A.

    2012-01-01

    A main limitation of pixel-based vegetation indices or reflectance values for estimating above-ground biomass is that they do not consider the mixed spectral components on the earth's surface covered by a pixel. In this research, we decomposed mixed reflectance in each pixel before developing models

  14. Spectral mixture analysis for water quality assessment over the Amazon floodplain using Hyperion/EO-1 images

    Directory of Open Access Journals (Sweden)

    Lênio Soares Galvão

    2006-12-01

    Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.

  15. Spectral mixture analysis for water quality assessment over the Amazon floodplain using Hyperion/EO-1 images

    Directory of Open Access Journals (Sweden)

    Lênio Soares Galvão

    2007-06-01

    Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.

  16. Spectral mixture analysis (SMA and change vector analysis (CVA methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan, using Landsat imagery

    Directory of Open Access Journals (Sweden)

    Abdelrahim A.M. Salih

    2017-04-01

    Full Text Available The severe Sahel catastrophe in 1968–1974 as well as repeated famines and food shortage that have hit many African countries during the 1970s have highlighted the need for further research concerning land degradation and environmental monitoring in arid and semi-arid areas. Land degradation, and desertification processes in arid and semi-arid environment were increased in the last four decades, especially in the developing countries like Sudan. To test to what extent remote sensing and geographical information science (GIS methodologies and techniques could be used for monitoring changes in arid and semi-arid regions and environment, these methodologies have long been suggested as a time and cost-efficient method. In this frame, spectral Mixture Analysis (SMA, Object-based oriented classification (Segmentation, and Change Vector Analysis are recently much recommended as a most suitable method for monitoring and mapping land cover changes in arid and semi-arid environment. Therefor the aim of this study is to use these methods and techniques for environmental monitoring with emphasis on desertification and to find model that can describe and map the status and rate of desertification processes and land cover changes in semi-arid areas in White Nile State (Sudan by using multi-temporal imagery of the Landsat satellite TM (1987, TM (2000, and ETM+ (2014 respectively. The paper also discusses and evaluates the efficiency of the adapted methodologies in monitoring the land degradation processes and changes in the arid and semi-arid regions.

  17. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values

    Science.gov (United States)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.

  18. Spectral Mixture Analysis: Linear and Semi-parametric Full and Iterated Partial Unmixing in Multi- and Hyperspectral Image Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2001-01-01

    ) and non-negative least squares (NNLS), and the partial unmixing methods orthogonal subspace projection (OSP), constrained energy minimization (CEM) and an eigenvalue formulation alternative are dealt with. The solution to the eigenvalue formulation alternative proves to be identical to the CEM solution....... The matrix inversion involved in CEM can be avoided by working on (a subset of) orthogonally transformed data such as signal maximum autocorrelation factors, MAFs, or signal minimum noise fractions, MNFs. This will also cause the partial unmixing result to be independent of the noise isolated in the MAF....../MNFs not included in the analysis. CEM and the eigenvalue formulation alternative enable us to perform partial unmixing when we know one desired end-member spectrum only and not the full set of end-member spectra. This is an advantage over full unmixing and OSP. The eigenvalue formulation of CEM inspires us...

  19. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  20. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  1. Structure-property relationship in dielectric mixtures: application of the spectral density theory

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    This paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites. The influence of structural differences and intrinsic electrical properties of constituents on the composite's overall electrical properties is investigated. The structural differences are resolved by fitting the dielectric data with an empirical formula and by the spectral density representation approach. At low concentrations of inclusions (concentrations lower than the percolation threshold), the spectral density functions are delta-sequences, which corresponds to the predictions of the general Maxwell-Garnett (MG) mixture formula. At high concentrations of inclusions (close to the percolation threshold) systems exhibit non-Debye-type dielectric dispersions, and the spectral density functions differ from each other and that predicted by the MG expression. The analysis of the dielectric dispersions with an empirical formula also brings out the structural differences between the considered geometries, however, the information is not qualitative. The empirical formula can only be used to compare structures. The spectral representation method on the other hand is a concrete way of characterizing the structures of the dielectric mixtures. Therefore, as in other spectroscopic techniques, a look-up table might be useful to classify/characterize structures of composite materials. This can be achieved by generating dielectric data for known structures by using ab initio calculations, as presented and emphasized in this study. The numerical technique presented here is not based on any a priori assumption methods

  2. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  3. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    Science.gov (United States)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  4. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  5. Coupling Modified Linear Spectral Mixture Analysis and Soil Conservation Service Curve Number (SCS-CN Models to Simulate Surface Runoff: Application to the Main Urban Area of Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Jianhui Xu

    2016-11-01

    Full Text Available Land surface characteristics, including soil type, terrain slope, and antecedent soil moisture, have significant impacts on surface runoff during heavy precipitation in highly urbanized areas. In this study, a Linear Spectral Mixture Analysis (LSMA method is modified to extract high-precision impervious surface, vegetation, and soil fractions. In the modified LSMA method, the representative endmembers are first selected by combining a high-resolution image from Google Earth; the unmixing results of the LSMA are then post-processed to reduce errors of misclassification with Normalized Difference Built-up Index (NDBI and Normalized Difference Vegetation Index (NDVI. The modified LSMA is applied to the Landsat 8 Operational Land Imager (OLI image from 18 October 2015 of the main urban area of Guangzhou city. The experimental result indicates that the modified LSMA shows improved extraction performance compared with the conventional LSMA, as it can significantly reduce the bias and root-mean-square error (RMSE. The improved impervious surface, vegetation, and soil fractions are used to calculate the composite curve number (CN for each pixel according to the Soil Conservation Service curve number (SCS-CN model. The composite CN is then adjusted with regional data of the terrain slope and total 5-day antecedent precipitation. Finally, the surface runoff is simulated with the SCS-CN model by combining the adjusted CN and real precipitation data at 1 p.m., 4 May 2015.

  6. Spectral mixture analyses of hyperspectral data acquired using a tethered balloon

    Science.gov (United States)

    Chen, Xuexia; Vierling, Lee

    2006-01-01

    Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the

  7. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    Science.gov (United States)

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  8. Spectral distribution measurements of neutrons in paraffin borax mixtures

    International Nuclear Information System (INIS)

    El-Khatib, A.M.; Gaber, M.; Abou El-Khier, M.A.

    1987-01-01

    Neutron fluxes from a compact D-T neutron source has been measured in paraffin-borax mixtures by using activation foil detectors with successive threshold energies. The absorbed doses, backscattering coefficients and build-up factors were determined as well. The contribution of thermal and intermediate neutron dose is much lower, compared to that of fast neutrons. Among the used mediums, paraffin loaded with 4% borax concentration was found to be the best absorbing medium against neutrons at near depths within the blocks, while at a depth around 12 cm the neutron absorption (or scattering) is independent on the type of the used medium. (author)

  9. Using Google Earth Engine To Apply Spectral Mixture Analysis Over Landsat 5TM Imagery To Map Fire Scars In The Alto Teles Pires River Basin, Mato Grosso State, Brazil.

    Science.gov (United States)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2016-12-01

    The two most extensive biomes in Brazil, the Amazon Forest and the Cerrado (the Brazilian savanna), are subject to many fire events every dry season. Both biomes are well-known for their ecological and environmental importance but, due to the intensive human occupation over the last decades, they have been experiencing high deforestation rates with much of their natural landscape being converted to agriculture and pasture uses. The Cerrado, as a savanna, has naturally evolved adapted to fire. According to some researchers, this biome has been exposed to fire for the last 25 million years, forging the diversification of many C4 grass species, for example. The Amazon forest does not have similar characteristics and studies have shown that forest areas that have been already burned become more prone to recurrent burns. Forest patches that are close to open areas have their edges exposed to higher insolation and greater turbulence, drying the understory vegetation and litter, turning those areas more susceptible to fire events. In cases where grass species become established in the understory they can be a renewable source of fuel for recurrent burns. This study aimed to identify and map fire scars present in the region of Alto Teles Pires river basin, State of Mato Grosso - Brazil, during 10 years (2002-2011). This region is located in the transition zone between the two biomes and is known for its high deforestation rates. By taking advantage of the Landsat 5TM imagery collection present in Google Earth Engine platform as well as applying Spectral Mixture Analysis (SMA) techniques over them it was possible to estimate fractions of Green Vegetation (GV), Non-Photosynthetic Vegetation (NPV), and Soil targets, which are the surfaces that compose the vast majority of the landscape in the study region. Iteratively running SMA analysis over the imagery using burned vegetation endmembers allowed us to further identify fire scars present in the region, returning excellent

  10. Buffer gas cooling and mixture analysis

    Science.gov (United States)

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  11. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...

  12. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  13. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  14. METHODS OF ANALYSIS AND CLASSIFICATION OF THE COMPONENTS OF GRAIN MIXTURES BASED ON MEASURING THE REFLECTION AND TRANSMISSION SPECTRA

    Directory of Open Access Journals (Sweden)

    Artem O. Donskikh*

    2017-10-01

    Full Text Available The paper considers methods of classification of grain mixture components based on spectral analysis in visible and near-infrared wavelength ranges using various measurement approaches - reflection, transmission and combined spectrum methods. It also describes the experimental measuring units used and suggests the prototype of a multispectral grain mixture analyzer. The results of the spectral measurement were processed using neural network based classification algorithms. The probabilities of incorrect recognition for various numbers of spectral parts and combinations of spectral methods were estimated. The paper demonstrates that combined usage of two spectral analysis methods leads to higher classification accuracy and allows for reducing the number of the analyzed spectral parts. A detailed description of the proposed measurement device for high-performance real-time multispectral analysis of the components of grain mixtures is given.

  15. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  16. Bayesian mixture analysis for metagenomic community profiling.

    Science.gov (United States)

    Morfopoulou, Sofia; Plagnol, Vincent

    2015-09-15

    Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.

  17. Functional analysis, spectral theory, and applications

    CERN Document Server

    Einsiedler, Manfred

    2017-01-01

    This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

  18. Tandem mass spectrometry: analysis of complex mixtures

    International Nuclear Information System (INIS)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated

  19. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  20. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  1. An Exercise on Calibration: DRIFTS Study of Binary Mixtures of Calcite and Dolomite with Partially Overlapping Spectral Features

    Science.gov (United States)

    De Lorenzi Pezzolo, Alessandra

    2013-01-01

    Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…

  2. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  3. Spectral analysis of Floating Car Data

    OpenAIRE

    Gössel, F.; Michler, E.; Wrase, B.

    2003-01-01

    Floating Car Data (FCD) are one important data source in traffic telematic systems. The original variable in these systems is the vehicle velocity. The paper analyses the measured value “vehicle velocity" by methods of information technology. Consequences for processing, transmission and storage of FCD under condition of limited resources are discussed. Starting point of the investigation is the analysis of spectral characteristics of velocity-time-profiles. The spectra are determined by...

  4. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  5. Multitaper spectral analysis of atmospheric radar signals

    Directory of Open Access Journals (Sweden)

    V. K. Anandan

    2004-11-01

    Full Text Available Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  6. Semiclassical analysis spectral correlations in mesoscopic systems

    International Nuclear Information System (INIS)

    Argaman, N.; Imry, Y.; Smilansky, U.

    1991-07-01

    We consider the recently developed semiclassical analysis of the quantum mechanical spectral form factor, which may be expressed in terms of classically defiable properties. When applied to electrons whose classical behaviour is diffusive, the results of earlier quantum mechanical perturbative derivations, which were developed under a different set of assumptions, are reproduced. The comparison between the two derivations shows that the results depends not on their specific details, but to a large extent on the principle of quantum coherent superposition, and on the generality of the notion of diffusion. The connection with classical properties facilitates application to many physical situations. (author)

  7. Spectral analysis of allogeneic hydroxyapatite powders

    Science.gov (United States)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  8. Spectral analysis of allogeneic hydroxyapatite powders

    International Nuclear Information System (INIS)

    Timchenko, P E; Timchenko, E V; Pisareva, E V; Vlasov, M Yu; Red’kin, N A; Frolov, O O

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm -1 ((PO 4 ) 3- (ν 1 ) vibration) and 1065-1075 cm -1 ((CO 3 ) 2- (ν 1 ) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy. (paper)

  9. Experiments with Mixtures Designs, Models, and the Analysis of Mixture Data

    CERN Document Server

    Cornell, John A

    2011-01-01

    The most comprehensive, single-volume guide to conducting experiments with mixtures"If one is involved, or heavily interested, in experiments on mixtures of ingredients, one must obtain this book. It is, as was the first edition, the definitive work."-Short Book Reviews (Publication of the International Statistical Institute)"The text contains many examples with worked solutions and with its extensive coverage of the subject matter will prove invaluable to those in the industrial and educational sectors whose work involves the design and analysis of mixture experiments."-Journal of the Royal S

  10. A spectral analysis of rice grains

    International Nuclear Information System (INIS)

    McIlvaine, M.S.; Cua, F.T.; Navarro, E.F.

    1976-06-01

    With the advent of extensive nuclear testing and the development and use of highly potent pesticides and fertilizers, the hazardous threats of radioactive contamination due to fallout and to the absorption of pesticide residues have been given due consideration. Among the many forms of life exposed to these threats are food crops and among these is rice. Several rice grain samples - Japanese rice samples ''A'' and ''B'' submitted by the National Grains Authority (NGA) for analysis, random samples of rice being sold to the public at local markets, and ''black rice'' which were picked from along the shores of a Mindoro town were subjected to spectral analysis. Results revealed the presence of trace elements normally found in plants, such as; K-42, I-124, Cl-38, Na-24, Br-82, and Mn-56. No mercury was detected in the sample specimen analyzed

  11. Spectral analysis of major heart tones

    Science.gov (United States)

    Lejkowski, W.; Dobrowolski, A. P.; Majka, K.; Olszewski, R.

    2018-04-01

    The World Health Organization (WHO) figures clearly indicate that cardiovascular disease is the most common cause of death and disability in the world. Early detection of cardiovascular pathologies may contribute to reducing such a high mortality rate. Auscultatory examination is one of the first and most important step in cardiologic diagnostics. Unfortunately, proper diagnosis is closely related to long-term practice and medical experience. The article presents the author's system of recording phonocardiograms and the way of saving data, as well as the outline of the analysis algorithm, which will allow to assign a case to a patient with heart failure or healthy voluntaries' with a certain high probability. The results of a pilot study of phonocardiographic signals were also presented as an introduction to further research aimed at the development of an efficient diagnostic algorithm based on spectral analysis of the heart tone.

  12. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  13. EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sahil; Wettlaufer, John S. [Program in Applied Mathematics, Yale University, New Haven, CT (United States); Sordo, Fabio Del [Department of Astronomy, Yale University, New Haven, CT (United States)

    2017-01-01

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  14. Meso Mechanical Analysis of AC Mixture Response

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Vaccari, E.; Poot, M.

    2012-01-01

    Ongoing research into performance modeling of Asphalt Concrete (AC) mixtures using meso mechanics approaches is being undertaken at Delft University of Technology (TUD). The approach has already been successfully employed for evaluating the long term performance of porous asphalt concrete. The work

  15. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  16. Thermal analysis of pyrotechnic mixture-fireworks, atom-bomb

    International Nuclear Information System (INIS)

    Rajendran, Jeya; Thanulingam, T.L.

    2008-01-01

    Sound level produced from two varieties of sound producing fireworks of atom-bomb, cake bomb and thunder bomb were measured. The pyrotechnic mixture, KNO 3 /S/Al(H 3 BO 3 ) of compositions 57.5/19.9/22.1(0.5)% very much similar to commercial atom-bomb were taken and five cake bomb and seven thunder bomb with different net weight of chemicals were manufactured specifically for analysis. Cake bomb with 1g pyrotechnic mixture and thunder bomb with 2g pyrotechnic mixture produce -3 . Ignition temperature of the mixture is above the melting point of the metallic fuel, Al (660 deg C) and self propagating decomposition occurred at high temperature. The pyrotechnic mixture, KNO 3 /S/Al(H 3 BO 3 ) is a safe mixture from accidental factor, static electricity. DSC studies indicate slight formation of potassium nitrite with evolution of NO above 400 deg C. (author)

  17. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  18. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  19. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  20. Spectral analysis of noisy nonlinear maps

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Whitson, J.C.

    1982-01-01

    A path integral equation formalism is developed to obtain the frequency spectrum of nonlinear mappings exhibiting chaotic behavior. The one-dimensional map, x/sub n+1/ = f(x/sub n/), where f is nonlinear and n is a discrete time variable, is analyzed in detail. This map is introduced as a paradigm of systems whose exact behavior is exceedingly complex, and therefore irretrievable, but which nevertheless possess smooth, well-behaved solutions in the presence of small sources of external noise. A Boltzmann integral equation is derived for the probability distribution function p(x,n). This equation is linear and is therefore amenable to spectral analysis. The nonlinear dynamics in f(x) appear as transition probability matrix elements, and the presence of noise appears simply as an overall multiplicative scattering amplitude. This formalism is used to investigate the band structure of the logistic equation and to analyze the effects of external noise on both the invariant measure and the frequency spectrum of x/sub n/ for several values of lambda epsilon [0,1

  1. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    Science.gov (United States)

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  2. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  3. Spectral signature verification using statistical analysis and text mining

    Science.gov (United States)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is

  4. Spectral luminescence studies of eosin solvation in water-alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ketsle, G.A.; Levshin, L.V.; Mel' nikov, G.V.; Saletskii, A.M.

    1987-11-01

    The authors investigate the effects of solvation of eosin molecules in binary water-propanol mixtures with the goal of assessing eosin as a candidate dye laser material. The fluorescence was measured with a Hitachi spectrofluorimeter and the absorption spectra were taken on a Specord spectrophotometer. Absorption and fluorescence were measured for different amounts of propanol in the solvent. Data are also given on excitation and de-excitation kinetics between ground and excited states. Values for quantum yields of fluorescence and phosphorescence, average excited state lifetime, and molecular volume of the dye with the solvated shell are tabulated.

  5. Spectral Analysis of Large Particle Systems

    DEFF Research Database (Denmark)

    Dahlbæk, Jonas

    2017-01-01

    that Schur complements, Feshbach maps and Grushin problems are three sides of the same coin, it seems to be a new observation that the smooth Feshbach method can also be formulated as a Grushin problem. Based on this, an abstract account of the spectral renormalization group is given....

  6. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  7. Multivariat least-squares methods applied to the quantitative spectral analysis of multicomponent samples

    International Nuclear Information System (INIS)

    Haaland, D.M.; Easterling, R.G.; Vopicka, D.A.

    1985-01-01

    In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures, The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectra baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentration was <1%

  8. Isotopic analysis of H2, HD, D2 mixtures and analysis of ortho-para-hydrogen mixtures by gas chromatography

    International Nuclear Information System (INIS)

    Botter, F.; Perriere, G. de la; Tistchenko, S.

    1961-01-01

    This communication describes the present situation concerning the possibilities of vapor phase chromatography for the separation and analysis of mixtures of H 2 , HD and D 2 and of ortho- and para-hydrogen mixtures. Separation factors for physical adsorption of the various varieties of hydrogen have been deduced from chromatograms and have also been measured directly with a static method - the agreements is good. (author) [fr

  9. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  10. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  11. Applied Spectrophotometry: Analysis of a Biochemical Mixture

    Science.gov (United States)

    Trumbo, Toni A.; Schultz, Emeric; Borland, Michael G.; Pugh, Michael Eugene

    2013-01-01

    Spectrophotometric analysis is essential for determining biomolecule concentration of a solution and is employed ubiquitously in biochemistry and molecular biology. The application of the Beer-Lambert-Bouguer Lawis routinely used to determine the concentration of DNA, RNA or protein. There is however a significant difference in determining the…

  12. Spectral Analysis of Vector Magnetic Field Profiles

    Science.gov (United States)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  13. Applied spectrophotometry: analysis of a biochemical mixture.

    Science.gov (United States)

    Trumbo, Toni A; Schultz, Emeric; Borland, Michael G; Pugh, Michael Eugene

    2013-01-01

    Spectrophotometric analysis is essential for determining biomolecule concentration of a solution and is employed ubiquitously in biochemistry and molecular biology. The application of the Beer-Lambert-Bouguer Lawis routinely used to determine the concentration of DNA, RNA or protein. There is however a significant difference in determining the concentration of a given species (RNA, DNA, protein) in isolation (a contrived circumstance) as opposed to determining that concentration in the presence of other species (a more realistic situation). To present the student with a more realistic laboratory experience and also to fill a hole that we believe exists in student experience prior to reaching a biochemistry course, we have devised a three week laboratory experience designed so that students learn to: connect laboratory practice with theory, apply the Beer-Lambert-Bougert Law to biochemical analyses, demonstrate the utility and limitations of example quantitative colorimetric assays, demonstrate the utility and limitations of UV analyses for biomolecules, develop strategies for analysis of a solution of unknown biomolecular composition, use digital micropipettors to make accurate and precise measurements, and apply graphing software. Copyright © 2013 Wiley Periodicals, Inc.

  14. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  15. Alpha spectral analysis via artificial neural networks

    International Nuclear Information System (INIS)

    Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.

    1994-10-01

    An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system

  16. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  17. Emissivity compensated spectral pyrometry—algorithm and sensitivity analysis

    International Nuclear Information System (INIS)

    Hagqvist, Petter; Sikström, Fredrik; Christiansson, Anna-Karin; Lennartson, Bengt

    2014-01-01

    In order to solve the problem of non-contact temperature measurements on an object with varying emissivity, a new method is herein described and evaluated. The method uses spectral radiance measurements and converts them to temperature readings. It proves to be resilient towards changes in spectral emissivity and tolerates noisy spectral measurements. It is based on an assumption of smooth changes in emissivity and uses historical values of spectral emissivity and temperature for estimating current spectral emissivity. The algorithm, its constituent steps and accompanying parameters are described and discussed. A thorough sensitivity analysis of the method is carried out through simulations. No rigorous instrument calibration is needed for the presented method and it is therefore industrially tractable. (paper)

  18. A spectral analysis of ablating meteors

    Science.gov (United States)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  19. Quantitative mass-spectrometric analysis of hydrogen helium isotope mixtures

    International Nuclear Information System (INIS)

    Langer, U.

    1998-12-01

    This work deals with the mass-spectrometric method for the quantitative analysis of hydrogen-helium-isotope mixtures, with special attention to fusion plasma diagnostics. The aim was to use the low-resolution mass spectrometry, a standard measuring method which is well established in science and industry. This task is solved by means of the vector mass spectrometry, where a mass spectrum is repeatedly measured, but with stepwise variation of the parameter settings of a quadruple mass spectrometer. In this way, interfering mass spectra can be decomposed and, moreover, it is possible to analyze underestimated mass spectra of complex hydrogen-helium-isotope mixtures. In this work experimental investigations are presented which show that there are different parameters which are suitable for the UMS-method. With an optimal choice of the parameter settings hydrogen-helium-isotope mixtures can be analyzed with an accuracy of 1-3 %. In practice, a low sensitivity for small helium concentration has to be noted. To cope with this task, a method for selective hydrogen pressure reduction has been developed. Experimental investigations and calculations show that small helium amounts (about 1 %) in a hydrogen atmosphere can be analyzed with an accuracy of 3 - 10 %. Finally, this work deals with the effects of the measuring and calibration error on the resulting error in spectrum decomposition. This aspect has been investigated both in general mass-spectrometric gas analysis and in the analysis of hydrogen-helium-mixtures by means of the vector mass spectrometry. (author)

  20. Antepartum Fetal Monitoring and Spectral Analysis of Preterm Birth Risk

    Science.gov (United States)

    Păsăricără, Alexandru; Nemescu, Dragoş; Arotăriţei, Dragoş; Rotariu, Cristian

    2017-11-01

    The monitoring and analysis of antepartum fetal and maternal recordings is a research area of notable interest due to the relatively high value of preterm birth. The interest stems from the improvement of devices used for monitoring. The current paper presents the spectral analysis of antepartum heart rate recordings conducted during a study in Romania at the Cuza Voda Obstetrics and Gynecology Clinical Hospital from Iasi between 2010 and 2014. The study focuses on normal and preterm birth risk subjects in order to determine differences between these two types or recordings in terms of spectral analysis.

  1. Hydrogen quasienergies from spectral analysis of wavepackets

    International Nuclear Information System (INIS)

    Dondera, M.; Muller, H.G.; Gavrila, M.

    2002-01-01

    Quasienergies (qe) are calculated traditionally by solving the time-independent Floquet system of differential equations. A number of such calculations have been carried out successfully in the past for atomic hydrogen, albeit not at the frequencies of operation of current super intense lasers. We now present a method for calculating qe based on the evolution of a wave packet of the Schroedinger equation with a time-periodic Hamiltonian, that is an extension of the well known 'spectral method' for obtaining (real) eigenenergies of a time-independent Hamiltonian. The present method is based on propagating a wave packet Ψ(t) with an appropriately chosen initial condition Ψ(0) in a periodic field of constant amplitude, and then Fourier analyzing the autocorrelation function A(t) = . The Fourier transform of the autocorrelation function displays a set of lines, whose location and widths are related to the complex qe of the Floquet states present in the expansion of the wave packet. When these lines are non-overlapping, standard fitting techniques allow the extraction of the real and imaginary parts of the qe. For the case of overlapping lines, we apply the more elaborate technique of 'filter diagonalization'. Our method was tested by comparison with qe obtained from other sources, e.g., the solution of the system of differential equations. We apply the method to 3D hydrogen in a laser field of linear polarization, at the frequently used photon energy ω = 1.55 eV (wavelength 800 nm). We consider Floquet states belonging to several symmetry manifolds m. The field amplitude is varied from zero to several a.u. We thus obtain a 'Floquet map' for the real part of the qe of the lower states, and separately, the imaginary parts (widths) of the qe. The Floquet map displays interesting pseudo-crossings. We interpret the results in terms of avoided crossings of trajectories of the qe in the complex energy plane, and discuss their physical significance. (authors)

  2. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  3. Spectral analysis of the structure of ultradispersed diamonds

    Science.gov (United States)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  4. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  5. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  6. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  7. Spectral Analysis of Moderately Charged Rare-Gas Atoms

    Directory of Open Access Journals (Sweden)

    Jorge Reyna Almandos

    2017-03-01

    Full Text Available This article presents a review concerning the spectral analysis of several ions of neon, argon, krypton and xenon, with impact on laser studies and astrophysics that were mainly carried out in our collaborative groups between Argentina and Brazil during many years. The spectra were recorded from the vacuum ultraviolet to infrared regions using pulsed discharges. Semi-empirical approaches with relativistic Hartree–Fock and Dirac-Fock calculations were also included in these investigations. The spectral analysis produced new classified lines and energy levels. Lifetimes and oscillator strengths were also calculated.

  8. Spectral theory and nonlinear analysis with applications to spatial ecology

    CERN Document Server

    Cano-Casanova, S; Mora-Corral , C

    2005-01-01

    This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.

  9. HYPERSPECTRAL HYPERION IMAGERY ANALYSIS AND ITS APPLICATION USING SPECTRAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Pervez

    2015-03-01

    Full Text Available Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more useful for its further processing/ application. Principal component (PC analysis applied to the hyperspectral calibrated bands reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998.

  10. Automated spectral and timing analysis of AGNs

    Science.gov (United States)

    Munz, F.; Karas, V.; Guainazzi, M.

    2006-12-01

    % We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.

  11. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  12. PCLOOK: an interactive code for spectral analysis

    International Nuclear Information System (INIS)

    Macchiavelli, A.O.; Tomasi, D.

    1993-01-01

    The present work describes an interactive programme for the analysis of spectra developed to run in a PC platform. PCLOOK has a graphic interface that allows the user to get access to different functions using the mouse or directly typing commands. In this way one can switch to a suitable required environment to manage the histograms reassembling in this way a spectrum calculator.The PCLOOK programme was mainly developed to use in nuclear physics applications, but it is also possible to modify it with relative little effort to adapt it to other applications. It was written in Microsoft's BASIC 7.1 installed in a 33MHz 486 Everex PC. For a proper operation an ordinary VGA display and mouse are needed. The memory requirements depend on the size and number of the user defined spectra; for instance, for twenty 2048 channels spectra the available memory space must be 320 KBytes. (author). 5 figs

  13. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  14. Euler deconvolution and spectral analysis of regional aeromagnetic ...

    African Journals Online (AJOL)

    Existing regional aeromagnetic data from the south-central Zimbabwe craton has been analysed using 3D Euler deconvolution and spectral analysis to obtain quantitative information on the geological units and structures for depth constraints on the geotectonic interpretation of the region. The Euler solution maps confirm ...

  15. Spectral Depth Analysis of some Segments of the Bida Basin ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-16

    Dec 16, 2017 ... ABSTRACT: Spectral depth analysis was carried out on ten (10) of the 2009 total magnetic field intensity data sheets covering some segments of the Bida basin, to determine the depth to magnetic basement within the basin. The data was ... groundwater lie concealed beneath the earth surface and the ...

  16. Tomato sorting using independent component analysis on spectral images

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.

    2003-01-01

    Independent Component Analysis is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the most important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  17. Curie depth and geothermal gradient from spectral analysis of ...

    African Journals Online (AJOL)

    The resent (2009) aeromagnetic data covering lower part of Benue and upper part of Anambra basins was subjected to one dimensional spectral analysis with the aim of estimating the curie depth and subsequently evaluating both the geothermal gradient and heat flow for the area. Curie point depth estimate obtained were ...

  18. Estimation and analysis of spectral solar radiation over Cairo

    International Nuclear Information System (INIS)

    Abdel Wahab, M.M.; Omran, M.

    1994-05-01

    This work presents a methodology to estimate spectral diffuse and global radiation on horizontal surface. This method is validated by comparing with measured direct and global spectral radiation in four bands. The results show a good performance in cloudless conditions. The analysis of the ratio of surface values to extraterrestrial ones revealed an over-all depletion in the summer months. Also there was no evidence for any tendency for conversion of radiational components through different bands. The model presents excellent agreement with the measured values for (UV/G) ratio. (author). 7 refs, 4 figs, 3 tabs

  19. MEM spectral analysis for predicting influenza epidemics in Japan.

    Science.gov (United States)

    Sumi, Ayako; Kamo, Ken-ichi

    2012-03-01

    The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

  20. An introduction to random vibrations, spectral & wavelet analysis

    CERN Document Server

    Newland, D E

    2005-01-01

    One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation

  1. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  2. Comparative study of the efficiency of computed univariate and multivariate methods for the estimation of the binary mixture of clotrimazole and dexamethasone using two different spectral regions

    Science.gov (United States)

    Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Lotfy, Hayam Mahmoud; Shehata, Mostafa Abdel-Aty

    2018-04-01

    Three methods of analysis are conducted that need computational procedures by the Matlab® software. The first is the univariate mean centering method which eliminates the interfering signal of the one component at a selected wave length leaving the amplitude measured to represent the component of interest only. The other two multivariate methods named PLS and PCR depend on a large number of variables that lead to extraction of the maximum amount of information required to determine the component of interest in the presence of the other. Good accurate and precise results are obtained from the three methods for determining clotrimazole in the linearity range 1-12 μg/mL and 75-550 μg/mL with dexamethasone acetate 2-20 μg/mL in synthetic mixtures and pharmaceutical formulation using two different spectral regions 205-240 nm and 233-278 nm. The results obtained are compared statistically to each other and to the official methods.

  3. Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis

    Science.gov (United States)

    Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.

    2011-01-01

    The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.

  4. Power spectral analysis of heart rate in hyperthyroidism.

    Science.gov (United States)

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P activity and, thus, a relative hypersympathetic tone.

  5. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    OpenAIRE

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...

  6. Spectral analysis of full field digital mammography data

    International Nuclear Information System (INIS)

    Heine, John J.; Velthuizen, Robert P.

    2002-01-01

    The spectral content of mammograms acquired from using a full field digital mammography (FFDM) system are analyzed. Fourier methods are used to show that the FFDM image power spectra obey an inverse power law; in an average sense, the images may be considered as 1/f fields. Two data representations are analyzed and compared (1) the raw data, and (2) the logarithm of the raw data. Two methods are employed to analyze the power spectra (1) a technique based on integrating the Fourier plane with octave ring sectioning developed previously, and (2) an approach based on integrating the Fourier plane using rings of constant width developed for this work. Both methods allow theoretical modeling. Numerical analysis indicates that the effects due to the transformation influence the power spectra measurements in a statistically significant manner in the high frequency range. However, this effect has little influence on the inverse power law estimation for a given image regardless of the data representation or the theoretical analysis approach. The analysis is presented from two points of view (1) each image is treated independently with the results presented as distributions, and (2) for a given representation, the entire image collection is treated as an ensemble with the results presented as expected values. In general, the constant ring width analysis forms the foundation for a spectral comparison method for finding spectral differences, from an image distribution sense, after applying a nonlinear transformation to the data. The work also shows that power law estimation may be influenced due to the presence of noise in the higher frequency range, which is consistent with the known attributes of the detector efficiency. The spectral modeling and inverse power law determinations obtained here are in agreement with that obtained from the analysis of digitized film-screen images presented previously. The form of the power spectrum for a given image is approximately 1/f 2

  7. Multivariate spectral-analysis of movement-related EEG data

    International Nuclear Information System (INIS)

    Andrew, C. M.

    1997-01-01

    The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)

  8. Spectral map-analysis: a method to analyze gene expression data

    OpenAIRE

    Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc

    2004-01-01

    bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis

  9. Spatially adaptive mixture modeling for analysis of FMRI time series.

    Science.gov (United States)

    Vincent, Thomas; Risser, Laurent; Ciuciu, Philippe

    2010-04-01

    Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM

  10. Effective approach to spectroscopy and spectral analysis techniques using Matlab

    Science.gov (United States)

    Li, Xiang; Lv, Yong

    2017-08-01

    With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching

  11. Leak detection in pipelines through spectral analysis of pressure signals

    Directory of Open Access Journals (Sweden)

    Souza A.L.

    2000-01-01

    Full Text Available The development and test of a technique for leak detection in pipelines is presented. The technique is based on the spectral analysis of pressure signals measured in pipeline sections where the formation of stationary waves is favoured, allowing leakage detection during the start/stop of pumps. Experimental tests were performed in a 1250 m long pipeline for various operational conditions of the pipeline (liquid flow rate and leakage configuration. Pressure transients were obtained by four transducers connected to a PC computer. The obtained results show that the spectral analysis of pressure transients, together with the knowledge of reflection points provide a simple and efficient way of identifying leaks during the start/stop of pumps in pipelines.

  12. Outlier Detection with Space Transformation and Spectral Analysis

    DEFF Research Database (Denmark)

    Dang, Xuan-Hong; Micenková, Barbora; Assent, Ira

    2013-01-01

    which rely on notions of distances or densities, this approach introduces a novel concept based on local quadratic entropy for evaluating the similarity of a data object with its neighbors. This information theoretic quantity is used to regularize the closeness amongst data instances and subsequently......Detecting a small number of outliers from a set of data observations is always challenging. In this paper, we present an approach that exploits space transformation and uses spectral analysis in the newly transformed space for outlier detection. Unlike most existing techniques in the literature...... benefits the process of mapping data into a usually lower dimensional space. Outliers are then identified by spectral analysis of the eigenspace spanned by the set of leading eigenvectors derived from the mapping procedure. The proposed technique is purely data-driven and imposes no assumptions regarding...

  13. Fast analysis of spectral data using neural networks

    International Nuclear Information System (INIS)

    Roach, C.M.

    1992-01-01

    Fast analysis techniques are highly desirable in experiments where measurements are recorded at high rates. In fusion experiments the processing required to obtain plasma parameters is usually orders of magnitude slower than the data acquisition. Spectroscopic diagnostics suffer greatly from this problem. The extraction of plasma parameters from a measured spectrum typically corresponds to a nonlinear mapping between distinct multi-dimensional spaces. Where no analytic expression for the mapping exists, conventional analysis methods (e.g. least squares) are usually iterative and therefore slow. With this concern in mind a fast spectral analysis method involving neural networks has been investigated. (author) 6 refs., 3 figs

  14. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  15. Spectral Envelopes and Additive + Residual Analysis/Synthesis

    Science.gov (United States)

    Rodet, Xavier; Schwarz, Diemo

    The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

  16. Parametric image reconstruction using spectral analysis of PET projection data

    International Nuclear Information System (INIS)

    Meikle, Steven R.; Matthews, Julian C.; Cunningham, Vincent J.; Bailey, Dale L.; Livieratos, Lefteris; Jones, Terry; Price, Pat

    1998-01-01

    Spectral analysis is a general modelling approach that enables calculation of parametric images from reconstructed tracer kinetic data independent of an assumed compartmental structure. We investigated the validity of applying spectral analysis directly to projection data motivated by the advantages that: (i) the number of reconstructions is reduced by an order of magnitude and (ii) iterative reconstruction becomes practical which may improve signal-to-noise ratio (SNR). A dynamic software phantom with typical 2-[ 11 C]thymidine kinetics was used to compare projection-based and image-based methods and to assess bias-variance trade-offs using iterative expectation maximization (EM) reconstruction. We found that the two approaches are not exactly equivalent due to properties of the non-negative least-squares algorithm. However, the differences are small ( 1 and, to a lesser extent, VD). The optimal number of EM iterations was 15-30 with up to a two-fold improvement in SNR over filtered back projection. We conclude that projection-based spectral analysis with EM reconstruction yields accurate parametric images with high SNR and has potential application to a wide range of positron emission tomography ligands. (author)

  17. A Mixture IRT Analysis of Risky Youth Behavior

    Directory of Open Access Journals (Sweden)

    Holmes eFinch

    2011-05-01

    Full Text Available The study reported in this manuscript used a mixture item response model with data from the Youth Risk Behavior Survey 2009 (N = 16,410 to identify subtypes of adolescents at-risk for engaging in unhealthy behaviors, and to find individual survey items that were most effective at identifying such students within each subtype. The goal of the manuscript is twofold: 1 To demonstrate the utility of the mixture item response theory model for identifying subgroups in the population and for highlighting the use of group specific item response parameters and 2 To identify typologies of adolescents based on their propensity for engaging in sexually and substance use risky behaviors. Results indicate that 4 classes of youth exist in the population, with differences in risky sexual behaviors and substance use. The first group had a greater propensity to engage in risky sexual behavior, while group 2 was more likely to smoke tobacco and drink alcohol. Group 3 was the most likely to use other substances, such as marijuana, methamphetamine, and other mind altering drugs, and group 4 had the lowest propensity for engaging in any of the sexual or substance use behaviors included in the survey. Finally, individual items were identified for each group that can be most effective at identifying individuals at greatest risk. Further proposed directions of research and the contribution of this analysis to the existing literature are discussed.

  18. Noise analysis role in reactor safety, Spectral analysis (PSD)

    International Nuclear Information System (INIS)

    Jovanovic, S.; Velickovic, Lj.

    1967-11-01

    Spectral power density of a zero power reactor is frequency dependent and related to transfer function of the reactor and to spectral density of the input disturbance. Measurement of spectral power density of a critical system is used to obtain the ratio (β/l), β is the effective yield of delayed neutrons, and l is the effective mean neutron lifetime. When reactor is subcritical, if the effective yie ald of delayed neutrons, the effective mean neutron lifetime are known, the shutdown margin can be determined by relation α = (1 - k (1- β0)/l, k is the effective multiplication factor. Output neutron spectrum at the RB reactor in Vinca was measured for a few reactor core configurations and for a few levels of heavy water at subcritical state. Measured values were satisfactory when the reactor was critical, but the reactor noise of subcritical system was covered by the white noise of the detector and electronic equipment. The Ra-Be source was under the reactor vessel when measurements of subcritical system were done. More efficient detector or external random stimulus for increasing the intensity of neutron fluctuations would be needed to obtain results for subcritical system

  19. Analyzing availability using transfer function models and cross spectral analysis

    International Nuclear Information System (INIS)

    Singpurwalla, N.D.

    1980-01-01

    The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems

  20. Spectral Analysis Of Business Cycles In The Visegrad Group Countries

    Directory of Open Access Journals (Sweden)

    Kijek Arkadiusz

    2017-06-01

    Full Text Available This paper examines the business cycle properties of Visegrad group countries. The main objective is to identify business cycles in these countries and to study the relationships between them. The author applies a modification of the Fourier analysis to estimate cycle amplitudes and frequencies. This allows for a more precise estimation of cycle characteristics than the traditional approach. The cross-spectral analysis of GDP cyclical components for the Czech Republic, Hungary, Poland and Slovakia makes it possible to assess the degree of business cycle synchronization between the countries.

  1. Bayesian nonparametric meta-analysis using Polya tree mixture models.

    Science.gov (United States)

    Branscum, Adam J; Hanson, Timothy E

    2008-09-01

    Summary. A common goal in meta-analysis is estimation of a single effect measure using data from several studies that are each designed to address the same scientific inquiry. Because studies are typically conducted in geographically disperse locations, recent developments in the statistical analysis of meta-analytic data involve the use of random effects models that account for study-to-study variability attributable to differences in environments, demographics, genetics, and other sources that lead to heterogeneity in populations. Stemming from asymptotic theory, study-specific summary statistics are modeled according to normal distributions with means representing latent true effect measures. A parametric approach subsequently models these latent measures using a normal distribution, which is strictly a convenient modeling assumption absent of theoretical justification. To eliminate the influence of overly restrictive parametric models on inferences, we consider a broader class of random effects distributions. We develop a novel hierarchical Bayesian nonparametric Polya tree mixture (PTM) model. We present methodology for testing the PTM versus a normal random effects model. These methods provide researchers a straightforward approach for conducting a sensitivity analysis of the normality assumption for random effects. An application involving meta-analysis of epidemiologic studies designed to characterize the association between alcohol consumption and breast cancer is presented, which together with results from simulated data highlight the performance of PTMs in the presence of nonnormality of effect measures in the source population.

  2. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  3. [Applications of spectral analysis technique to monitoring grasshoppers].

    Science.gov (United States)

    Lu, Hui; Han, Jian-guo; Zhang, Lu-da

    2008-12-01

    Grasshopper monitoring is of great significance in protecting environment and reducing economic loss. However, how to predict grasshoppers accurately and effectively is a difficult problem for a long time. In the present paper, the importance of forecasting grasshoppers and its habitat is expounded, and the development in monitoring grasshopper populations and the common arithmetic of spectral analysis technique are illustrated. Meanwhile, the traditional methods are compared with the spectral technology. Remote sensing has been applied in monitoring the living, growing and breeding habitats of grasshopper population, and can be used to develop a forecast model combined with GIS. The NDVI values can be analyzed throughout the remote sensing data and be used in grasshopper forecasting. Hyper-spectra remote sensing technique which can be used to monitor grasshoppers more exactly has advantages in measuring the damage degree and classifying damage areas of grasshoppers, so it can be adopted to monitor the spatial distribution dynamic of rangeland grasshopper population. Differentialsmoothing can be used to reflect the relations between the characteristic parameters of hyper-spectra and leaf area index (LAI), and indicate the intensity of grasshopper damage. The technology of near infrared reflectance spectroscopy has been employed in judging grasshopper species, examining species occurrences and monitoring hatching places by measuring humidity and nutrient of soil, and can be used to investigate and observe grasshoppers in sample research. According to this paper, it is concluded that the spectral analysis technique could be used as a quick and exact tool in monitoring and forecasting the infestation of grasshoppers, and will become an important means in such kind of research for their advantages in determining spatial orientation, information extracting and processing. With the rapid development of spectral analysis methodology, the goal of sustainable monitoring

  4. Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A

    Science.gov (United States)

    Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E.

    2001-06-01

    We have designed an experiment in which students isolate and characterize thiarubrine A, a pseudo-antiaromatic 1,2-dithia-3,5-cyclohexadiene derivative. Thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications. They possess a distinctive red color and structure features that are particularly useful for demonstrating UV-vis, NMR, and IR spectral analyses. A crude mixture containing thiarubrine A is obtained by methanol (liquid-solid) extraction of the roots of short ragweed, Ambrosia artemisiifolia. Alternatively, these compounds can be isolated from numerous taxa within the family Asteraceae. Thiarubrine A possesses alkyl, alkenyl, and alkynyl functionality, which is useful in illustrating the utility of IR and NMR in the characterization of natural products. The long wavelength UV-vis absorption band of thiarubrine is indication of the nonplanarity of dithiin ring and provides an excellent opportunity to discuss the concepts of aromaticity, conjugation, and molecular orbital theory.

  5. A Geographic Information-Assisted Temporal Mixture Analysis for Addressing the Issue of Endmember Class and Endmember Spectra Variability

    Directory of Open Access Journals (Sweden)

    Wenliang Li

    2017-03-01

    Full Text Available Spectral mixture analysis (SMA is a common approach for parameterizing biophysical fractions of urban environment and widely applied in many fields. For successful SMA, the selection of endmember class and corresponding spectra has been assumed as the most important step. Thanks to the spatial heterogeneity of natural and urban landscapes, the variability of endmember class and corresponding spectra has been widely considered as the profound error source in SMA. To address the challenging problems, we proposed a geographic information-assisted temporal mixture analysis (GATMA. Specifically, a logistic regression analysis was applied to analyze the relationship between land use/land covers and surrounding socio-economic factors, and a classification tree method was used to identify the present status of endmember classes throughout the whole study area. Furthermore, an ordinary kriging analysis was employed to generate a spatially varying endmember spectra at all pixels in the remote sensing image. As a consequence, a fully constrained temporal mixture analysis was conducted for examining the fractional land use land covers. Results show that the proposed GATMA achieved a promising accuracy with an RMSE of 6.81%, SE of 1.29% and MAE of 2.6%. In addition, comparative analysis result illustrates that a significant accuracy improvement has been found in the whole study area and both developed and less developed areas, and this demonstrates that the variability of endmember class and endmember spectra is essential for unmixing analysis.

  6. The role of the computer in automated spectral analysis

    International Nuclear Information System (INIS)

    Rasmussen, S.E.

    This report describes how a computer can be an extremely valuable tool for routine analysis of spectra, which is a time consuming process. A number of general-purpose algorithms that are available for the various phases of the analysis can be implemented, if these algorithms are designed to cope with all the variations that may occur. Since this is basically impossible, one must find a compromise between obscure error and program complexity. This is usually possible with human interaction at critical points. In spectral analysis this is possible if the user scans the data on an interactive graphics terminal, makes the necessary changes and then returns control to the computer for completion of the analysis

  7. Application of OLAM network in X-ray spectral analysis

    International Nuclear Information System (INIS)

    Liu Yinbing; Zhou Rongsheng

    2001-01-01

    The author describes a new approach to the automatic radioisotope identification problem based on the use of OLAM network. Different from the traditional methods, the OLAM network takes the spectrum as a whole comparing its shape with the patterns learned during the training period of the network. It is found that the OLAM network, once adequately trained, is quite suitable to identify a given isotope present in a mixture of elements as well as the relative proportions of each identified substance. Preliminary results are good enough to consider OLAM network as powerful and simple tools in the automatic spectrum analysis

  8. Spectral analysis in thin tubes with axial heterogeneities

    KAUST Repository

    Ferreira, Rita; Mascarenhas, M. Luí sa; Piatnitski, Andrey

    2015-01-01

    In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral problem associated with an elliptic operator with axial periodic heterogeneities. We extend to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where the scale of thickness is much smaller than the scale of the heterogeneities and the planar coefficient has a unique global minimum in the periodic cell. These results are of great relevance in the comprehension of the wave propagation in nanowires showing axial heterogeneities (see [17]).

  9. On asymptotic analysis of spectral problems in elasticity

    Directory of Open Access Journals (Sweden)

    S.A. Nazarov

    Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.

  10. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  11. Overlapping communities detection based on spectral analysis of line graphs

    Science.gov (United States)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  12. Spectral analysis of underwater explosions in the Dead Sea

    Science.gov (United States)

    Gitterman, Y.; Ben-Avraham, Z.; Ginzburg, A.

    1998-08-01

    The present study utilizes the Israel Seismic Network (ISN) as a spatially distributed multichannel system for the discrimination of low-magnitude events (ML UWEs) and 16 earthquakes in the magnitude range ML = 1.6-2.8, within distances of 10-150 km, recorded by the ISN, were selected for the analysis. The analysis is based on a smoothed (0.5 Hz window) Fourier spectrum of the whole signal (defined by the signal-to-noise criterion), without picking separate wave phases. It was found that the classical discriminant of the seismic energy ratio between the relatively low-frequency (1-6 Hz) and high-frequency (6-11 Hz) bands, averaged over an ISN subnetwork, showed an overlap between UWEs and earthquakes and cannot itself provide reliable identification. We developed and tested a new multistation discriminant based on the low- frequency spectral modulation (LFSM) method. In our case the LFSM is associated with the bubbling effect in underwater explosions. The method demonstrates a distinct azimuth-invariant coherency of spectral shapes in the low-frequency range (1-12 Hz) of short-period seismometer systems. The coherency of the modulated spectra for different ISN stations was measured by semblance statistics commonly used in seismic prospecting for phase correlation in the time domain. The modified statistics provided an almost complete separation between earthquakes and underwater explosions.

  13. Analysis of a Pareto Mixture Distribution for Maritime Surveillance Radar

    Directory of Open Access Journals (Sweden)

    Graham V. Weinberg

    2012-01-01

    Full Text Available The Pareto distribution has been shown to be an excellent model for X-band high-resolution maritime surveillance radar clutter returns. Given the success of mixture distributions in radar, it is thus of interest to consider the effect of Pareto mixture models. This paper introduces a formulation of a Pareto intensity mixture distribution and investigates coherent multilook radar detector performance using this new clutter model. Clutter parameter estimates are derived from data sets produced by the Defence Science and Technology Organisation's Ingara maritime surveillance radar.

  14. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo

    2015-08-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological applications. The device is fabricated by micromilling and solvent assisted bonding, in which a microdialysis membrane (cut-off of 12-14 kDa) is sandwiched in between an upper and a bottom microfluidic chamber. An external frame connects the microfluidic device to external tubes, microvalves and syringe pumps. Bonding strength and interface sealing are pneumatically tested. Microfluidic protocols are also described by using the presented device to filter a sample composed of specific peptides (MW 1553.73 Da, at a concentration of 1.0 ng/μl) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancer, and albumin (MW 66.5 kDa, at a concentration of 35 μg/μl), the most represented protein in human plasma. The filtered samples coming out from the microfluidic device were subsequently deposited on a SERS (surface enhanced Raman scattering) substrate for further analysis by Raman spectroscopy. By using this approach, we were able to sort the small peptides from the bigger and highly concentrated protein albumin and to detect them by using a label-free technique at a resolution down to 1.0 ng/μl.

  15. Spectral analysis of mammographic images using a multitaper method

    International Nuclear Information System (INIS)

    Wu Gang; Mainprize, James G.; Yaffe, Martin J.

    2012-01-01

    Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.

  16. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Gentile, Francesco T.; Coluccio, Maria Laura; Tallerico, Marco; De Grazia, Antonio; Nicastri, Annalisa; Perri, Angela Mena; Parrotta, Elvira; Pardeo, Francesca; Catalano, Rossella; Cuda, Giovanni; Di Fabrizio, Enzo M.

    2015-01-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological

  17. GBTIDL: Reduction and Analysis of GBT Spectral Line Data

    Science.gov (United States)

    Marganian, P.; Garwood, R. W.; Braatz, J. A.; Radziwill, N. M.; Maddalena, R. J.

    2013-03-01

    GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

  18. ANALYSIS OF CAMOUFLAGE COVER SPECTRAL CHARACTERISTICS BY IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    A. Y. Kouznetsov

    2016-03-01

    Full Text Available Subject of Research.The paper deals with the problems of detection and identification of objects in hyperspectral imagery. The possibility of object type determination by statistical methods is demonstrated. The possibility of spectral image application for its data type identification is considered. Method. Researching was done by means of videospectral equipment for objects detection at "Fregat" substrate. The postprocessing of hyperspectral information was done with the use of math model of pattern recognition system. The vegetation indexes TCHVI (Three-Channel Vegetation Index and NDVI (Normalized Difference Vegetation Index were applied for quality control of object recognition. Neumann-Pearson criterion was offered as a tool for determination of objects differences. Main Results. We have carried out analysis of the spectral characteristics of summer-typecamouflage cover (Germany. We have calculated the density distribution of vegetation indexes. We have obtained statistical characteristics needed for creation of mathematical model for pattern recognition system. We have shown the applicability of vegetation indices for detection of summer camouflage cover on averdure background. We have presented mathematical model of object recognition based on Neumann-Pearson criterion. Practical Relevance. The results may be useful for specialists in the field of hyperspectral data processing for surface state monitoring.

  19. Spatially explicit spectral analysis of point clouds and geospatial data

    Science.gov (United States)

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is

  20. Spatially explicit spectral analysis of point clouds and geospatial data

    Science.gov (United States)

    Buscombe, Daniel

    2016-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described

  1. Joint Spectral Analysis for Early Bright X-ray Flares of γ-Ray Bursts ...

    Indian Academy of Sciences (India)

    Abstract. A joint spectral analysis for early bright X-ray flares that were simultaneously observed with Swift BAT and XRT are present. Both BAT and XRT lightcurves of these flares are correlated. Our joint spectral anal- ysis shows that the radiations in the two energy bands are from the same spectral component, which can ...

  2. Selective laser ionization for mass-spectral isotopic analysis

    International Nuclear Information System (INIS)

    Miller, C.M.; Nogar, N.S.; Downey, S.W.

    1983-01-01

    Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios

  3. Mixture analysis by long-range J-resolved 2D NMR

    International Nuclear Information System (INIS)

    Ha, S.T.K.; Lee, R.W.K.; Wilkins, C.L.

    1987-01-01

    In most spectroscopic qualitative analyses chromatographic separations are done before identification. Unfortunately, this general approach has suffered from a number of shortcomings. Off-line chromatographic separation followed by spectroscopic analysis is time consuming and inefficient and on-line analysis suffers from mismatch of the material flow requirements between chromatographic columns and spectroscopic instruments. An alternative mixture identification procedure solely based upon use of edited 13 C NMR spectra and a 13 C NMR chemical shift data base is reported. This approach has been demonstrated in the analyses of several mixtures, including a mixture of amino acids and some isomers. In all cases, identifications of components of these mixtures are successful

  4. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  5. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering

    Directory of Open Access Journals (Sweden)

    Chin-Teng Lin

    2018-01-01

    Full Text Available Electroencephalogram (EEG signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA, feature extraction, and the Gaussian mixture model (GMM to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research.

  6. Spectral analysis methods for vehicle interior vibro-acoustics identification

    Science.gov (United States)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  7. Spectral analysis of a class of Schrodinger operators exhibiting a parameter-dependent spectral transition

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel; Khrabustovskyi, A.; Tater, Miloš

    2016-01-01

    Roč. 49, č. 16 (2016), s. 165302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operator * eigenvalue estimates * spectral transition Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016

  8. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    Science.gov (United States)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  9. Analysis of cirrus cloud spectral signatures in the far infrared

    International Nuclear Information System (INIS)

    Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.

    2014-01-01

    This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820–960 cm −1 interval. The retrieved cloud parameters are the input data for simulations covering the 250–1100 cm −1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced. - Highlights: • We analyze down-welling spectral radiances in the far infrared (FIR) spectrum. • Discuss the scattering in the fir and the ice crystals phase function

  10. Comprehensive spectral analysis of Cyg X-1 using RXTE data

    International Nuclear Information System (INIS)

    Shahid, Rizwan; Jaaffrey, S. N. A.; Misra, Ranjeev

    2012-01-01

    We analyze a large number (> 500) of pointed Rossi X-Ray Timing Explorer (RXTE) observations of Cyg X-1 and model the spectrum of each one. A subset of the observations for which there is a simultaneous reliable measure of the hardness ratio by the All Sky Monitor shows that the sample covers nearly all the spectral shapes of Cyg X-1. Each observation is fitted with a generic empirical model consisting of a disk black body spectrum, a Comptonized component whose input photon shape is the same as the disk emission, a Gaussian to represent the iron line and a reflection feature. The relative strength, width of the iron line and the reflection parameter are in general correlated with the high energy photon spectral index Γ. This is broadly consistent with a geometry where for the hard state (low Γ ∼ 1.7) there is a hot inner Comptonizing region surrounded by a truncated cold disk. The inner edge of the disk moves inwards as the source becomes softer till finally in the soft state (high Γ > 2.2) the disk fills the inner region and active regions above the disk produce the Comptonized component. However, the reflection parameter shows non-monotonic behavior near the transition region (Γ ∼ 2), which suggests a more complex geometry or physical state of the reflector. In addition, the inner disk temperature, during the hard state, is on average higher than in the soft one, albeit with large scatter. These inconsistencies could be due to limitations in the data and the empirical model used to fit them. The flux of each spectral component is well correlated with Γ, which shows that unlike some other black hole systems, Cyg X-1 does not show any hysteresis behavior. In the soft state, the flux of the Comptonized component is always similar to the disk one, which confirms that the ultra-soft state (seen in other brighter black hole systems) is not exhibited by Cyg X-1. The rapid variation of the Compton amplification factor with Γ naturally explains the absence of

  11. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  12. Spectral analysis for evaluation of myocardial tracers for medical imaging

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Marshall, Robert C.

    2000-01-01

    Kinetic analysis of dynamic tracer data is performed with the goal of evaluating myocardial radiotracers for cardiac nuclear medicine imaging. Data from experiments utilizing the isolated rabbit heart model are acquired by sampling the venous blood after introduction of a tracer of interest and a reference tracer. We have taken the approach that the kinetics are properly characterized by an impulse response function which describes the difference between the reference molecule (which does not leave the vasculature) and the molecule of interest which is transported across the capillary boundary and is made available to the cell. Using this formalism we can model the appearance of the tracer of interest in the venous output of the heart as a convolution of the appearance of the reference tracer with the impulse response. In this work we parameterize the impulse response function as the sum of a large number of exponential functions whose predetermined decay constants form a spectrum, and each is required only to have a nonnegative coefficient. This approach, called spectral analysis, has the advantage that it allows conventional compartmental analysis without prior knowledge of the number of compartments which the physiology may require or which the data will support

  13. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    Science.gov (United States)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  14. Spectral analysis, death and coronary anatomy following cardiac catheterisation.

    Science.gov (United States)

    Moore, Roger K G; Newall, Nick; Groves, David G; Barlow, Pauline E; Stables, Rodney H; Jackson, Mark; Ramsdale, David R

    2007-05-16

    To establish the associations and prognostic utility of angiographic, clinical and HRV parameters in a large cohort of patients undergoing diagnostic cardiac catheterisation (CC). Patients undergoing CC as elective day cases were enrolled at a single tertiary center from September 2001 to January 2003. Patient data, serum biochemistry, current drug therapy, catheter reports and five minute high resolution electrocardiograph (ECG) recordings were prospectively recorded and validated in an electronic archive. ECG recordings were used to generate time domain (SDNN (standard deviation of NN intervals)) and spectral HRV parameters (low frequency (LF) and high frequency (HF) power). Significant associations between dichotomized HRV variables and covariates were investigated using binary logistic regression. The independent prognostic ability of clinical markers was evaluated using the Cox proportional hazard model. 841 consecutive consenting patients of mean age 61+/-10 years were recruited into the study with a mean follow-up period of 690+/-436 days. In multivariate analysis decreasing LF spectral power was independently associated with proximal right coronary stenosis OR (odds ratio)=1.65 (95% CI=1.16-2.36), P=0.006 and to all cause mortality OR=5.01 (95% CI=1.47-17.01), P=0.010. Increasing LF power was also independently associated with normal coronary angiograms in patients investigated suspected coronary disease without a confirmed prior history of a coronary ischaemic event OR=2.16 (95% CI=1.26-3.73), P=0.002. Reduced LF power independently predicts all cause mortality in a large cohort of patients receiving medical therapy after elective CC. LF power was also independently associated with >75% proximal RCA stenosis.

  15. Application of Genetic Algorithm (GA) Assisted Partial Least Square (PLS) Analysis on Trilinear and Non-trilinear Fluorescence Data Sets to Quantify the Fluorophores in Multifluorophoric Mixtures: Improving Quantification Accuracy of Fluorimetric Estimations of Dilute Aqueous Mixtures.

    Science.gov (United States)

    Kumar, Keshav

    2018-03-29

    Excitation-emission matrix fluorescence (EEMF) and total synchronous fluorescence spectroscopy (TSFS) are the 2 fluorescence techniques that are commonly used for the analysis of multifluorophoric mixtures. These 2 fluorescence techniques are conceptually different and provide certain advantages over each other. The manual analysis of such highly correlated large volume of EEMF and TSFS towards developing a calibration model is difficult. Partial least square (PLS) analysis can analyze the large volume of EEMF and TSFS data sets by finding important factors that maximize the correlation between the spectral and concentration information for each fluorophore. However, often the application of PLS analysis on entire data sets does not provide a robust calibration model and requires application of suitable pre-processing step. The present work evaluates the application of genetic algorithm (GA) analysis prior to PLS analysis on EEMF and TSFS data sets towards improving the precision and accuracy of the calibration model. The GA algorithm essentially combines the advantages provided by stochastic methods with those provided by deterministic approaches and can find the set of EEMF and TSFS variables that perfectly correlate well with the concentration of each of the fluorophores present in the multifluorophoric mixtures. The utility of the GA assisted PLS analysis is successfully validated using (i) EEMF data sets acquired for dilute aqueous mixture of four biomolecules and (ii) TSFS data sets acquired for dilute aqueous mixtures of four carcinogenic polycyclic aromatic hydrocarbons (PAHs) mixtures. In the present work, it is shown that by using the GA it is possible to significantly improve the accuracy and precision of the PLS calibration model developed for both EEMF and TSFS data set. Hence, GA must be considered as a useful pre-processing technique while developing an EEMF and TSFS calibration model.

  16. Volumetric, viscometric, spectral studies and viscosity modelling of binary mixtures of esters and alcohols (diethyl succinate, or ethyl octanoate + isobutanol, or isopentanol) at varying temperatures

    International Nuclear Information System (INIS)

    Majstorović, Divna M.; Živković, Emila M.; Matija, Lidija R.; Kijevčanin, Mirjana Lj.

    2017-01-01

    Highlights: • Densitis and viscosities of four ester + alcohol binary mixtures were measured. • Excess and deviation functions were calculated. • Fourier transform infrared (FT-IR) spectroscopy analysis was conducted. • Molecular interactions present in the mixture were analyzed. • Viscosity modelling was performed. - Abstract: Density, viscosity and refractive index of four binary mixtures consisting of diethyl succinate or ethyl octanoate + 2-methyl-1-propanol or 3-methyl-1-butanol have been measured at atmospheric pressure and over the temperature range from 288.15 K to 323.15 K. Excess and deviation functions have been calculated from these data and fitted to the Redlich-Kister equation. The values of excess molar volume and deviation functions, with FT-IR study, were further used in the analysis of molecular interactions present in the mixture as well as the temperature influence on them. Molar excess Gibbs free energies of activation of viscous flow were additionally calculated from measured density and viscosity data for better understanding of present molecular interactions. Viscosity modelling was done with two approaches, predictive by group contribution models (UNIFAC-VISCO and ASOG-VISCO), and correlative by one to three-parameter models (Teja-Rice, Grunberg–Nissan, McAlister, Eyring-UNIQUAC and Eyring-NRTL). The obtained results were compared with experimental data and conclusions about applied approaches and models were made.

  17. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    Science.gov (United States)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  18. Spectral analysis of linear relations and degenerate operator semigroups

    International Nuclear Information System (INIS)

    Baskakov, A G; Chernyshov, K I

    2002-01-01

    Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups

  19. Spectral Efficiency Analysis for Multicarrier Based 4G Systems

    DEFF Research Database (Denmark)

    Silva, Nuno; Rahman, Muhammad Imadur; Frederiksen, Flemming Bjerge

    2006-01-01

    In this paper, a spectral efficiency definition is proposed. Spectral efficiency for multicarrier based multiaccess techniques, such as OFDMA, MC-CDMA and OFDMA-CDM, is analyzed. Simulations for different indoor and outdoor scenarios are carried out. Based on the simulations, we have discussed ho...

  20. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  1. Analysis of Minor Component Segregation in Ternary Powder Mixtures

    Directory of Open Access Journals (Sweden)

    Asachi Maryam

    2017-01-01

    Full Text Available In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.

  2. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques

    Directory of Open Access Journals (Sweden)

    D. Kozak

    2012-01-01

    Full Text Available Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using methods of the spectral analysis. Topographic data are acquired by means of the optical profilometr MicroProf®FRT. Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to the fine texture of the surface studied.

  3. Advances in spectral analysis using artificial neural networks

    International Nuclear Information System (INIS)

    Martinez, M.; Vigneron, V.

    1995-01-01

    Artificial Neural networks (ANNs) have a powerful representational capacity and ability to handle with any multi-input multi-output mapping problem, e.g. in clustering, pattern recognition and identification areas, particularly when combined with some a priori knowledge and statistical point of view. They can be useful in spectrometry for the uranium enrichment methods by examples, where numerous approaches like models fitting or experts analysis are limited. These depends on the radiation measured: the methods most widely used developed over the past 20 years were based on the counting of the 185.7-keV peak with a sodium iodide scintillation detector or the 163.4-keV peak of 235 U. But these methods depend critically of the source-detector geometry. A means of improving the above conventional methods is to reduce the region of interest: it is possible by focusing at the region called KαX where the three elementary components are present. The measurement of these components in mixtures leads to the isotope ratio 235 U / ( 235 U + 236 U + 238 U). In this paper we explore statistical orientations and their consequences on 'neural' parameters. We show this decisions are induced by a log-linear model, a special case of a GLIM (Generalized LInear Model) and correspond to a Maximum Likelihood Estimation problem. (authors). 15 refs., 7 figs., 2 tabs

  4. Spectral analysis of the gravity and topography of Mars

    Science.gov (United States)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  5. Spectral analysis of HIV seropositivity among migrant workers entering Kuwait

    Directory of Open Access Journals (Sweden)

    Mohammad Hameed GHH

    2008-03-01

    Full Text Available Abstract Background There is paucity of published data on human immunodeficiency virus (HIV seroprevalence among migrant workers entering Middle-East particularly Kuwait. We took advantage of the routine screening of migrants for HIV infection, upon arrival in Kuwait from the areas with high HIV prevalence, to 1 estimate the HIV seroprevalence among migrant workers entering Kuwait and to 2 ascertain if any significant time trend or changes had occurred in HIV seroprevalence among these migrants over the study period. Methods The monthly aggregates of daily number of migrant workers tested and number of HIV seropositive were used to generate the monthly series of proportions of HIV seropositive (per 100,000 migrants over a period of 120 months from January 1, 1997 to December 31, 2006. We carried out spectral analysis of these time series data on monthly proportions (per 100,000 of HIV seropositive migrants. Results Overall HIV seroprevalence (per 100,000 among the migrants was 21 (494/2328582 (95% CI: 19 -23, ranging from 11 (95% CI: 8 – 16 in 2003 to 31 (95% CI: 24 -41 in 1998. There was no discernable pattern in the year-specific proportions of HIV seropositive migrants up to 2003; in subsequent years there was a slight but consistent increase in the proportions of HIV seropositive migrants. However, the Mann-Kendall test showed non-significant (P = 0.741 trend in de-seasonalized data series of proportions of HIV seropositive migrants. The spectral density had a statistically significant (P = 0.03 peak located at a frequency (radians 2.4, which corresponds to a regular cycle of three-month duration in this study. Auto-correlation function did not show any significant seasonality (correlation coefficient at lag 12 = – 0.025, P = 0.575. Conclusion During the study period, overall a low HIV seroprevalence (0.021% was recorded. Towards the end of the study, a slight but non-significant upward trend in the proportions of HIV seropositive

  6. Studying soil properties using visible and near infrared spectral analysis

    Science.gov (United States)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  7. Bistable flow spectral analysis. Repercussions on jet pumps

    International Nuclear Information System (INIS)

    Gavilan Moreno, C.J.

    2011-01-01

    Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments

  8. Spectral Analysis and Dirichlet Forms on Barlow-Evans Fractals

    OpenAIRE

    Steinhurst, Benjamin; Teplyaev, Alexander

    2012-01-01

    We show that if a Barlow-Evans Markov process on a vermiculated space is symmetric, then one can study the spectral properties of the corresponding Laplacian using projective limits. For some examples, such as the Laakso spaces and a Spierpinski P\\^ate \\`a Choux, one can develop a complete spectral theory, including the eigenfunction expansions that are analogous to Fourier series. Also, one can construct connected fractal spaces isospectral to the fractal strings of Lapidus and van Frankenhu...

  9. Use of new spectral analysis methods in gamma spectra deconvolution

    International Nuclear Information System (INIS)

    Pinault, J.L.

    1991-01-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)

  10. PIXEL ANALYSIS OF PHOTOSPHERIC SPECTRAL DATA. I. PLASMA DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Rasca, Anthony P.; Chen, James [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Pevtsov, Alexei A., E-mail: anthony.rasca.ctr@nrl.navy.mil [National Solar Observatory, Sunspot, NM 88349 (United States)

    2016-11-20

    Recent observations of the photosphere using high spatial and temporal resolution show small dynamic features at or below the current resolving limits. A new pixel dynamics method has been developed to analyze spectral profiles and quantify changes in line displacement, width, asymmetry, and peakedness of photospheric absorption lines. The algorithm evaluates variations of line profile properties in each pixel and determines the statistics of such fluctuations averaged over all pixels in a given region. The method has been used to derive statistical characteristics of pixel fluctuations in observed quiet-Sun regions, an active region with no eruption, and an active region with an ongoing eruption. Using Stokes I images from the Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope on 2012 March 13, variations in line width and peakedness of Fe i 6301.5 Å are shown to have a distinct spatial and temporal relationship with an M7.9 X-ray flare in NOAA 11429. This relationship is observed as stationary and contiguous patches of pixels adjacent to a sunspot exhibiting intense flattening in the line profile and line-center displacement as the X-ray flare approaches peak intensity, which is not present in area scans of the non-eruptive active region. The analysis of pixel dynamics allows one to extract quantitative information on differences in plasma dynamics on sub-pixel scales in these photospheric regions. The analysis can be extended to include the Stokes parameters and study signatures of vector components of magnetic fields and coupled plasma properties.

  11. Digital image analysis techniques for fiber and soil mixtures : technical summary.

    Science.gov (United States)

    1999-05-01

    This project used to innovative technologies of digital image analysis for the characterization of a material currently being considered for broad use at DOTD. The material under consideration is a mixture of fiber and soil for use in the stabilizati...

  12. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  13. Dichotomous classification of black-colored metal using spectral analysis

    Directory of Open Access Journals (Sweden)

    Abramovich A.O.

    2017-05-01

    Full Text Available The task of detecting metal objects in different environments has always been important. To solve it metal detectors are used. They are designed to detect and identify objects that in their electric or magnetic properties different from the environment in which they are located. The most common among them are the metal detectors of the «detection of very low frequency» type (Very Low Frequency (VLF detectors. They use eddy current testing for detecting metal targets, which solves the problem of dichotomous distinction, that is a problem of splitting (or set into two parts (subsets: black or colored target. The target distinction is performed by a threshold level of the received signal. However, this approach does not allow to identify the type of target, if two samples of different metals are nearby. To overcome the above described limitations we propose another way of distinction based on the use of spectral analysis, which occurs in the metal detector antenna by Foucault current. We show that the problem of dichotomous distinction can be solved in just a measurement of width and area by the envelope of amplitude spectrum (hereinafter spectrum of the received signal. In this regard the laboratory model using eddy current metal detector will combat withdrawal from two samples – steel and copper, located along and calculate its range. The task of distinguishing between metal targets reduced to determining the hit spectra of reference samples obtained spectrum. The ratio between the areas is measured and reference spectra indicates the percentage of specific metals (e.g. two identical samples of different metals lying side by side. Signal processing is performed by specially designed program that compares two spectra along posted samples of black and colored metals with base.

  14. Integrated Data Collection Analysis (IDCA) Program - KClO4/Aluminum Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC IHD), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC IHD), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC IHD), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates (ARA), Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-01-17

    The Integrated Data Collection Analysis (IDCA) program is conducting a Proficiency Test for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO4 and aluminum—KClO4/Al mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solids. The mixture was found to be: 1) much less sensitive to impact than RDX, (LLNL being the exception) and PETN, 2) more sensitive to friction than RDX and PETN, and 3) extremely sensitive to spark. The thermal analysis showed little or no exothermic character. One prominent endothermic feature was observed in the temperature range studied and identified as a phase transition of KClO4.

  15. Analysis of wheezes using wavelet higher order spectral features.

    Science.gov (United States)

    Taplidou, Styliani A; Hadjileontiadis, Leontios J

    2010-07-01

    Wheezes are musical breath sounds, which usually imply an existing pulmonary obstruction, such as asthma and chronic obstructive pulmonary disease (COPD). Although many studies have addressed the problem of wheeze detection, a limited number of scientific works has focused in the analysis of wheeze characteristics, and in particular, their time-varying nonlinear characteristics. In this study, an effort is made to reveal and statistically analyze the nonlinear characteristics of wheezes and their evolution over time, as they are reflected in the quadratic phase coupling of their harmonics. To this end, the continuous wavelet transform (CWT) is used in combination with third-order spectra to define the analysis domain, where the nonlinear interactions of the harmonics of wheezes and their time variations are revealed by incorporating instantaneous wavelet bispectrum and bicoherence, which provide with the instantaneous biamplitude and biphase curves. Based on this nonlinear information pool, a set of 23 features is proposed for the nonlinear analysis of wheezes. Two complementary perspectives, i.e., general and detailed, related to average performance and to localities, respectively, were used in the construction of the feature set, in order to embed trends and local behaviors, respectively, seen in the nonlinear interaction of the harmonic elements of wheezes over time. The proposed feature set was evaluated on a dataset of wheezes, acquired from adult patients with diagnosed asthma and COPD from a lung sound database. The statistical evaluation of the feature set revealed discrimination ability between the two pathologies for all data subgroupings. In particular, when the total breathing cycle was examined, all 23 features, but one, showed statistically significant difference between the COPD and asthma pathologies, whereas for the subgroupings of inspiratory and expiratory phases, 18 out of 23 and 22 out of 23 features exhibited discrimination power, respectively

  16. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  17. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  18. Two-body threshold spectral analysis, the critical case

    DEFF Research Database (Denmark)

    Skibsted, Erik; Wang, Xue Ping

    We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma......>(l+d/2 -1)^2$. In each such sector the reduced Schrödinger operator has infinitely many negative eigenvalues accumulating at zero. We show that the resolvent has a non-trivial oscillatory behaviour as the spectral parameter approaches zero in cones bounded away from the negative half-axis, and we derive...

  19. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-10-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%.

  20. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  1. Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-08-15

    Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.

  2. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    Science.gov (United States)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  3. Convergence analysis of spectral element method for electromechanical devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2017-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the

  4. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  5. Detecting gallbladders in chicken livers using spectral analysis

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Mølvig Jensen, Eigil; Moeslund, Thomas B.

    2015-01-01

    This paper presents a method for detecting gallbladders attached to chicken livers using spectral imaging. Gallbladders can contaminate good livers, making them unfit for human consumption. A data set consisting of chicken livers with and without gallbladders, has been captured using 33 wavelengths...

  6. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  7. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  8. Convergence analysis of spectral element method for magnetic devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2018-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with

  9. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  10. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  11. Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture

    International Nuclear Information System (INIS)

    Yang, Xingyang; Zhao, Li; Li, Hailong; Yu, Zhixin

    2015-01-01

    Highlights: • A combined power and refrigeration cycle using zeotropic mixture is analyzed. • The cycle performances with different mixture compositions are compared. • Both exergy and parametric analysis of the combined cycle are conducted. - Abstract: A theoretical study on a combined power and ejector refrigeration cycle using zeotropic mixture isobutane/pentane is carried out. The performances of different mixture compositions are compared. An exergy analysis is conducted for the cycle. The result reveals that most exergy destruction happens in the ejector, where more than 40% exergy is lost. The heat exchange in generator causes the second largest exergy loss, larger than 28%. As the mass fraction of isobutane changes ranges from 100% to 0%, the relative exergy destruction of each component is also changing. And mixture isobutane/pentane (50/50) has the maximum exergy efficiency of 7.83%. The parametric analysis of generator temperature, condenser temperature and evaporator temperature for all the mixtures shows that, all these three thermodynamic parameters have a strong effect on the cycle performance.

  12. Asymptotic analysis of methane-hydrogen-air mixtures

    NARCIS (Netherlands)

    Hermanns, R.T.E.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    In this paper an asymptotic analysis of de Goey et al.concerning premixed stoichiometric methane-hydrogen-air flames is analyzed in depth. The analysis is performed with up to 50 mole percent of hydrogen in the fuel, at gas inlet temperatures ranging from 300 K to 650 K and pressures from 1 to 15

  13. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    Science.gov (United States)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  14. The complexity of subtractive mixture and its prediction from spectral analysis

    Directory of Open Access Journals (Sweden)

    Barrio, Jorge

    2011-11-01

    Full Text Available Cuando se aborda en Óptica la mezcla sustractiva del color, solemos enunciar una especie de recetas acerca del resultado que se obtiene de combinar diversos colores. Sin embargo, como se detalla en el presente artículo, no siempre es predecible a priori el resultado de una mezcla sustractiva, pudiéndose obtener incluso resultados paradójicos. Como conclusión, puede afirmarse que la única regla fija que nos permite predecir el resultado de una mezcla sustractiva de dos o más colores es el análisis espectral.

  15. Bayesian Analysis of two Censored Shifted Gompertz Mixture Distributions using Informative and Noninformative Priors

    Directory of Open Access Journals (Sweden)

    Tabassum Naz Sindhu

    2017-03-01

    Full Text Available This study deals with Bayesian analysis of shifted Gompertz mixture model under type-I censored samples assuming both informative and noninformative priors. We have discussed the Bayesian estimation of parameters of shifted Gompertz mixture model under the uniform, and gamma priors assuming three loss functions. Further, some properties of the model with some graphs of the mixture density are discussed. These properties include Bayes estimators, posterior risks and reliability function under simulation scheme. Bayes estimates are obtained considering two cases: (a when the shape parameter is known and (b when all parameters are unknown. We analyzed some simulated sets in order to investigate the effect of prior belief, loss functions, and performance of the proposed set of estimators of the mixture model parameters.

  16. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    Science.gov (United States)

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  17. Characterisation and geostatistical analysis of clay rocks in underground facilities using hyper-spectral images

    International Nuclear Information System (INIS)

    Becker, J.K.; Marschall, P.; Brunner, P.; Cholet, C.; Renard, P.; Buckley, S.; Kurz, T.

    2012-01-01

    , and are readily available as spectral libraries for use in software processing packages. Since rocks are composites of minerals, their spectra represent a mixture of spectra of the constituent minerals concerning the reflectance. In general, imaging spectrometry allows a semi-quantitative analysis of mineral abundances from rock spectra, for example by analysing the intensity of absorption bands. In many cases a mineral with a unique absorption signature can be correlated to a specific lithological unit, which can be used to trace and map the lithology. Additionally, abundance and spatial variation can be determined from the rock spectra. Common reflection features in sedimentary rocks are typically related to carbonate and clay minerals, hydroxyl, water or iron-bearing material and weathering products. A number of physical properties can influence the intensity of features in the spectral curves of minerals and rocks, such as particle size, angle of incidence, porosity and surface roughness, though the wavelength positions of the absorption features are not changed. Next to the obvious ability to use the hyper-spectral images to 'visually' correlate layers within a rock over a certain distance they can also be used for a more rigorous approach of geostatistical correlation. We have developed a work flow for this approach using the hyper-spectral image classifications: 1. In a first step, image reconstruction must be performed. During the scanning and possibly also later during classification, some areas of the hyper-spectral images may not be completely usable or some pixels may not have been classified. In this case, the 'holes' should be filled using multiple-point geostatistical techniques. 2. In the present example, images at three different resolutions have been taken. It is envisaged to use the high resolution images and simulate the high resolution over the entire rock face in a way that the high resolution simulations are guided by the low resolution images

  18. A quantitative analysis on latent heat of an aqueous binary mixture.

    Science.gov (United States)

    Han, Bumsoo; Choi, Jeung Hwan; Dantzig, Jonathan A; Bischof, John C

    2006-02-01

    The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.

  19. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betin, J; Zhabin, E; Krampit, I; Smirnov, V

    1980-04-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc.

  20. Spectral Analysis of the Background in Ground-based, Long-slit ...

    Indian Academy of Sciences (India)

    1996-12-08

    Dec 8, 1996 ... Spectral Analysis of the Background in Ground-based,. Long-slit .... Figure 1 plots spectra from the 2-D array, after instrumental calibration and before correction for ..... which would merit attention and a better understanding.

  1. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  2. Spectral Analysis of Certain Schrödinger Operators

    Directory of Open Access Journals (Sweden)

    Mourad E.H. Ismail

    2012-09-01

    Full Text Available The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011, 353001, 47 pages].

  3. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  4. Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives by gas chromatography-electron impact mass spectrometry.

    Science.gov (United States)

    Gutierrez-Villagomez, Juan Manuel; Vázquez-Martínez, Juan; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Trudeau, Vance L

    2017-01-01

    In this study, we report for the first time the efficiency of pentafluorobenzyl bromide (PFBBr) for naphthenic acid (NA) mixtures derivatization, and the comparison in the optimal conditions to the most common NAs derivatization reagents, BF 3 /MeOH and N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Naphthenic acids are carboxylic acid mixtures of petrochemical origin. These compounds are important for the oil industry because of their corrosive properties, which can damage oil distillation infrastructure. Moreover, NAs are commercially used in a wide range of products such as paint and ink driers, wood and fabric preservatives, fuel additives, emulsifiers, and surfactants. Naphthenic acids have also been found in sediments after major oils spills in the United States and South Korea. Furthermore, the toxicity of the oil sands process-affected water (OSPW), product of the oil sands extraction activities in Canada's oil sands, has largely been attributed to NAs. One of the main challenges for the chromatographic analysis of these mixtures is the resolution of the components. The derivatization optimization was achieved using surface response analysis with molar ratio and time as factors for derivatization signal yield. After gas chromatography-electron impact mass spectrometry (GC/EIMS) analysis of a mixture of NA standards, it was found that the signal produced by PFB-derivatives was 2.3 and 1.4 times higher than the signal produced by methylated and MTBS-derivatives, respectively. The pentafluorobenzyl derivatives have a characteristic fragment ion at 181m/z that is diagnostic for the differentiation of carboxylic and non-carboxylic acid components within mixtures. In the analysis of a Sigma and a Merichem derivatized oil extract NA mixtures, it was found that some peaks lack the characteristic fragment ion; therefore they are not carboxylic acids. Open column chromatography was used to obtain a hexane and a methanol fraction of the Sigma and

  5. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  6. A mass spectrometer for the rapid analysis of gaseous mixtures

    International Nuclear Information System (INIS)

    Cassignol, C.; Ortel, Y.; Taieb, J.

    1950-01-01

    A mass spectrometer for leak detection and rapid gas analysis were constructed, having the characteristics and several structural features of a simple instrument described by Siry in Rev. Sri. Instruments. 540 (1947). Although exhibiting a good resolving power, the apparatus, which has no ion lenses and whose electrodes can be regulated during the performance, has not been sufficiently tested. Since several design defects have been discovered, it will probably be rebuilt with various improvements (ion source outside the magnetic field, modified circuits, etc.). (author)

  7. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  8. Embedded gamma spectrometry: new algorithms for spectral analysis

    International Nuclear Information System (INIS)

    Martin-Burtart, Nicolas

    2012-01-01

    Airborne gamma spectrometry was first used for mining prospecting. Three main families were looked for: K-40, U-238 and Th-232. The Chernobyl accident acted as a trigger and for the last fifteen years, a lot of new systems have been developed for intervention in case of nuclear accident or environmental purposes. Depending on their uses, new algorithms were developed, mainly for medium or high energy signal extraction. These spectral regions are characteristics of natural emissions (K-40, U-238 and Th-232 decay chains) and fissions products (mainly Cs-137 and Co-60). Below 400 keV, where special nuclear materials emit, these methods can still be used but are greatly imprecise. A new algorithm called 2-windows (extended to 3), was developed. It allows an accurate extraction, taking the flight altitude into account to minimize false detection. Watching radioactive materials traffic appeared with homeland security policy a few years ago. This particular use of dedicated sensors require a new type of algorithms. Before, one algorithm was very efficient for a particular nuclide or spectral region. Now, we need algorithm able to detect an anomaly wherever it is and whatever it is: industrial, medical or SNM. This work identified two families of methods working under these circumstances. Finally, anomalies have to be identified. IAEA recommend to watch around 30 radionuclides. A brand new identification algorithm was developed, using several rays per element and avoiding identifications conflicts. (author) [fr

  9. Spectral Analysis of Chinese Medicinal Herbs Based on Delayed Luminescence

    Directory of Open Access Journals (Sweden)

    Jingxiang Pang

    2016-01-01

    Full Text Available Traditional Chinese medicine (TCM plays a critical role in healthcare; however, it lacks scientific evidence to support the multidimensional therapeutic effects. These effects are based on experience, and, to date, there is no advanced tool to evaluate these experience based effects. In the current study, Chinese herbal materials classified with different cold and heat therapeutic properties, based on Chinese medicine principles, were investigated using spectral distribution, as well as the decay probability distribution based on delayed luminescence (DL. A detection system based on ultraweak biophoton emission was developed to determine the DL decay kinetics of the cold and heat properties of Chinese herbal materials. We constructed a mathematical model to fit the experimental data and characterize the properties of Chinese medicinal herbs with different parameters. The results demonstrated that this method has good reproducibility. Moreover, there is a significant difference (p<0.05 in the spectral distribution and the decay probability distribution of Chinese herbal materials with cold and heat properties. This approach takes advantage of the comprehensive nature of DL compared with more reductionist approaches and is more consistent with TCM principles, in which the core comprises holistic views.

  10. The spectral analysis of cyclo-non-stationary signals

    Science.gov (United States)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  11. Global spectral graph wavelet signature for surface analysis of carpal bones

    Science.gov (United States)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  12. Comparison of modal spectral and non-linear time history analysis of a piping system

    International Nuclear Information System (INIS)

    Gerard, R.; Aelbrecht, D.; Lafaille, J.P.

    1987-01-01

    A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)

  13. A further component analysis for illicit drugs mixtures with THz-TDS

    Science.gov (United States)

    Xiong, Wei; Shen, Jingling; He, Ting; Pan, Rui

    2009-07-01

    A new method for quantitative analysis of mixtures of illicit drugs with THz time domain spectroscopy was proposed and verified experimentally. In traditional method we need fingerprints of all the pure chemical components. In practical as only the objective components in a mixture and their absorption features are known, it is necessary and important to present a more practical technique for the detection and identification. Our new method of quantitatively inspect of the mixtures of illicit drugs is developed by using derivative spectrum. In this method, the ratio of objective components in a mixture can be obtained on the assumption that all objective components in the mixture and their absorption features are known but the unknown components are not needed. Then methamphetamine and flour, a illicit drug and a common adulterant, were selected for our experiment. The experimental result verified the effectiveness of the method, which suggested that it could be an effective method for quantitative identification of illicit drugs. This THz spectroscopy technique is great significant in the real-world applications of illicit drugs quantitative analysis. It could be an effective method in the field of security and pharmaceuticals inspection.

  14. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  15. Spectral Karyotyping. An new method for chromosome analysis

    International Nuclear Information System (INIS)

    Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying

    2006-01-01

    Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)

  16. Spectral analysis of growing graphs a quantum probability point of view

    CERN Document Server

    Obata, Nobuaki

    2017-01-01

    This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...

  17. ANALYSIS OF SPECTRAL CHARACTERISTICS AMONG DIFFERENT SENSORS BY USE OF SIMULATED RS IMAGES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This research, by use of RS image-simulating method, simulated apparent reflectance images at sensor level and ground-reflectance images of SPOT-HRV,CBERS-CCD,Landsat-TM and NOAA14-AVHRR' s corresponding bands. These images were used to analyze sensor's differences caused by spectral sensitivity and atmospheric impacts. The differences were analyzed on Normalized Difference Vegetation Index(NDVI). The results showed that the differences of sensors' spectral characteristics cause changes of their NDVI and reflectance. When multiple sensors' data are applied to digital analysis, the error should be taken into account. Atmospheric effect makes NDVI smaller, and atn~pheric correction has the tendency of increasing NDVI values. The reflectance and their NDVIs of different sensors can be used to analyze the differences among sensor' s features. The spectral analysis method based on RS simulated images can provide a new way to design the spectral characteristics of new sensors.

  18. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  19. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    Science.gov (United States)

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  20. A new high-throughput LC-MS method for the analysis of complex fructan mixtures

    DEFF Research Database (Denmark)

    Verspreet, Joran; Hansen, Anders Holmgaard; Dornez, Emmie

    2014-01-01

    In this paper, a new liquid chromatography-mass spectrometry (LC-MS) method for the analysis of complex fructan mixtures is presented. In this method, columns with a trifunctional C18 alkyl stationary phase (T3) were used and their performance compared with that of a porous graphitized carbon (PGC...

  1. Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Hassan, N.M.; Rudisill, T.S.; Askew, N.M.

    1998-01-01

    This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction

  2. Standard gamma-ray spectra for the comparison of spectral analysis software

    International Nuclear Information System (INIS)

    Woods, S.; Hemingway, J.; Bowles, N.

    1997-01-01

    Three sets of standard γ-ray spectra have been produced for use in assessing the performance of spectral analysis software. The origin of and rationale behind the spectra are described. Nine representative analysis systems have been tested both in terms of component performance and in terms of overall performance and the problems encountered in the analysis are discussed. (author)

  3. Standard gamma-ray spectra for the comparison of spectral analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Woods, S.; Hemingway, J.; Bowles, N. [and others

    1997-08-01

    Three sets of standard {gamma}-ray spectra have been produced for use in assessing the performance of spectral analysis software. The origin of and rationale behind the spectra are described. Nine representative analysis systems have been tested both in terms of component performance and in terms of overall performance and the problems encountered in the analysis are discussed. (author)

  4. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis

    OpenAIRE

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-01-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in can...

  5. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    Science.gov (United States)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  6. Investigating cardiorespiratory interaction by cross-spectral analysis of event series

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Pikovsky, Arkady S.; Kurths, Jürgen

    2000-02-01

    The human cardiovascular and respiratory systems interact with each other and show effects of modulation and synchronization. Here we present a cross-spectral technique that specifically considers the event-like character of the heartbeat and avoids typical restrictions of other spectral methods. Using models as well as experimental data, we demonstrate how modulation and synchronization can be distinguished. Finally, we compare the method to traditional techniques and to the analysis of instantaneous phases.

  7. Application of spectral analysis for differentiation between metals using signals from eddy-current transducers

    OpenAIRE

    Abramovych, Anton; Poddubny, Volodymyr

    2017-01-01

    The authors theoretically and experimentally substantiated the use of the spectral method for processing a signal of the vortex-current metal detector for dichotomous differentiation between metals. Results of experimental research that prove the possibility of using spectral analysis for differentiation between metals were presented. The vortex-current method for detection of hidden metal objects was analyzed. It was indicated that amplitude of output VCD signal is determined by electric con...

  8. Archives of Astronomical Spectral Observations and Atomic/Molecular Databases for their Analysis

    Directory of Open Access Journals (Sweden)

    Ryabchikova T.

    2015-12-01

    Full Text Available We present a review of open-source data for stellar spectroscopy investigations. It includes lists of the main archives of medium-to-high resolution spectroscopic observations, with brief characteristics of the archive data (spectral range, resolving power, flux units. We also review atomic and molecular databases that contain parameters of spectral lines, cross-sections and reaction rates needed for a detailed analysis of high resolution, high signal-to-noise ratio stellar spectra.

  9. Robust and transferable quantification of NMR spectral quality using IROC analysis

    Science.gov (United States)

    Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.

    2017-12-01

    Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.

  10. Multivariate statistical analysis for x-ray photoelectron spectroscopy spectral imaging: Effect of image acquisition time

    International Nuclear Information System (INIS)

    Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.

    2004-01-01

    The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images

  11. Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results

    International Nuclear Information System (INIS)

    Baghaee Moghaddam, Taher; Soltani, Mehrtash; Karim, Mohamed Rehan

    2015-01-01

    Highlights: • Effect of PET modification on stiffness property of asphalt mixture was examined. • Different temperatures and loading amounts were designated. • Statistical analysis was used to find interactions between selected variables. • A good agreement between experimental results and predicted values was obtained. • Optimal amount of PET was calculated to achieve the highest mixture performance. - Abstract: Stiffness of asphalt mixture is a fundamental design parameter of flexible pavement. According to literature, stiffness value is very susceptible to environmental and loading conditions. In this paper, effects of applied stress and temperature on the stiffness modulus of unmodified and Polyethylene Terephthalate (PET) modified asphalt mixtures were evaluated using Response Surface Methodology (RSM). A quadratic model was successfully fitted to the experimental data. Based on the results achieved in this study, the temperature variation had the highest impact on the mixture’s stiffness. Besides, PET content and amount of stress showed to have almost the same effect on the stiffness of mixtures. The optimal amount of PET was found to be 0.41% by weight of aggregate particles to reach the highest stiffness value

  12. Application of spectral decomposition analysis to in vivo quantification of aluminum by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D.C. E-mail: comsadc@mcmaster.ca; Prestwich, W.V.; McNeill, F.E.; Byun, S.H

    2004-12-01

    The toxic effects of aluminum are cumulative and result in painful forms of renal osteodystrophy, most notably adynamic bone disease and osteomalacia, but also other forms of disease. The Trace Element Group at McMaster University has developed an accelerator-based in vivo procedure for detecting aluminum body burden by neutron activation analysis (NAA). Further refining of the method was necessary for increasing its sensitivity. In this context, the present study proposes an improved algorithm for data analysis, based on spectral decomposition. A new minimum detectable limit (MDL) of (0.7{+-}0.1) mg Al was reached for a local dose of (20{+-}1) mSv. The study also addresses the feasibility of a new data acquisition technique, the electronic rejection of the coincident events detected by a NaI(Tl) system. It is expected that the application of this technique, together with spectral decomposition analysis, would provide an acceptable MDL for the method to be valuable in a clinical setting.

  13. Perceptual characterization and analysis of aroma mixtures using gas chromatography recomposition-olfactometry.

    Directory of Open Access Journals (Sweden)

    Arielle J Johnson

    Full Text Available This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R, that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME, separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1. Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to "cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the "reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola 'Hidcote Blue' as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of "lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor.

  14. Perceptual Characterization and Analysis of Aroma Mixtures Using Gas Chromatography Recomposition-Olfactometry

    Science.gov (United States)

    Johnson, Arielle J.; Hirson, Gregory D.; Ebeler, Susan E.

    2012-01-01

    This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to “cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the “reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola ‘Hidcote Blue’) as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of “lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor. PMID:22912722

  15. New development of neutron spectral modulation data analysis

    International Nuclear Information System (INIS)

    Ito, Y.

    1988-01-01

    A study is made on procedures for obtaining desired scattering function information. The neutron spectral modulation technique incorporates both the low (including DC) and high frequency Fourier components in its incident spectrum. Lake's procedure increases the Fourier components of the doconvoluted scattering function by using the existing Fourier components as nucleus, thereby bridges the Fourier gap and extends the Fourier region. Since the Lake's procedure takes care of the missing Fourier components, a single measurement using an appropriate NSM modulation suffices to recover the S(W) line shape. Deep modulation depth is not essential to reproduce the scattering function. This should be contrasted to the previous NSM treatment as well as to the neutron spin echo method, both of which require the several repeat of measurements with the varying modulation frequency under the high degree of beam polarization condition. Although the computer simulation of the present paper does not include the statistical fluctuation encountered in the experimental data, these analyses show a great promise of the NSM method, which can now be used with much flexibility in the field of both cold and ultracold neutron scattering experiment. (N.K.)

  16. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  17. Spectral analysis and markov switching model of Indonesia business cycle

    Science.gov (United States)

    Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum

    2017-03-01

    This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.

  18. LDA measurements and turbulence spectral analysis in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Chára Zdeněk

    2013-04-01

    Full Text Available During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique, methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.

  19. LDA measurements and turbulence spectral analysis in an agitated vessel

    Science.gov (United States)

    Kysela, Bohuš; Konfršt, Jiří; Chára, Zdeněk

    2013-04-01

    During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA) has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique), methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number) were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.

  20. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    Science.gov (United States)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  1. Systematic wavelength selection for improved multivariate spectral analysis

    Science.gov (United States)

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  2. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.

    Science.gov (United States)

    Xu, Qiwei; Mahpeykar, Seyed Milad; Burgess, Ian B; Wang, Xihua

    2018-06-13

    Most of the reported optofluidic devices analyze liquid by measuring its refractive index. Recently, the wettability of liquid on various substrates has also been used as a key sensing parameter in optofluidic sensors. However, the above-mentioned techniques face challenges in the analysis of the relative concentration of components in an alkane hydrocarbon mixture, as both refractive indices and wettabilities of alkane hydrocarbons are very close. Here, we propose to apply volatility of liquid as the key sensing parameter, correlate it to the optical property of liquid inside inverse opal photonic crystals, and construct powerful optofluidic sensors for alkane hydrocarbon identification and analysis. We have demonstrated that via evaporation of hydrocarbons inside the periodic structure of inverse opal photonic crystals and observation of their reflection spectra, an inverse opal film could be used as a fast-response optofluidic sensor to accurately differentiate pure hydrocarbon liquids and relative concentrations of their binary and ternary mixtures in tens of seconds. In these 3D photonic crystals, pure chemicals with different volatilities would have different evaporation rates and can be easily identified via the total drying time. For multicomponent mixtures, the same strategy is applied to determine the relative concentration of each component simply by measuring drying time under different temperatures. Using this optofluidic sensing platform, we have determined the relative concentrations of ternary hydrocarbon mixtures with the difference of only one carbon between alkane hydrocarbons, which is a big step toward detailed hydrocarbon analysis for practical use.

  3. Application of pattern mixture models to address missing data in longitudinal data analysis using SPSS.

    Science.gov (United States)

    Son, Heesook; Friedmann, Erika; Thomas, Sue A

    2012-01-01

    Longitudinal studies are used in nursing research to examine changes over time in health indicators. Traditional approaches to longitudinal analysis of means, such as analysis of variance with repeated measures, are limited to analyzing complete cases. This limitation can lead to biased results due to withdrawal or data omission bias or to imputation of missing data, which can lead to bias toward the null if data are not missing completely at random. Pattern mixture models are useful to evaluate the informativeness of missing data and to adjust linear mixed model (LMM) analyses if missing data are informative. The aim of this study was to provide an example of statistical procedures for applying a pattern mixture model to evaluate the informativeness of missing data and conduct analyses of data with informative missingness in longitudinal studies using SPSS. The data set from the Patients' and Families' Psychological Response to Home Automated External Defibrillator Trial was used as an example to examine informativeness of missing data with pattern mixture models and to use a missing data pattern in analysis of longitudinal data. Prevention of withdrawal bias, omitted data bias, and bias toward the null in longitudinal LMMs requires the assessment of the informativeness of the occurrence of missing data. Missing data patterns can be incorporated as fixed effects into LMMs to evaluate the contribution of the presence of informative missingness to and control for the effects of missingness on outcomes. Pattern mixture models are a useful method to address the presence and effect of informative missingness in longitudinal studies.

  4. Comprehensive default methodology for the analysis of exposures to mixtures of chemicals accidentally released to the atmosphere

    International Nuclear Information System (INIS)

    Craig, D.K.; Baskett, R.L.; Powell, T.J.; Davis, J.S.; Dukes, L.L.; Hansen, D.J.; Petrocchi, A.J.; Sutherland, P.J.

    1997-01-01

    Safety analysis of Department of Energy (DOE) facilities requires consideration of potential exposures to mixtures of chemicals released to the atmosphere. Exposure to chemical mixtures may lead to additive, synergistic, or antagonistic health effects. In the past, the consequences of each chemical have been analyzed separately. This approach may not adequately protect the health of persons exposed to mixtures. However, considerable time would be required to evaluate all possible mixtures. The objective of this paper is to present reasonable default methodology developed by the EFCOG Safety Analysis Working Group Nonradiological Hazardous Material Subgroup (NHMS) for use in safety analysis within the DOE Complex

  5. Analysis of neutron reflectivity data: maximum entropy, Bayesian spectral analysis and speckle holography

    International Nuclear Information System (INIS)

    Sivia, D.S.; Hamilton, W.A.; Smith, G.S.

    1991-01-01

    The analysis of neutron reflectivity data to obtain nuclear scattering length density profiles is akin to the notorious phaseless Fourier problem, well known in many fields such as crystallography. Current methods of analysis culminate in the refinement of a few parameters of a functional model, and are often preceded by a long and laborious process of trial and error. We start by discussing the use of maximum entropy for obtained 'free-form' solutions of the density profile, as an alternative to the trial and error phase when a functional model is not available. Next we consider a Bayesian spectral analysis approach, which is appropriate for optimising the parameters of a simple (but adequate) type of model when the number of parameters is not known. Finally, we suggest a novel experimental procedure, the analogue of astronomical speckle holography, designed to alleviate the ambiguity problems inherent in traditional reflectivity measurements. (orig.)

  6. Spectral analysis of an algebraic collapsing acceleration for the characteristics method

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.

    2005-01-01

    A spectral analysis of a diffusion synthetic acceleration called Algebraic Collapsing Acceleration (ACA) was carried out in the context of the characteristics method to solve the neutron transport equation. Two analysis were performed in order to assess the ACA performances. Both a standard Fourier analysis in a periodic and infinite slab-geometry and a direct spectral analysis for a finite slab-geometry were investigated. In order to evaluate its performance, ACA was compared with two competing techniques used to accelerate the convergence of the characteristics method, the Self-Collision Re-balancing technique and the Asymptotic Synthetic Acceleration. In the restricted framework of 1-dimensional slab-geometries, we conclude that ACA offers a good compromise between the reduction of the spectral radius of the iterative matrix and the resources to construct, store and solve the corrective system. A comparison on a monoenergetic 2-dimensional benchmark was performed and tends to confirm these conclusions. (authors)

  7. VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Belhadef RACHID

    2016-01-01

    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  8. Spectral characterization as a tool for parchment analysis

    Science.gov (United States)

    Radis, Michela; Iacomussi, Paola; Rossi, Giuseppe

    2015-06-01

    The paper presents an investigation on the correlation between spectral characteristics and conservation conditions of parchment to define a NON invasive methodology able to detect and monitor deterioration process in historical parchment without the need of taking small samples. To verify the feasibility and define the most appropriate measurement method, several samples of contemporary parchments, produced following ancient recipes and coming from different animal species, with different degrees of artificially induced damage, were analyzed. The SRF and STF of each sample were measured in the same point, before and after each step of the artificial ageing treatment. Having at disposal a parchment coming from a whole lamb leather, allowed also the study of the correlations between the variations of SRF - STF and the intrinsic factors of a parchment like the variability of animal skin anatomy and of manufacturing. Analyzing different samples allowed also the definition of the measuring method sensitivity and of reference spectrum for the different animal species parchments with accuracy limits. The definition of a reference spectrum of not damaged parchment with acceptability limits is a necessary step for understanding, through SRF - STF measurements, historical parchments conservation conditions: indeed it is necessary to know if deviations from the reference spectrum are ascribable to damage or only to parchment anatomic/production variability. As a case study, the method has been applied to two historical parchment scrolls stored at the Archivio di Stato di Torino (Italy). The SRF - STF of both scrolls was acquired in several points of the scroll, the average spectrum of each scroll was compared with the reference spectra with the relative tolerance limits, recognizing the animal species and damage alterations and demonstrating the feasibility of the method.

  9. Integrated Data Collection Analysis (IDCA) Program - KClO3/Dodecane Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorenson, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-23

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO3 and dodecane—KClO3/dodecane mixture. This material was selected because of the challenge of performing SSST testing of a mixture of solid and liquid materials. The mixture was found to: 1) be more sensitive to impact than RDX, and PETN, 2) less sensitive to friction than PETN, and 3) less sensitive to spark than RDX. The thermal analysis showed little or no exothermic features suggesting that the dodecane volatilized at low temperatures. A prominent endothermic feature was observed assigned to melting of KClO3. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study has the potential to suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. The results are compared among the laboratories and then compared to historical data from various sources. The testing performers involved for the KClO3/dodecane mixture are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Indian Head Division, Naval Surface Warfare Center, (NSWC IHD). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand

  10. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  11. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  12. Spectral analysis of the fifth spectrum of indium: In V

    International Nuclear Information System (INIS)

    Swapnil; Tauheed, A.

    2016-01-01

    The fifth spectrum of indium (In V) has been investigated in the grazing and normal incidence wavelength regions. In"4"+ is a Rh-like ion with the ground configuration 4p"64d"9 and first excited configurations of the type 4p"64d"8nℓ (n≥4). The theoretical predications for this ion were made by Cowan's quasi-relativistic Hartree–Fock code with superposition of configurations involving 4p"64d"8(5p+6p+7p+4f+5f+6f), 4p"54d"1"0, 4p"64d"75s(5p+4f) for the odd parity matrix and 4p"64d"8 (5s+6s+7s+5d+6d), 4p"64d"7(5s"2+5p"2) for the even parity system. The spectra used for this work were recorded on 10.7 m grazing and normal incidence spectrographs at the National Institute of Standards and Technology, Gaithersburg, Maryland (USA) and also on a 3-m normal incidence vacuum spectrograph at Antigonish (Canada). The sources used were a sliding spark and a triggered spark respectively. Two hundred and thirty two energy levels based on the identification of 873 spectral lines have been established, forty six being new. Least squares fitted parametric calculations were used to interpret the observed level structure. The energy levels were optimized using a level optimization computer program (LOPT). Our wavelength accuracy for sharp and unblended lines is estimated to be within ±0.005 Å for λ below 400 Å and ±0.006 Å up to 1200 Å. - Highlights: • Indium spectra were recorded on both grazing and normal incidence spectrographs. • Calculations were made with Cowan's quasi-relativistic Hartree–Fock code. • New atomic transitions of In V were identified with newly found energy levels. • Uncertainties and Ritz wavelengths of all observed transitions were calculated. • Weighted transition probabilities (gA) were calculated.

  13. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  14. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  15. Spectral Analysis of Traffic Functions in Urban Areas

    Directory of Open Access Journals (Sweden)

    Florin Nemtanu

    2015-12-01

    Full Text Available The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.

  16. Multi spectral imaging analysis for meat spoilage discrimination

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Carstensen, Jens Michael; Papadopoulou, Olga

    classification methods: Naive Bayes Classifier as a reference model, Canonical Discriminant Analysis (CDA) and Support Vector Classification (SVC). As the final step, generalization of the models was performed using k-fold validation (k=10). Results showed that image analysis provided good discrimination of meat......In the present study, fresh beef fillets were purchased from a local butcher shop and stored aerobically and in modified atmosphere packaging (MAP, CO2 40%/O2 30%/N2 30%) at six different temperatures (0, 4, 8, 12, 16 and 20°C). Microbiological analysis in terms of total viable counts (TVC......) was performed in parallel with videometer image snapshots and sensory analysis. Odour and colour characteristics of meat were determined by a test panel and attributed into three pre-characterized quality classes, namely Fresh; Semi Fresh and Spoiled during the days of its shelf life. So far, different...

  17. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward

  18. Integrated Data Collection Analysis (IDCA) Program - KClO4/Carbon Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-31

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO4 and activated carbon—KClO4/C mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solids. The mixture was found to be insensitive to impact, friction, and thermal stimulus, and somewhat sensitive to spark discharge. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study has the potential to suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. The results are compared among the laboratories and then compared to historical data from various sources. The testing performers involved for the KClO4/carbon mixture are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when these testing variables cannot be made consistent.

  19. An experiment with spectral analysis of emotional speech affected by orthodontic appliances

    Science.gov (United States)

    Přibil, Jiří; Přibilová, Anna; Ďuračková, Daniela

    2012-11-01

    The contribution describes the effect of the fixed and removable orthodontic appliances on spectral properties of emotional speech. Spectral changes were analyzed and evaluated by spectrograms and mean Welch’s periodograms. This alternative approach to the standard listening test enables to obtain objective comparison based on statistical analysis by ANOVA and hypothesis tests. Obtained results of analysis performed on short sentences of a female speaker in four emotional states (joyous, sad, angry, and neutral) show that, first of all, the removable orthodontic appliance affects the spectrograms of produced speech.

  20. A Molecular Iodine Spectral Data Set for Rovibronic Analysis

    Science.gov (United States)

    Williamson, J. Charles; Kuntzleman, Thomas S.; Kafader, Rachael A.

    2013-01-01

    A data set of 7,381 molecular iodine vapor rovibronic transitions between the X and B electronic states has been prepared for an advanced undergraduate spectroscopic analysis project. Students apply standard theoretical techniques to these data and determine the values of three X-state constants (image omitted) and four B-state constants (image…

  1. Performance evaluation of spectral deconvolution analysis tool (SDAT) software used for nuclear explosion radionuclide measurements

    International Nuclear Information System (INIS)

    Foltz Biegalski, K.M.; Biegalski, S.R.; Haas, D.A.

    2008-01-01

    The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. Spectral deconvolution spectroscopy is an analysis method that utilizes the entire signal deposited in a gamma-ray detector rather than the small portion of the signal that is present in one gamma-ray peak. This method shows promise to improve detection limits over classical gamma-ray spectroscopy analytical techniques; however, this hypothesis has not been tested. To address this issue, we performed three tests to compare the detection ability and variance of SDAT results to those of commercial off- the-shelf (COTS) software which utilizes a standard peak search algorithm. (author)

  2. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    Science.gov (United States)

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  3. Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity

    Directory of Open Access Journals (Sweden)

    Fubiao Feng

    2017-03-01

    Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.

  4. Processing of spectral X-ray data with principal components analysis

    CERN Document Server

    Butler, A P H; Cook, N J; Butzer, J; Schleich, N; Tlustos, L; Scott, N; Grasset, R; de Ruiter, N; Anderson, N G

    2011-01-01

    The goal of the work was to develop a general method for processing spectral x-ray image data. Principle component analysis (PCA) is a well understood technique for multivariate data analysis and so was investigated. To assess this method, spectral (multi-energy) computed tomography (CT) data was obtained using a Medipix2 detector in a MARS-CT (Medipix All Resolution System). PCA was able to separate bone (calcium) from two elements with k-edges in the X-ray spectrum used (iodine and barium) within a mouse. This has potential clinical application in dual-energy CT systems and future Medipix3 based spectral imaging where up to eight energies can be recorded simultaneously with excellent energy resolution. (c) 2010 Elsevier B.V. All rights reserved.

  5. Analysis of spectral data with rare events statistics

    International Nuclear Information System (INIS)

    Ilyushchenko, V.I.; Chernov, N.I.

    1990-01-01

    The case is considered of analyzing experimental data, when the results of individual experimental runs cannot be summed due to large systematic errors. A statistical analysis of the hypothesis about the persistent peaks in the spectra has been performed by means of the Neyman-Pearson test. The computations demonstrate the confidence level for the hypothesis about the presence of a persistent peak in the spectrum is proportional to the square root of the number of independent experimental runs, K. 5 refs

  6. Spectral analysis of optical emission of microplasma in sea water

    Science.gov (United States)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  7. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    International Nuclear Information System (INIS)

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.

    2011-01-01

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.

  8. Site Characterization in the Urban Area of Tijuana, B. C., Mexico by Means of: H/V Spectral Ratios, Spectral Analysis of Surface Waves, and Random Decrement Method

    Science.gov (United States)

    Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.

    2009-05-01

    Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral

  9. Spectral Electroencephalogram Analysis for the Evaluation of Encephalopathy Grade in Children With Acute Liver Failure.

    Science.gov (United States)

    Press, Craig A; Morgan, Lindsey; Mills, Michele; Stack, Cynthia V; Goldstein, Joshua L; Alonso, Estella M; Wainwright, Mark S

    2017-01-01

    Spectral electroencephalogram analysis is a method for automated analysis of electroencephalogram patterns, which can be performed at the bedside. We sought to determine the utility of spectral electroencephalogram for grading hepatic encephalopathy in children with acute liver failure. Retrospective cohort study. Tertiary care pediatric hospital. Patients between 0 and 18 years old who presented with acute liver failure and were admitted to the PICU. None. Electroencephalograms were analyzed by spectral analysis including total power, relative δ, relative θ, relative α, relative β, θ-to-Δ ratio, and α-to-Δ ratio. Normal values and ranges were first derived using normal electroencephalograms from 70 children of 0-18 years old. Age had a significant effect on each variable measured (p liver failure were available for spectral analysis. The median age was 4.3 years, 14 of 33 were male, and the majority had an indeterminate etiology of acute liver failure. Neuroimaging was performed in 26 cases and was normal in 20 cases (77%). The majority (64%) survived, and 82% had a good outcome with a score of 1-3 on the Pediatric Glasgow Outcome Scale-Extended at the time of discharge. Hepatic encephalopathy grade correlated with the qualitative visual electroencephalogram scores assigned by blinded neurophysiologists (rs = 0.493; p encephalopathy was correlated with a total power of less than or equal to 50% of normal for children 0-3 years old, and with a relative θ of less than or equal to 50% normal for children more than 3 years old (p > 0.05). Spectral electroencephalogram classification correlated with outcome (p encephalopathy and correlates with outcome. Spectral electroencephalogram may allow improved quantitative and reproducible assessment of hepatic encephalopathy grade in children with acute liver failure.

  10. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Taka; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT's spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.

  11. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Takanori; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade

  12. Non destructive defect detection by spectral density analysis.

    Science.gov (United States)

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD).

  13. Micro-Raman Imaging for Biology with Multivariate Spectral Analysis

    KAUST Repository

    Malvaso, Federica

    2015-05-05

    Raman spectroscopy is a noninvasive technique that can provide complex information on the vibrational state of the molecules. It defines the unique fingerprint that allow the identification of the various chemical components within a given sample. The aim of the following thesis work is to analyze Raman maps related to three pairs of different cells, highlighting differences and similarities through multivariate algorithms. The first pair of analyzed cells are human embryonic stem cells (hESCs), while the other two pairs are induced pluripotent stem cells (iPSCs) derived from T lymphocytes and keratinocytes, respectively. Although two different multivariate techniques were employed, ie Principal Component Analysis and Cluster Analysis, the same results were achieved: the iPSCs derived from T-lymphocytes show a higher content of genetic material both compared with the iPSCs derived from keratinocytes and the hESCs . On the other side, equally evident, was that iPS cells derived from keratinocytes assume a molecular distribution very similar to hESCs.

  14. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  15. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  16. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  17. Spectral analysis of musical sounds with emphasis on the piano

    CERN Document Server

    Koenig, David M

    2014-01-01

    There are three parts to this book which addresses the analysis of musical sounds from the viewpoint of someone at the intersection between physicists, engineers, piano technicians, and musicians. The reader is introduced to a variety of waves and a variety of ways of presenting, visualizing, and analyzing them in the first part. A tutorial on the tools used throughout the book accompanies this introduction. The mathematics behind the tools is left to the appendices. Part 2 is a graphical survey of the classical areas of acoustics that pertain to musical instruments: vibrating strings, bars, membranes, and plates. Part 3 is devoted almost exclusively to the piano. Several two- and three-dimensional graphical tools are introduced to study the following characteristics of pianos: individual notes and interactions among them, the missing fundamental, inharmonicity, tuning visualization, the different distribution of harmonic power for the various zones of the piano keyboard, and potential uses for quality contro...

  18. Personal Exposure to Mixtures of Volatile Organic Compounds: Modeling and Further Analysis of the RIOPA Data

    Science.gov (United States)

    Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong

    2015-01-01

    known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999–2001) and the National Health and Nutrition Examination Survey (NHANES; 1999–2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1 To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model’s goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the

  19. Integrated Data Collection Analysis (IDCA) Program — KClO3/Icing Sugar (-100 mesh) Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Sorenson, Daniel N. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Moran, Jesse S. [Naval Surface Warfare Center (IHD-NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL/RXQF), Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whipple, Richard E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-02

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and scanning calorimetry analysis of a mixture of KClO3 sized through a 100-mesh sieve mixed with icing sugar, also sized through a 100-mesh sieve—KClO3/icing sugar (-100) mixture. This material was selected because of the challenge of performing SSST testing of a mixture of two solid materials. The mixture was found to be: 1) more sensitive to impact than RDX, with sensitivity similar to PETN, 2) the same or more sensitive to friction than PETN, and 3) less sensitive to spark than RDX. The analysis showed that the mixture has thermally stability similar to RDX and is perhaps more energetic upon decomposition but variable results indicate sampling issues.

  20. Spectral Analysis of a Quantum System with a Double Line Singular Interaction

    Czech Academy of Sciences Publication Activity Database

    Kondej, S.; Krejčiřík, David

    2013-01-01

    Roč. 49, č. 4 (2013), s. 831-859 ISSN 0034-5318 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance Subject RIV: BE - Theoretical Physics Impact factor: 0.614, year: 2013

  1. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    International Nuclear Information System (INIS)

    Betin, J.; Zhabin, E.; Krampit, I.; Smirnov, V.

    1980-01-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc. (M.S.)

  2. Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis

    Science.gov (United States)

    Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.

    2013-06-01

    Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.

  3. Spectral analysis of K-shell X-ray emission of magnesium plasma

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the ...

  4. WINDOWS: a program for the analysis of spectral data foil activation measurements

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references

  5. WINDOWS: a program for the analysis of spectral data foil activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  6. Estimation of compound distribution in spectral images of tomatoes using independent component analysis

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.

    2003-01-01

    Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  7. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2016-01-01

    Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

  8. Sex Differences in the Sleep EEG of Young Adults : Visual Scoring and Spectral Analysis

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Bloem, Gerda M.

    1989-01-01

    Baseline sleep of 13 men (mean age of 23.5 years) and 15 women (21.9 years) was analyzed. Visual scoring of the electroencephalograms (EEGs) revealed no significant differences between the sexes in the amounts of slow-wave sleep and rapid-eye-movement (REM) sleep. Spectral analysis, however,

  9. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NARCIS (Netherlands)

    Rafiee Fanood, M.M.; Ram, N.B.; Lehmann, C.S.; Powis, I.; Janssen, M.H.M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how

  10. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi, E-mail: wq20@hotmail.com; Shi, Gaofeng, E-mail: gaofengs62@sina.com; Qi, Xiaohui, E-mail: qixiaohui1984@163.com; Fan, Xueli, E-mail: 407849960@qq.com; Wang, Lijia, E-mail: 893197597@qq.com

    2014-10-15

    Highlights: • We establish a feasible method using the virtual spectral curves (VSC) to differentiate focal liver lesions using DECT. • Our study shows the slope of the VSC can be used to differentiate between hemangioma, HCC, metastasis and cyst. • Importantly, the diagnostic specificities associated with using the slope to diagnose both hemangioma and cysts were 100%. - Abstract: Objective: To assess the usefulness of the spectral curve slope of dual-energy CT (DECT) for differentiating between hepatocellular carcinoma (HCC), hepatic metastasis, hemangioma (HH) and cysts. Methods: In total, 121 patients were imaged in the portal venous phase using dual-energy mode. Of these patients, 23 patients had HH, 28 patients had HCC, 40 patients had metastases and 30 patients had simple cysts. The spectral curves of the hepatic lesions were derived from the 40–190 keV levels of virtual monochromatic spectral imaging. The spectral curve slopes were calculated from 40 to 110 keV. The slopes were compared using the Kruskal–Wallis test. Receiver operating characteristic curves (ROC) were used to determine the optimal cut-off value of the slope of the spectral curve to differentiate between the lesions. Results: The spectral curves of the four lesion types had different baseline levels. The HH baseline level was the highest followed by HCC, metastases and cysts. The slopes of the spectral curves of HH, HCC, metastases and cysts were 3.81 ± 1.19, 1.49 ± 0.57, 1.06 ± 0.76 and 0.13 ± 0.17, respectively. These values were significantly different (P < 0.008). Based on ROC analysis, the respective diagnostic sensitivity and specificity were 87% and 100% for hemangioma (cut-off value ≥ 2.988), 82.1% and 65.9% for HCC (cut-off value 1.167–2.998), 65.9% and 59% for metastasis (cut-off value 0.133–1.167) and 44.4% and 100% for cysts (cut-off value ≤ 0.133). Conclusion: Quantitative analysis of the DECT spectral curve in the portal venous phase can be used to

  11. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.

    Science.gov (United States)

    Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong

    2014-06-01

    affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999-2001) and the National Health and Nutrition Examination Survey (NHANES; 1999-2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1. To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model's goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi

  12. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  13. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  14. The analysis of toxic connections content in water by spectral methods

    Science.gov (United States)

    Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.

    2017-08-01

    The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.

  15. Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA

    Science.gov (United States)

    Ringat, E.

    2012-03-01

    In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.

  16. Monitoring PSR B1509–58 with RXTE: Spectral analysis 1996–2010

    Directory of Open Access Journals (Sweden)

    E. Litzinger

    2011-01-01

    Full Text Available We present an analysis of the X-ray spectra of the young, Crab-like pulsar PSR B1509–58 (pulse period P ~ 151ms observed by RXTE over 14 years since the beginning of the mission in 1996. The uniform dataset is especially well suited for studying the stability of the spectral parameters over time as well as for determining pulse phase resolved spectral parameters with high significance. The phase averaged spectra as well as the resolved spectra can be well described by an absorbed power law.

  17. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  18. Spectral analysis of the geomagnetic activity index Ap during different IMF conditions (1947-1978)

    International Nuclear Information System (INIS)

    Francia, P.; Villante, U.

    1986-01-01

    The spectral analysis of the geomagnetic activity index Ap (1947-1978) has been conducted for intervals associated respectively with two and four sectors of the interplanetary magnetic fields per solar rotation. A recurrent 2-sector structure is typically associated with an emerging spectral peak close to T s (T s being the period of solar rotation as seen from Earth), while the T 2 /2 modulation becomes more important during intervals corresponding to four sectors per solar rotation. The recurrence tendency of two high-velocity streams per solar rotation seems to reinforce the relative importance of the T 2 /2 modulation

  19. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  20. Spectral analysis of highly aliased sea-level signals

    Science.gov (United States)

    Ray, Richard D.

    1998-10-01

    Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.

  1. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    Science.gov (United States)

    Mars, John C.; Rowan, Lawrence C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that

  2. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials

    DEFF Research Database (Denmark)

    Kiær, Lars Pødenphant; Skovgaard, Ib; Østergård, Hanne

    2009-01-01

    on grain yield. To investigate the prevalence and preconditions for positive mixing effects, reported grain yields of variety mixtures and pure variety stands were obtained from previously published variety trials, converted into relative mixing effects and combined using meta-analysis. Furthermore...... as meeting the criteria for inclusion in the meta-analysis; on the other hand, nearly 200 studies were discarded. The accepted studies reported results on both winter and spring types of each crop species. Relative mixing effects ranged from 30% to 100% with an overall meta-estimate of at least 2.7% (p

  3. Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas

    International Nuclear Information System (INIS)

    Dong, Yue

    2014-01-01

    This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling

  4. Integrated Data Collection Analysis (IDCA) program--KClO4/Dodecane Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-11

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of KClO4 and dodecane—KClO4/dodecane mixture. This material was selected because of the challenge of performing SSST testing of a mixture of solid and liquid materials. The mixture was found to: 1) be less sensitive to impact than RDX, and PETN, 2) less sensitive to friction than RDX and PETN, and 3) less sensitive to spark than RDX and PETN. The thermal analysis showed little or no exothermic features suggesting that the dodecane volatilized at low temperatures. A prominent endothermic feature was observed and assigned to a phase transition of KClO4. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study has the potential to suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. The results are compared among the laboratories and then compared to historical data from various sources. The testing performers involved for the KClO4/dodecane mixture are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some

  5. Modal spectral analysis of piping: Determination of the significant frequency range

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1981-01-01

    This paper investigates the influence of the number of modes on the response of a piping system in a dynamic modal spectral analysis. It shows how the analysis can be limited to a specific frequency range of the pipe (independent of the frequency range of the response spectrum), allowing cost reduction without loss in accuracy. The 'missing mass' is taken into account through an original technique. (orig./HP)

  6. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  7. Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago

    International Nuclear Information System (INIS)

    Carta, Jose Antonio; Ramirez, Penelope

    2007-01-01

    The statistical characteristics of hourly mean wind speed data recorded at 16 weather stations located in the Canarian Archipelago are analyzed in this paper. As a result of this analysis we see that the typical two parameter Weibull wind speed distribution (W-pdf) does not accurately represent all wind regimes observed in that region. However, a Singly Truncated from below Normal Weibull mixture distribution (TNW-pdf) and a two component mixture Weibull distribution (WW-pdf) developed here do provide very good fits for both unimodal and bimodal wind speed frequency distributions observed in that region and offer less relative errors in determining the annual mean wind power density. The parameters of the distributions are estimated using the least squares method, which is resolved in this paper using the Levenberg-Marquardt algorithm. The suitability of the distributions is judged from the probability plot correlation coefficient plot R 2 , adjusted for degrees of freedom. Based on the results obtained, we conclude that the two mixture distributions proposed here provide very flexible models for wind speed studies and can be applied in a widespread manner to represent the wind regimes in the Canarian archipelago and in other regions with similar characteristics. The TNW-pdf takes into account the frequency of null winds, whereas the WW-pdf and W-pdf do not. It can, therefore, better represent wind regimes with high percentages of null wind speeds. However, calculation of the TNW-pdf is markedly slower

  8. Spectral analysis of time series of events: effect of respiration on heart rate in neonates

    International Nuclear Information System (INIS)

    Van Drongelen, Wim; Williams, Amber L; Lasky, Robert E

    2009-01-01

    Certain types of biomedical processes such as the heart rate generator can be considered as signals that are sampled by the occurring events, i.e. QRS complexes. This sampling property generates problems for the evaluation of spectral parameters of such signals. First, the irregular occurrence of heart beats creates an unevenly sampled data set which must either be pre-processed (e.g. by using trace binning or interpolation) prior to spectral analysis, or analyzed with specialized methods (e.g. Lomb's algorithm). Second, the average occurrence of events determines the Nyquist limit for the sampled time series. Here we evaluate different types of spectral analysis of recordings of neonatal heart rate. Coupling between respiration and heart rate and the detection of heart rate itself are emphasized. We examine both standard and data adaptive frequency bands of heart rate signals generated by models of coupled oscillators and recorded data sets from neonates. We find that an important spectral artifact occurs due to a mirror effect around the Nyquist limit of half the average heart rate. Further we conclude that the presence of respiratory coupling can only be detected under low noise conditions and if a data-adaptive respiratory band is used

  9. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    International Nuclear Information System (INIS)

    Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

  10. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  11. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer

    International Nuclear Information System (INIS)

    Chenouard, J.; Gueron, J.; Roth, E.

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  12. The spectral analysis of motion: An "open field" activity test example

    Directory of Open Access Journals (Sweden)

    Obradović Z.

    2013-01-01

    Full Text Available In this work we have described the new mathematical approach, with spectral analysis of the data to evaluate position and motion in the „„open field““ experiments. The aim of this work is to introduce several new parameters mathematically derived from experimental data by means of spectral analysis, and to quantitatively estimate the quality of the motion. Two original software packages (TRACKER and POSTPROC were used for transforming a video data to a log file, suitable for further computational analysis, and to perform analysis from the log file. As an example, results obtained from the experiments with Wistar rats in the „open field“ test are included. The test group of animals was treated with diazepam. Our results demonstrate that all the calculated parameters, such as movement variability, acceleration and deceleration, were significantly lower in the test group compared to the control group. We believe that the application of parameters obtained by spectral analysis could be of great significance in assessing the locomotion impairment in any kind of motion. [Projekat Ministarstva nauke Republike Srbije, br. III41007 i br. ON174028

  13. Using finite mixture models in thermal-hydraulics system code uncertainty analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, S., E-mail: scarlos@iqn.upv.es [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Sánchez, A. [Department d’Estadística Aplicada i Qualitat, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Ginestar, D. [Department de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Martorell, S. [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain)

    2013-09-15

    Highlights: • Best estimate codes simulation needs uncertainty quantification. • The output variables can present multimodal probability distributions. • The analysis of multimodal distribution is performed using finite mixture models. • Two methods to reconstruct output variable probability distribution are used. -- Abstract: Nuclear Power Plant safety analysis is mainly based on the use of best estimate (BE) codes that predict the plant behavior under normal or accidental conditions. As the BE codes introduce uncertainties due to uncertainty in input parameters and modeling, it is necessary to perform uncertainty assessment (UA), and eventually sensitivity analysis (SA), of the results obtained. These analyses are part of the appropriate treatment of uncertainties imposed by current regulation based on the adoption of the best estimate plus uncertainty (BEPU) approach. The most popular approach for uncertainty assessment, based on Wilks’ method, obtains a tolerance/confidence interval, but it does not completely characterize the output variable behavior, which is required for an extended UA and SA. However, the development of standard UA and SA impose high computational cost due to the large number of simulations needed. In order to obtain more information about the output variable and, at the same time, to keep computational cost as low as possible, there has been a recent shift toward developing metamodels (model of model), or surrogate models, that approximate or emulate complex computer codes. In this way, there exist different techniques to reconstruct the probability distribution using the information provided by a sample of values as, for example, the finite mixture models. In this paper, the Expectation Maximization and the k-means algorithms are used to obtain a finite mixture model that reconstructs the output variable probability distribution from data obtained with RELAP-5 simulations. Both methodologies have been applied to a separated

  14. LC for analysis of two sustained-release mixtures containing cough cold suppressant drugs.

    Science.gov (United States)

    El-Gindy, Alaa; Sallam, Shehab; Abdel-Salam, Randa A

    2010-07-01

    A liquid chromatographic method was applied for the analysis of two sustained-release mixtures containing dextromethorphane hydrobromide, carbinoxamine maleate with either phenylephrine hydrochloride in pharmaceutical capsules (Mix 1) or phenyl-propanolamine, methylparaben, and propylparaben, which bonds as a drug base to ion exchange resin in pharmaceutical syrup (Mix 2). The method was used for their simultaneous determination using a CN column with a mobile phase consisting of acetonitrile-12 mM ammonium acetate in the ratio of 60:40 (v/v, pH 6.0) for Mix 1 and 45:55 (v/v, pH 6.0) for Mix 2.

  15. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    Science.gov (United States)

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  16. A novel spectral resolution and simultaneous determination of multicomponent mixture of Vitamins B1, B6, B12, Benfotiamine and Diclofenac in tablets and capsules by derivative and MCR-ALS

    Science.gov (United States)

    Hegazy, Maha A.; Abdelwahab, Nada S.; Fayed, Ahmed S.

    2015-04-01

    A novel method was developed for spectral resolution and further determination of five-component mixture including Vitamin B complex (B1, B6, B12 and Benfotiamine) along with the commonly co-formulated Diclofenac. The method is simple, sensitive, precise and could efficiently determine the five components by a complementary application of two different techniques. The first is univariate second derivative method that was successfully applied for determination of Vitamin B12. The second is Multivariate Curve Resolution using the Alternating Least Squares method (MCR-ALS) by which an efficient resolution and quantitation of the quaternary spectrally overlapped Vitamin B1, Vitamin B6, Benfotiamine and Diclofenac sodium were achieved. The effect of different constraints was studied and the correlation between the true spectra and the estimated spectral profiles were found to be 0.9998, 0.9983, 0.9993 and 0.9933 for B1, B6, Benfotiamine and Diclofenac, respectively. All components were successfully determined in tablets and capsules and the results were compared to HPLC methods and they were found to be statistically non-significant.

  17. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  18. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  19. Spectral analysis of bacanora (agave-derived liquor) by using FT-Raman spectroscopy

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan

    2016-04-01

    The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm-1 to 3500 cm-1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.

  20. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-11-01

    The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.

  1. Spectral decomposition in advection-diffusion analysis by finite element methods

    International Nuclear Information System (INIS)

    Nickell, R.E.; Gartling, D.K.; Strang, G.

    1978-01-01

    In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies

  2. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    Science.gov (United States)

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  3. Spectral and correlation analysis of soft X-ray signals from the Joint European Torus tokamak

    International Nuclear Information System (INIS)

    Karlsson, J.; Pazsit, I.

    1997-01-01

    Tomographic methods applied to soft X-rays emitted from a fusion plasma have long been used to diagnose and interpret magnetohydrodynamic and other plasma activities. However, fluctuation analysis has recently been proposed as a complementary method to tomography. The novelty of the suggested method is that the various modes can be determined without tomographic inversion. This paper reports on the results of correlation and spectral analysis of soft X-ray data. The seven measurements analyzed were made by the Joint European Torus (JET) Joint Undertaking using their old soft X-ray measurement system. Auto power spectral densities and phase relations were evaluated from the measured signals as functions of the lines of sight. The fundamental mode m=n=1 was identified in several measurements. The corresponding frequency and toroidal rotation velocity were determined. Higher order modes were also observed and identified. Furthermore, simple model calculations were performed and the results compared with evaluated auto-spectra. (orig.)

  4. A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG.

    Science.gov (United States)

    Vo, T D; Dwyer, G; Szeto, H H

    1986-04-01

    A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.

  5. High-Selectivity Filter Banks for Spectral Analysis of Music Signals

    Directory of Open Access Journals (Sweden)

    Luiz W. P. Biscainho

    2007-01-01

    Full Text Available This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT, the fast filter bank (FFB, the constant-Q transform (CQT, and the bounded-Q transform (BQT, previously known from the associated literature. Two new methods are then introduced, namely, the constant-Q fast filter bank (CQFFB and the bounded-Q fast filter bank (BQFFB, combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed BQFFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the CQT and BQT methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.

  6. Spectral analysis of the He-enriched sdO-star HD 127493

    Science.gov (United States)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  7. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  8. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  9. Spectral analysis of Jupiter kilometric radio emissions during the Ulysses flyby

    Science.gov (United States)

    Echer, M. P. D. S.; Echer, E.; Gonzalez, W.; Magalães, F. P.

    2016-12-01

    In this work we analyze Ulysses URAP kilometric radio data during Ulysses Jupiter flyby. The interval selected for analysis was from October 1991 to February 1992. URAP 10-min averages of auroral (bkom) and torus (nkom) radio data are used. The wavelet and iterative regression spectral analyses techniques are employed on both data set. The results obtained will enable us to determine the major frequencies present in the auroral and torus data and study their similar and different periodicities.

  10. Spectral Analysis Related to Bare-Metal and Drug-Eluting Coronary Stent Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rose Mary Ferreira Lisboa da, E-mail: roselisboa@cardiol.br [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Silva, Carlos Augusto Bueno [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Greco, Otaviano José [Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Moreira, Maria da Consolação Vieira [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil)

    2014-08-15

    The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.

  11. Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)

    International Nuclear Information System (INIS)

    Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.

    1988-01-01

    In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr

  12. Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Ondřej; Šubr, Vladimír; Větvička, David; Kovář, Lubomír; Strohalm, Jiří; Strohalm, Martin; Benda, Aleš; Hof, Martin; Ulbrich, Karel; Říhová, Blanka

    2010-01-01

    Roč. 76, č. 3 (2010), s. 514-524 ISSN 0939-6411 R&D Projects: GA AV ČR IAA400200702; GA AV ČR IAAX00500803; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : doxorubicin * spectral analysis * fluorescence Subject RIV: EC - Immunology Impact factor: 4.304, year: 2010

  13. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  14. The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    Science.gov (United States)

    Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.

    2018-02-01

    We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.

  15. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    Science.gov (United States)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  16. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    Science.gov (United States)

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  17. Spectral Quantitative Analysis Model with Combining Wavelength Selection and Topology Structure Optimization

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2016-01-01

    Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.

  18. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  19. Determination of sulfamethoxazole and trimethoprim mixtures by multivariate electronic spectroscopy

    OpenAIRE

    Cordeiro, Gilcélia A.; Peralta-Zamora, Patricio; Nagata, Noemi; Pontarollo, Roberto

    2008-01-01

    In this work a multivariate spectroscopic methodology is proposed for quantitative determination of sulfamethoxazole and trimethoprim in pharmaceutical associations. The multivariate model was developed by partial least-squares regression, using twenty synthetic mixtures and the spectral region between 190 and 350 nm. In the validation stage, which involved the analysis of five synthetic mixtures, prediction errors lower that 3% were observed. The predictive capacity of the multivariate model...

  20. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    Science.gov (United States)

    Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.

  1. Application of wavelet and Fuorier transforms as powerful alternatives for derivative spectrophotometry in analysis of binary mixtures: A comparative study

    Science.gov (United States)

    Hassan, Said A.; Abdel-Gawad, Sherif A.

    2018-02-01

    Two signal processing methods, namely, Continuous Wavelet Transform (CWT) and the second was Discrete Fourier Transform (DFT) were introduced as alternatives to the classical Derivative Spectrophotometry (DS) in analysis of binary mixtures. To show the advantages of these methods, a comparative study was performed on a binary mixture of Naltrexone (NTX) and Bupropion (BUP). The methods were compared by analyzing laboratory prepared mixtures of the two drugs. By comparing performance of the three methods, it was proved that CWT and DFT methods are more efficient and advantageous in analysis of mixtures with overlapped spectra than DS. The three signal processing methods were adopted for the quantification of NTX and BUP in pure and tablet forms. The adopted methods were validated according to the ICH guideline where accuracy, precision and specificity were found to be within appropriate limits.

  2. An Excel‐based implementation of the spectral method of action potential alternans analysis

    Science.gov (United States)

    Pearman, Charles M.

    2014-01-01

    Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439

  3. An Excel-based implementation of the spectral method of action potential alternans analysis.

    Science.gov (United States)

    Pearman, Charles M

    2014-12-01

    Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Genomic outlier profile analysis: mixture models, null hypotheses, and nonparametric estimation.

    Science.gov (United States)

    Ghosh, Debashis; Chinnaiyan, Arul M

    2009-01-01

    In most analyses of large-scale genomic data sets, differential expression analysis is typically assessed by testing for differences in the mean of the distributions between 2 groups. A recent finding by Tomlins and others (2005) is of a different type of pattern of differential expression in which a fraction of samples in one group have overexpression relative to samples in the other group. In this work, we describe a general mixture model framework for the assessment of this type of expression, called outlier profile analysis. We start by considering the single-gene situation and establishing results on identifiability. We propose 2 nonparametric estimation procedures that have natural links to familiar multiple testing procedures. We then develop multivariate extensions of this methodology to handle genome-wide measurements. The proposed methodologies are compared using simulation studies as well as data from a prostate cancer gene expression study.

  5. Performance analysis of the reciprocating compressor with hydrocarbon refrigerant mixtures, R290/R600a

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Chung, Y.G.; Pak, H.Y. [Hanyang University, Seoul (Korea); Park, K.W. [LG Industrial Systems, Seoul (Korea)

    1999-03-01

    A performance analysis simulation program that can be applied to a hermetic reciprocating compressor with various refrigerants has been developed. For the numerical analysis, the passage of refrigerant in compressor is subdivided into control volumes. Instead of the ideal gas assumption, CSD equation of state is applied to calculate the thermodynamic properties of refrigerants. To verify the validity of developed program, the result has been compared with the experimental data served by the compressor supplier. The performance of each refrigerant and the possibility of direct application are estimated by applying R12, 134a, R290, R600a and R290/R600a mixture to an existing compressor. Also, parametric study for various crank rotating speeds and the mole fractions of refrigerant has been performed. 22 refs., 12 figs., 5 tabs.

  6. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions

    International Nuclear Information System (INIS)

    Griem, H.R.

    1988-10-01

    In our work this past year at the University of Rochester's Laboratory for Laser Energetics we have studied laser-produced plasmas using spherical targets continuing layers of high Z and low Z materials. Our emphasis was on quantitative spectroscopy of ions in a very dense, recombining plasma. The targets used consisted of carbon-copper, carbon-gold, and aluminum-gold mixtures, instead of the originally proposed Fe or Mo mixtures with carbon. The thickness of the Cu and the Au layers were varied in order to study the effect of higher Z ions cooling the plasma. Indeed a pronounced cooling effect was observed by increasing the thickness of the Au layer in targets with Al-Au layers. Electron temperatures were studied by measuring the 1s-2p/1s 2 -1s2p line ratio of Al XIII to Al XII. Our experimental measurements, together with a collisional-radiative model and a 1-D hydrodynamic code, indicate that the electron temperature falls from 1500 eV with no gold to 950 eV with a 500 angstrom layer of gold. A detailed discussion of our results with Al-Au targets can be found in the enclosed preprint entitled Radiation Cooling in Laser-Produced Plasmas Due to High-Z Layers

  7. Monte-Carlo error analysis in x-ray spectral deconvolution

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hoffman, N.M.

    1985-01-01

    The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels

  8. Spectral methods for the detection of network community structure: a comparative analysis

    International Nuclear Information System (INIS)

    Shen, Hua-Wei; Cheng, Xue-Qi

    2010-01-01

    Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity

  9. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    Science.gov (United States)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  10. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  11. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.

    Science.gov (United States)

    Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G

    2016-02-05

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Use of fast Fourier transform in gamma-ray spectral analysis

    International Nuclear Information System (INIS)

    Tominaga, Shoji; Nayatani, Yoshinobu; Nagata, Shojiro; Sasaki, Takashi; Ueda, Isamu.

    1978-01-01

    In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform has been devised. The validity of the method has been confirmed by computer simulation for spectra of a NaI detector. First, it is shown that spectral data can be represented by Fourier series with a reduced number of terms. Then the estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features of the method and a general problem to be solved in relation to a response matrix method are described. (author)

  13. The quantum spectral analysis of the two-dimensional annular billiard system

    International Nuclear Information System (INIS)

    Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)

  14. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  15. Use of the spectral analysis for estimating the intensity of a weak periodic source

    International Nuclear Information System (INIS)

    Marseguerra, M.

    1989-01-01

    This paper deals with the possibility of exploiting spectral methods for the analysis of counting experiments in which one has to estimate the intensity of a weak periodic source of particles buried in a high background. The general theoretical expressions here obtained for the auto- and cross-spectra are applied to three kinds of simulated experiments. In all cases it turns out that the source intensity can acutally be estimated with a standard deviation comparable with that obtained in classical experiments in which the source can be moved out. Thus the spectral methods represent an interesting technique nowadays easy to implement on low-cost computers which could also be used in many research fields by suitably redesigning classical experiments. The convenience of using these methods in the field of nuclear safeguards is presently investigated in our Institute. (orig.)

  16. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    International Nuclear Information System (INIS)

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  17. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  18. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  19. Spectral Analysis of the sdO Standard Star Feige 34

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  20. Studying Solid-Phase Processes in Metakaoline-Sodium Hydroxide Mixtures by Means of Isoconversion Analysis

    Science.gov (United States)

    Gordina, N. E.; Prokof'ev, V. Yu.; Khramtsova, A. P.; Cherednikova, D. S.; Konstantinova, E. M.

    2018-05-01

    Processes of the thermal treatment of 6Al2Si4O7: 12NaOH mixtures for the synthesis of zeolites are studied. The mixtures are subjected to ultrasonic treatment and mechanochemical activation, after which the suspensions are evaporated, granulated, and dried. The study is performed using X-ray diffraction, synchronous thermal analysis, and electron microscopy. It is established that calcination below 500°C leads to the dehydration of the LTA zeolite and sodium hydroaluminates formed earlier, and Al2Si4O7 reacts with LTA and NaOH in the range of 500-800°C to form Na6Al4Si4O17 and Na8Al4Si4O18. Using the Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose methods, the apparent activation energies (E) are calculated for this range. The two methods yield close results. It is found that E grows from 30-80 to 240-300 kJ/mol as conversion increases. It is shown that preliminary ultrasonic treatment and mechanochemical activation reduce apparent energy of activation E due to changes in the morphology of particles.

  1. Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures

    Science.gov (United States)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Jarrah, Muhannad; Altarawneh, Mohammednoor; Kingman, Sam

    2018-02-01

    The pyrolysis of Tetrabromobisphenol A (TBBPA) mixed with electric arc furnace dust (EAFD) was studied using thermogravimetric analysis (TGA) and theoretically analyzed using thermodynamic equilibrium calculations. Mixtures of both materials with varying TBBPA loads (1:1 and 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at heating rates of 5 and 10 °C/min. The mixtures degraded through several steps, including decomposition of TBBPA yielding mainly HBr, bromination of metal oxides, followed by their evaporation in the sequence of CuBr3, ZnBr2, PbBr2, FeBr2, MnBr2, KBr, NaBr, CaBr2, and MgBr2, and finally reduction of the remaining metal oxides by the char formed from decomposition of TBBPA. Thermodynamic calculations suggest the possibility of selective bromination of zinc and lead followed by their evaporation, leaving iron in its oxide form, while the char formed may serve as a reduction agent for iron oxides into metallic iron. However, at higher TBBPA volumes, iron bromide forms, which can also be evaporated at a temperature higher than those of ZnBr2 and PbBr2. Results from this work provide practical insight into selective recovery of valuable metals from EAFD while at the same time recycling the hazardous bromine content in TBBPA.

  2. The analysis of lightweight brick strength pressure with mixture of glass powder and silica fume

    Science.gov (United States)

    Nursyamsi; Liang, William

    2018-03-01

    Little by little the engineers research how the development of concrete that can utilize waste. In the utilization of the waste, it can be functioned as mixing material which the chemical or the physical traits of the used goods contain similarity to the mixture of concrete in general, one of them is glass powder as the substitute of cement. The glass powder that utilizes is the one that is sifted through sieve No. 200 as much as 10% of the weight of the cement. The testing specimen of the concrete brick is make of the mixture with the ratio of 1:7, then is added with the foaming agent (1:30) and silica fume (10% of the weight of the cement). Furthermore, visual examination, absorption, net weight and testing specimen compressive strength. The data analysis uses the reference of SNI 03 – 0349 – 1989 regarding Concrete Brick for the Match for the Wall. Foaming Agent is make by using modified hand drill and brace. The testing specimen uses the brick mold with the size of 40 cm x 20cm x 10 cm. Based on this research, it shows that the quality that results from brick is still qualified based on SNI 03 – 0349 – 1989.

  3. Summer 2012 Testing and Analysis of the Chemical Mixture Methodology -- Part I

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, Clifford S.; Yu, Xiao-Ying; Coggin, Rebekah L.; Ponder, Lashaundra A.; Booth, Alexander E.; Petrocchi, Achille J.; Horn, Sarah M.; Yao, Juan

    2012-07-01

    This report presents the key findings made by the Chemical Mixture Methodology (CMM) project team during the first stage of their summer 2012 testing and analysis of the CMM. The study focused on answering the following questions: o What is the percentage of the chemicals in the CMM Rev 27 database associated with each Health Code Number (HCN)? How does this result influence the relative importance of acute HCNs and chronic HCNs in the CMM data set? o What is the benefit of using the HCN-based approach? Which Modes of Action and Target Organ Effects tend to be important in determining the HCN-based Hazard Index (HI) for a chemical mixture? o What are some of the potential issues associated with the current HCN-based approach? What are the opportunities for improving the performance and/or technical defensibility of the HCN-based approach? How would those improvements increase the benefit of using the HCN-based approach? o What is the Target Organ System Effect approach and how can it be used to improve upon the current HCN-based approach? How does the benefits users would derive from using the Target Organ System Approach compare to the benefits available from the current HCN-based approach?

  4. TOF plotter - a program to perform routine analysis time-of-flight mass spectral data

    International Nuclear Information System (INIS)

    Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth

    2004-01-01

    The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems

  5. Communication system and spectral analysis for Ge-Li and GeHp detectors

    International Nuclear Information System (INIS)

    Fernandez, J.; Castano, P.; Bonino, A.D.; Righetti, M.A.

    1990-01-01

    An integral communication and spectral analysis system (SICADE) was developed and implemented to satisfy the need to optimize and automate the measurement system used in Atucha I nuclear power plant for the activity in the primary loop's water extracted by the TV system. The importance of these measurements is based on the fact that from the spectrometric analysis of the samples extracted, the Iodines-GN and Iodines-Iodines relations, which allow to detect the presence of deficient fuel elements, are calculated. The system developed is based on two modules integrated in a unique set commanded by the operators through the screen dialogue. (Author) [es

  6. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane

    International Nuclear Information System (INIS)

    Chakraborty, Somsubhra; Weindorf, David C.; Li, Bin; Ali, Md. Nasim; Majumdar, K.; Ray, D.P.

    2014-01-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r 2  = 0.87, RMSE = 0.580 log 10  mg kg −1 , and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r 2  = 0.65 and RMSE 0.261 log 10  mg kg −1 ) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. - Highlights: • We predicted soil petroleum contamination with VisNIR DRS spectra. • We examined 2 spectral pretreatments and 2 multivariate models. • MCR-ALS was used for compositional and spectral resolution of n-hexane. • Penalized spline regression performed best for quantifying soil TPH. • MCR-ALS was promising for resolution of complex soil–petroleum mixture. - Use of VisNIR DRS for rapid quantification of soil TPH and resolution of complex soil petroleum mixtures

  7. Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb-Scargle periodogram and Monte Carlo evaluation of statistical significance

    Science.gov (United States)

    Pardo-Igúzquiza, Eulogio; Rodríguez-Tovar, Francisco J.

    2012-12-01

    Many spectral analysis techniques have been designed assuming sequences taken with a constant sampling interval. However, there are empirical time series in the geosciences (sediment cores, fossil abundance data, isotope analysis, …) that do not follow regular sampling because of missing data, gapped data, random sampling or incomplete sequences, among other reasons. In general, interpolating an uneven series in order to obtain a succession with a constant sampling interval alters the spectral content of the series. In such cases it is preferable to follow an approach that works with the uneven data directly, avoiding the need for an explicit interpolation step. The Lomb-Scargle periodogram is a popular choice in such circumstances, as there are programs available in the public domain for its computation. One new computer program for spectral analysis improves the standard Lomb-Scargle periodogram approach in two ways: (1) It explicitly adjusts the statistical significance to any bias introduced by variance reduction smoothing, and (2) it uses a permutation test to evaluate confidence levels, which is better suited than parametric methods when neighbouring frequencies are highly correlated. Another novel program for cross-spectral analysis offers the advantage of estimating the Lomb-Scargle cross-periodogram of two uneven time series defined on the same interval, and it evaluates the confidence levels of the estimated cross-spectra by a non-parametric computer intensive permutation test. Thus, the cross-spectrum, the squared coherence spectrum, the phase spectrum, and the Monte Carlo statistical significance of the cross-spectrum and the squared-coherence spectrum can be obtained. Both of the programs are written in ANSI Fortran 77, in view of its simplicity and compatibility. The program code is of public domain, provided on the website of the journal (http://www.iamg.org/index.php/publisher/articleview/frmArticleID/112/). Different examples (with simulated and

  8. Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan; Wildenschild, Dorthe

    2017-12-01

    The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydrated portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.

  9. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    Science.gov (United States)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  10. EFFECTS OF LORAZEPAM ON CARDIAC VAGAL TONE DURING REST AND MENTAL STRESS - ASSESSMENT BY MEANS OF SPECTRAL-ANALYSIS

    NARCIS (Netherlands)

    TULEN, JHM; MULDER, G; PEPPLINKHUIZEN, L; INTVELD, AJM; VANSTEENIS, HG; MOLEMAN, P

    Dose-dependent effects of intravenously administered lorazepam on haemodynamic fluctuations were studied by means of spectral analysis, in order to elucidate sympathetic and parasympathetic components in cardiovascular control during situations of rest and mental stress after benzodiazepine

  11. Effects of lorazepam on cardiac vagal tone during rest and mental stress: assessment by means of spectral analysis

    NARCIS (Netherlands)

    J.H.M. Tulen (Joke); G. Mulder (G.); L. Pepplinkhuizen (Lolke); A.J. Man in't Veld (A.); H.G. van Steenis (H.); P. Moleman (Peter)

    1994-01-01

    textabstractDose-dependent effects of intravenously administered lorazepam on haemodynamic fluctuations were studied by means of spectral analysis, in order to elucidate sympathetic and parasympathetic components in cardiovascular control during situations of rest and mental stress after

  12. Spectacle and SpecViz: New Spectral Analysis and Visualization Tools

    Science.gov (United States)

    Earl, Nicholas; Peeples, Molly; JDADF Developers

    2018-01-01

    A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user

  13. Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Wang, Jianyong; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A new combined cooling and power system is proposed. • Exergy destruction analysis is used to identify irreversibility of components in system. • Thermodynamic parameter analysis is performed for system. - Abstract: In order to achieve both power and cooling supply for users, a new combined cooling and power system using ammonia–water mixture is proposed to utilizing low grade heat sources, such as industrial waste heat, solar energy and geothermal energy. The proposed system combines a Kalina cycle and an ammonia–water absorption refrigeration cycle, in which the ammonia–water turbine exhaust is delivered to a separator to extract purer ammonia vapor. The purer ammonia vapor enters an evaporator to generate refrigeration output after being condensed and throttled. Mathematical models are established to simulate the combined system under steady-state conditions. Exergy destruction analysis is conducted to display the exergy destruction distribution in the system qualitatively and the results show that the major exergy destruction occurs in the heat exchangers. Finally a thermodynamic sensitivity analysis is performed and reveals that with an increase in the pressure of separator I or the ammonia mass fraction of basic solution, thermal efficiency and exergy efficiency of the system increase, whereas with an increase in the temperature of separator I, the ammonia–water turbine back pressure or the condenser II pressure, thermal efficiency and exergy efficiency of the system drop.

  14. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    Energy Technology Data Exchange (ETDEWEB)

    Zanardo, Giovanna; Staveley-Smith, Lister [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, Crawley, WA 6009 (Australia); Indebetouw, Remy; Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Matsuura, Mikako; Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gaensler, Bryan M. [Australian Research Council, Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Fransson, Claes; Lundqvist, Peter [Department of Astronomy, Oskar Klein Center, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Manchester, Richard N. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Kamenetzky, Julia R. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Lakićević, Maša [Institute for the Environment, Physical Sciences and Applied Mathematics, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, Jon M. [Departamento de Astronomía, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Martí-Vidal, Ivan [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ng, C.-Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, Sangwook, E-mail: giovanna.zanardo@gmail.com [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ 3.2 mm to 450 μm), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ν}∝ν{sup –0.73}) and the thermal component originating from dust grains at T ∼ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ≲ α ≲ –0.1 across the western regions, with α ∼ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  15. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures

    Science.gov (United States)

    Youssef, Rasha M.; Maher, Hadir M.

    2008-10-01

    A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.

  16. Separation of azeotropic mixtures : tools for analysis and studies on batch distillation operation

    OpenAIRE

    Hilmen, Eva-Katrine

    2000-01-01

    Separation of azeotropic mixtures is a topic of great practical and industrial interest. Most liquid mixtures of organic components form nonideal systems. The presence of some specific groups, particularly polar groups (oxygen, nitrogen, chlorine and fluorine), often results in the formation of azeotropes. Azeotropic mixtures may often be effectively separated by distillation by adding a liquid material (entrainer) to the system. For the development of separation processes for azeotropic ...

  17. EZ and GOSSIP, two new VO compliant tools for spectral analysis

    Science.gov (United States)

    Franzetti, P.; Garill, B.; Fumana, M.; Paioro, L.; Scodeggio, M.; Paltani, S.; Scaramella, R.

    2008-10-01

    We present EZ and GOSSIP, two new VO compliant tools dedicated to spectral analysis. EZ is a tool to perform automatic redshift measurement; GOSSIP is a tool created to perform the SED fitting procedure in a simple, user friendly and efficient way. These two tools have been developed by the PANDORA Group at INAF-IASF (Milano); EZ has been developed in collaboration with Osservatorio Monte Porzio (Roma) and Integral Science Data Center (Geneve). EZ is released to the astronomical community; GOSSIP is currently in beta-testing.

  18. Turbulence in extended synchrotron radio sources. I. Polarization of turbulent sources. II. Power-spectral analysis

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1989-01-01

    Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs

  19. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A B; Drobot, S I; Drokov, V G; Zarubin, V P; Kazmirov, A D; Skodaev, Y D; Podrezov, A M [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1998-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  20. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    Science.gov (United States)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  1. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A.B.; Drobot, S.I.; Drokov, V.G.; Zarubin, V.P.; Kazmirov, A.D.; Skodaev, Y.D.; Podrezov, A.M. [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1997-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  2. A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains

    Science.gov (United States)

    Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro

    2018-04-01

    In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy's walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.

  3. On the 485-day Mode in the Atmospheric Angular Momentum: Spectral Analysis of IERS Data

    Science.gov (United States)

    Tsurkis, I. Ya.; Kuchai, M. S.

    2018-05-01

    The modification of spectral analysis especially intended for studying the disturbing functions of the atmosphere and ocean, as well as the observed polar motion (Wiener-Liouville spectrum), is used. The time series of the atmospheric disturbing functions obtained by the U.S. National Centers for Environmental Prediction (NCEP) of the International Earth Rotation and Reference Systems Service (IERS) for the period from January 1, 1980 to June 20, 2014 (http://www.iers.org/.cs1?pid=43-1100116) are analyzed. It is shown that the baric disturbing function contains a regular mode with a period of 16 months; the contribution of this mode in the polar motion is estimated.

  4. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  5. Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence

    International Nuclear Information System (INIS)

    Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y

    2011-01-01

    In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.

  6. Gauss-Vanicek Spectral Analysis of the Sepkoski Compendium: No New Life Cycles

    OpenAIRE

    Omerbashich, M.

    2006-01-01

    New periods can emerge from data as a byproduct of incorrect processing or even the method applied. In one such recent instance, a new life cycle with a 62+-3 Myr period was reportedly found (about trend) in genus variations from the Sepkoski compendium, the world most complete fossil record. The approach that led to reporting this period was based on Fourier method of spectral analysis. I show here that no such period is found when the original data set is considered rigorously and processed...

  7. On the detection of corrosion pit interactions using two-dimensional spectral analysis

    International Nuclear Information System (INIS)

    Jarrah, Adil; Nianga, Jean-Marie; Iost, Alain; Guillemot, Gildas; Najjar, Denis

    2010-01-01

    A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can be advanced as an alternative of classical methods based on distance. One of the major advantages of the spectral analysis approach over the use of classical methods is its ability to reveal more details about the spatial structure like the scale for which pits corrosion can be considered as independent. Furthermore, directional components of pattern can be investigated. The method is validated in a first time using numerical simulations on random, regular and aggregated structures. The density of pits, used in the numerical simulations, corresponds to that assessed from a corroded aluminium sheet. In a second time, this method is applied to verify the independence of the corrosion pits observed on the aforementioned aluminium sheet before applying the Gumbel theory to determine the maximum pit depth. Indeed, the property of independence is a prerequisite of the Gumbel theory which is one of the most frequently used in the field of safety and reliability.

  8. Spectral analysis of coolant activity from a commercial nuclear generating station

    International Nuclear Information System (INIS)

    Swann, J.D.; Lewis, B.J.; Ip, M.

    2008-01-01

    In support of the development of a real-time on-line fuel failure monitoring system for the CANDU reactor, actual gamma spectroscopy data files from the gaseous fission product (GFP) monitoring system were acquired from almost four years of operation at a commercial Nuclear Generating Station (NGS). Several spectral analysis techniques were used to process the data files. Radioisotopic activity from the plant information (PI) system was compared to an in-house C++ code that was used to determine the photopeak area and to a separate analysis with commercial software from Canberra-Aptec. These various techniques provided for a calculation of the coolant activity concentration of the noble gas and iodine species in the primary heat transport system. These data were then used to benchmark the Visual DETECT code, a user friendly software tool which can be used to characterize the defective fuel state based on a coolant activity analysis. Acceptable agreement was found with the spectral techniques when compared to the known defective bundle history at the commercial reactor. A more generalized method of assessing the fission product release data was also considered with the development of a pre-processor to evaluate the radioisotopic release rate from mass balance considerations. The release rate provided a more efficient means to characterize the occurrence of a defect and was consistent with the actual defect situation at the power plant as determined from in-bay examination of discharged fuel bundles. (author)

  9. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  10. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material

    International Nuclear Information System (INIS)

    Kestens, Vikram; Roebben, Gert; Herrmann, Jan; Jämting, Åsa; Coleman, Victoria; Minelli, Caterina; Clifford, Charles; Temmerman, Pieter-Jan De; Mast, Jan; Junjie, Liu; Babick, Frank; Cölfen, Helmut; Emons, Hendrik

    2016-01-01

    A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission’s Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.

  11. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  12. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material

    Energy Technology Data Exchange (ETDEWEB)

    Kestens, Vikram, E-mail: vikram.kestens@ec.europa.eu; Roebben, Gert [Joint Research Centre (JRC), European Commission, Institute for Reference Materials and Measurements (IRMM) (Belgium); Herrmann, Jan; Jämting, Åsa; Coleman, Victoria [National Measurement Institute Australia, Nanometrology Section (Australia); Minelli, Caterina; Clifford, Charles [National Physical Laboratory, Analytical Science Division (United Kingdom); Temmerman, Pieter-Jan De; Mast, Jan [Service Electron Microscopy, Veterinary and Agrochemical Research Centre (CODA-CERVA) (Belgium); Junjie, Liu [National Institute of Metrology, Division of Nanoscale Measurement and Advanced Materials (China); Babick, Frank [Technische Universität Dresden, Institut für Verfahrens- und Umwelttechnik (Germany); Cölfen, Helmut [University of Konstanz, Physical Chemistry, Department of Chemistry (Germany); Emons, Hendrik [Joint Research Centre (JRC), European Commission, Institute for Reference Materials and Measurements (IRMM) (Belgium)

    2016-06-15

    A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission’s Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.

  13. Lean VOC-Air Mixtures Catalytic Treatment: Cost-Benefit Analysis of Competing Technologies

    Directory of Open Access Journals (Sweden)

    Gabriele Baldissone

    2017-06-01

    Full Text Available Various processing routes are available for the treatment of lean VOC-air mixtures, and a cost-benefit analysis is the tool we propose to identify the most suitable technology. Two systems have been compared in this paper, namely a “traditional” plant, with a catalytic fixed-bed reactor with a heat exchanger for heat recovery purposes, and a “non-traditional” plant, with a catalytic reverse-flow reactor, where regenerative heat recovery may be achieved thanks to the periodical reversal of the flow direction. To be useful for decisions-making, the cost-benefit analysis must be coupled to the reliability, or availability, analysis of the plant. Integrated Dynamic Decision Analysis is used for this purpose as it allows obtaining the full set of possible sequences of events that could result in plant unavailability, and, for each of them, the probability of occurrence is calculated. Benefits are thus expressed in terms of out-of-services times, that have to be minimized, while the costs are expressed in terms of extra-cost for maintenance activities and recovery actions. These variable costs must be considered together with the capital (fixed cost required for building the plant. Results evidenced the pros and cons of the two plants. The “traditional” plant ensures a higher continuity of services, but also higher operational costs. The reverse-flow reactor-based plant exhibits lower operational costs, but a higher number of protection levels are needed to obtain a similar level of out-of-service. The quantification of risks and benefits allows the stakeholders to deal with a complete picture of the behavior of the plants, fostering a more effective decision-making process. With reference to the case under study and the relevant operational conditions, the regenerative system was demonstrated to be more suitable to treat lean mixtures: in terms of time losses following potential failures the two technologies are comparable (Fixed bed

  14. Continuous Wavelet Transform, a powerful alternative to Derivative Spectrophotometry in analysis of binary and ternary mixtures: A comparative study.

    Science.gov (United States)

    Elzanfaly, Eman S; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2015-12-05

    A comparative study was established between two signal processing techniques showing the theoretical algorithm for each method and making a comparison between them to indicate the advantages and limitations. The methods under study are Numerical Differentiation (ND) and Continuous Wavelet Transform (CWT). These methods were studied as spectrophotometric resolution tools for simultaneous analysis of binary and ternary mixtures. To present the comparison, the two methods were applied for the resolution of Bisoprolol (BIS) and Hydrochlorothiazide (HCT) in their binary mixture and for the analysis of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) as an example for ternary mixtures. By comparing the results in laboratory prepared mixtures, it was proven that CWT technique is more efficient and advantageous in analysis of mixtures with severe overlapped spectra than ND. The CWT was applied for quantitative determination of the drugs in their pharmaceutical formulations and validated according to the ICH guidelines where accuracy, precision, repeatability and robustness were found to be within the acceptable limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation.

    Science.gov (United States)

    Sanahuja, Solange; Upadhyay, Rutuja; Briesen, Heiko; Chen, Jianshe

    2017-08-01

    "Oral" tribology has become a new paradigm in food texture studies to understand complex texture attributes, such as creaminess, oiliness, and astringency, which could not be successfully characterized by traditional texture analysis nor by rheology. Stick-slip effects resulting from intermittent sliding motion during kinetic friction of oral mucosa could constitute an additional determining factor of sensory perception where traditional friction coefficient values and their Stribeck regimes fail in predicting different lubricant (food bolus and saliva) behaviors. It was hypothesized that the observed jagged behavior of most sliding force curves are due to stick-slip effects and depend on test velocity, normal load, surface roughness as well as lubricant type. Therefore, different measurement set-ups were investigated: sliding velocities from 0.01 to 40 mm/s, loads of 0.5 and 2.5 N as well as a smooth and a textured silicone contact surface. Moreover, dry contact measurements were compared to model food systems, such as water, oil, and oil-in-water emulsions. Spectral analysis permitted to extract the distribution of stick-slip magnitudes for specific wave numbers, characterizing the occurrence of jagged force peaks per unit sliding distance, similar to frequencies per unit time. The spectral features were affected by all the above mentioned tested factors. Stick-slip created vibration frequencies in the range of those detected by oral mechanoreceptors (0.3-400 Hz). The study thus provides a new insight into the use of tribology in food psychophysics. Dynamic spectral analysis has been applied for the first time to the force-displacement curves in "oral" tribology. Analyzing the stick-slip phenomenon in the dynamic friction provides new information that is generally overlooked or confused with machine noise and which may help to understand friction-related sensory attributes. This approach allows us to differentiate samples that have similar friction coefficient

  16. On the construction of a new stellar classification template library for the LAMOST spectral analysis pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Peng; Luo, Ali; Li, Yinbi; Tu, Liangping; Wang, Fengfei; Zhang, Jiannan; Chen, Xiaoyan; Hou, Wen; Kong, Xiao; Wu, Yue; Zuo, Fang; Yi, Zhenping; Zhao, Yongheng; Chen, Jianjun; Du, Bing; Guo, Yanxin; Ren, Juanjuan [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Pan, Jingchang; Jiang, Bin; Liu, Jie, E-mail: lal@nao.cas.cn, E-mail: weipeng@nao.cas.cn [School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai 264209 (China); and others

    2014-05-01

    The LAMOST spectral analysis pipeline, called the 1D pipeline, aims to classify and measure the spectra observed in the LAMOST survey. Through this pipeline, the observed stellar spectra are classified into different subclasses by matching with template spectra. Consequently, the performance of the stellar classification greatly depends on the quality of the template spectra. In this paper, we construct a new LAMOST stellar spectral classification template library, which is supposed to improve the precision and credibility of the present LAMOST stellar classification. About one million spectra are selected from LAMOST Data Release One to construct the new stellar templates, and they are gathered in 233 groups by two criteria: (1) pseudo g – r colors obtained by convolving the LAMOST spectra with the Sloan Digital Sky Survey ugriz filter response curve, and (2) the stellar subclass given by the LAMOST pipeline. In each group, the template spectra are constructed using three steps. (1) Outliers are excluded using the Local Outlier Probabilities algorithm, and then the principal component analysis method is applied to the remaining spectra of each group. About 5% of the one million spectra are ruled out as outliers. (2) All remaining spectra are reconstructed using the first principal components of each group. (3) The weighted average spectrum is used as the template spectrum in each group. Using the previous 3 steps, we initially obtain 216 stellar template spectra. We visually inspect all template spectra, and 29 spectra are abandoned due to low spectral quality. Furthermore, the MK classification for the remaining 187 template spectra is manually determined by comparing with 3 template libraries. Meanwhile, 10 template spectra whose subclass is difficult to determine are abandoned. Finally, we obtain a new template library containing 183 LAMOST template spectra with 61 different MK classes by combining it with the current library.

  17. Spectral analysis of IGR J01572-7259 during its 2016 outburst

    Science.gov (United States)

    La Palombara, N.; Esposito, P.; Mereghetti, S.; Pintore, F.; Sidoli, L.; Tiengo, A.

    2018-03-01

    We report on the results of the XMM-Newton observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux f ˜ 10-10 erg cm-2 s-1, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period Pspin = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies, we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disc provides a reliable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.

  18. Emission spectral analysis of nickel-base superalloys with fixed time intergration technique

    International Nuclear Information System (INIS)

    Okochi, Haruno; Takahashi, Katsuyuki; Suzuki, Shunichi; Sudo, Emiko

    1980-01-01

    Simultaneous determination of multielements (C, B, Mo, Ta, Co, Fe, Mn, Cr, Nb, Cu, Ti, Zr, and Al) in nickel-base superalloys (Ni: 68 -- 76%) was performed by emission spectral analysis. At first, samples which had various nickel contents (ni: 68 -- 76%) were prepared by using JAERI R9, nickel and other metals (Fe, Co, or Cr). It was confirmed that in the internal standard method (Ni II 227.73 nm), analytical values of all the elements examined decreased with a decrease of the integration time (ca. 3.9 -- 4.6 s), that is, an increase of the nickel content. On the other hand, according to the fixed time integration method, elements except for C, Mo, and Cr were not interfered within the range of nickel contents examined. A series of nickel-base binary alloys (Al, Si, Ti, Cr, Mn, Fe, Co, Nb, Mo, and W series) were prepared by high frequency induction melting and the centrifugal casting method and formulae for correcting interferences with near spectral lines were obtained. Various synthetic samples were prepared and analysed by this method. The equations of calibration curves were derived from the data for standard samples (JAERI R1 -- R6, NBS 1189, 1203 -- 1205, and B.S. 600B) by curve fitting with orthogonal polynomials using a computer. For the assessment of this method studied, the F-test was performed by comparison of variances of both analytical values of standard and synthetic samples. The surfaces of specimens were polished with a belt grinder using No. 80 of alumina or silicon carbide endless-paper. The preburn period and integration one were decided at 5 and 6 s respectively. A few standard samples which gave worse reproducibility in emission spectral analysis was investigated with an optical microscope and an electron probe X-ray microanalyser. (author)

  19. Validation of spectral methods for the seismic analysis of multi-supported structures

    International Nuclear Information System (INIS)

    Viola, B.

    1999-01-01

    There are many methodologies for the seismic analysis of buildings. When a seism occurs, structures such piping systems in nuclear power plants are subjected to motions that may be different at each support point. Therefore it is necessary to develop methods that take into account the multi-supported effect. In a first time, a bibliography analysis on the different methods that exist has been carried out. The aim was to find a particular method applicable to the study of piping systems. The second step of this work consisted in developing a program that may be used to test and make comparisons on different selected methods. So spectral methods have the advantage to give an estimation of the maximum values for strain in the structure, in reduced calculation time. The time history analysis is used as the reference for the tests. (author)

  20. Two Step Procedure Using a 1-D Slab Spectral Geometry in a Pebble Bed Reactor Core Analysis

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Kim, Kang Seog; Noh, Jae Man; Joo, Hyung Kook

    2005-01-01

    A strong spectral interaction between the core and the reflector has been one of the main concerns in the analysis of pebble bed reactor cores. To resolve this problem, VSOP adopted iteration between the spectrum calculation in a spectral zone and the global core calculation. In VSOP, the whole problem domain is divided into many spectral zones in which the fine group spectrum is calculated using bucklings for fast groups and albedos for thermal groups from the global core calculation. The resulting spectrum in each spectral zone is used to generate broad group cross sections of the spectral zone for the global core calculation. In this paper, we demonstrate a two step procedure in a pebble bed reactor core analysis. In the first step, we generate equivalent cross sections from a 1-D slab spectral geometry model with the help of the equivalence theory. The equivalent cross sections generated in this way include the effect of the spectral interaction between the core and the reflector. In the second step, we perform a diffusion calculation using the equivalent cross sections generated in the first step. A simple benchmark problem derived from the PMBR-400 Reactor was introduced to verify this approach. We compared the two step solutions with the Monte Carlo (MC) solutions for the problem

  1. Thermodynamic analysis of refrigerant mixtures for possible replacements for CFCs by an algorithm compiling property data

    International Nuclear Information System (INIS)

    Arcaklioglu, Erol; Cavusoglu, Abdullah; Erisen, Ali

    2006-01-01

    In this study, we formed an algorithm to find refrigerant mixtures of equal volumetric cooling capacity (VCC) when compared to CFC based refrigerants in vapor compression refrigeration systems. To achieve this aim the point properties of the refrigerants are obtained from REFPROP where appropriate. We used replacement mixture ratios-of varying mass percentages-suggested by various authors along with our newly formed mixture ratios. In other words, we tried to see the effect of changing mass percentages of the suggested (i.e. in the literature) replacement refrigerants on the VCC of the cooling system. Secondly, we used this algorithm to calculate the coefficient of performance (COP) of the same refrigeration system. This mechanism has provided us the ability to compare the COP of the suggested refrigerant mixtures and our newly formed mixture ratios with the conventional CFC based ones. According to our results, for R12 R290/R600a (56/44) mixture, for R22 R32/R125/R134a (32.5/5/62.5) mixture, and for R502 R32/R125/R134a (43/5/52) mixture are appropriate and can be used as replacements

  2. Recognizing stationary and locomotion activities using combinational of spectral analysis with statistical descriptors features

    Science.gov (United States)

    Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.

  3. Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra

    Directory of Open Access Journals (Sweden)

    M. Ern

    2009-01-01

    Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights. Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves. Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.

  4. Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra

    Directory of Open Access Journals (Sweden)

    M. Ern

    2009-01-01

    Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights.

    Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves.

    Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.

  5. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    Science.gov (United States)

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  6. Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.

    Science.gov (United States)

    Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J

    2014-06-01

    Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  8. COMBINED ANALYSIS OF IMAGES AND SPECTRAL ENERGY DISTRIBUTIONS OF TAURUS PROTOSTARS

    International Nuclear Information System (INIS)

    Gramajo, Luciana V.; Gomez, Mercedes; Whitney, Barbara A.; Robitaille, Thomas P.

    2010-01-01

    We present an analysis of spectral energy distributions (SEDs), near- and mid-infrared images, and Spitzer spectra of eight embedded Class I/II objects in the Taurus-Auriga molecular cloud. The initial model for each source was chosen using the grid of young stellar objects (YSOs) and SED fitting tool of Robitaille et al. Then the models were refined using the radiative transfer code of Whitney et al. to fit both the spectra and the infrared images of these objects. In general, our models agree with previous published analyses. However, our combined models should provide more reliable determinations of the physical and geometrical parameters since they are derived from SEDs, including the Spitzer spectra, covering the complete spectral range; and high-resolution near-infrared and Spitzer IRAC images. The combination of SED and image modeling better constrains the different components (central source, disk, envelope) of the YSOs. Our derived luminosities are higher, on average, than previous estimates because we account for the viewing angles (usually nearly edge-on) of most of the sources. Our analysis suggests that the standard rotating collapsing protostar model with disks and bipolar cavities works well for the analyzed sample of objects in the Taurus molecular cloud.

  9. Research on the strong optical feedback effects based on spectral analysis method

    Science.gov (United States)

    Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo

    2018-01-01

    The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.

  10. Spectral analysis of epicardial 60-lead electrograms in dogs with 4-week-old myocardial infarction.

    Science.gov (United States)

    Hosoya, Y; Ikeda, K; Komatsu, T; Yamaki, M; Kubota, I

    2001-01-01

    There were few studies on the spectral analysis of multiple-lead epicardial electrograms in chronic myocardial infarction. Spectral analysis of multi-lead epicardial electrograms was performed in 6 sham-operated dogs (N group) and 8 dogs with 4-week-old myocardial infarction (MI group). Four weeks after the ligation of left anterior descending coronary artery, fast Fourier transform was performed on 60-lead epicardial electrograms, and then inverse transform was performed on 5 frequency ranges from 0 to 250 Hz. From the QRS onset to QRS offset, the time integration of unsigned value of reconstructed waveform was calculated and displayed as AQRS maps. On 0-25 Hz AQRS map, there was no significant difference between the 2 groups. In the frequency ranges of 25-250 Hz, MI group had significantly smaller AQRS values than N group solely in the infarct zone. It was shown that high frequency potentials (25-250 Hz) within QRS complex were reduced in the infarct zone.

  11. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  12. Analysis of causes of combustible mixture explosions inside production floor areas

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2016-01-01

    Full Text Available The work provides a cause analysis for major industrial explosions and a review of the causes of combustive air-gas mixture generation in a production environment. It has been established that during operation of explosive production facilities, it is process equipment that, as a rule, creates explosive environment inside the floor area. A qualitative method for determination of a potential accident has been reviewed. Analysis of the nature of explosion effect on building structures and equipment has shown that exposions characterised by absence of equipment and building structure disintegration normally have a localized character. It has been identified that during explosions inside process equipment, the largest structural damage occurs in spots hit by equipment debris. Complete destruction of building structures and equipment is caused by explosions inside equipment containing large quantities of combustible products. It has been identified that most explosions are accompanied by partial or total destruction of building structures and equipment. Therefore, measures taken to protect equipment and buildings from explosion effects lack efficiency.

  13. Mixture Analysis and Mammalian Sex Ratio Among Middle Pleistocene Mouflon of Arago Cave, France

    Science.gov (United States)

    Monchot, Hervé

    1999-09-01

    In archaeological studies, it is often important to be able assess sexual dimorphism and sex ratios in populations. Obtaining sex ratio is easy if each individual in the population can be accurately sexed through the use of one more objective variables. But this is often impossible, due to incompleteness of the osteological record. A modern statistical approach to handle this problem is Mixture Analysis using the method of maximum likelihood. It consists of determining how many groups are present in the sample, two in this case, in which proportions they occur, and to estimate the parameters accordingly. This paper shows the use of this method on vertebrate fossil populations in a prehistoric context with implications on prey acquisition by early humans. For instance, the analysis of mouflon bones from Arago cave (Tautavel, France) indicates that there are more females than males in the F layer. According to the ethology of the animal, this indicates that the hunting strategy could be the result of selective choice of the prey. Moreover, we may deduce the presence of Anteneandertalians on the site during spring and summer periods.

  14. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  15. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or

  16. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  17. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

    Directory of Open Access Journals (Sweden)

    Daniel Sousa

    2018-02-01

    Full Text Available Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1 How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2 Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3 How much variability in rock and soil substrate endmembers (EMs present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  18. Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons

    Directory of Open Access Journals (Sweden)

    D. R. Bowdalo

    2016-07-01

    Full Text Available Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb–Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1–5 months. This spectral methodology can be applied to a range of model–measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs.

  19. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)

    2016-03-25

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  20. Digital signal processing and spectral analysis for scientists concepts and applications

    CERN Document Server

    Alessio, Silvia Maria

    2016-01-01

    This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the ne...

  1. Flaw location and characterization in anisotropic materials by ultrasonic spectral analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Simpson, W.A.; Lewis, D.K.

    1978-01-01

    A method of quantitatively determining size and location of flaws in anisotropic materials such as stainless steel welds is described. In previous work, it was shown that spectral analysis of a broad band ultrasonic pulse scattered from a defect can be used to determine size and orientation in isotropic materials if the velocity of sound in the material is known. In an anisotropic structural material (stainless steel weld, centrifugal cast pipe), the velocity (both shear and longitudinal) is direction-dependent. When anisotropy is not taken into account, defect location and defect size estimation is misjudged. It will be shown that the effect of this structural variation in materials must be considered to obtain the correct size and location of defects by frequency analysis. A theoretical calculation, including anisotropy, of the scattered field from defects will also be presented

  2. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  3. Statistical learning method in regression analysis of simulated positron spectral data

    International Nuclear Information System (INIS)

    Avdic, S. Dz.

    2005-01-01

    Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)

  4. Spectral analysis of stellar light curves by means of neural networks

    Science.gov (United States)

    Tagliaferri, R.; Ciaramella, A.; Milano, L.; Barone, F.; Longo, G.

    1999-06-01

    Periodicity analysis of unevenly collected data is a relevant issue in several scientific fields. In astrophysics, for example, we have to find the fundamental period of light or radial velocity curves which are unevenly sampled observations of stars. Classical spectral analysis methods are unsatisfactory to solve the problem. In this paper we present a neural network based estimator system which performs well the frequency extraction in unevenly sampled signals. It uses an unsupervised Hebbian nonlinear neural algorithm to extract, from the interpolated signal, the principal components which, in turn, are used by the MUSIC frequency estimator algorithm to extract the frequencies. The neural network is tolerant to noise and works well also with few points in the sequence. We benchmark the system on synthetic and real signals with the Periodogram and with the Cramer-Rao lower bound. This work was been partially supported by IIASS, by MURST 40\\% and by the Italian Space Agency.

  5. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  6. A spectral power analysis of driving behavior changes during the transition from nondistraction to distraction.

    Science.gov (United States)

    Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R

    2017-11-17

    This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing

  7. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    International Nuclear Information System (INIS)

    Archer, B.R.; Bushong, S.C.

    1985-01-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)

  8. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral

  9. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    Science.gov (United States)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of

  10. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    Science.gov (United States)

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains

  11. Analysis on the electron motion in the laser mixture CO/sub 2/-N/sub 2/-He-CO

    Energy Technology Data Exchange (ETDEWEB)

    Braglia, G L [Parma Univ. (Italy). Ist. di Fisica; Parma Univ. (Italy). Ist. di Matematica); Bruzzese, R [Naples Univ. (Italy). Ist. Elettrotecnico; Caraffini, G L [Parma Univ. (Italy). Ist. di Matematica

    1979-06-02

    An analysis of the electron motion in the laser mixture CO/sub 2/-N/sub 2/-He-CO (6:34:54:6) is presented. The transport coefficients are given as a function of E/N. Special attention is turned to the operating characteristics of the laser mixture. The results obtained from the Boltzmann equation are tested by the Monte-Carlo technique for E/N=1.5 10/sup -16/ and 5.0 10/sup -16/ (V cm/sup 2/).

  12. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Science.gov (United States)

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Improved target detection and bearing estimation utilizing fast orthogonal search for real-time spectral analysis

    International Nuclear Information System (INIS)

    Osman, Abdalla; El-Sheimy, Naser; Nourledin, Aboelamgd; Theriault, Jim; Campbell, Scott

    2009-01-01

    The problem of target detection and tracking in the ocean environment has attracted considerable attention due to its importance in military and civilian applications. Sonobuoys are one of the capable passive sonar systems used in underwater target detection. Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The frequency resolution introduced by current techniques is limited which affects the accuracy of target detection and bearing estimation at a relatively low signal-to-noise ratio (SNR). This research investigates the development of a bearing estimation method using fast orthogonal search (FOS) for enhanced spectral estimation. FOS is employed in this research in order to improve both target detection and bearing estimation in the case of low SNR inputs. The proposed methods were tested using simulated data developed for two different scenarios under different underwater environmental conditions. The results show that the proposed method is capable of enhancing the accuracy for target detection as well as bearing estimation especially in cases of a very low SNR

  14. Damage Detection of Refractory Based on Principle Component Analysis and Gaussian Mixture Model

    Directory of Open Access Journals (Sweden)

    Changming Liu

    2018-01-01

    Full Text Available Acoustic emission (AE technique is a common approach to identify the damage of the refractories; however, there is a complex problem since there are as many as fifteen involved parameters, which calls for effective data processing and classification algorithms to reduce the level of complexity. In this paper, experiments involving three-point bending tests of refractories were conducted and AE signals were collected. A new data processing method of merging the similar parameters in the description of the damage and reducing the dimension was developed. By means of the principle component analysis (PCA for dimension reduction, the fifteen related parameters can be reduced to two parameters. The parameters were the linear combinations of the fifteen original parameters and taken as the indexes for damage classification. Based on the proposed approach, the Gaussian mixture model was integrated with the Bayesian information criterion to group the AE signals into two damage categories, which accounted for 99% of all damage. Electronic microscope scanning of the refractories verified the two types of damage.

  15. Thriving on Pressure: A Factor Mixture Analysis of Sport Performers' Responses to Competitive Encounters.

    Science.gov (United States)

    Brown, Daniel J; Arnold, Rachel; Standage, Martyn; Fletcher, David

    2017-12-01

    Although considerable research exists on performers' responses to sporting encounters, little is known about thriving in sport contexts. The current study examined if distinct response patterns existed between sport performers who thrived in competitive encounters compared with those who did not. Participants were 535 sport performers (134 women; M age  = 23.60 years, SD age  = 8.08; M competing  = 11.84 years, SD competing  = 7.11). Results of factor mixture analysis supported a four-profile solution comprising a thriving group (n = 146), a low-functioning group (n = 38), and two groups characterized by scores marginally above (n = 131) and below (n = 209) the sample mean. Profile membership was found to be predicted by personal enablers (viz., personal resilient qualities, psychological skills use) and process variables (viz., basic psychological need satisfaction and frustration, challenge appraisal). This examination of thriving in sport performers offers significant implications for research and practice.

  16. Analysis of power and cooling cogeneration using ammonia-water mixture

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Goekmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2010-01-01

    Development of innovative thermodynamic cycles is important for the efficient utilization of low-temperature heat sources such as solar, geothermal and waste heat sources. This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia-water mixture as the working fluid and produces power and cooling simultaneously. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using solar or geothermal energy. A thermodynamic study of power and cooling cogeneration is presented. The performance of the cycle for a range of boiler pressures, ammonia concentrations and isentropic turbine efficiencies are studied to find out the sensitivities of net work, amount of cooling and effective efficiencies. The roles of rectifier and superheater on the cycle performance are investigated. The cycle heat source temperature is varied between 90-170 o C and the maximum effective first law and exergy efficiencies for an absorber temperature of 30 o C are calculated as 20% and 72%, respectively. The turbine exit quality of the cycle for different boiler exit scenarios shows that turbine exit quality decreases when the absorber temperature decreases.

  17. Forecasting Antarctic Sea Ice Concentrations Using Results of Temporal Mixture Analysis

    Science.gov (United States)

    Chi, Junhwa; Kim, Hyun-Cheol

    2016-06-01

    Sea ice concentration (SIC) data acquired by passive microwave sensors at daily temporal frequencies over extended areas provide seasonal characteristics of sea ice dynamics and play a key role as an indicator of global climate trends; however, it is typically challenging to study long-term time series. Of the various advanced remote sensing techniques that address this issue, temporal mixture analysis (TMA) methods are often used to investigate the temporal characteristics of environmental factors, including SICs in the case of the present study. This study aims to forecast daily SICs for one year using a combination of TMA and time series modeling in two stages. First, we identify temporally meaningful sea ice signatures, referred to as temporal endmembers, using machine learning algorithms, and then we decompose each pixel into a linear combination of temporal endmembers. Using these corresponding fractional abundances of endmembers, we apply a autoregressive model that generally fits all Antarctic SIC data for 1979 to 2013 to forecast SIC values for 2014. We compare our results using the proposed approach based on daily SIC data reconstructed from real fractional abundances derived from a pixel unmixing method and temporal endmember signatures. The proposed method successfully forecasts new fractional abundance values, and the resulting images are qualitatively and quantitatively similar to the reference data.

  18. Effect of spark plug and fuel injector location on mixture stratification in a GDI engine - A CFD analysis

    Science.gov (United States)

    Saw, O. P.; Mallikarjuna, J. M.

    2017-09-01

    The mixture preparation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, with a late fuel injection strategy, piston top surface is designed in such a way that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In addition, in these engines, location of spark-plug and fuel injector, fuel injection pressure and timing are also important to create a combustible mixture near the spark plug. Therefore, understanding the mixture formation under the influence of the location of spark plug and fuel injector is very essential for the optimization of the engine parameters. In this study, an attempt is made to understand the effect of spark plug and fuel injector location on the mixture preparation in a four-stroke, four-valve and wall-guided GDI engine operating under a stratified condition by using computational fluid dynamics (CFD) analysis. All the CFD simulations are carried out at an engine speed of 2000 rev/min., and compression ratio of 10.6, at an overall equivalence ratio (ER) of about 0.65. The fuel injection and spark timings are maintained at 605 and 710 CADs respectively. Finally, it is concluded that, combination of central spark plug and side fuel injector results in better combustion and performance.

  19. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    Science.gov (United States)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  20. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  1. Electroencephalogram Similarity Analysis Using Temporal and Spectral Dynamics Analysis for Propofol and Desflurane Induced Unconsciousness

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2018-01-01

    Full Text Available Important information about the state dynamics of the brain during anesthesia is unraveled by Electroencephalogram (EEG approaches. Patterns that are observed through EEG related to neural circuit mechanism under different molecular targets dependent anesthetics have recently attracted much attention. Propofol, a Gamma-amino butyric acid, is known with evidently increasing alpha oscillation. Desflurane shares the same receptor action and should be similar to propofol. To explore their dynamics, EEG under routine surgery level anesthetic depth is analyzed using multitaper spectral method from two groups: propofol (n = 28 and desflurane (n = 23. The time-varying spectrum comparison was undertaken to characterize their properties. Results show that both of the agents are dominated by slow and alpha waves. Especially, for increased alpha band feature, propofol unconsciousness shows maximum power at about 10 Hz (mean ± SD; frequency: 10.2 ± 1.4 Hz; peak power, −14.0 ± 1.6 dB, while it is approximate about 8 Hz (mean ± SD; frequency: 8.3 ± 1.3 Hz; peak power, −13.8 ± 1.6 dB for desflurane with significantly lower frequency-resolved spectra for this band. In addition, the mean power of propofol is much higher from alpha to gamma band, including slow oscillation than that of desflurane. The patterns might give us an EEG biomarker for specific anesthetic. This study suggests that both of the anesthetics exhibit similar spectral dynamics, which could provide insight into some common neural circuit mechanism. However, differences between them also indicate their uniqueness where relevant.

  2. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2016-09-05

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these \\'shaped like\\' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  3. Account of spectral dependence of instrumental factor in quantitative X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Pershin, N.V.; Mosichev, V.I.

    1990-01-01

    A new method for calibration of X-ray fluorescence spectrometers using scanning spectrometric channel is proposed. The method is based on a separate account of matrix and instrumental effects and needs no calibration standards for the element analysed. For calibration in the whole spectral range of XRS (0.03-1.0 nm) it is sufficient to have from 10 to 15 pure element emitters made of most wide spread elements. The method provides rapid development of quantitative analysis for the elements which are not provided with standard samples and preparation of pure element emitters for which is impossible or problematic. The practical verification of the method was made by analysing a set of 146 standard samples covering a wide group of alloys. The mean relative error of the method was 3-5 % in an analytical range of 0.1-3.0 wt %

  4. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Zhang, Jiayu; Achten, Eric; Serrai, Hacene

    2016-01-01

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these 'shaped like' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  5. Spectral analysis of the SN approximations in a slab with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Ourique, L.E.; Pazos, R.P.; Vilhena, M.T.; Barros, R.C.

    2003-01-01

    The spectral analysis of the S N approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S N approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S N transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S N transport matrix has only real eigenvalues while for other values the S N relation between the eigenvalues of S N transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)

  6. Self-adjoint extensions and spectral analysis in the Calogero problem

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2010-01-01

    In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential αx -2 . Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some 'paradoxes' inherent in the 'naive' quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.

  7. Spectral analysis of the S{sub N} approximations in a slab with quadratically anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ourique, L.E.; Pazos, R.P. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil)]. E-mail: ourique@pucrs.br; rpp@pucrs.br; Vilhena, M.T. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Escola de Engenharia); vilhena@cesup.ufrgs.br; Barros, R.C. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: dickbarros@uol.com.br

    2003-07-01

    The spectral analysis of the S{sub N} approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S{sub N} approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S{sub N} transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S{sub N} transport matrix has only real eigenvalues while for other values the S{sub N} relation between the eigenvalues of S{sub N} transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)

  8. Spectral Analysis by XANES Reveals that GPNMB Influences the Chemical Composition of Intact Melanosomes

    Energy Technology Data Exchange (ETDEWEB)

    T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson

    2011-12-31

    GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.

  9. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  10. Frequency-dependant homogenized properties of composite using spectral analysis method

    International Nuclear Information System (INIS)

    Ben Amor, M; Ben Ghozlen, M H; Lanceleur, P

    2010-01-01

    An inverse procedure is proposed to determine the material constants of multilayered composites using a spectral analysis homogenization method. Recursive process gives interfacial displacement perpendicular to layers in term of deepness. A fast-Fourier transform (FFT) procedure has been used in order to extract the wave numbers propagating in the multilayer. The upper frequency bound of this homogenization domain is estimated. Inside the homogenization domain, we discover a maximum of three planes waves susceptible to propagate in the medium. A consistent algorithm is adopted to develop an inverse procedure for the determination of the materials constants of multidirectional composite. The extracted wave numbers are used as the inputs for the procedure. The outputs are the elastic constants of multidirectional composite. Using this method, the frequency dependent effective elastic constants are obtained and example for [0/90] composites is given.

  11. Correlation among the spectral parameters for qualitative analysis of Alpha Liquid Scintillation Spectra

    International Nuclear Information System (INIS)

    Bhade, Sonali P.D.; Reddy, P.J.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    The potential use of alpha LSC technique is nowadays recognized widely. However the energy resolution of α particle is poor with liquid scintillators. Moreover, α peak positions are influenced by the level of quenching in the samples. To overcome this problem, a thorough study of all concerned parameters that affect spectral information was carried out. The parameters such as peak's centroid, quenching, % resolution, energy of α particle were investigated and the correlation between them was evaluated. In the present work, the qualitative analysis of α spectrum was carried out. Correlations between the energy of α particle and various parameters affecting the peaks of the collected spectra with respect to quenching were established. These correlations will be useful for the deconvolution studies of composite samples containing different alpha radionuclides

  12. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  13. Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Carl

    2004-12-01

    Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.

  14. Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics

    International Nuclear Information System (INIS)

    Sunde, Carl

    2004-12-01

    Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant

  15. Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil.

    Science.gov (United States)

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S

    2010-07-01

    This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.

  16. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  17. Gamma-ray spectral analysis software designed for extreme ease of use or unattended operation

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Romine, W.A.

    1993-07-01

    We are developing isotopic analysis software in the Safeguards Technology Program that advances usability in two complimentary directions. The first direction is towards Graphical User Interfaces (GUIs) for very easy. to use applications. The second is toward a minimal user interface, but with additional features for unattended or fully automatic applications. We are developing a GUI-based spectral viewing engine that is currently running in the MS-Windows environment. We intend to use this core application to provide the common user interface for our data analysis, and subsequently data acquisition and instrument control applications. We are also investigating sets of cases where the MGA methodology produces reduced accuracy results, incorrect errors, or incorrect results. We try to determine the root cause for the problem and extend the methodology or replace portions of the Methodology so that MGA will function over a wider domain of analysis without requiring intervention and analysis by a spectroscopist. This effort is necessary for applications where such intervention is inconvenient or impractical

  18. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models

    International Nuclear Information System (INIS)

    Teng, S.; Tebby, C.; Barcellini-Couget, S.; De Sousa, G.; Brochot, C.; Rahmani, R.; Pery, A.R.R.

    2016-01-01

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.

  19. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models

    Energy Technology Data Exchange (ETDEWEB)

    Teng, S.; Tebby, C. [Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Barcellini-Couget, S. [ODESIA Neosciences, Sophia Antipolis, 400 route des chappes, 06903 Sophia Antipolis (France); De Sousa, G. [INRA, ToxAlim, 400 route des Chappes, BP, 167 06903 Sophia Antipolis, Cedex (France); Brochot, C. [Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Rahmani, R. [INRA, ToxAlim, 400 route des Chappes, BP, 167 06903 Sophia Antipolis, Cedex (France); Pery, A.R.R., E-mail: alexandre.pery@agroparistech.fr [AgroParisTech, UMR 1402 INRA-AgroParisTech Ecosys, 78850 Thiverval Grignon (France); INRA, UMR 1402 INRA-AgroParisTech Ecosys, 78850 Thiverval Grignon (France)

    2016-08-15

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.

  20. Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures.

    Science.gov (United States)

    Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K

    2012-10-10

    Conventional confirmatory biochemical tests used in the forensic analysis of body fluid traces found at a crime scene are destructive and not universal. Recently, we reported on the application of near-infrared (NIR) Raman microspectroscopy for non-destructive confirmatory identification of pure blood, saliva, semen, vaginal fluid and sweat. Here we expand the method to include dry mixtures of semen and blood. A classification algorithm was developed for differentiating pure body fluids and their mixtures. The classification methodology is based on an effective combination of Support Vector Machine (SVM) regression (data selection) and SVM Discriminant Analysis of preprocessed experimental Raman spectra collected using an automatic mapping of the sample. This extensive cross-validation of the obtained results demonstrated that the detection limit of the minor contributor is as low as a few percent. The developed methodology can be further expanded to any binary mixture of complex solutions, including but not limited to mixtures of other body fluids. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    Science.gov (United States)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.

  2. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.

    Science.gov (United States)

    Kartasalo, Kimmo; Pölönen, Risto-Pekka; Ojala, Marisa; Rasku, Jyrki; Lekkala, Jukka; Aalto-Setälä, Katriina; Kallio, Pasi

    2015-10-26

    Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CytoSpectre, a versatile, easy

  3. Analysis of correlation between pediatric asthma exacerbation and exposure to pollutant mixtures with association rule mining.

    Science.gov (United States)

    Toti, Giulia; Vilalta, Ricardo; Lindner, Peggy; Lefer, Barry; Macias, Charles; Price, Daniel

    2016-11-01

    Traditional studies on effects of outdoor pollution on asthma have been criticized for questionable statistical validity and inefficacy in exploring the effects of multiple air pollutants, alone and in combination. Association rule mining (ARM), a method easily interpretable and suitable for the analysis of the effects of multiple exposures, could be of use, but the traditional interest metrics of support and confidence need to be substituted with metrics that focus on risk variations caused by different exposures. We present an ARM-based methodology that produces rules associated with relevant odds ratios and limits the number of final rules even at very low support levels (0.5%), thanks to post-pruning criteria that limit rule redundancy and control for statistical significance. The methodology has been applied to a case-crossover study to explore the effects of multiple air pollutants on risk of asthma in pediatric subjects. We identified 27 rules with interesting odds ratio among more than 10,000 having the required support. The only rule including only one chemical is exposure to ozone on the previous day of the reported asthma attack (OR=1.14). 26 combinatory rules highlight the limitations of air quality policies based on single pollutant thresholds and suggest that exposure to mixtures of chemicals is more harmful, with odds ratio as high as 1.54 (associated with the combination day0 SO 2 , day0 NO, day0 NO 2 , day1 PM). The proposed method can be used to analyze risk variations caused by single and multiple exposures. The method is reliable and requires fewer assumptions on the data than parametric approaches. Rules including more than one pollutant highlight interactions that deserve further investigation, while helping to limit the search field. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  5. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    Science.gov (United States)

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of the Spectral Efficiency of Frequency-Encoded OCDMA Systems With Incoherent Sources

    Science.gov (United States)

    Rochette, Martin; Ayotte, Simon; Rusch, Leslie A.

    2005-04-01

    This paper presents the spectral efficiency of frequency-encoded (FE) optical code-division multiple-access (OCDMA) systems with incoherent sources. The spectral efficiency of five code families compatible with FE-OCDMA is calculated as a function of the number of users. Analytical equations valid in the limiting case of Gaussian noise are also developed for the bit-error rate and the spectral efficiency. Among the code families considered, the modified quadratic congruence code leads to the maximum achievable spectral efficiency.

  7. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    Science.gov (United States)

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  8. Evidence of Chromosomal Instability in Prostate Cancer Determined by Spectral Karyotyping (SKY and Interphase FISH Analysis

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2001-01-01

    Full Text Available The way in which cytogenetic aberrations develop in prostate cancer (Cap is poorly understood. Spectral karyotype (SKY analysis of Cap cell lines has shown that they have unstable karyotypes and also have features associated with chromosomal instability (CIN. To accurately determine the incidence of de novo structural and numerical aberrations in vitro in Cap, we performed SKY analysis of three independent clones derived from one representative cell line, DU145. The frequent generation of new chromosomal rearrangements and a wide variation in the number of structural aberrations within two to five passages suggested that this cell line exhibited some of the features associated with a CIN phenotype. To study numerical cell-to-cell variation, chromosome 8 aneusomy was assessed in the LNCaP, DU145, and PC-3 cell lines and a patient cohort of 15 Cap primary tumors by interphase fluorescence in situ hybridization (FISH. This analysis showed that a high frequency of numerical alteration affecting chromosome 8 was present in both in vitro and in Cap tissues. In comparison to normal controls, the patient cohort had a statistically significant (P<.05, greater frequency of cells with one and three centromere 8 copies. These data suggest that a CIN-like process may be contributing towards the generation of de novo numerical and structural chromosome abnormalities in Cap.

  9. Spectral Analysis of Dynamic PET Studies: A Review of 20 Years of Method Developments and Applications.

    Science.gov (United States)

    Veronese, Mattia; Rizzo, Gaia; Bertoldo, Alessandra; Turkheimer, Federico E

    2016-01-01

    In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion whereas the measured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating that it is a very flexible and robust method for PET data analysis. Differently from the most common PET quantification approaches that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without defining any specific model configuration and has demonstrated very good sensitivity to the underlying kinetics. This characteristic makes it useful as an investigative tool especially for the analysis of novel PET tracers. The purpose of this work is to offer an overview of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field.

  10. Use of EDTA for potentiometric back titration of rare earths and analysis of their mixtures

    International Nuclear Information System (INIS)

    Zayed, M.A.; Rizk, M.S.; Khalifa, H.; Omer, W.F.

    1987-01-01

    Advantage was taken of the stoichiometric reaction between mercury(II), rare earths, alkaline earths, heavy metal ions and EDTA in urotropine buffered media to determine rare earths by back-titration of excess EDTA in the course of estimating a variety of lanthanides or analysing their binary mixture with one of the alkaline earth metals by selective control of pH; or analysing their binary mixtures with heavy metals using fluoride as a good masking agent for rare earths; or analysing their ternary mixtures with both heavy and alkaline earth metals in two steps, one by selective control of pH and the other by masking of rare earths with fluoride at lower pH to estimate the heavy metal. The procedures given are simple, rapid and extremely reliable. 19 refs. (author)

  11. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  12. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    Science.gov (United States)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  13. Physicochemical analysis of cryocrystallization processes of aqueous solutions of yttrium, barium, copper nitrates and their mixtures

    International Nuclear Information System (INIS)

    Kulakov, A.B.; Mozhaev, A.P.; Tesker, A.M.; Churagulov, B.R.

    1992-01-01

    Products of fast hardening of aqueous solutions of different concentration of yttrium, barium copper nitrates and their mixtures including mixture of three nitrates with molar ratio equal to 1:2:3 used for synthesis of YBa 2 Cu 3 O 7-x HTSC by cryochemical technique, in liquid nitrogen, are studied using low-temperature, differential thermal and X-ray phase analyses. Aqueous solutions of barium, copper, yttrium nitrates are shown to belong to three different classes which differ in behaviour at fast cooling and subsequent slow heating. Cryogranulate at YBa 2 Cu 2 O 7-x synthesis using cryochemical technique represents mixture of X-ray amorphous Ba(NO 3 ) 2 , crystalline Cu(NO 3 ) 2 ·6H 2 O and ice, as well as, supercooled aqueous solution of yttrium and copper nitrates

  14. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Robert Bedoić

    2018-06-01

    Full Text Available The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporator, compression discharge temperature and coefficient of performance, are investigated. Also, the energy characteristics of a heat pump using different refrigerants for the same heating capacity and the same temperature regime are compared. The following refrigerants are considered: two zeotropic mixtures, R407C and R409A, a mixture with some zeotropic characteristics, R410A, and an azeotropic mixture, R507A.

  15. [Increased sympathetic activity assessed by spectral analysis of heart rate variability in patients with CRPS I].

    Science.gov (United States)

    Schulze, J; Troeger, C

    2010-02-01

    The complex regional pain syndrome type I (CRPS I) is a painful neuropathic disorder with an antecedent disproportionate trauma leading to spontaneous pain, hyperalgesia, impaired motor function, swelling, changes in sweating and vascular abnormalities without nerve injury. Whether this syndrome is the result of central or peripheral autonomic dysfunction is still a matter of debate. The purpose of this study was to determine the activity of the sympathetic nervous system in patients with CRPS I by power spectral analysis of heart rate variability. This is a pilot study on 6 patients (mean age 50 years; 4 female, 2 male) diagnosed as suffering from CRPS I and 6 age-matched healthy controls. In the pain-free interval and after taking rest for 5 min, 512 subsequent heart beats were obtained with an ECG standard lead II in the supine and then sitting position. Using an autoregressive model, power spectral densities were calculated for the following frequency bands: CRPS I compared to the healthy controls in the supine position (LF/HF=4.01 vs. LF/HF=1.27; p=0.041). The application of stress by changing to the sitting position even increased that difference (6.72 vs. 1.93). Our results support the hypothesis that the pathogenesis of the early stage CRPS I might be related to an increased sympathetic activity. By assessing the autonomic influence on the heart rate variability in CRPS I patients we could also conclude that this disturbance occurs rather at a central level. Georg Thieme Verlag KG Stuttgart, New York.

  16. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models.

    Science.gov (United States)

    Teng, S; Tebby, C; Barcellini-Couget, S; De Sousa, G; Brochot, C; Rahmani, R; Pery, A R R

    2016-08-15

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro - in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    Science.gov (United States)

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  18. A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models.

    Science.gov (United States)

    Fronczyk, Kassandra; Kottas, Athanasios

    2014-03-01

    We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature. © 2013, The International Biometric Society.

  19. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    Science.gov (United States)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  20. [Experimental Methods and Result Analysis of a Variety of Spectral Reflectance Properties of the Thin Oil Film].

    Science.gov (United States)

    Ye, Zhou; Liu, Li; Wei, Chuan-xin; Gu, Qun; An, Ping-ao; Zhao, Yue-jiao; Yin, Da-yi

    2015-06-01

    In order to analysis the oil spill situation based on the obtained data in airborne aerial work, it's needed to get the spectral reflectance characteristics of the oil film of different oils and thickness as support and to select the appropriate operating band. An experiment is set up to measure the reflectance spectroscopy from ultraviolet to near-infrared for the film of five target samples, which means petrol, diesel, lubricating oil, kerosene and fossil, using spectral measurement device. The result is compared with the reflectance spectra of water in the same experimental environment, which shows that the spectral reflection characteristics of the oil film are related to the thickness and the type of the oil film. In case of the same thickness, the spectral reflectance curve of different types of film is far different, and for the same type of film, the spectral reflectance curve changes accordingly with the change of film thickness, therefore in terms of the single film, different film thickness can be distinguished by reflectance curves. It also shows that in terms of the same film thickness, the reflectance of diesel, kerosene, lubricants reaches peak around 380 nm wavelength, obviously different from the reflectance of water, and that the reflectance of crude oil is far less than that of water in more than 340 nm wavelength, and the obtained reflection spectrum can be used to distinguish between different types of oil film to some extent. The experiment covers main types of spilled oil, with data comprehensively covering commonly used detect spectral bands, and quantitative description of the spectral reflectance properties of film. It provides comprehensive theoretical and data support for the selection of airborne oil spill detection working band and the detection and analysis of water-surface oil spill.

  1. Process and device of elementary and chemical analysis of a sample through a spectral analysis of the secondary electron energies

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene.

    1975-01-01

    The present invention relates to a method of chemical and elementary analysis of samples through a spectral analysis of secondary electrons (Auger electrons) emitted from said sample under a primary monokinetic electron beam concentrated on its surface. Said method is characterized in that the intensity of the primary monokinetic electron beam emitted from an electron gun is modulated at a frequency ω; and in that the secondary electrons of energy E emitted from the sample are then collected. A reference voltage corresponding to the modulation in intensity of the primary electron beam is applied at the input of a phase sensitive detector together with a voltage proportional to the intensity of the flux of said collected secondary electrons to obtain at the output of said detector a voltage proportional to the number of the secondary electrons of energy E. The secondary emission energy spectrum of the sample is then plotted [fr

  2. Field Spectroscopy And Spectral Analysis Of Caribbean Scleractinian Reef Corals And Related Benthic Biota

    Science.gov (United States)

    Torres-Perez, J. L.; Guild, L. S.; Armstrong, R.; Corredor, J. E.; Polanco, R.; Zuluaga-Montero, A. B.

    2013-05-01

    Coral reefs are highly heterogenic ecosystems with a plethora of photosynthetic organisms forming most of the benthic communities. Usually coral reef benthos is a composite of reef corals, different groups of algae, seagrasses, sandy bottoms, dead rubble, and even mangrove forests living in a relatively small area. The remote characterization of these important tropical ecosystems represents a challenge to scientists, particularly due to the similarity of the spectral signatures among some of these components. As such, we examined the similarities and differences between nine Scleractinian Caribbean shallow-water reef corals' spectral reflectance curves. Samples were also collected from each species for pigment analysis using High Performance Liquid Chromatography (HPLC). Reflectance curves were obtained with the aid of a GER-1500 hand-held field spectroradiometer enclosed in an underwater housing. Our findings showed that even though most of the pigmentation was directly related to the relationship of corals with their symbiotic dinoflagellates (zooxanthellae), the presence of other endolithic photosynthetic organisms can also contribute to the light absorption of corals and, hence, the reflectance spectra of each species. Also, the relative contribution of chlorophylls vs. carotenes or xanthophylls depends on the coral species with some species relying more on Chlorophyll a and other species relying on Chlorophyl c2 and Peridinin with a small Chlorophyll a component. Pigments associated with the xanthophyll cycle of dinoflagellates (Diadinoxanthin and Diatoxanthin) were detected in most species. Pigments typical of endolithic organisms such as Zeaxanthin, Fucoxanthin, Violaxanthin and Siphonaxanthin were also detected in some coral species. The influence of major pigments on the reflectance curve was evidenced with a 2nd derivative analysis. This could be used to discriminate among most species. Further, an analysis of the integration of the area under the

  3. An interlaboratory trial on the identification of irradiated spices, herbs, and spice-herb mixtures by thermoluminescence analysis

    International Nuclear Information System (INIS)

    Schreiber, G.A.; Helle, N.; Bögl, K.W.

    1995-01-01

    Thermoluminescence analysis was used in an interlaboratory study to detect irradiation treatment of spices, herbs, and spice-herb mixtures in the dose range used for the reduction of microbial counts. About 3 and 9 months after irradiation, 14 participating laboratories determined the thermoluminescence of mineral contaminants that had been isolated from coded samples. A total of 18 different products (6 spices, 6 herbs, and 6 spice-herb mixtures) were examined. The method gave correct identifications as irradiated or nonirradiated in 99.1% of 317 samples. Only 3 irradiated samples were not correctly identified. This result was achieved by integration of whole glow curves. By glow curve analysis, a temperature range could be determined in which differentiation between irradiated and nonirradiated samples was even better than on the basis of the total integral values

  4. Enkephalins: Raman spectral analysis and comparison as function of pH 1-13

    DEFF Research Database (Denmark)

    Abdali, Salim; Refstrup, Pia; Nielsen, O.F.

    2003-01-01

    Raman spectral studies are carried out on Leu- and Met-enkephalin as a function of the pH value in the range of 1-13. The molecules are dissolved in KCI solvent and the pH is controlled at each value. Spectral analyses reveal the dependence of the structural conformation on the pH, and a comparis...

  5. Complex method for angular-spectral analysis of volume phase diffraction gratings recorded in photopolymers

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek, Petr; Květoň, M.; Richter, I.

    2016-01-01

    Roč. 11, February (2016), č. článku 16009. ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Photopolymers * diffraction gratings * angular-spectral maps * spectral selectivity * angular selectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.975, year: 2016

  6. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    Science.gov (United States)

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples

  7. Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle

    International Nuclear Information System (INIS)

    Dong, Bensi; Xu, Guoqiang; Cai, Yi; Li, Haiwang

    2014-01-01

    Highlights: • Using mixtures leads to an efficiency increase compared to pure fluids. • MM/MDM (0.4/0.6) produces optimal cycle efficiency. • Lower temperature gradients of heat source and sink give rise to higher cycle efficiency. • Condensation step shows more effect than evaporation step on cycle efficiency. - Abstract: The paper investigates the performance of high-temperature Organic Rankine cycle (ORC) with zeotropic mixtures as working fluid. A numerical model, which has been validated by comparing with the published data, is developed to predict the first law thermal efficiency of the cycle. The effects of mixture concentration, temperature gradient of the heat transfer fluid, pinch temperature difference, pressure ratio, and condensation pressure on the first law efficiency are presented firstly using a purposely designed program, and then the suitable conditions for the described ORC are suggested based on the results of the simulation. It is demonstrated that the use of zeotropic mixtures leads to an efficiency increase compared to pure fluids

  8. Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2015-01-01

    Our two-parameter corresponding states model for liquid densities and compressibilities has been extended to more pure ionic liquids and to their mixtures with one or two solvents. A total of 19 new group contributions (5 new cations and 14 new anions) have been obtained for predicting pressure...

  9. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    Science.gov (United States)

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  10. Dual-Mode Measurement and Theoretical Analysis of Evaporation Kinetics of Binary Mixtures

    Science.gov (United States)

    Song, Hanyu; He, Chi-Ruei; Basdeo, Carl; Li, Ji-Qin; Ye, Dezhuang; Kalonia, Devendra; Li, Si-Yu; Fan, Tai-Hsi

    Theoretical and experimental investigations are presented for the precision measurement of evaporation kinetics of binary mixtures using a quartz crystal resonator. A thin layer of light alcohol mixture including a volatile (methanol) and a much less volatile (1-butanol) components is deployed on top of the resonator. The normal or acoustic mode is to detect the moving liquid-vapor interface due to evaporation with a great spatial precision on the order of microns, and simultaneously the shear mode is used for in-situ detection of point viscosity or concentration of the mixture near the resonator. A one-dimensional theoretical model is developed to describe the underlying mass transfer and interfacial transport phenomena. Along with the modeling results, the transient evaporation kinetics, moving interface, and the stratification of viscosity of the liquid mixture during evaporation are simultaneously measured by the impedance response of the shear and longitudinal waves emitted from the resonator. The system can be used to characterize complicated evaporation kinetics involving multi-component fuels. American Chemical Society Petroleum Research Fund, NSF CMMI-0952646.

  11. Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis.

    Science.gov (United States)

    Schulze, H G; Greek, L S; Gorzalka, B B; Bree, A V; Blades, M W; Turner, R F

    1995-02-01

    Identification of individual components in biological mixtures can be a difficult problem regardless of the analytical method employed. In this work, Raman spectroscopy was chosen as a prototype analytical method due to its inherent versatility and applicability to aqueous media, making it useful for the study of biological samples. Artificial neural networks (ANNs) and the classical least-squares (CLS) method were used to identify and quantify the Raman spectra of the small-molecule neurotransmitters and mixtures of such molecules. The transfer functions used by a network, as well as the architecture of a network, played an important role in the ability of the network to identify the Raman spectra of individual neurotransmitters and the Raman spectra of neurotransmitter mixtures. Specifically, networks using sigmoid and hyperbolic tangent transfer functions generalized better from the mixtures in the training data set to those in the testing data sets than networks using sine functions. Networks with connections that permit the local processing of inputs generally performed better than other networks on all the testing data sets. and better than the CLS method of curve fitting, on novel spectra of some neurotransmitters. The CLS method was found to perform well on noisy, shifted, and difference spectra.

  12. Y-STR analysis on DNA mixture samples--results of a collaborative project of the ENFSI DNA Working Group

    DEFF Research Database (Denmark)

    Parson, Walther; Niederstätter, Harald; Lindinger, Alexandra

    2008-01-01

    The ENFSI (European Network of Forensic Science Institutes) DNA Working Group undertook a collaborative project on Y-STR typing of DNA mixture samples that were centrally prepared and thoroughly tested prior to the shipment. Four commercial Y-STR typing kits (Y-Filer, Applied Biosystems, Foster C...... a laboratory-specific optimization process is indicated to reach a comparable sensitivity for the analysis of minute amounts of DNA....

  13. Neutron activation analysis with a deuteron accelerator. Application to the determination of copper in a Cu-Sn mixture

    International Nuclear Information System (INIS)

    Kodia, A.A.

    1976-01-01

    Neutron activation analysis allows a rapid determination of trace elements. It has many applications in vegetal biology, agronomy, animal biology, medicine and industry. This report presents the different devices used (deuteron accelerator, 3 H-Ti/Zr target, NaI(Tl) scintillation counter, Li-drifted Ge detector), the theory of the method and an application to the determination of copper in a copper-mixture [fr

  14. [Analysis of spectral features based on water content of desert vegetation].

    Science.gov (United States)

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  15. Multi-wavelength Spectral Analysis of Ellerman Bombs Observed by FISS and IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: dmd@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)

    2017-04-01

    Ellerman bombs (EBs) are a kind of solar activity that is suggested to occur in the lower solar atmosphere. Recent observations using the Interface Region Imaging Spectrograph (IRIS) show connections between EBs and IRIS bombs (IBs), which imply that EBs might be heated to a much higher temperature (8 × 10{sup 4} K) than previous results. Here we perform a spectral analysis of EBs simultaneously observed by the Fast Imaging Solar Spectrograph and IRIS. The observational results show clear evidence of heating in the lower atmosphere, indicated by the wing enhancement in H α , Ca ii 8542 Å, and Mg ii triplet lines and also by brightenings in images of the 1700 Å and 2832 Å ultraviolet continuum channels. Additionally, the intensity of the Mg ii triplet line is correlated with that of H α when an EB occurs, suggesting the possibility of using the triplet as an alternative way to identify EBs. However, we do not find any signal in IRIS hotter lines (C ii and Si iv). For further analysis, we employ a two-cloud model to fit the two chromospheric lines (H α and Ca ii 8542 Å) simultaneously, and obtain a temperature enhancement of 2300 K for a strong EB. This temperature is among the highest of previous modeling results, albeit still insufficient to produce IB signatures at ultraviolet wavelengths.

  16. Determination of baroreflex sensitivity during the modified Oxford maneuver by trigonometric regressive spectral analysis.

    Directory of Open Access Journals (Sweden)

    Julia Gasch

    Full Text Available BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary and under pharmacological stimulation (non-stationary using the algorithm of trigonometric regressive spectral analysis (TRS. Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system.

  17. Design and Analysis of Self-Healing Tree-Based Hybrid Spectral Amplitude Coding OCDMA System

    Directory of Open Access Journals (Sweden)

    Waqas A. Imtiaz

    2017-01-01

    Full Text Available This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON. Enhanced multidiagonal (EMD code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.

  18. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets

    Science.gov (United States)

    Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.

    2017-08-01

    The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.

  19. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jodie [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Berntsen, Hanne Friis; Zimmer, Karin Elisabeth [Norwegian University of Life Sciences, Oslo (Norway); Frizzell, Caroline [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Verhaegen, Steven; Ropstad, Erik [Norwegian University of Life Sciences, Oslo (Norway); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom)

    2016-03-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of

  20. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    International Nuclear Information System (INIS)

    Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth; Frizzell, Caroline; Verhaegen, Steven; Ropstad, Erik; Connolly, Lisa

    2016-01-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of