WorldWideScience

Sample records for spectral mixing formulations

  1. Local normal vector field formulation for periodic scattering problems formulated in the spectral domain

    NARCIS (Netherlands)

    van Beurden, M.C.; Setija, Irwan

    2017-01-01

    We present two adapted formulations, one tailored to isotropic media and one for general anisotropic media, of the normal vector field framework previously introduced to improve convergence near arbitrarily shaped material interfaces in spectral simulation methods for periodic scattering geometries.

  2. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  3. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jens Stissing; Sigmund, Ole

    2007-01-01

    given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation...... for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several...... two-dimensional acoustic-structure problems are optimized in order to verify the proposed method....

  4. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  5. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  6. Colour mixing based on daylight

    International Nuclear Information System (INIS)

    Meyn, Jan-Peter

    2008-01-01

    Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large region of the colour space can be covered by mixing three primary colours derived from lossless spectral decomposition of daylight. These primaries are specified by hue, saturation and luminosity. Duality of additive and subtractive mixing is formulated quantitatively. Experimental demonstrations of calculated results are suggested. This paper is intended for undergraduate optics courses, and advanced interdisciplinary seminars on arts and physics

  7. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pontaza, J.P.; Reddy, J.N.

    2003-01-01

    We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier-Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L 2 least-squares functional and L 2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier-Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation

  8. Mixed finite-element formulations in piezoelectricity and flexoelectricity.

    Science.gov (United States)

    Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos

    2016-06-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.

  9. PREPARATION OF ISONIAZID AS DRY POWDER FORMULATIONS FOR INHALATION BY PHYSICAL MIXING AND SPRAY DRYING

    Directory of Open Access Journals (Sweden)

    SOMCHAI SAWATDEE

    2006-01-01

    Full Text Available The main purpose of this study is to develop isoniazid as dry powder aerosol for delivery to the lower airways and to study the susceptibility of M. bovis and M. tuberculosis to the formulationsstudied. Isoniazid was formulated with trehalose, mannose and lactose by physical mixing and spray drying techniques. All formulations were evaluated for delivery efficiency and stability.Susceptibility tests of Mycobacterium species to the drug formulations were carried out. Isoniazid mixed with fine trehalose, micronised mannose or fine lactose produced the formulations whichgave fine particle fraction ( 0.05.

  10. Polarisation independent bi-directional four wave mixing for mid span spectral inversion

    DEFF Research Database (Denmark)

    Clausen, Anders; Buxens, Alvaro A.; Poulsen, Henrik Nørskov

    1999-01-01

    Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB.......Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB....

  11. The influence of high shear mixing on ternary dry powder inhaler formulations.

    Science.gov (United States)

    Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina

    2017-12-20

    The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  13. Effects of Formulated Glyphosate and Adjuvant Tank Mixes on Atomization from Aerial Application Flat Fan Nozzles

    Science.gov (United States)

    2012-01-01

    Bradley K. Fritz,1 W. Clint Hoffmann,1 and W. E. Bagley2 Effects of Formulated Glyphosate and Adjuvant Tank Mixes on Atomization from Aerial...Application Flat Fan Nozzles REFERENCE: Fritz, Bradley K., Hoffmann, W. Clint, and Bagley, W. E., “Effects of Formulated Glyphosate and Adjuvant Tank Mixes on...factors. Twelve spray-solution treatments were evaluated, ten of which contained a formulated glyphosate product and nine of these con- tained an

  14. Mixed-Precision Spectral Deferred Correction: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  15. Nonlinear spectral mixing theory to model multispectral signatures

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C. [Los Alamos National Lab., NM (United States). Astrophysics and Radiation Measurements Group

    1996-02-01

    Nonlinear spectral mixing occurs due to multiple reflections and transmissions between discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an energy conserving computational method used in thermal engineering and it models nonlinear spectral mixing realistically and accurately. In contrast to the radiative transfer method the radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact location, orientation and shape) such as leaves and includes mutual shading between them. An analytic radiosity-based scattering model for vegetation was developed and used to compute vegetation indices for various configurations. The leaf reflectance and transmittance was modeled using the PROSPECT model for various amounts of water, chlorophyll and variable leaf structure. The soil background was modeled using SOILSPEC with a linear mixture of reflectances of sand, clay and peat. A neural network and a geometry based retrieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat TM channels were used. The authors used an empirical function to compute the signal-to-noise ratio of a retrieved quantity.

  16. Performance of mixed formulations for the particle finite element method in soil mechanics problems

    Science.gov (United States)

    Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio

    2017-07-01

    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.

  17. Spectrally resolved four-wave mixing in semiconductors: Influence of inhomogeneous broadening

    DEFF Research Database (Denmark)

    Erland, J.; Pantke, K.-H.; Mizeikis, V.

    1994-01-01

    We study the influence of inhomogeneous broadening on results obtained from spectrally resolved transient four-wave mixing. In particular, we study the case where more resonances are coherently excited, leading to polarization interference or quantum beats, depending on the microscopic nature of ...

  18. Space-time coupled spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pontaza, J.P.; Reddy, J.N.

    2004-01-01

    We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least

  19. Optimization of the formulation and technology of pearl millet based 'ready-to-reconstitute' kheer mix powder.

    Science.gov (United States)

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur

    2014-10-01

    The objective of this study was to optimize the process of manufacturing instant kheer mix based on pearl millet instead of rice. Dairy whitener, pearl millet and powdered sugar were the responses studied by employing the 3-factor Central Composite Rotatable Design. The formulation with 15 g sugar, 30 g dairy whitener and 20 g pearl millet was found suitable for obtaining dry kheer mix. The analyses were based on scores of consistency, cohesiveness, viscosity and overall acceptability. The reconstituted product from the formulated kheer mix had an overall acceptability score of 7.66 and desirability index of 0.7663. The moisture, fat, protein, carbohydrate and ash contents of the dry mix product were 2.8, 4.38, 5.84, 85.88 and 1.1 %, respectively.

  20. Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect

    Science.gov (United States)

    Tóth, Balázs

    2018-03-01

    Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.

  1. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    Science.gov (United States)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the

  2. Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits

    Science.gov (United States)

    Kleinfeld, D.; Mehta, S. B.

    The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.

  3. Mechanical Properties Studies of Components Formulation for Mixing Process Contain of Polypropylene, Polyethylene, and Aluminium Powder

    Science.gov (United States)

    Hamsi, A.; Dinzi, R.

    2017-03-01

    Certain powder and others components can induce toxic reactions if not properly handled in the mixing stage. During handling, the small particles can become airborne and be trapped in the lungs, another concern is inhomogeneities in the mixing process. Uniform quantities of the particles of the components are needed in all portions of the mixture. This paper reports the results of mechanical properties studies of mixing three components formulation for mixing process. Contain of Polyethylene (PE), Polyprophylene (PP) and Aluminium Powder. Powder mixer, Autodesk mold flow and computer based on excell method was carried out to study the influence of each formulation component on the flow %, PE 20% and Aluminium powder 2%. Macroscopic optic and macro photo was carried out to identify the homogenity of mixing, tensile test for identify the strength of component after mixing. Finally the optimal tensile test with composition PP 785,PE 20% and Aluminium powder 2% at speed 52 rpm, temperature 1500C, the tensile strength 20,92 N/mm2. At temperature 1600C, speed 100 rpm the optimum tensile strength 17,91 N/mm2. The result of simulation autodesk mold flow adviser the filling time 6 seconds. Otherwise on manual hot hidraulic press the time of filling 10 seconds.

  4. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    Science.gov (United States)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  5. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-20

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  6. Efficient Basis Formulation for (1+1-Dimensional SU(2 Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Directory of Open Access Journals (Sweden)

    Mari Carmen Bañuls

    2017-11-01

    Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  7. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Science.gov (United States)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  8. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    International Nuclear Information System (INIS)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl

    2017-01-01

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  9. Flow Formulations for Curriculum-based Course Timetabling

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias

    2017-01-01

    lower bound on one data instance in the benchmark data set from the second international timetabling competition. Regarding upper bounds, the formulation based on the minimum cost flow problem performs better on average than other mixed integer programming approaches for the CTT.......In this paper we present two mixed-integer programming formulations for the Curriculum based Course Timetabling Problem (CTT). We show that the formulations contain underlying network structures by dividing the CTT into two separate models and then connect the two models using flow formulation...... techniques. The first mixed-integer programming formulation is based on an underlying minimum cost flow problem, which decreases the number of integer variables significantly and improves the performance compared to an intuitive mixed-integer programming formulation. The second formulation is based...

  10. Microscopic description of rotational spectra including band-mixing. 1. Formulation in a microscopic basis

    International Nuclear Information System (INIS)

    Brut, F.; Jang, S.

    1982-05-01

    Within the framework of the projection theory of collective motion, a microscopic description of the rotational energy with band-mixing is formulated using a method based on an inverse power perturbation expansion in a quantity related to the expectation value of the operator Jsub(y)sup(2). The reliability of the present formulation is discussed in relation to the difference between the individual wave functions obtained from the variational equations which are established before and after projection. In addition to the various familiar quantities which appear in the phenomenological energy formula, such as the moment of inertia parameter, the decoupling factor and the band-mixing matrix element for ΔK=1, other unfamiliar quantities having the factors with peculiar phases, (-1)sup(J+1)J(J+1), (-1)sup(J+3/2)(J-1/2)(J+1/2)(J+3/2), (-1)sup(J+1/2)(J+1/2)J(J+1), (-1)sup(J)J(J+1)(J-1)(J+2) and [J(J+1)] 2 are obtained. The band-mixing term for ΔK=2 is also new. All these quantities are expressed in terms of two-body interactions and expectation values of the operator Jsub(y)sup(m), where m is an integer, within the framework of particle-hole formalism. The difference between the moment of inertia of an even-even and a neighboring even-odd nucleus, as well as the effect of band-mixing on the moment of inertia are studied. All results are put into the forms so as to facilitate comparisons with the corresponding phenomenological terms and also for further application

  11. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Malcolm J [Los Alamos National Laboratory

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  12. Single and mixed formulations of inoculants with diazotrophic bacteria, under different nitrogen rates and on the paddy rice crop

    Directory of Open Access Journals (Sweden)

    Paula Bianchet

    2013-12-01

    Full Text Available The use of diazotrophic bacteria as a biological input for the production of paddy rice can reduce nitrogen fertilizer applications and contribute to plant development. The use of mixed inoculants’ formulations can increase the efficiency of nitrogen fixation biological process. The objective of this study was to evaluate the effect of single and mixed formulations of inoculants with diazotrophic bacteria on the initial growth of paddy rice plants under different levels of N. The experiment was set in a greenhouse. Treatments consisted of four types of inoculation (no inoculation, inoculation with the isolated AI UDESC 27, inoculation with the isolated FE UDESC 22, and inoculation with the mixed formulation of isolated AI UDESC UDESC 27 and FE UDESC 22; and two levels of mineral nitrogen (30 and 60 mg kg-1 of N. The cultivar used was Epagri 109, which presents late maturity (over 140 days and high yield potential. Treatments were arranged in a factorial design (4 x 2 with five replicates. The experimental design was completely randomized. Inoculation with diazotrophic bacteria reduced by 18% and 26% shoot and root dry matter of rice plants, respectively. Plants also presented lower root area and volume when they were inoculated. There was no significant effect of inoculation and nitrogen rates on the number of leaves and tillers produced per plant or shoot nitrogen accumulation. The results showed that the isolated used in this work were not effective to stimulate shoot and root growth of cv Epagri 109, regardless of formulation type and rate of N.

  13. Normal form theory and spectral sequences

    OpenAIRE

    Sanders, Jan A.

    2003-01-01

    The concept of unique normal form is formulated in terms of a spectral sequence. As an illustration of this technique some results of Baider and Churchill concerning the normal form of the anharmonic oscillator are reproduced. The aim of this paper is to show that spectral sequences give us a natural framework in which to formulate normal form theory. © 2003 Elsevier Science (USA). All rights reserved.

  14. Characterization of Spectral Magnification based on Four-Wave Mixing in Nonlinear Fibre for Advanced Modulation Formats

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Corcoran, B.; Galili, Michael

    2017-01-01

    We characterize the performance of 4× spectral magnification based on four-wave mixing in optimized nonlinear fibres, for 4/8/16-QAM formats, and report >19-nm operational bandwidth. Predominantly OSNR penalties of ~1 dB per bit/QAM-symbol from aberrations non-intrinsic to time lenses are observed....

  15. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.

    Science.gov (United States)

    Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has

  16. Petrov-Galerkin mixed formulations for bidimensional elasticity

    International Nuclear Information System (INIS)

    Toledo, E.M.; Loula, A.F.D.; Guerreiro, J.N.C.

    1989-10-01

    A new formulation for two-dimensional elasticity in stress and displacements is presented. Consistently adding to the Galerkin classical formulation residuals forms of constitutive and equilibrium equations, the original saddle point is transformed into a minimization problem without any restrictions. We also propose a stress post processing technique using both equilibrium and constitutive equations. Numerical analysis error estimates and numerical results are presented confirming the predicted rates of convergence. (A.C.A.S.) [pt

  17. Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber: reducing impact of dispersion fluctuations

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We model the spectral quantum-mechanical purity of heralded single photons from a photon-pair source based on nondegenerate spontaneous four-wave mixing taking the impact of distributed dispersion fluctuations into account. The considered photon-pair-generation scheme utilizes pump-pulse walk...

  18. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  19. Highly nutritional cookies based on a novel bean-cassava-wheat flour mix formulation

    Directory of Open Access Journals (Sweden)

    Diana Carolina Cabal G.

    2014-12-01

    Full Text Available Nutritional deficiencies are common among children in Colombia, and innovative strategies and supplements are needed in order to effectively address this problem. For example, in Colombia, when measured as ferritin, iron deposits are deficient in 58.2% of children between two and eight years of age. If a formulation is made with highly nutritional ingredients, cookies will have the potential to be used as supplements in children's diets because of their simple manufacturing process, long shelf life, and high acceptability. This study aimed to develop biofortified cookies, based on a bean-cassava-wheat flour mix, for children. The methodology grouped several studies in order to define the best treatment for the production of bean flour and the flour mix to produce cookies, prioritizing the nutritional content and the microbiological and sensorial quality. A production procedure for bean-based flour, suitable for the production of cookies with adequate nutritional, sensorial and microbiological characteristics was obtained. Additionally, the rheological characteristics of the proposed flour mixes permitted other possible uses for the bread-making industry, substituting cereal flours with flours with higher micronutrient contents. However, further studies are needed to determine the nutritional effects of the regular ingestion of biofortified cookies on children.

  20. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  1. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    International Nuclear Information System (INIS)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well

  2. Integrating a logarithmic-strain based hyper-elastic formulation into a three-field mixed finite element formulation to deal with incompressibility in finite-strain elasto-plasticity

    International Nuclear Information System (INIS)

    Dina Al Akhrass; Bruchon, Julien; Drapier, Sylvain; Fayolle, Sebastien

    2014-01-01

    This paper deals with the treatment of incompressibility in solid mechanics in finite-strain elasto-plasticity. A finite-strain model proposed by Miehe, Apel and Lambrecht, which is based on a logarithmic strain measure and its work-conjugate stress tensor is chosen. Its main interest is that it allows for the adoption of standard constitutive models established in a small-strain framework. This model is extended to take into account the plastic incompressibility constraint intrinsically. In that purpose, an extension of this model to a three-field mixed finite element formulation is proposed, involving displacements, a strain variable and pressure as nodal variables with respect to standard finite element. Numerical examples of finite-strain problems are presented to assess the performance of the formulation. To conclude, an industrial case for which the classical under-integrated elements fail is considered. (authors)

  3. Spectral results for mixed problems and fractional elliptic operators,

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2015-01-01

    In the first part of the paper we show Weyl type spectral asymptotic formulas for pseudodifferential operators P a of order 2a, with type and factorization index a  ∈ R +, restricted to compact sets with boundary; this includes fractional powers of the Laplace operator. The domain...... and the regularity of eigenfunctions is described. In the second part, we apply this in a study of realizations A χ,Σ+ in L 2( Ω ) of mixed problems for a second-order strongly elliptic symmetric differential operator A on a bounded smooth set Ω ⊂ R n; here the boundary ∂Ω=Σ is partioned smoothly into Σ......=Σ_∪Σ+, the Dirichlet condition γ0u=0 is imposed on Σ_, and a Neumann or Robin condition χu=0 is imposed on Σ+. It is shown that the Dirichlet-to-Neumann operator Pγ,χ is principally of type 1/2 with factorization index 1/2, relative to Σ+. The above theory allows a detailed description of D (Aχ,Σ_+) with singular...

  4. Digital mammography: Mixed feature neural network with spectral entropy decision for detection of microcalcifications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, B. [Univ. of South Florida, Tampa, FL (United States)]|[Nanjing Univ. of Posts and Telecommunications (China). Dept. of Telecommunication Engineering; Qian, W.; Clarke, L.P. [Univ. of South Florida, Tampa, FL (United States)

    1996-10-01

    A computationally efficient mixed feature based neural network (MFNN) is proposed for the detection of microcalcification clusters (MCC`s) in digitized mammograms. The MFNN employs features computed in both the spatial and spectral domain and uses spectral entropy as a decision parameter. Backpropagation with Kalman Filtering (KF) is employed to allow more efficient network training as required for evaluation of different features, input images, and related error analysis. A previously reported, wavelet-based image-enhancement method is also employed to enhance microcalcification clusters for improved detection. The relative performance of the MFNN for both the raw and enhanced images is evaluated using a common image database of 30 digitized mammograms, with 20 images containing 21 biopsy proven MCC`s and ten normal cases. The computed sensitivity (true positive (TP) detection rate) was 90.1% with an average low false positive (FP) detection of 0.71 MCCs/image for the enhanced images using a modified k-fold validation error estimation technique. The corresponding computed sensitivity for the raw images was reduced to 81.4% and with 0.59 FP`s MCCs/image. A relative comparison to an earlier neural network (NN) design, using only spatially related features, suggests the importance of the addition of spectral domain features when the raw image data are analyzed.

  5. Digital mammography: Mixed feature neural network with spectral entropy decision for detection of microcalcifications

    International Nuclear Information System (INIS)

    Zheng, B.

    1996-01-01

    A computationally efficient mixed feature based neural network (MFNN) is proposed for the detection of microcalcification clusters (MCC's) in digitized mammograms. The MFNN employs features computed in both the spatial and spectral domain and uses spectral entropy as a decision parameter. Backpropagation with Kalman Filtering (KF) is employed to allow more efficient network training as required for evaluation of different features, input images, and related error analysis. A previously reported, wavelet-based image-enhancement method is also employed to enhance microcalcification clusters for improved detection. The relative performance of the MFNN for both the raw and enhanced images is evaluated using a common image database of 30 digitized mammograms, with 20 images containing 21 biopsy proven MCC's and ten normal cases. The computed sensitivity (true positive (TP) detection rate) was 90.1% with an average low false positive (FP) detection of 0.71 MCCs/image for the enhanced images using a modified k-fold validation error estimation technique. The corresponding computed sensitivity for the raw images was reduced to 81.4% and with 0.59 FP's MCCs/image. A relative comparison to an earlier neural network (NN) design, using only spatially related features, suggests the importance of the addition of spectral domain features when the raw image data are analyzed

  6. Mixed Higher Order Variational Model for Image Recovery

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2014-01-01

    Full Text Available A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR and restoration quality.

  7. Multiple excitation of supports - Part 1. Formulation

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.; Barbosa, H.J.C.

    1980-12-01

    The formulation and the solution of a simple specific problem of support movement are presented. The formulation is extended to the general case of infinitesimal elasticity where the approximated solutions are obtained by the variational formulation with spatial discretization by Finite Element Method. Finally, the present usual numerical techniques for the treatment of the resulting ordinary differential equations system are discused: Direct integration, Modal overlap, Spectral response. (E.G.) [pt

  8. Mixed spectral finite elements and perfectly matched layers for elastic waves in time domain; Elements finis mixtes spectraux et couches absorbantes parfaitement adaptees pour la propagation d'ondes elastiques en regime transitoire

    Energy Technology Data Exchange (ETDEWEB)

    Fauqueux, S.

    2003-02-01

    We consider the propagation of elastic waves in unbounded domains. A new formulation of the linear elasticity system as an H (div) - L{sup 2} system enables us to use the 'mixed spectral finite element method', This new method is based on the definition of new spaces of approximation and the use of mass-lumping. It leads to an explicit scheme with reduced storage and provides the same solution as the spectral finite element method. Then, we model unbounded domains by using Perfectly Matched Layers. Instabilities in the PML in the case of particular 2D elastic media are pointed out and investigated. The numerical method is validated and tested in the case of acoustic and elastic realistic models. A plane wave analysis gives results about numerical dispersion and shows that meshes adapted to the physical and geometrical properties of the media are more accurate than the others. Then, an extension of the method to fluid-solid coupling is introduced for 2D seismic propagation. (author)

  9. From diets to foods: using linear programming to formulate a nutritious, minimum-cost porridge mix for children aged 1 to 2 years.

    Science.gov (United States)

    De Carvalho, Irene Stuart Torrié; Granfeldt, Yvonne; Dejmek, Petr; Håkansson, Andreas

    2015-03-01

    Linear programming has been used extensively as a tool for nutritional recommendations. Extending the methodology to food formulation presents new challenges, since not all combinations of nutritious ingredients will produce an acceptable food. Furthermore, it would help in implementation and in ensuring the feasibility of the suggested recommendations. To extend the previously used linear programming methodology from diet optimization to food formulation using consistency constraints. In addition, to exemplify usability using the case of a porridge mix formulation for emergency situations in rural Mozambique. The linear programming method was extended with a consistency constraint based on previously published empirical studies on swelling of starch in soft porridges. The new method was exemplified using the formulation of a nutritious, minimum-cost porridge mix for children aged 1 to 2 years for use as a complete relief food, based primarily on local ingredients, in rural Mozambique. A nutritious porridge fulfilling the consistency constraints was found; however, the minimum cost was unfeasible with local ingredients only. This illustrates the challenges in formulating nutritious yet economically feasible foods from local ingredients. The high cost was caused by the high cost of mineral-rich foods. A nutritious, low-cost porridge that fulfills the consistency constraints was obtained by including supplements of zinc and calcium salts as ingredients. The optimizations were successful in fulfilling all constraints and provided a feasible porridge, showing that the extended constrained linear programming methodology provides a systematic tool for designing nutritious foods.

  10. Kit systems for granulated decontamination formulations

    Science.gov (United States)

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  11. Formulation and Validation of an Efficient Computational Model for a Dilute, Settling Suspension Undergoing Rotational Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; Crawford, Nathan C.; Fischer, Paul F.

    2017-04-11

    Designing processing equipment for the mixing of settling suspensions is a challenging problem. Achieving low-cost mixing is especially difficult for the application of slowly reacting suspended solids because the cost of impeller power consumption becomes quite high due to the long reaction times (batch mode) or due to large-volume reactors (continuous mode). Further, the usual scale-up metrics for mixing, e.g., constant tip speed and constant power per volume, do not apply well for mixing of suspensions. As an alternative, computational fluid dynamics (CFD) can be useful for analyzing mixing at multiple scales and determining appropriate mixer designs and operating parameters. We developed a mixture model to describe the hydrodynamics of a settling cellulose suspension. The suspension motion is represented as a single velocity field in a computationally efficient Eulerian framework. The solids are represented by a scalar volume-fraction field that undergoes transport due to particle diffusion, settling, fluid advection, and shear stress. A settling model and a viscosity model, both functions of volume fraction, were selected to fit experimental settling and viscosity data, respectively. Simulations were performed with the open-source Nek5000 CFD program, which is based on the high-order spectral-finite-element method. Simulations were performed for the cellulose suspension undergoing mixing in a laboratory-scale vane mixer. The settled-bed heights predicted by the simulations were in semi-quantitative agreement with experimental observations. Further, the simulation results were in quantitative agreement with experimentally obtained torque and mixing-rate data, including a characteristic torque bifurcation. In future work, we plan to couple this CFD model with a reaction-kinetics model for the enzymatic digestion of cellulose, allowing us to predict enzymatic digestion performance for various mixing intensities and novel reactor designs.

  12. Formulation of the energetic spectral distribution of in pile neutron flux (energies greater than a few hundred electron volts) (1963); Formulation des repartitions spectrales energetiques de flux neutroniques en pile (energies superieures a quelques centaines d'electrons-volts) (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In the present report an expression is deduced for the spectral distribution of flux of over a few hundred electron volts; it is valid for most cases of thermal neutron reactors. This expression is: {psi}(E) = K [{psi}{sub o}(E) + h {psi}{sub e}(E)] {psi}{sub o}(E) is the so-called 'homogeneous' constituent of the flux; it corresponds approximately to the case of an infinite homogeneous medium; it is of the type: Y(V - E) e{sup (b{radical}}{sup E)}/E + Y(E-V) F E{sup {upsilon}} e{sup -{beta}}{sup E} The parameters V and F are such that {psi}{sub o}(E) and its derivative are continuous at the junction energy V. {psi}{sub e}(E) is the 'heterogeneous' constituent of the flux; it is of the type: E{sup {upsilon}} e{sup -{beta}}{sup E}. The various parameters of {psi}(E) are on the one hand characteristic of the nature of the reactor moderator, and on the other hand determined by a resonant flux measurement and one, or possibly two, measurements using a fast neutron threshold detector. We have been led furthermore to define an expression for the threshold reaction section which is more exact than the conventional transition function. (author) [French] Il est etabli, dans le present rapport, une formulation {psi}(E) des repartitions spectrales de flux au-dessus de quelques centaines d'electron-s volts, valable dans la majeure partie des cas de piles dites a neutrons thermiques. Cette formulation s'exprime: {psi}(E) = K [{psi}{sub o}(E) + h {psi}{sub e}(E)] {psi}{sub o}(E) est la composante dite 'homogene' du flux; elle correspond a peu pres au cas d'un milieu infini homogene; elle est du type: Y(V - E) e{sup (b{radical}}{sup E)}/E + Y(E-V) F E{sup {upsilon}} e{sup -{beta}}{sup E} les parametres V et F sont tels que {psi}{sub o}(E) et sa derivee soient continues a l'energie de jonction V. {psi}{sub e} est la composante dite 'heterogene' du flux ; elle est du type: E{sup {upsilon}} e{sup -{beta}}{sup E}. Les differents parametres de {psi}(E) sont, d'une part

  13. Performance Evaluation of Abrasive Grinding Wheel Formulated ...

    African Journals Online (AJOL)

    This paper presents a study on the formulation and manufacture of abrasive grinding wheel using locally formulated silicon carbide abrasive grains. Six local raw material substitutes were identified through pilot study and with the initial mix of the identified materials, a systematic search for an optimal formulation of silicon ...

  14. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muldoon, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Stephen Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backlund, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Roy Eugene [Teledyne Brown Engineering, Huntsville, AL (United States)

    2017-09-01

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor- ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.

  15. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  16. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  17. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  18. Strategic Generation with Conjectured Transmission Price Responses in a Mixed Transmission Pricing System. Part 1. Formulation

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Rijkers, F.A.M.

    2004-05-01

    The conjectured supply function (CSF) model calculates an oligopolistic equilibrium among competing generating companies (GenCos), presuming that GenCos anticipate that rival firms will react to price increases by expanding their sales at an assumed rate. The CSF model is generalized here to include each generator's conjectures concerning how the price of transmission services (point-to-point service and constrained interfaces) will be affected by the amount of those services that the generator demands. This generalization reflects the market reality that large producers will anticipate that they can favorably affect transmission prices by their actions. The model simulates oligopolistic competition among generators while simultaneously representing a mixed transmission pricing system. This mixed system includes fixed transmission tariffs, congestion-based pricing of physical transmission constraints (represented as a linearized dc load flow), and auctions of interface capacity in a path-based pricing system. Pricing inefficiencies, such as export fees and no credit for counterflows, can be simulated. The model is formulated as a linear mixed complementarity problem, which enables very large market models to be solved. In the second paper of this two-paper series, the capabilities of the model are illustrated with an application to northwest Europe, where transmission pricing is based on such a mixture of approaches

  19. A spectral/B-spline method for the Navier-Stokes equations in unbounded domains

    CERN Document Server

    Dufresne, L

    2003-01-01

    The numerical method presented in this paper aims at solving the incompressible Navier-Stokes equations in unbounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin approximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the theta and z directions while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the particular analytical behaviors at both end points r=0 and r-> infinity. A modal reduction algorithm has also been implemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme. Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the lo...

  20. On Pythagoras Theorem for Products of Spectral Triples

    OpenAIRE

    D'Andrea, Francesco; Martinetti, Pierre

    2013-01-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some un...

  1. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste

    International Nuclear Information System (INIS)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ''simulants'' for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ''operating window'' limitations. The initial treatability testing demonstrations utilizing these ''simulants'' will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream

  2. Spectral theory and quantum mechanics mathematical foundations of quantum theories, symmetries and introduction to the algebraic formulation

    CERN Document Server

    Moretti, Valter

    2017-01-01

    This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...

  3. Status of the B0(S)-bar {B}0(S) Mixing from QCD Spectral Sum Rules

    Science.gov (United States)

    Narison, Stephan

    2002-07-01

    In this talk, I summarize new results 1 obtained from QCD spectral sum rules (QSSR), on the bag constant parameters entering in the analysis of the B0(s)-bar {B}0(s) mass-differences. Taking the average of the results from the Laplace and moment sum rules, one obtains to order α s: fB√ {hat {B}_B} ˜= (229 ± 55) GeV, fB{s}√ {BB_{s}}/f_B√ {BB} ˜= 1.18 ± 0.03, in units where fπ = 130.7 MeV. Combined with the experimental data on the mass-differences ΔMd,s, one obtains the constraint on the CKM weak mixing angle: |Vts/Vtd|2 ≥ 20.2(1.3). Alternatively, using the weak mixing angle from the analysis of the unitarity triangle and the data on ΔMd, one predicts ΔMs = 18.3(2.1) ps-1 in agreement with the present experimental lower bound and within the reach of Tevatron 2.

  4. Spectral distributions of mixed configurations of identical nucleons in the seniority scheme II. Configuration-seniority scheme

    International Nuclear Information System (INIS)

    Quesne, C.; Spitz, S.

    1978-01-01

    Configuration-seniority spectral distributions as well as fixed seniority and fixed total seniority and parity distributions are studied in detail for mixed configurations of identitical nucleons. The decomposition of any (1+2) -body Hamiltonian into irreducible tensors with respect to the unitary and symplectic groups in each subshell is obtained. Group theoretical methods based on the Wigner-Eckart theorem for the higher unitary groups are used to get analytical expressions for the partial widths of configuration-seniority distributions. During this derivation, various isoscalar factors for the chain SU (2Ω) is contained inSp (2Ω) are determined. Numerical calculations of centroid energies, partial widths, and mixing parameters are performed in the Sn and Pb nuclei with a surface delta and a gaussian interactions. Average ordinary and total seniority breaking is studied. Total seniority space truncations in the ground state region are discussed in the Pb nuclei in connections with various approximation schemes

  5. Granulated decontamination formulations

    Science.gov (United States)

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  6. Optimization and physicochemical characterization of a cationic lipid-phosphatidylcholine mixed emulsion formulated as a highly efficient vehicle that facilitates adenoviral gene transfer

    Directory of Open Access Journals (Sweden)

    Kim SY

    2017-10-01

    Full Text Available Soo-Yeon Kim,1,2 Sang-Jin Lee,2 Jin-Ki Kim,3 Han-Gon Choi,3 Soo-Jeong Lim1 1Department of Bioscience and Bioengineering, Sejong University, Seoul, Kwangjin-gu, Seoul, 2Immunotherapeutics Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, 3College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, Republic of Korea Abstract: Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus–liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1 reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, and 2 optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that

  7. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  8. On Pythagoras Theorem for Products of Spectral Triples

    Science.gov (United States)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  9. Drug utilization review of potassium chloride injection formulations available in a private hospital in kuching, sarawak, malaysia.

    Science.gov (United States)

    Melissa, Mohammad Hirman; Azmi, Sarriff

    2013-07-01

    The concentrated potassium chloride injection is a high-alert medication and replacing it with a pre-mixed formulation can reduce the risks associated with its use. The aim of this study was to determine the clinical characteristics of patients receiving different potassium chloride formulations available at a private institution. The study also assessed the effectiveness and safety of pre-mixed formulations in the correction of hypokalaemia. This was a retrospective observational study consisting of 296 cases using concentrated and pre-mixed potassium chloride injections in 2011 in a private hospital in Kuching, Sarawak, Malaysia. There were 135 (45.6%) cases that received concentrated potassium chloride, and 161 (54.4%) cases that received pre-mixed formulations. The patients' clinical characteristics that were significantly related to the utilization of the different formulations were diagnosis (P < 0.001), potassium serum blood concentration (P < 0.05), and fluid overload risk (P < 0.05). The difference observed for the cases that achieved or maintained normokalaemia was statistically insignificant (P = 0.172). Infusion-related adverse effects were seen more in pre-mixes compared to concentrated formulations (6.8% versus 2.2%, P < 0.05). This study provides insight into the utilization of potassium chloride injections at this specific institution. The results support current recommendations to use pre-mixed formulations whenever possible.

  10. Spectral band discrimination for species observed from hyperspectral remote sensing

    CSIR Research Space (South Africa)

    Dudeni, N

    2009-08-01

    Full Text Available across the spectrum. Spectral matching is often achieved by means of matching algorithms such as the Spectral Angle Mapper (SAM), Spectral information divergence (SID) and mixed measures of SAM and SID using either the tangent or the sine trigonometric...

  11. A Soliton Hierarchy Associated with a Spectral Problem of 2nd Degree in a Spectral Parameter and Its Bi-Hamiltonian Structure

    Directory of Open Access Journals (Sweden)

    Yuqin Yao

    2016-01-01

    Full Text Available Associated with so~(3,R, a new matrix spectral problem of 2nd degree in a spectral parameter is proposed and its corresponding soliton hierarchy is generated within the zero curvature formulation. Bi-Hamiltonian structures of the presented soliton hierarchy are furnished by using the trace identity, and thus, all presented equations possess infinitely commuting many symmetries and conservation laws, which implies their Liouville integrability.

  12. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    Science.gov (United States)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  13. Spectral Analysis of Large Particle Systems

    DEFF Research Database (Denmark)

    Dahlbæk, Jonas

    2017-01-01

    that Schur complements, Feshbach maps and Grushin problems are three sides of the same coin, it seems to be a new observation that the smooth Feshbach method can also be formulated as a Grushin problem. Based on this, an abstract account of the spectral renormalization group is given....

  14. Optical gain and gain suppression of quantum-well lasers with valence band mixing

    International Nuclear Information System (INIS)

    Ahn, D.; Chuang, S.L.

    1990-01-01

    The effects of valence band mixing on the nonlinear gains of quantum-well lasers are studied theoretically. The authors' analysis is based on the multiband effective-mass theory and the density matrix formalism with intraband relaxation taken into account. The gain and the gain-suppression coefficient of a quantum-well laser are calculated from the complex optical susceptibility obtained by the density matrix formulation with the theoretical dipole moments obtained from the multiband effective-mass theory. The calculated gain spectrum shows that there are remarkable differences (both in peak amplitude and spectral shape) between our model with valence band mixing and the conventional parabolic band model. The shape of the gain spectrum calculated by the authors' model becomes more symmetric due to intraband relaxation together with nonparabolic energy dispersions and is closer to the experimental observations when compared with the conventional method using the parabolic band model and the multiband effective-mass calculation without intraband relaxation. Both give quite asymmetric gain spectra. Optical intensity in the GaAs active region is estimated by solving rate equations for the stationary states with nonlinear gain suppression. The authors calculate the mode gain for the resonant mode including the gain suppression, which results in spectral hole burning of the gain spectrum

  15. Intermediate spectral theory and quantum dynamics

    CERN Document Server

    de Oliveira, Cesar R

    2008-01-01

    The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...

  16. Behaviour of Lagrangian triangular mixed fluid finite elements

    Indian Academy of Sciences (India)

    The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a ...

  17. Formulation variables affecting deposition with the Kchaler device, a ...

    African Journals Online (AJOL)

    As a result of current focus on tightening regulatory requirements, it is imperative that reproducibility of the metered dose of drugs be ensured during the formulation, packaging and use. We developed a dry powder inhalation package in our laboratories consisting of formulation mixes, design and a device, KCHALER, ...

  18. Numerical and spectral investigations of novel infinite elements

    International Nuclear Information System (INIS)

    Barai, P.; Harari, I.; Barbonet, P.E.

    1998-01-01

    Exterior problems of time-harmonic acoustics are addressed by a novel infinite element formulation, defined on a bounded computational domain. For two-dimensional configurations with circular interfaces, the infinite element results match Quell both analytical values and those obtained from. other methods like DtN. Along 1uith the numerical performance of this formulation, of considerable interest are its complex-valued eigenvalues. Hence, a spectral analysis of the present scheme is also performed here, using various infinite elements

  19. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  20. In-vitro release of diclofenac diethylammonium from lipid-based formulations.

    Science.gov (United States)

    Parsaee, Siamak; Sarbolouki, Mohammad N; Parnianpour, Mohamad

    2002-07-08

    This article presents the preparation and topical performance of some new lipid-based formulations of diclofenac, namely (a) a diclofenac aqueous gel containing mixed micelles (sodium cholate:egg lecithin molar ratio 0.55); (b) diclofenac lotion that contains soya lecithin, ethanol and buffer; and (c) diclofenac lipogel containing egg lecithin, isopropyl myristate, propylene glycol and ethanol. Gel formulations were prepared using Carbomer 934. Release of diclofenac from all formulations was monitored via dialysis through Spectra/por membrane into phosphate buffer (0.2 M pH=7.4) using a Franz cell. Drug release profile and diffusion coefficients were compared with brand formulation (Geigy's Vlotaren Emulgel). Statistical analysis of data show that the diffusion coefficient of the drug from these formulations rank according to the following order: Diclofenac lotion (D=5.308x10(-7) cm(2)/s) >lipogel (D=2.102 x 10(-7) cm(2)/s) >Voltaren Emulgel (1.518 x 10(-7) cm(2)/s) >aqueous gel mixed micelle (0.966 x 10(-7) cm(2)/s). These results show that diclofenac lotion and lipogel maybe more suitable formulations than the conventional topical dosage form.

  1. On a covariant 2+2 formulation of the initial value problem in general relativity

    International Nuclear Information System (INIS)

    Smallwood, J.

    1980-03-01

    The initial value problems in general relativity are considered from a geometrical standpoint with especial reference to the development of a covariant 2+2 formalism in which space-time is foliated by space-like 2-surfaces under the headings; the Cauchy problem in general relativity, the covariant 3+1 formulation of the Cauchy problem, characteristic and mixed initial value problems, on locally imbedding a family of null hypersurfaces, the 2+2 formalism, the 2+2 formulation of the Cauchy problem, the 2+2 formulation of the characteristic and mixed initial value problems, and a covariant Lagrangian 2+2 formulation. (U.K.)

  2. Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt Objects and Jupiter Trojans

    Science.gov (United States)

    Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian

    2018-04-01

    Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.

  3. Koopmans-Compliant Spectral Functionals for Extended Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Linh Nguyen

    2018-05-01

    Full Text Available Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans’s orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  4. Koopmans-Compliant Spectral Functionals for Extended Systems

    Science.gov (United States)

    Nguyen, Ngoc Linh; Colonna, Nicola; Ferretti, Andrea; Marzari, Nicola

    2018-04-01

    Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans's orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  5. Stability estimates for hp spectral element methods for general ...

    Indian Academy of Sciences (India)

    We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...

  6. ORMEC: a three-dimensional MHD spectral inverse equilibrium code

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Hogan, J.T.

    1986-02-01

    The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that has been developed to calculate three-dimensional MHD equilibria using the inverse spectral method. The fixed boundary formulation, which is based on a variational principle for the spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and compared with the finite difference code BETA developed by Bauer, Betancourt, and Garabedian. Calculations for the Heliotron, Wendelstein VIIA, and Advanced Toroidal Facility (ATF) configurations are performed to establish the accuracy and mesh convergence properties for the spectral method. 16 refs., 13 figs

  7. Estimating Pasture Quality of Fresh Vegetation Based on Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development

    Directory of Open Access Journals (Sweden)

    Rachel Lugassi

    2015-06-01

    Full Text Available The main objective of the present study was to apply a slope-based spectral method to both dry and fresh pasture vegetation. Differences in eight spectral ranges were identified across the near infrared-shortwave infrared (NIR-SWIR that were indicative of changes in chemical properties. Slopes across these ranges were calculated and a partial least squares (PLS analytical model was constructed for the slopes vs. crude protein (CP and neutral detergent fiber (NDF contents. Different datasets with different numbers of fresh/dry samples were constructed to predict CP and NDF contents. When using a mixed-sample dataset with dry-to-fresh ratios of 85%:15% and 75%:25%, the correlations of CP (R2 = 0.95, in both and NDF (R2 = 0.84 and 0.82, respectively were almost as high as when using only dry samples (0.97 and 0.85, respectively. Furthermore, satisfactory correlations were obtained with a dry-to-fresh ratio of 50%:50% for CP (R2 = 0.92. The results of our study are especially encouraging because CP and NDF contents could be predicted even though some of the selected spectral regions were directly affected by atmospheric water vapor or water in the plants.

  8. A spectral/B-spline method for the Navier-Stokes equations in unbounded domains

    International Nuclear Information System (INIS)

    Dufresne, L.; Dumas, G.

    2003-01-01

    The numerical method presented in this paper aims at solving the incompressible Navier-Stokes equations in unbounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin approximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the θ and z directions while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the particular analytical behaviors at both end points r=0 and r→∞. A modal reduction algorithm has also been implemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme. Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the local character of the B-splines allows for a great flexibility in node positioning while keeping narrow bandwidth matrices. Numerical tests show that the present method compares advantageously with other similar methodologies using purely global expansions

  9. Minimum volume simplicial enclosure for spectral unmixing of remotely sensed hyperspectral data

    NARCIS (Netherlands)

    Hendrix, E.M.T.; García, I.; Plaza, J.; Plaza, A.

    2010-01-01

    Spectral unmixing is an important task for remotely sensed hyperspectral data exploitation. Linear spectral unmixing relies on two main steps: 1) identification of pure spectral constituents (endmembers), and 2) end member abundance estimation in mixed pixels. One of the main problems concerning the

  10. On the validity of effective formulations for transport through heterogeneous porous media

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Carrera, Jesus

    2016-04-01

    Geological heterogeneity enhances spreading of solutes and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through heterogeneous porous media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the multi-rate mass transfer (MRMT) model to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, in general non-dispersive mixing cannot.

  11. A New High-Order Spectral Difference Method for Simulating Viscous Flows on Unstructured Grids with Mixed Elements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mao; Qiu, Zihua; Liang, Chunlei; Sprague, Michael; Xu, Min

    2017-01-13

    In the present study, a new spectral difference (SD) method is developed for viscous flows on meshes with a mixture of triangular and quadrilateral elements. The standard SD method for triangular elements, which employs Lagrangian interpolating functions for fluxes, is not stable when the designed accuracy of spatial discretization is third-order or higher. Unlike the standard SD method, the method examined here uses vector interpolating functions in the Raviart-Thomas (RT) spaces to construct continuous flux functions on reference elements. Studies have been performed for 2D wave equation and Euler equa- tions. Our present results demonstrated that the SDRT method is stable and high-order accurate for a number of test problems by using triangular-, quadrilateral-, and mixed- element meshes.

  12. Preconditioning for Mixed Finite Element Formulations of Elliptic Problems

    KAUST Repository

    Wildey, Tim; Xue, Guangri

    2013-01-01

    In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.

  13. Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Cignitti, Stefano; Gani, Rafiqul

    2015-01-01

    This short communication presents a generic mathematical programming formulation for Computer-Aided Molecular Design (CAMD). A given CAMD problem, based on target properties, is formulated as a Mixed Integer Linear/Non-Linear Program (MILP/MINLP). The mathematical programming model presented here......, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model....

  14. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  15. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    International Nuclear Information System (INIS)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad

    2015-01-01

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  16. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations.

    Science.gov (United States)

    Ginés, O; Chimenos, J M; Vizcarro, A; Formosa, J; Rosell, J R

    2009-09-30

    This paper reports the experimental results obtained after casting concrete formulated with different mix proportions of municipal solid waste incineration (MSWI) by-products, bottom ash (BA) and air pollution control fly ash (APCFA), as aggregates. Several tests were performed to determine the properties of the mixed proportions. Mechanical properties of the formulations, such as compressive strength, were also determined, and two different leaching tests were performed to study their environmental effects. Some suitable concrete formulations were obtained for the 95/5 and 90/10 BA/APCFA mix proportions. These formulations showed the highest compressive strength test results, above 15 MPa, and the lowest amount of released trace metals in reference to the leaching test. The leaching mechanisms involved in the release of trace metals for the best formulations were also studied, revealing that the washing-off process may play an important role. Given the experimental data it can be concluded that these concrete mix proportions are suitable for use as non-structural concrete.

  17. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  18. Colour Mixing Based on Daylight

    Science.gov (United States)

    Meyn, Jan-Peter

    2008-01-01

    Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large…

  19. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    Science.gov (United States)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  20. Equivalence of different formulations of the free Ramond string field theory

    International Nuclear Information System (INIS)

    Sazdovic, B.

    1987-01-01

    We analyze the structure of Witten's formulation of the free Ramond string field theory and show that it is equivalent to other formulations. We establish explicit connections between their string fields. It is shown that the established connections eliminate all terms with mixed mass levels. (orig.)

  1. Are encapsulated anterior glass-ionomer restoratives better than their hand-mixed equivalents?

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2009-02-01

    The performance of encapsulated anterior GI restoratives were compared with their hand-mixed equivalents for the range of powder to liquid mixing ratios routinely encountered clinically. The clinically induced variability of powder to liquid mixing variations of an anhydrous GI restorative formulation was also compared with conventional GI restorative formulations that contained a polyalkenoic acidic liquid.

  2. AIS radiometry and the problem of contamination from mixed spectral orders

    Science.gov (United States)

    Conel, J. E.; Adams, S.; Alley, R. E.; Hoover, G.; Schultz, S.

    1988-01-01

    The spectral radiance of test areas under solar illumination is ascertained in view of Airborne Imaging Spectrometer (AIS) data from Mono Lake, CA, establishing an atmospheric correction method for major absorbers on the basis of the spectrometric data themselves. The apparent low contrast of all atmospheric absorption bands leads to a study of contamination from overlapping spectral orders in the AIS data; this contamination is found unambiguously above 1500 nm with a magnitude that is a factor of 1.5-2.0 greater than the expected uncontaminated signal alone.

  3. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  4. On spectral distribution of high dimensional covariation matrices

    DEFF Research Database (Denmark)

    Heinrich, Claudio; Podolskij, Mark

    In this paper we present the asymptotic theory for spectral distributions of high dimensional covariation matrices of Brownian diffusions. More specifically, we consider N-dimensional Itô integrals with time varying matrix-valued integrands. We observe n equidistant high frequency data points...... of the underlying Brownian diffusion and we assume that N/n -> c in (0,oo). We show that under a certain mixed spectral moment condition the spectral distribution of the empirical covariation matrix converges in distribution almost surely. Our proof relies on method of moments and applications of graph theory....

  5. Simultaneously Exploiting Two Formulations: an Exact Benders Decomposition Approach

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Gamst, Mette; Spoorendonk, Simon

    When modelling a given problem using linear programming techniques several possibilities often exist, and each results in a different mathematical formulation of the problem. Usually, advantages and disadvantages can be identified in any single formulation. In this paper we consider mixed integer...... to the standard branch-and-price approach from the literature, the method shows promising performance and appears to be an attractive alternative....

  6. Theory of atomic spectral emission intensity

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1989-02-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics and statistical physics. It is argued that the formulation of the theory provides a very good example of the manner in which quantum logic transforms into common sense logic. The theory is strongly supported by experimental evidence. (author) (16 refs.)

  7. Effect of Mixing Time and Storage Condition on Characterization of Heparinoid Admixtures with Corticosteroids.

    Science.gov (United States)

    Sugiyama, Ikumi; Takahashi, Namiki; Sadzuka, Yasuyuki

    2016-01-01

    In dermatologic therapy, several external preparations formulated as ointments or creams are prescribed. And they are often admixture to improve patient compliance. In this study, we prepared admixtures of moisturizer with steroids and examined their usability and the amount of principal agent in formulations, particularly focusing on the moisturizer content. Four heparinoid semisolid formulations were selected: Hirudoid ® soft ointment 0.3% (Formulation A) and 3 generic agents [(Besoften ® oil-based cream 0.3% (Formulation B), Kuradoido ® ointment 0.3% (Formulation C), and Hepadaerm ointment 0.3% (Formulation D)], and Antebate ® ointment 0.05% (Formulation E) were used as steroids. Formulation A and B are water-in-oil emulsions, and Formulation C and D are oil-in-water emulsions. Admixtures looked like to be mixed uniformly by visual observation. In the examination of heparinoid amount, admixture A+E and B+E were mixed uniformly. On the other hand, admixture C+E was remarkable un-uniformly. It was speculated that the emulsification of formulation C was broken. The phenomenon was supported by the result of malleability. After 8 weeks storage, the heparinoid ratio in each formulation could be expressed as follows: Admixture B≥Admixture A>Admixture C=Admixture D. A suitable storage temperature was 4°C. The results of physicochemical data analysis reveal the formulations composed of water-in-oil cream, i.e., Formulation A and Formulation B, to be the optimal choices for mixing with steroid ointments. Mixing time and storage conditions may be optimized to solve pharmaceutical problems. Moreover, understanding the emulsion type and character of semisolid formulations can expand the range of formulation options.

  8. Digital generation of stochastic signals of arbitrary spectral shape

    International Nuclear Information System (INIS)

    Behringer, K.; Nishihara, H.; Spiekerman, G.

    1986-01-01

    For computer-simulation experiments in the development of noise monitoring systems three methods of generating ergodic Gaussian random noise with specified spectral properties have been investigated: digital filtering of white noise with optimum symmetric FIR filters, a modified Rice formulation and an approximation of the Kac representation of noise. The proposed modified Rice formulation is a new noise generation method which is most efficient with regard to the computation time. By windowing subsequent Rice sequences a smooth noise record of any desired length can be produced. (author)

  9. Digital generation of stochastic signals of arbitrary spectral shape

    International Nuclear Information System (INIS)

    Behringer, K.; Nishihara, H.; Spiekerman, G.

    1986-10-01

    For computer-simulation experiments in the development of noise monitoring systems three methods of generating ergodic Gaussian random noise with specified spectral properties have been investigated: digital filtering of white noise optimum symmetric FIR filters, a modified Rice formulation and an approximation of the Kac representation of noise. The proposed modified Rice formulation is a new noise generation method which is most efficient with regard to the computation time. By windowing subsequent Rice sequences a smooth noise record of any desired length can be produced. (author)

  10. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  11. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin; Carrillo, José ; Wolfram, Marie-Therese

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  12. A Regular k-Shrinkage Thresholding Operator for the Removal of Mixed Gaussian-Impulse Noise

    Directory of Open Access Journals (Sweden)

    Han Pan

    2017-01-01

    Full Text Available The removal of mixed Gaussian-impulse noise plays an important role in many areas, such as remote sensing. However, traditional methods may be unaware of promoting the degree of the sparsity adaptively after decomposing into low rank component and sparse component. In this paper, a new problem formulation with regular spectral k-support norm and regular k-support l1 norm is proposed. A unified framework is developed to capture the intrinsic sparsity structure of all two components. To address the resulting problem, an efficient minimization scheme within the framework of accelerated proximal gradient is proposed. This scheme is achieved by alternating regular k-shrinkage thresholding operator. Experimental comparison with the other state-of-the-art methods demonstrates the efficacy of the proposed method.

  13. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    Science.gov (United States)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through optically thin grains in the compacted mixture. Inclusion of loose powder (analysis of TES and Mini-TES data of lithified sedimentary deposits.

  14. Continuous spin fields of mixed-symmetry type

    Science.gov (United States)

    Alkalaev, Konstantin; Grigoriev, Maxim

    2018-03-01

    We propose a description of continuous spin massless fields of mixed-symmetry type in Minkowski space at the level of equations of motion. It is based on the appropriately modified version of the constrained system originally used to describe massless bosonic fields of mixed-symmetry type. The description is shown to produce generalized versions of triplet, metric-like, and light-cone formulations. In particular, for scalar continuous spin fields we reproduce the Bekaert-Mourad formulation and the Schuster-Toro formulation. Because a continuous spin system inevitably involves infinite number of fields, specification of the allowed class of field configurations becomes a part of its definition. We show that the naive choice leads to an empty system and propose a suitable class resulting in the correct degrees of freedom. We also demonstrate that the gauge symmetries present in the formulation are all Stueckelberg-like so that the continuous spin system is not a genuine gauge theory.

  15. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.; Copeland, D.; Moulton, J. D.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four

  16. Flow Formulation-based Model for the Curriculum-based Course Timetabling Problem

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias

    2015-01-01

    problem. This decreases the number of integer variables signicantly and improves the performance compared to the basic formulation. It also shows competitiveness with other approaches based on mixed integer programming from the literature and improves the currently best known lower bound on one data...... instance in the benchmark data set from the second international timetabling competition.......In this work we will present a new mixed integer programming formulation for the curriculum-based course timetabling problem. We show that the model contains an underlying network model by dividing the problem into two models and then connecting the two models back into one model using a maximum ow...

  17. Some rigorous results concerning spectral theory for ideal MHD

    International Nuclear Information System (INIS)

    Laurence, P.

    1986-01-01

    Spectral theory for linear ideal MHD is laid on a firm foundation by defining appropriate function spaces for the operators associated with both the first- and second-order (in time and space) partial differential operators. Thus, it is rigorously established that a self-adjoint extension of F(xi) exists. It is shown that the operator L associated with the first-order formulation satisfies the conditions of the Hille--Yosida theorem. A foundation is laid thereby within which the domains associated with the first- and second-order formulations can be compared. This allows future work in a rigorous setting that will clarify the differences (in the two formulations) between the structure of the generalized eigenspaces corresponding to the marginal point of the spectrum ω = 0

  18. Some rigorous results concerning spectral theory for ideal MHD

    International Nuclear Information System (INIS)

    Laurence, P.

    1985-05-01

    Spectral theory for linear ideal MHD is laid on a firm foundation by defining appropriate function spaces for the operators associated with both the first and second order (in time and space) partial differential operators. Thus, it is rigorously established that a self-adjoint extension of F(xi) exists. It is shown that the operator L associated with the first order formulation satisfies the conditions of the Hille-Yosida theorem. A foundation is laid thereby within which the domains associated with the first and second order formulations can be compared. This allows future work in a rigorous setting that will clarify the differences (in the two formulations) between the structure of the generalized eigenspaces corresponding to the marginal point of the spectrum ω = 0

  19. Mixed biexcitons in single quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Delta(h) = 4.8 meV and Delta(m)= 2.8 meV is identified by polarization...

  20. Comparison between self-formulation and compounded-formulation dexamethasone mouth rinse for oral lichen planus: a pilot, randomized, cross-over trial.

    Science.gov (United States)

    Hambly, Jessica L; Haywood, Alison; Hattingh, Laetitia; Nair, Raj G

    2017-08-01

    There is a lack of appropriate, commercially-available topical corticosteroid formulations for use in oral lichen planus (OLP) and oral lichenoid reaction. Current therapy includes crushing a dexamethasone tablet and mixing it with water for use as a mouth rinse. This formulation is unpleasant esthetically and to use in the mouth, as it is a bitter and gritty suspension, resulting in poor compliance. Thus, the present study was designed to formulate and pilot an effective, esthetically-pleasing formulation. A single-blinded, cross-over trial was designed with two treatment arms. Patients were monitored for 7 weeks. Quantitative and qualitative data was assessed using VAS, numeric pain scales, the Treatment Satisfaction Questionnaire for Medication-9, and thematic analysis to determine primary patient-reported outcomes, including satisfaction, compliance, quality of life, and symptom relief. Nine patients completed the pilot trial. Data analysis revealed the new compounded formulation to be superior to existing therapy due to its convenience, positive contribution to compliance, patient-perceived faster onset of action, and improved symptom relief. Topical dexamethasone is useful in the treatment of OLP. When carefully formulated into a compounded mouth rinse, it improves patient outcomes. © 2016 John Wiley & Sons Australia, Ltd.

  1. Axial vector mass spectrum and mixing angles

    International Nuclear Information System (INIS)

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  2. Mixing behavior of chromophoric dissolved organic matter in the Pearl River Estuary in spring

    Science.gov (United States)

    Lei, Xia; Pan, Jiayi; Devlin, Adam T.

    2018-02-01

    Mixing behavior of chromophoric dissolved organic matter (CDOM) in the Pearl River Estuary (PRE) and relevant hydrodynamic parameters such as horizontal transport and vertical mixing are identified and discussed based on a set of sampling data obtained during a cruise in May 2014. Using a theoretical conservative mixing model, the surface CDOM in the PRE in spring is classified into two groups by the CDOM absorption-spectral slope relationship (a(300) vs S(275-295)): First, terrigenous CDOM under a non-conservative mixing condition, and removal processes such as photobleaching are suggested to happen; second, marine CDOM behaves conservatively during mixing. The mixing of CDOM at the bottom is shown to be conservative. Controlled by the two-layer gravitational circulation in the PRE, the northern and western estuary shows higher CDOM absorption and lower spectral slope than the southern and eastern estuary, and the surface CDOM presents higher absorption and lower spectral slope than the bottom. Horizontal transport is hypothesized to be the dominant hydrodynamic mechanism affecting CDOM variation and mixing behavior in the PRE, while the vertical mixing has less influence.

  3. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  4. Marketing Mix sebagai Alat Pembeda dalam Persaingan

    OpenAIRE

    Pura A, Agus Hasan

    2012-01-01

    Marketers must not only formulate the broad strategies to achieve its marketing objectives but also plan marketing mix programs. Many good strategies fail when it comes to development of specific marketing - mix tactics. Decision must be made to transform marketing strategy to marketing mix and to provide competitive advantageous in the competitive market place and in the same time to provide what market needs. Key words : Integrated Marketing, Marketing Mix, Differentiation, Customer Valu...

  5. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  6. A spectral element-FCT method for the compressible Euler equations

    International Nuclear Information System (INIS)

    Giannakouros, J.; Karniadakis, G.E.

    1994-01-01

    A new algorithm based on spectral element discretizations and flux-corrected transport concepts is developed for the solution of the Euler equations of inviscid compressible fluid flow. A conservative formulation is proposed based on one- and two-dimensional cell-averaging and reconstruction procedures, which employ a staggered mesh of Gauss-Chebyshev and Gauss-Lobatto-Chebyshev collocation points. Particular emphasis is placed on the construction of robust boundary and interfacial conditions in one- and two-dimensions. It is demonstrated through shock-tube problems and two-dimensional simulations that the proposed algorithm leads to stable, non-oscillatory solutions of high accuracy. Of particular importance is the fact that dispersion errors are minimal, as show through experiments. From the operational point of view, casting the method in a spectral element formulation provides flexibility in the discretization, since a variable number of macro-elements or collocation points per element can be employed to accomodate both accuracy and geometric requirements

  7. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity, and Lagrange multipliers. We use multiscale basis functions for both the velocity and the gradient of pressure. In the expanded mixed MsFEM framework, we consider both separable and nonseparable spatial scales. Specifically, we analyze the methods in three categories: periodic separable scales, G-convergent separable scales, and a continuum of scales. When there is no scale separation, using some global information can significantly improve the accuracy of the expanded mixed MsFEMs. We present a rigorous convergence analysis of these methods that includes both conforming and nonconforming formulations. Numerical results are presented for various multiscale models of flow in porous media with shale barriers that illustrate the efficacy of the proposed family of expanded mixed MsFEMs. © 2012 Society for Industrial and Applied Mathematics.

  8. Spectral history correction of microscopic cross sections for the PBR using the slowing down balance

    International Nuclear Information System (INIS)

    Hudson, N.; Rahnema, F.; Ougouag, A. M.; Gougar, H. D.

    2006-01-01

    A method has been formulated to account for depletion effects on microscopic cross sections within a Pebble Bed Reactor (PBR) spectral zone without resorting to calls to the spectrum (cross section generation) code or relying upon table interpolation between data at different values of burnup. In this method, infinite medium microscopic cross sections, fine group fission spectra, and modulation factors are pre-computed at selected isotopic states. This fine group information is used with the local spectral zone nuclide densities to generate new cross sections for each spectral zone. The local spectrum used to generate these microscopic cross sections is estimated through the solution to the cell-homogenized, infinite medium slowing down balance equation during the flux calculation. This technique is known as Spectral History Correction (SHC), and it is formulated to specifically account for burnup within a spectral zone. It was found that the SHC technique accurately calculates local broad group microscopic cross sections with local burnup information. Good agreement is obtained with cross sections generated directly by the cross section generator. Encouraging results include improvement in the converged fuel cycle eigenvalue, the power peaking factor, and the flux. It was also found that the method compared favorably to the benchmark problem in terms of the computational speed. (authors)

  9. Preparation, Spectroscopic Investigation and Biological Activity of New Mixed Ligand Chelates

    International Nuclear Information System (INIS)

    Alassbaly, F.S.; Ajaily, M.M.E.

    2014-01-01

    Preparation and investigation of new Co(II), Ni(II), Zn(II) and Cr(III) chelates with mixed ligands including Schiff base (L1) formed from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol and anthranilic acid (L2) were studied. The obtained Schiff base and mixed ligand chelates were subjected to several physiochemical techniques, in terms of CHN elemental analyses, molar conductivity, magnetic moment measurements, infrared, proton nuclear magnetic resonance, electronic and mass spectra. The analytical data showed the formation of the Schiff base compound and the ratio of metal to ligands of the chelates are 1:1:1(M:L1:L2). The infrared spectral data exhibited that the used ligands behaving as bidentate ligands towards the metal ions. The proton nuclear magnetic resonance spectral data showed the signals of the active groups in the ligands which entered in chelation with Zn(II) metal ion. The electronic spectral results showed the existence of pie (phenyl ring) and n = pie (C=N) of the ligands and suggested the geometrical structures of the chelates. Meanwhile, the mass spectral data revealed the fragmentations of the Schiff base, anthranilic acid and their Ni(II) mixed ligand chelate has been preformed the only chelate conducted for justification. All the prepared mixed chelates were non-electrolyte in nature. The antibacterial activity of the Schiff base, anthranilic acid, metal salts and mixed ligand chelates were studied and found to be that mixed ligand chelates have the most biological activity in comparison to the free ligands and salts. (author)

  10. Isolation and Assessment of Stability of Six Formulations of Entomopathogenic Beauveria bassiana.

    Science.gov (United States)

    Mwamburi, Lizzy A

    2016-01-01

    Beauveria bassiana is the most widely studied and exploited entomopathogen. The development of a suitable formulation for B. bassiana is a critical component in aiding the entomopathogen germinate and infect the host. In addition to being economical to produce, having high residual activity, it is also important that the formulation is easy to handle, stable during storage, and convenient to mix and apply and be consistently effective in controlling the target pest.In this chapter we describe preparation of experimental formulations of conidia of B. bassiana. The formulations are prepared with barley, rice, wheat bran, clay, kaolin, and peat. The protocol for assessing the stability of the formulations of B. bassiana is also described.

  11. On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation

    International Nuclear Information System (INIS)

    Burdík, C; Reshetnyak, A

    2012-01-01

    We derive non-linear commutator HS symmetry algebra, which encode unitary irreducible representations of AdS group subject to Young tableaux Y(s 1 ,..., s k ) with κ ≥ 2 rows on d-dimensional anti-de-Sitter space. Auxiliary representations for specially deformed non-linear HS symmetry algebra in terms of generalized Verma module in order to additively convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class constraints are found explicitly for the case of HS fields for κ = 2 Young tableaux. The oscillator realization over Heisenberg algebra for obtained Verma module is constructed. The results generalize the method of auxiliary representations construction for symplectic sp(2κ) algebra used for mixed-symmetry HS fields on a flat spaces and can be extended on a case of arbitrary HS fields in AdS-space. Gauge-invariant unconstrained reducible Lagrangian formulation for free bosonic HS fields with generalized spin (s 1 , s 2 ) is derived.

  12. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  13. Spectral SAR Ecotoxicology of Ionic Liquids: The Daphnia magna Case

    International Nuclear Information System (INIS)

    Putz, M.V.; Lacrama, A.M.; Ostafe, V.; Lacrama, A.M.

    2007-01-01

    Aiming to provide a unified theory of ionic liquids eco toxicity, the recent spectral structure activity relationship (S-SAR) algorithm is employed for testing the two additive models of anionic-cationic interaction containing ionic liquid activity: the causal and the endpoint, |0+> and |1+> models, respectively. As a working system, the Daphnia magna eco toxicity was characterized through the formulated and applied spectral chemical-eco biological interaction principles. Specific anionic-cationic-ionic-liquid rules of interaction along the developed mechanistic hypersurface map of the main eco toxicity paths together with the so-called resonance limitation of the standard statistical correlation analysis were revealed.

  14. Spectral/ hp element methods: Recent developments, applications, and perspectives

    Science.gov (United States)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  15. Mixed Element Formulation for the Finite Element-Boundary Integral Method

    National Research Council Canada - National Science Library

    Meese, J; Kempel, L. C; Schneider, S. W

    2006-01-01

    A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...

  16. Theoretical developments for interpreting kernel spectral clustering from alternative viewpoints

    Directory of Open Access Journals (Sweden)

    Diego Peluffo-Ordóñez

    2017-08-01

    Full Text Available To perform an exploration process over complex structured data within unsupervised settings, the so-called kernel spectral clustering (KSC is one of the most recommended and appealing approaches, given its versatility and elegant formulation. In this work, we explore the relationship between (KSC and other well-known approaches, namely normalized cut clustering and kernel k-means. To do so, we first deduce a generic KSC model from a primal-dual formulation based on least-squares support-vector machines (LS-SVM. For experiments, KSC as well as other consider methods are assessed on image segmentation tasks to prove their usability.

  17. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  18. Approaches to contactless optical thermometer in the NIR spectral range based on Nd{sup 3+} doped crystalline nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaldvee, K.; Nefedova, A.V. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Fedorenko, S.G. [Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090 (Russian Federation); Vanetsev, A.S. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Orlovskaya, E.O. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Puust, L.; Pärs, M.; Sildos, I. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Ryabova, A.V. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway, 31, Moscow 115409 (Russian Federation); Orlovskii, Yu.V., E-mail: orlovski@Lst.gpi.ru [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation)

    2017-03-15

    The fluorescence kinetics and spectral intensity ratio (FIR) methods for contactless optical temperature measurement in the NIR spectral range with Nd{sup 3+} doped YAG micro- and YPO{sub 4} nanocrystals are considered and the problems are revealed. The requirements for good temperature RE doped crystalline nanoparticles sensor are formulated.

  19. Surrogate formulations for thermal treatment of low-level mixed waste

    International Nuclear Information System (INIS)

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P.; Lee, H.T.

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are 239 Pu, 238 U, 235 U, 137 Cs, 103 Ru, 99 Tc, and 90 Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium

  20. Time evolution of K{sup o}-K{sup -o} system in spectral formulation

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-02-01

    The time evolution of the K{sup o} - K{sup -o} system is reanalyzed in the language of certain spectral function whose Fourier transforms give the time dependent survival and transition amplitudes. Approximating the spectral function by an one-pole ansatz the paper gives insight into limitation of the validity of one-pole approximation, not only for small/large time scales, but also for intermediate times where new effects, albeit small, are possible. It will be shown that the same validity restrictions apply to the known formulae of Weisskopf-Wigner approximation as well. The present analysis can also be applied to the effect of vacuum regeneration of K{sub L} and K{sub S}, a possibility pointed out by Khalfin. As a result of this possibility new contributions to the well known oscillatory terms will enter the time dependent transition probabilities. These new terms are not associated with small-large time behaviour of the amplitudes and therefore their magnitude is a priori unknown. It will be shown that the order of magnitude of this new effect is very small and, in principle, its exact determination lies outside the scope of the one-pole ansatz.

  1. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  2. Presolving and regularization in mixed-integer second-order cone optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    Mixed-integer second-order cone optimization is a powerful mathematical framework capable of representing both logical conditions and nonlinear relationships in mathematical models of industrial optimization problems. What is more, solution methods are already part of many major commercial solvers...... both continuous and mixed-integer conic optimization in general, is discovered and treated. This part of the thesis continues the studies of facial reduction preceding the work of Borwein and Wolkowicz [17] in 1981, when the first algorithmic cure for these kinds of reliability issues were formulated....... An important distinction to make between continuous and mixed-integer optimization, however, is that the reliability issues occurring in mixed-integer optimization cannot be blamed on the practitioner’s formulation of the problem. Specifically, as shown, the causes for these issues may well lie within...

  3. Animal Diet Formulation with Floating Price

    Directory of Open Access Journals (Sweden)

    S.H Nasseri

    2016-12-01

    Full Text Available In the process of milk production, the highest cost relates to animal feed. Based on reports provided by the experts, around seventy percent of dairy livestock costs included feed costs. In order to minimize the total price of livestock feed, according to the limits of feed sources in each region or season, and also the transportation and maintenance costs and ultimately milk price reduction, optimization of the livestock nutrition program is an essential issue. Because of the uncertainty and lack of precision in the optimal food ration done with existing methods based on linear programming, there is a need to use appropriate methods to meet this purpose. Therefore, in this study formulation of completely mixed nutrient diets of dairy cows is done by using a fuzzy linear programming in early lactation. Application of fuzzy optimization method and floating price make it possible to formulate and change the completely mixed diets with adequate safety margins. Therefore, applications of fuzzy methods in feed rations of dairy cattle are recommended to optimize the diets. Obviously, it would be useful to design suitable software, which provides the possibility of using floating prices to set feed rations by the use of fuzzy optimization method.

  4. Spectral properties of near-Earth asteroids on cometary orbits

    Science.gov (United States)

    Popescu, M.; Vaduvescu, O.; de Leon, J.; Boaca, I. L.; Gherase, R. M.; Nedelcu, D. A.; INT students, I. N. G.

    2017-09-01

    We studied the spectral distributions of near-Earth asteroids on cometary orbits (NEACOs) in order to identify potential dormant or extinct comets among these objects. We present the spectral observations for 19 NEACOs obtained with Isaac Newton Telescope and Infrared Telescope Facility (IRTF). Although initially classified as asteroid, one of our targets - 2007 VA85 was confirmed to be active comet 333P/LINEAR on its 2016 appearance. We found that the NEACOs population is a mixing of different compositional classes.

  5. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Sørensen, Thorkild; Bang, Ole

    2006-01-01

    ) on the location of the Stokes and anti-Stokes bands and gain bandwidth. An analysis shows that the Raman effect is responsible for reducing the four-wave mixing gain and a slight reduction in the corresponding frequency shift from the pump, when the frequency shift is much larger than the Raman shift. Using......Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness...... numerical simulations we find that four-wave mixing is the dominant physical mechanism for the pumping scheme considered, and that there is a trade-off between the spectral width and the spectral flatness of the supercontinuum. The balance of this trade-off is determined by nanometer-scale design...

  6. Spectral properties of common intraocular lens (IOL) types

    Science.gov (United States)

    Milne, Peter J.; Chapon, Pascal F.; Hamaoui, Marie; Parel, Jean-Marie A.; Clayman, H.; Rol, Pascal O.

    1999-06-01

    Currently over 50 kinds of intraocular lenses (IOLs) are approved for patient use in the treatment of cataracts and ametropia. These lenses are manufactured from at least 2 kinds of silicones as well as several kinds of acrylic polymers including polyHEMA, Poly HOXEMA, a range of polymethacrylate and polyacrylate formulations. We sought to measure spectral transmission curves of a range of IOLS in the UV-visible and near IR spectral regions in order to better characterize their optical properties and to provide a baseline from which to assess their alteration following implantation over time. Consideration of how this may best be achieved are discussed. The variable ability of both explained IOLs and some samples from a range of manufacturers to block UV wavelengths is commented upon.

  7. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  8. Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac.

    Science.gov (United States)

    Rezaee, Malahat; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Chaibakhsh, Naz; Karjiban, Roghayeh Abedi

    2014-01-01

    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (Pdiclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.

  9. Constraints on hidden photons from current and future observations of CMB spectral distortions

    International Nuclear Information System (INIS)

    Kunze, Kerstin E.; Vázquez-Mozo, Miguel Á.

    2015-01-01

    A variety of beyond the standard model scenarios contain very light hidden sector U(1) gauge bosons undergoing kinetic mixing with the photon. The resulting oscillation between ordinary and hidden photons leads to spectral distortions of the cosmic microwave background. We update the bounds on the mixing parameter χ 0 and the mass of the hidden photon m γ' for future experiments measuring CMB spectral distortions, such as PIXIE and PRISM/COrE. For 10 −14  eV∼< m γ' ∼< 10 −13  eV, we find the kinetic mixing angle χ 0 has to be less than 10 −8 at 95% CL. These bounds are more than an order of magnitude stronger than those derived from the COBE/FIRAS data

  10. Numerical performance of the parabolized ADM (PADM) formulation of General Relativity

    OpenAIRE

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2007-01-01

    In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...

  11. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    Science.gov (United States)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  12. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.

    Science.gov (United States)

    Schesser, J H

    1976-10-01

    Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg).

  13. Theoretical profiles of the spectral lines of the hydrogen atom; Profils theoriques des raies spectrales de l'atome d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H; Herman, L [Universite de la Sorbonne, Lab. de Recherche Physique, 75 - Paris (France); Drawin, H W [Commissariat a l' Energie Atomique, Fontenay-aux-Roses, Association Euratom-CEA, Groupe de Recherches sur la Fusion Controlee (France). Centre d' Etudes Nucleaires

    1965-07-01

    The line-broadening problem of the hydrogen lines has been formulated in the quasistatic approximation as far as the ions are concerned, and in the classical path approximation as far as the broadening due to collisions with electrons is concerned. These electrons interfere in different numerical results only by the self-correlation function of the fluctuating electrical field strength created at each point in the plasma. The Lewis correction has been applied, but using the whole velocity distribution function of the electrons. The formula which represents the usual impact profile, valid only for frequencies much smaller than the plasma frequency, has been extended using another formula which will be valid up to the neighbourhood of that spectral region where the quasi-static approximation begins to be valid also for the electrons. As an example, the line profile of Ly {alpha} is given by some graphs for T = 10{sup 4} deg. K and electron densities N = 10{sup 17} cm{sup -3} and N = 10{sup 18}cm{sup -3}. (authors) [French] Le probleme d'elargissement des raies de l'atome H est formule dans l'approximation quasi-statique en ce qui concerne les ions et dans l'approximation du chemin classique en ce qui concerne les electrons. Ceux-ci interviennent dans differents resultats uniquement par la fonction auto-correlation du champ electrique fluctuant qu'ils creent en chaque point du plasma. La correction de Lewis a ete appliquee mais en tenant compte de la distribution des vitesses electroniques. La formule donnant les profils d'impact habituels, valable seulement pour des frequences tres inferieures a la frequence du plasma, est ainsi prolongee de maniere continue par une autre formule, valable jusqu'au voisinage de la region spectrale ou l'approximation quasistatique commence a etre egalement justifiee pour les electrons. A titre d'illustration on represente graphiquement le profil de la raie Ly {alpha} pour T = 10{sup 4} deg. K et des densites electroniques de N = 10{sup

  14. Bessel smoothing filter for spectral-element mesh

    Science.gov (United States)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the

  15. The robust model predictive control based on mixed H2/H∞ approach with separated performance formulations and its ISpS analysis

    Science.gov (United States)

    Li, Dewei; Li, Jiwei; Xi, Yugeng; Gao, Furong

    2017-12-01

    In practical applications, systems are always influenced by parameter uncertainties and external disturbance. Both the H2 performance and the H∞ performance are important for the real applications. For a constrained system, the previous designs of mixed H2/H∞ robust model predictive control (RMPC) optimise one performance with the other performance requirement as a constraint. But the two performances cannot be optimised at the same time. In this paper, an improved design of mixed H2/H∞ RMPC for polytopic uncertain systems with external disturbances is proposed to optimise them simultaneously. In the proposed design, the original uncertain system is decomposed into two subsystems by the additive character of linear systems. Two different Lyapunov functions are used to separately formulate the two performance indices for the two subsystems. Then, the proposed RMPC is designed to optimise both the two performances by the weighting method with the satisfaction of the H∞ performance requirement. Meanwhile, to make the design more practical, a simplified design is also developed. The recursive feasible conditions of the proposed RMPC are discussed and the closed-loop input state practical stable is proven. The numerical examples reflect the enlarged feasible region and the improved performance of the proposed design.

  16. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    Science.gov (United States)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  17. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  18. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  19. Flapping model of scalar mixing in turbulence

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1991-01-01

    Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects

  20. Mixed isogeometric finite cell methods for the stokes problem

    NARCIS (Netherlands)

    Hoang, T.; Verhoosel, C.V.; Auricchio, F.; van Brummelen, E.H.; Reali, A.

    2017-01-01

    We study the application of the Isogeometric Finite Cell Method (IGA-FCM) to mixed formulations in the context of the Stokes problem. We investigate the performance of the IGA-FCM when utilizing some isogeometric mixed finite elements, namely: Taylor-Hood, Sub-grid, Raviart-Thomas, and Nédélec

  1. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements

    International Nuclear Information System (INIS)

    Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.

    2008-01-01

    Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated

  2. Spectral representation of the particle production out of equilibrium—Schwinger mechanism in pulsed electric fields

    International Nuclear Information System (INIS)

    Fukushima, Kenji

    2014-01-01

    We develop a formalism to describe the particle production out of equilibrium in terms of dynamical spectral functions, i.e. Wigner transformed Pauli–Jordan's and Hadamard's functions. We take an explicit example of a spatially homogeneous scalar theory under pulsed electric fields and investigate the time evolution of the spectral functions. In the out-state we find an oscillatory peak in Hadamard's function as a result of the mixing between positive- and negative-energy waves. The strength of this peak is of the linear order of the Bogoliubov mixing coefficient, whereas the peak corresponding to the Schwinger mechanism is of the quadratic order. Between the in- and the out-states we observe a continuous flow of the spectral peaks together with two transient oscillatory peaks. We also discuss the medium effect at finite temperature and density. We emphasize that the entire structure of the spectral functions conveys rich information on real-time dynamics including the particle production. (paper)

  3. The even and the odd spectral flows on the N=2 superconformal algebras

    International Nuclear Information System (INIS)

    Gato-Rivera, B.

    1998-01-01

    There are two different spectral flows on the N=2 superconformal algebras (four in the case of the topological algebra). The usual spectral flow, first considered by Schwimmer and Seiberg, is an even transformation, whereas the spectral flow previously considered by the author and Rosado is an odd transformation. We show that the even spectral flow is generated by the odd spectral flow, and therefore only the latter is fundamental. We also analyze thoroughly the four ''topological'' spectral flows, writing two of them here for the first time. Whereas the even and the odd spectral flows have quasi-mirrored properties acting on the antiperiodic or the periodic algebras, the topological even and odd spectral flows have drastically different properties acting on the topological algebra. The other two topological spectral flows have mixed even and odd properties. We show that the even and the even-odd topological spectral flows are generated by the odd and the odd-even topological spectral flows, and therefore only the latter are fundamental. (orig.)

  4. Thermoreversible gel formulation containing sodium lauryl sulfate as a potential contraceptive device.

    Science.gov (United States)

    Haineault, Caroline; Gourde, Pierrette; Perron, Sylvie; Désormeaux, André; Piret, Jocelyne; Omar, Rabeea F; Tremblay, Roland R; Bergeron, Michel G

    2003-08-01

    The contraceptive properties of a gel formulation containing sodium lauryl sulfate were investigated in both in vitro and in vivo models. Results showed that sodium lauryl sulfate inhibited, in a concentration-dependent manner, the activity of sheep testicular hyaluronidase. Sodium lauryl sulfate also completely inhibited human sperm motility as evaluated by the 30-sec Sander-Cramer test. The acid-buffering capacity of gel formulations containing sodium lauryl sulfate increased with the molarity of the citrate buffers used for their preparations. Furthermore, experiments in which semen was mixed with undiluted gel formulations in different proportions confirmed their physiologically relevant buffering capacity. Intravaginal application of the gel formulation containing sodium lauryl sulfate to rabbits before their artificial insemination with freshly ejaculated semen completely prevented egg fertilization. The gel formulation containing sodium lauryl sulfate was fully compatible with nonlubricated latex condoms. Taken together, these results suggest that the gel formulation containing sodium lauryl sulfate could represent a potential candidate for use as a topical vaginal spermicidal formulation to provide fertility control in women.

  5. Development of formulation device for periodontal disease.

    Science.gov (United States)

    Sato, Yasuhiko; Oba, Takuma; Watanabe, Norio; Danjo, Kazumi

    2012-01-01

    In addition to providing standard surgical treatment that removes the plaque and infected tissues, medications that can regenerate periodontal tissue are also required in the treatment of periodontal disease. As a form of regenerative medication, various growth factors are expected to be used while treating periodontal disease. A protein-like growth factor is often developed as a lyophilized product with dissolution liquid, considering its instability in the solution state. We have clarified that the formulation for periodontal disease needs to be viscous. When the lyophilized product was dissolved using a sticky solution, various problems were encountered, difficulty in dissolving and air bubbles, for example, and some efforts were needed to prepare the formulation. In this research, to identify the problem of preparing a viscous formulation, a lyophilized product (placebo) and sticky liquid were prepared by using vial and ampoule as the conventional containers. Based on these problems, a prototype administration device was developed, and its functionality was confirmed. As a result, it was suggested that the device with a useful mixing system that could shorten the preparation time was developed.

  6. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  7. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    Science.gov (United States)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  8. Spectrally-isolated violet to blue wavelength generation by cascaded degenerate four-wave mixing in a photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A

    2016-06-01

    Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.

  9. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  10. A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets.

    Science.gov (United States)

    Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon

    2012-09-01

    A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.

  11. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Dou, Renqin [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Sun, Guihua; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-01-15

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω{sub 2,4,6} were obtained to be 9.674 x 10{sup -20}, 2.092 x 10{sup -20}, and 4.061 x 10{sup -20} cm{sup 2}, respectively. (orig.)

  12. A mixed spectral-integration model for neutral mean wind flow over hills

    DEFF Research Database (Denmark)

    Corbett, Jean-Francois; Ott, Søren; Landberg, Lars

    2008-01-01

    equations are solved spectrally horizontally and by numerical integration vertically. Non-dimensional solutions are stored in look-up tables for quick re-use. Model results are compared to measurements, as well as other authors' flow models in three test cases. The model is implemented and tested in two...

  13. Choice and preparation of standard samples for X-ray spectral microanalysis

    International Nuclear Information System (INIS)

    Gavrilenko, I.S.; Surzhko, V.F.

    1989-01-01

    Choice, preparation and certification of standard samples for X-ray spectral microanalysis are considered. Requirements for standard samples in terms of concentration and volume, porosity, corrosion, conductivity distribution are formulated. Stages of sample preparation process, including composition choice, heat treatment, section production, certification, are considered in detail. The choice of composition is based on studying phase equilibrium diagrams, subdivided into 6 types

  14. Beautiful mesons from QCD spectral sum rules

    International Nuclear Information System (INIS)

    Narison, S.

    1991-01-01

    We discuss the beautiful meson from the point of view of the QCD spectral sum rules (QSSR). The bottom quark mass and the mixed light quark-gluon condensates are determined quite accurately. The decay constant f B is estimated and we present some arguments supporting this result. The decay constants and the masses of the other members of the beautiful meson family are predicted. (orig.)

  15. The potential of spectral mixture analysis to improve the estimation accuracy of tropical forest biomass

    NARCIS (Netherlands)

    Basuki, T.M.; Skidmore, A.K.; Laake, van P.E.; Duren, van I.C.; Hussin, Y.A.

    2012-01-01

    A main limitation of pixel-based vegetation indices or reflectance values for estimating above-ground biomass is that they do not consider the mixed spectral components on the earth's surface covered by a pixel. In this research, we decomposed mixed reflectance in each pixel before developing models

  16. Theoretical and experimental study of mixed solvent electrolytes

    International Nuclear Information System (INIS)

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals

  17. Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories

    CERN Document Server

    Burns, Daniel; Pilaftsis, Apostolos

    2016-01-01

    We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, H...

  18. A new continuous-time formulation for scheduling crude oil operations

    International Nuclear Information System (INIS)

    Reddy, P. Chandra Prakash; Karimi, I.A.; Srinivasan, R.

    2004-01-01

    In today's competitive business climate characterized by uncertain oil markets, responding effectively and speedily to market forces, while maintaining reliable operations, is crucial to a refinery's bottom line. Optimal crude oil scheduling enables cost reduction by using cheaper crudes intelligently, minimizing crude changeovers, and avoiding ship demurrage. So far, only discrete-time formulations have stood up to the challenge of this important, nonlinear problem. A continuous-time formulation would portend numerous advantages, however, existing work in this area has just begun to scratch the surface. In this paper, we present the first complete continuous-time mixed integer linear programming (MILP) formulation for the short-term scheduling of operations in a refinery that receives crude from very large crude carriers via a high-volume single buoy mooring pipeline. This novel formulation accounts for real-world operational practices. We use an iterative algorithm to eliminate the crude composition discrepancy that has proven to be the Achilles heel for existing formulations. While it does not guarantee global optimality, the algorithm needs only MILP solutions and obtains excellent maximum-profit schedules for industrial problems with up to 7 days of scheduling horizon. We also report the first comparison of discrete- vs. continuous-time formulations for this complex problem. (Author)

  19. Hybrid Spectral Unmixing: Using Artificial Neural Networks for Linear/Non-Linear Switching

    Directory of Open Access Journals (Sweden)

    Asmau M. Ahmed

    2017-07-01

    Full Text Available Spectral unmixing is a key process in identifying spectral signature of materials and quantifying their spatial distribution over an image. The linear model is expected to provide acceptable results when two assumptions are satisfied: (1 The mixing process should occur at macroscopic level and (2 Photons must interact with single material before reaching the sensor. However, these assumptions do not always hold and more complex nonlinear models are required. This study proposes a new hybrid method for switching between linear and nonlinear spectral unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained with parameters within a window of the pixel under consideration. These parameters are computed to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance, Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component Analysis while the abundances were estimated using the method identified by the neural networks (Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear Mixing Model or Generalized Bilinear Model. Results show that the hybrid method performs better than each of the individual techniques with high overall accuracy, while the abundance estimation error is significantly lower than that obtained using the individual methods. Experiments on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid switch method is efficient for solving spectral unmixing of hyperspectral images as compared to individual algorithms.

  20. An efficient spatial spectral integral-equation method for EM scattering from finite objects in layered media

    NARCIS (Netherlands)

    Dilz, R.J.; van Beurden, M.C.

    2016-01-01

    We propose a mixed spatial spectral method aimed directly at aperiodic, finite scatterers in a layered medium. By using a Gabor frame to discretize the problem a straightforward and fast way to Fourier transform is available. The poles and branchcuts in the spectral-domain Green function can be

  1. Novel microemulsion-based gel formulation of tazarotene for therapy of acne.

    Science.gov (United States)

    Patel, Mrunali Rashmin; Patel, Rashmin Bharatbhai; Parikh, Jolly R; Patel, Bharat G

    2016-12-01

    The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol-Cremophor-RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.

  2. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. F...... engine and visualisation of gas flow behaviour in cylinder.......Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics....... Fast time-and spectral-resolved measurements in 1.5-5.1 μm spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H2O, CH4, CO2, CO) which is one of the key parameters...

  3. On some spectral properties of billiards and nuclei. Similarities and differences

    International Nuclear Information System (INIS)

    Richter, A.

    2005-01-01

    Generic and non-generic features of billiards and nuclei which show up in certain spectral properties are discussed by way of selected examples. First, the short and long range correlations of levels belonging to the magnetic dipole Scissors Mode in heavy deformed nuclei at an excitation energy of about 3 MeV prove that this mode is indeed caused by an ordered or regular collective motion. Second, the fine structure distribution of the so called electric Pygmy Dipole Resonance around 6 to 7 MeV excitation energy seems to indicate a situation where the spectral properties are governed by mixed dynamics, i.e. by regular and chaotic features. However, in nuclei quantitative conclusions are always severely hampered by missing levels due to limited experimental resolution and detector efficiency. Third, it is shown that this situation can be largely overcome by studying spectral properties in superconducting microwave billards considered as nuclear analogs. As an example resonance strength distributions in billards of mixed and fully chaotic dynamics are considered. Finally it is demonstrated how symmetry breaking effects in nuclei - e.g. isospin symmetry breaking - can be studied through those resonance strength distributions by modelling the nuclear problem with coupled billards. (orig.)

  4. On some spectral properties of billiards and nuclei. Similarities and differences

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.

    2005-07-01

    Generic and non-generic features of billiards and nuclei which show up in certain spectral properties are discussed by way of selected examples. First, the short and long range correlations of levels belonging to the magnetic dipole Scissors Mode in heavy deformed nuclei at an excitation energy of about 3 MeV prove that this mode is indeed caused by an ordered or regular collective motion. Second, the fine structure distribution of the so called electric Pygmy Dipole Resonance around 6 to 7 MeV excitation energy seems to indicate a situation where the spectral properties are governed by mixed dynamics, i.e. by regular and chaotic features. However, in nuclei quantitative conclusions are always severely hampered by missing levels due to limited experimental resolution and detector efficiency. Third, it is shown that this situation can be largely overcome by studying spectral properties in superconducting microwave billards considered as nuclear analogs. As an example resonance strength distributions in billards of mixed and fully chaotic dynamics are considered. Finally it is demonstrated how symmetry breaking effects in nuclei - e.g. isospin symmetry breaking - can be studied through those resonance strength distributions by modelling the nuclear problem with coupled billards. (orig.)

  5. Design of a Generic and Flexible Data Structure for Efficient Formulation of Large Scale Network Problems

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    structure for efficient formulation of enterprise-wide optimization problems is presented. Through the integration of the described data structure in our synthesis and design framework, the problem formulation workflow is automated in a software tool, reducing time and resources needed to formulate large......The formulation of Enterprise-Wide Optimization (EWO) problems as mixed integer nonlinear programming requires collecting, consolidating and systematizing large amount of data, coming from different sources and specific to different disciplines. In this manuscript, a generic and flexible data...... problems, while ensuring at the same time data consistency and quality at the application stage....

  6. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    Science.gov (United States)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2016-01-01

    Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.

  7. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices.

    Science.gov (United States)

    Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2014-02-15

    The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

  8. Nuclear level mixing resonance spectroscopy

    International Nuclear Information System (INIS)

    Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.

    1985-01-01

    The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)

  9. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  10. Computer-aided Framework for Design of Pure, Mixed and Blended Products

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Zhang, Lei; Gani, Rafiqul

    2015-01-01

    This paper presents a framework for computer-aided design of pure, mixed and blended chemical based products. The framework is a systematic approach to convert a Computer-aided Molecular, Mixture and Blend Design (CAMbD) formulation, based on needs and target properties, into a mixed integer non...

  11. Constitutive behaviour of mixed mode loaded adhesive layer

    DEFF Research Database (Denmark)

    Högberg, J.L.; Sørensen, Bent F.; Stigh, U.

    2007-01-01

    in the failure process zone. The constitutive behaviour of the adhesive layer is obtained by a so called inverse method and fitting an existing mixed mode cohesive model, which uses a coupled formulation to describe a mode dependent constitutive behaviour. The cohesive parameters are determined by optimizing......Mixed mode testing of adhesive layer is performed with the Mixed mode double Cantilever Bean? specimen. During the experiments, the specimens are loaded by transversal and/or shear forces; seven different mode mixities are tested. The J-integral is used to evaluate the energy dissipation...

  12. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    International Nuclear Information System (INIS)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V; Shah, Samit

    2013-01-01

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray drying TM . Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm −1 , unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  13. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  14. A mathematical formulation for interface-based modular product design with geometric and weight constraints

    Science.gov (United States)

    Jung-Woon Yoo, John

    2016-06-01

    Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.

  15. Applications of mixed Petrov-Galerkin finite element methods to transient and steady state creep analysis

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.; Loula, A.F.D.

    1988-12-01

    The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt

  16. Effectiveness of a consistently formulated diffusion-synthetic acceleration differencing approach

    International Nuclear Information System (INIS)

    Khalil, H.

    1988-01-01

    A consistently formulated differencing approach is applied to the diffusion-synthetic acceleration of discrete ordinates calculations based on various spatial differencing schemes. The diffusion ''coupling'' equations derived for each scheme are contrasted to conventional coupling relations and are shown to permit derivation of either point- or box-centered diffusion difference equations. The resulting difference equations are shown to be mathematically equivalent, in slab geometry, to equations derived by applying Larsen's four-step procedure to the S/sub 2/ equations. Fourier stability analysis of the acceleration method applied to slab model problems is used to demonstrate that, for any S/sub n/ differencing scheme (a) the upper bound on the spectral radius of the method occurs in the fine-mesh limit and equals that of the spatially continuous case (0.22466), and (b) the spectral radius decreases with increasing mesh size to an asymptotic value <0.13135. This model problem performance is somewhat superior to that of Larsen's approach, for which the spectral radius is bounded by 0.25 in the wide-mesh limit. Numerical results of multidimensional, heterogeneous, scattering-dominated problems are also presented to demonstrate the rapid convergence of accelerated discrete ordinates calculations using various spatial differencing schemes

  17. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il [Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Lomakin, V., E-mail: vlomakin@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii) furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.

  18. Spectral design flexibility of LED brings better life

    Science.gov (United States)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  19. A Real-Time Semiautonomous Audio Panning System for Music Mixing

    Directory of Open Access Journals (Sweden)

    Perez_Gonzalez Enrique

    2010-01-01

    Full Text Available A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional mixing engineer.

  20. Spectral analysis of the He-enriched sdO-star HD 127493

    Science.gov (United States)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  1. PENGUKURAN KINERJA MARKETING MIX DAN PERUMUSAN SRATEGI PEMASARAN UKM BATIK PAMEKASAN (Studi Kasus: UKM Batik Kec. Proppo Kab. Pamekasan)

    OpenAIRE

    Winarso, Kukuh; Al-Farisyi, Imam

    2015-01-01

    This research is to find out the marketing on marketing mix and formulating marketing strategies for developmentof the UKMBatik Pamekasan to be able to compete with other products.The analysis used in this research areimportance performance analysis used to measure the marketing mixed on consumer perceptions, PGCV indexused to determine the priority scale of marketing mixed and SWOT analysis used to formulating marketingstrategies UKMBatik Pamekasan.This research result indicates that the var...

  2. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-01-01

    Approximately 400 x 10 6 liters of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of CS + and Sr +2 followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic waste form. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with Class F fly ash used in saltstone as a functional extender to control heat of hydration and reduce permeability. A monolithic waste form is produced by the hydration of the slag and fly ash. Soluble ion release (NO 3 - ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes compared to cement-based waste forms because these species are chemically reduced to a lower valence state by ferrous iron in the slag and precipitated as relatively insoluble phases, such as CR(OH) 3 and TcO 2 . 5 refs., 4 figs., 4 tabs

  3. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-08-01

    Approximately 400 x 10 6 L of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of Cs + and Sr +2 , followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic wasteform. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with the Class F flyash used in saltstone as a functional extender to control heat of hydration and reduce permeability. (Class F flyash is also locally available at SRP.) A monolithic wasteform is produced by the hydration of the slag and flyash. Soluble ion release (NO 3- ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes because these species are chemically reduced to a lower valence state by ferrous iron in the slag and are precipitated as relatively insoluble phases, such as Cr(OH) 3 and TcO 2 . 3 refs., 3 figs., 2 tabs

  4. [Effect of concomitant use of dental drug on the properties of recombinant human basic fibroblast growth factor formulation for periodontal disease].

    Science.gov (United States)

    Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi

    2013-01-01

    We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.

  5. hp Spectral element methods for three dimensional elliptic problems

    Indian Academy of Sciences (India)

    elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems, ... of variable degree bounded by W. Let N denote the number of layers in the geomet- ric mesh ... We prove a stability theorem for mixed problems when the spectral element functions vanish ..... Applying Theorem 3.1,. ∫ r l. |Mu|2dx −.

  6. Resolving Mixed Algal Species in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Mehrube Mehrubeoglu

    2013-12-01

    Full Text Available We investigated a lab-based hyperspectral imaging system’s response from pure (single and mixed (two algal cultures containing known algae types and volumetric combinations to characterize the system’s performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements.

  7. Extended Mixed-Efects Item Response Models with the MH-RM Algorithm

    Science.gov (United States)

    Chalmers, R. Philip

    2015-01-01

    A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…

  8. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  9. Does the Distribution of Efficiency Scores Depend on the Input Mix?

    DEFF Research Database (Denmark)

    Asmild, Mette; Leth Hougaard, Jens; Kronborg, Dorte

    for evaluating the test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, as shown here, is applicable for models with multiple inputs and one output......In this paper we examine the possibility of using the standard Kruskal-Wallis rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix. Recently, a general data generating process (DGP......) suiting the DEA methodology has been formulated and some asymptotic properties of the DEA estimators have been established. In line with this generally accepted DGP, we formulate a conditional test for the assumption of mix independence. Since the DEA frontier is estimated, many standardl assumptions...

  10. Cast Stone Formulation At Higher Sodium Concentrations

    International Nuclear Information System (INIS)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-01-01

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  11. Cast Stone Formulation At Higher Sodium Concentrations

    International Nuclear Information System (INIS)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-01-01

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  12. Cast Stone Formulation At Higher Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Roberts, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  13. Cast Stone Formulation At Higher Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  14. Cast Stone Formulation At Higher Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  15. Mixed field dosimetry with paired ionization chambers

    International Nuclear Information System (INIS)

    Coppola, M.; Porro, F.

    1977-01-01

    This report describes the results of neutron and gamma mixed-field dosimetry obtained by the Ispra Group in the framework of the European Neutron Dosimetry intercomparison Project (ENDIP). The experimental method and the formulation employed for the derivation of Kerma results are also present

  16. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  17. A complete metric in the set of mixing transformations

    International Nuclear Information System (INIS)

    Tikhonov, Sergei V

    2007-01-01

    A metric in the set of mixing measure-preserving transformations is introduced making of it a complete separable metric space. Dense and massive subsets of this space are investigated. A generic mixing transformation is proved to have simple singular spectrum and to be a mixing of arbitrary order; all its powers are disjoint. The convolution powers of the maximal spectral type for such transformations are mutually singular if the ratio of the corresponding exponents is greater than 2. It is shown that the conjugates of a generic mixing transformation are dense, as are also the conjugates of an arbitrary fixed Cartesian product. Bibliography: 28 titles.

  18. A new mathematical formulation of the line-by-line method in case of weak line overlapping

    Science.gov (United States)

    Ishov, Alexander G.; Krymova, Natalie V.

    1994-01-01

    A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.

  19. Kinetic Mixing of U(1)s in Heterotic Orbifolds

    CERN Document Server

    Goodsell, Mark; Ringwald, Andreas

    2012-01-01

    We study kinetic mixing between massless U(1) gauge symmetries in the bosonic formulation of heterotic orbifold compactifications. For non-prime Z_N factorisable orbifolds, we find a simple expression of the mixing in terms of the properties of the N=2 subsectors, which helps understand under what conditions mixing can occur. With this tool, we analyse Z_6-II heterotic orbifolds and find non-vanishing mixing even without including Wilson lines. We show that some semi-realistic models of the Mini-Landscape admit supersymmetric vacua with mixing between the hypercharge and an additional U(1), which can be broken at low energies. We finally discuss some phenomenologically appealing possibilities that hidden photons in heterotic orbifolds allow.

  20. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  1. Spectral/hp element methods: Recent developments, applications, and perspectives

    DEFF Research Database (Denmark)

    Xu, Hui; Cantwell, Chris; Monteserin, Carlos

    2018-01-01

    regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain...

  2. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    KAUST Repository

    Carpenter, Mark H.

    2016-01-04

    Nonlinearly stable finite element methods of arbitrary type and order, are currently unavailable for discretizations of the compressible Navier-Stokes equations. Summation-by-parts (SBP) entropy stability analysis provides a means of constructing nonlinearly stable discrete operators of arbitrary order, but is currently limited to simple element types. Herein, recent progress is reported, on developing entropy-stable (SS) discontinuous spectral collocation formulations for hexahedral elements. Two complementary efforts are discussed. The first effort generalizes previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort extends previous work on entropy stability to include p-refinement at nonconforming interfaces. A generalization of existing entropy stability theory is required to accommodate the nuances of fully multidimensional SBP operators. The entropy stability of the compressible Euler equations on nonconforming interfaces is demonstrated using the newly developed LG operators and multidimensional interface interpolation operators. Preliminary studies suggest design order accuracy at nonconforming interfaces.

  3. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2012-01-01

    are simulated using radiometrically measured single LED spectra. The method uses electrical input powers as input parameters and optimizes the resulting spectral power distribution with regard to color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal......To address the problem of spectral light quality from color mixing light-emitting diode systems, a method for optimizing the spectral output of multicolor LED system with regards to standardized quality parameters has been developed. The composite spectral power distribution from the LEDs...

  4. Design, formulation and evaluation of caffeine chewing gum.

    Science.gov (United States)

    Aslani, Abolfazl; Jalilian, Fatemeh

    2013-01-01

    Caffeine which exists in drinks such as coffee as well as in drug dosage forms in the global market is among the materials that increase alertness and decrease fatigue. Compared to other forms of caffeine, caffeine gum can create faster and more prominent effects. In this study, the main goal is to design a new formulation of caffeine gum with desirable taste and assess its physicochemical properties. Caffeine gum was prepared by softening of gum bases and then mixing with other formulation ingredients. To decrease the bitterness of caffeine, sugar, aspartame, liquid glucose, sorbitol, manitol, xylitol, and various flavors were used. Caffeine release from gum base was investigated by mechanical chewing set. Content uniformity test was also performed on the gums. The gums were evaluated in terms of organoleptic properties by the Latin-Square design at different stages. After making 22 formulations of caffeine gums, F11 from 20 mg caffeine gums and F22 from 50 mg caffeine gums were chosen as the best formulation in organoleptic properties. Both types of gum released about 90% of their own drug content after 30 min. Drug content of 20 and 50 mg caffeine gum was about 18.2-21.3 mg and 45.7-53.6 mg respectively. In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release) were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  5. Model and measurements of linear mixing in thermal IR ground leaving radiance spectra

    Science.gov (United States)

    Balick, Lee; Clodius, William; Jeffery, Christopher; Theiler, James; McCabe, Matthew; Gillespie, Alan; Mushkin, Amit; Danilina, Iryna

    2007-10-01

    Hyperspectral thermal IR remote sensing is an effective tool for the detection and identification of gas plumes and solid materials. Virtually all remotely sensed thermal IR pixels are mixtures of different materials and temperatures. As sensors improve and hyperspectral thermal IR remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate. The contributions of the constituents to the pixel spectral ground leaving radiance are weighted by their spectral emissivities and their temperature, or more correctly, temperature distributions, because real pixels are rarely thermally homogeneous. Planck's Law defines a relationship between temperature and radiance that is strongly wavelength dependent, even for blackbodies. Spectral ground leaving radiance (GLR) from mixed pixels is temperature and wavelength dependent and the relationship between observed radiance spectra from mixed pixels and library emissivity spectra of mixtures of 'pure' materials is indirect. A simple model of linear mixing of subpixel radiance as a function of material type, the temperature distribution of each material and the abundance of the material within a pixel is presented. The model indicates that, qualitatively and given normal environmental temperature variability, spectral features remain observable in mixtures as long as the material occupies more than roughly 10% of the pixel. Field measurements of known targets made on the ground and by an airborne sensor are presented here and serve as a reality check on the model. Target spectral GLR from mixtures as a function of temperature distribution and abundance within the pixel at day and night are presented and compare well qualitatively with model output.

  6. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Numerical performance of the parabolized ADM formulation of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-01-01

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  8. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  9. Bivium as a Mixed Integer Programming Problem

    DEFF Research Database (Denmark)

    Borghoff, Julia; Knudsen, Lars Ramkilde; Stolpe, Mathias

    2009-01-01

    over $GF(2)$ into a combinatorial optimization problem. We convert the Boolean equation system into an equation system over $\\mathbb{R}$ and formulate the problem of finding a $0$-$1$-valued solution for the system as a mixed-integer programming problem. This enables us to make use of several...

  10. Dual and primal mixed Petrov-Galerkin finite element methods in heat transfer problems

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Toledo, E.M.

    1988-12-01

    New mixed finite element formulations for the steady state heat transfer problem are presented with no limitation in the choice of conforming finite element spaces. Adding least square residual forms of the governing equations of the classical Galerkin formulation the original saddle point problem is transformed into a minimization problem. Stability analysis, error estimates and numerical results are presented, confirming the error estimates and the good performance of this new formulation. (author) [pt

  11. Linear mixed models for longitudinal data

    CERN Document Server

    Molenberghs, Geert

    2000-01-01

    This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...

  12. An improved estimate of SU(4) symmetry mixing in light nuclei

    International Nuclear Information System (INIS)

    Haq, R.; Parikh, J.C.; Bhatt, K.H.

    1974-01-01

    The spectral distribution method of French has been very successful in determining ground state energies and mixing intensities of various irreps of a group near the ground state. For the SU(4) group these methods have been extensively used. The method incorporated actually estimates an upper limit for the mixing and lower amounts of mixing cannot be ruled out. This is beacuse the total variance sigmasup(2) which is composed of sigmasup(2) external and sigmasup(2) internal is used for estimating the amount of mixing. Whereas sigmasup(2) int gives rise to spreading of various irreps, it is only sigmasup(2) ext which leads to symmetry mixing. Better methods of estimating the mixing shall be discussed. (author)

  13. Entropy Stable Summation-by-Parts Formulations for Compressible Computational Fluid Dynamics

    KAUST Repository

    Carpenter, M.H.

    2016-11-09

    A systematic approach based on a diagonal-norm summation-by-parts (SBP) framework is presented for implementing entropy stable (SS) formulations of any order for the compressible Navier–Stokes equations (NSE). These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy equality for smooth problems. They are also valid for discontinuous flows provided sufficient dissipation is added at shocks and discontinuities to satisfy an entropy inequality. Admissible SBP operators include all centred diagonal-norm finite-difference (FD) operators and Legendre spectral collocation-finite element methods (LSC-FEM). Entropy stable multiblock FD and FEM operators follows immediately via nonlinear coupling operators that ensure conservation, accuracy and preserve the interior entropy estimates. Nonlinearly stable solid wall boundary conditions are also available. Existing SBP operators that lack a stability proof (e.g. weighted essentially nonoscillatory) may be combined with an entropy stable operator using a comparison technique to guarantee nonlinear stability of the pair. All capabilities extend naturally to a curvilinear form of the NSE provided that the coordinate mappings satisfy a geometric conservation law constraint. Examples are presented that demonstrate the robustness of current state-of-the-art entropy stable SBP formulations.

  14. Written case formulations in the treatment of anorexia nervosa: Evidence for therapeutic benefits.

    Science.gov (United States)

    Allen, Karina L; O'Hara, Caitlin B; Bartholdy, Savani; Renwick, Beth; Keyes, Alexandra; Lose, Anna; Kenyon, Martha; DeJong, Hannah; Broadbent, Hannah; Loomes, Rachel; McClelland, Jessica; Serpell, Lucy; Richards, Lorna; Johnson-Sabine, Eric; Boughton, Nicky; Whitehead, Linette; Treasure, Janet; Wade, Tracey; Schmidt, Ulrike

    2016-09-01

    Case formulation is a core component of many psychotherapies and formulation letters may provide an opportunity to enhance the therapeutic alliance and improve treatment outcomes. This study aimed to determine if formulation letters predict treatment satisfaction, session attendance, and symptom reductions in anorexia nervosa (AN). It was hypothesized that higher quality formulation letters would predict greater treatment satisfaction, a greater number of attended sessions, and greater improvement in eating disorder symptoms. Patients were adult outpatients with AN (n = 46) who received Maudsley Anorexia Nervosa Treatment for Adults (MANTRA) in the context of a clinical trial. A Case Formulation Rating Scheme was used to rate letters for adherence to the MANTRA model and use of a collaborative, reflective, affirming stance. Analyses included linear regression and mixed models. Formulation letters that paid attention to the development of the AN predicted greater treatment acceptability ratings (p = 0.002). More reflective and respectful letters predicted greater reductions in Eating Disorder Examination scores (p = 0.003). Results highlight the potential significance of a particular style of written formulation as part of treatment for AN. Future research should examine applicability to other psychiatric disorders. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:874-882). © 2016 Wiley Periodicals, Inc.

  15. Kinetic mixing of U(1)s in heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Mark [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-10-15

    We study kinetic mixing between massless U(1) gauge symmetries in the bosonic formulation of heterotic orbifold compactifications. For non-prime Z{sub N} factorisable orbifolds, we find a simple expression of the mixing in terms of the properties of the N=2 subsectors, which helps understand under what conditions mixing can occur. With this tool, we analyse Z{sub 6}-II heterotic orbifolds and find non-vanishing mixing even without including Wilson lines. We show that some semi-realistic models of the Mini-Landscape admit supersymmetric vacua with mixing between the hypercharge and an additional U(1), which can be broken at low energies. We finally discuss some phenomenologically appealing possibilities that hidden photons in heterotic orbifolds allow. (orig.)

  16. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  17. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  18. Real non-abelian mixed hodge structures for quasi-projective varieties

    CERN Document Server

    Pridham, J P

    2016-01-01

    The author defines and constructs mixed Hodge structures on real schematic homotopy types of complex quasi-projective varieties, giving mixed Hodge structures on their homotopy groups and pro-algebraic fundamental groups. The author also shows that these split on tensoring with the ring \\mathbb{R}[x] equipped with the Hodge filtration given by powers of (x-i), giving new results even for simply connected varieties. The mixed Hodge structures can thus be recovered from the Gysin spectral sequence of cohomology groups of local systems, together with the monodromy action at the Archimedean place. As the basepoint varies, these structures all become real variations of mixed Hodge structure.

  19. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  20. Transportable vitrification system demonstration on mixed waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.R.; Whitehouse, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Wilson, C.N. [Lockheed Martin Hanford Corp., Richland, WA (United States); Van Ryn, F.R. [Bechtel Jacobs Co., Oak Ridge, TN (United States)

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  1. Transportable vitrification system demonstration on mixed waste. Revision 1

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits

  2. High order spectral volume and spectral difference methods on unstructured grids

    Science.gov (United States)

    Kannan, Ravishekar

    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed

  3. Longitudinal mixed-effects models for latent cognitive function

    NARCIS (Netherlands)

    van den Hout, Ardo; Fox, Gerardus J.A.; Muniz-Terrera, Graciela

    2015-01-01

    A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response

  4. Applications of cost-effective spectral imaging microscopy in cancer research

    International Nuclear Information System (INIS)

    Barber, P R; Vojnovic, B; Atkin, G; Daley, F M; Everett, S A; Wilson, G D; Gilbey, J D

    2003-01-01

    The application of a cost-effective spectral imager to spatially segmenting absorptive and fluorescent chemical probes on the basis of their spectral characteristics has been demonstrated. The imager comprises a computer-controlled spectrally selective element that allows random access to a bandwidth of 15 nm between 400 and 700 nm. Further, the use of linear un-mixing of the spectral response of a sample at a single pixel has been facilitated using non-negative least squares fitting. Examples are given showing the separation of dye distributions, such as immunohistochemical markers for tumour hypoxia, from multiply stained thin tissue sections, imaged by trans-illumination microscopy. A quantitative study is also presented that shows a correlation between staining intensity and normal versus tumour tissue, and the advantage of reducing the amount of data captured for a particular study is also demonstrated. An example of the application to fluorescence microscopy is also given, showing the separation of green fluorescent protein, Cy3 and Cy5 at a single pixel. The system has been validated against samples of known optical density and of known overlapping combinations of coloured filters. These results confirm the ability of this technique to separate spectral responses that cannot be resolved with conventional colour imaging

  5. Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals

    KAUST Repository

    Cho, Myung

    2016-06-24

    We propose fast algorithms that speed up or improve the performance of recovering spectrally sparse signals from un-derdetermined measurements. Our algorithms are based on a non-convex approach of using alternating projected gradient descent for structured matrix recovery. We apply this approach to two formulations of structured matrix recovery: Hankel and Toeplitz mosaic structured matrix, and Hankel structured matrix. Our methods provide better recovery performance, and faster signal recovery than existing algorithms, including atomic norm minimization.

  6. Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals

    KAUST Repository

    Cho, Myung; Cai, Jian-Feng; Liu, Suhui; Eldar, Yonina C.; Xu, Weiyu

    2016-01-01

    We propose fast algorithms that speed up or improve the performance of recovering spectrally sparse signals from un-derdetermined measurements. Our algorithms are based on a non-convex approach of using alternating projected gradient descent for structured matrix recovery. We apply this approach to two formulations of structured matrix recovery: Hankel and Toeplitz mosaic structured matrix, and Hankel structured matrix. Our methods provide better recovery performance, and faster signal recovery than existing algorithms, including atomic norm minimization.

  7. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery

    International Nuclear Information System (INIS)

    Alakian, A.

    2008-03-01

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 μm] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  8. Robust mixed finite element methods to deal with incompressibility in finite strain in an industrial framework

    International Nuclear Information System (INIS)

    Al-Akhrass, Dina

    2014-01-01

    Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)

  9. Spectral properties in supersymmetric matrix models

    International Nuclear Information System (INIS)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2012-01-01

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  10. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  11. The Spectral/hp-Finite Element Method for Partial Differential Equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter

    2009-01-01

    dimensions. In the course the chosen programming environment is Matlab, however, this is by no means a necessary requirement. The mathematical level needed to grasp the details of this set of notes requires an elementary background in mathematical analysis and linear algebra. Each chapter is supplemented......This set of lecture notes provides an elementary introduction to both the classical Finite Element Method (FEM) and the extended Spectral/$hp$-Finite Element Method for solving Partial Differential Equations (PDEs). Many problems in science and engineering can be formulated mathematically...

  12. High-resolution 3-μm spectra of Jupiter: Latitudinal spectral variations influenced by molecules, clouds, and haze

    Science.gov (United States)

    Kim, Sang J.; Geballe, T. R.; Kim, J. H.; Jung, A.; Seo, H. J.; Minh, Y. C.

    2010-08-01

    We present latitudinally-resolved high-resolution ( R = 37,000) pole-to-pole spectra of Jupiter in various narrow longitudinal ranges, in spectral intervals covering roughly half of the spectral range 2.86-3.53 μm. We have analyzed the data with the aid of synthetic spectra generated from a model jovian atmosphere that included lines of CH 4, CH 3D, NH 3, C 2H 2, C 2H 6, PH 3, and HCN, as well as clouds and haze. Numerous spectral features of many of these molecular species are present and are individually identified for the first time, as are many lines of H3+ and a few unidentified spectral features. In both polar regions the 2.86-3.10-μm continuum is more than 10 times weaker than in spectra at lower latitudes, implying that in this wavelength range the single-scattering albedos of polar haze particles are very low. In contrast, the 3.24-3.53 μm the weak polar and equatorial continua are of comparable intensity. We derive vertical distributions of NH 3, C 2H 2 and C 2H 6, and find that the mixing ratios of NH 3 and C 2H 6 show little variation between equatorial and polar regions. However, the mixing ratios of C 2H 2 in the northern and southern polar regions are ˜6 and ˜3 times, respectively, less than those in the equatorial regions. The derived mixing ratio curves of C 2H 2 and C 2H 6 extend up to the 10 -6 bar level, a significantly higher altitude than most previous results in the literature. Further ground-based observations covering other longitudes are needed to test if these mixing ratios are representative values for the equatorial and polar regions.

  13. A singular-value decomposition approach to X-ray spectral estimation from attenuation data

    International Nuclear Information System (INIS)

    Tominaga, Shoji

    1986-01-01

    A singular-value decomposition (SVD) approach is described for estimating the exposure-rate spectral distributions of X-rays from attenuation data measured withvarious filtrations. This estimation problem with noisy measurements is formulated as the problem of solving a system of linear equations with an ill-conditioned nature. The principle of the SVD approach is that a response matrix, representing the X-ray attenuation effect by filtrations at various energies, can be expanded into summation of inherent component matrices, and thereby the spectral distributions can be represented as a linear combination of some component curves. A criterion function is presented for choosing the components needed to form a reliable estimate. The feasibility of the proposed approach is studied in detail in a computer simulation using a hypothetical X-ray spectrum. The application results of the spectral distributions emitted from a therapeutic X-ray generator are shown. Finally some advantages of this approach are pointed out. (orig.)

  14. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  15. Mixed-Ligand Complexes Of Nickel (II) With 2-Acetylpyridine ...

    African Journals Online (AJOL)

    The preparation and spectral properties of five nickel (II) mixed-ligands complexes (Ni [2-Actsc.Y]CI2), derived from 2-acetylpyridinethiosermicarbazones and some nitrogen/sulphur monodentate ligands such as thiophene, ammonia, picoline, pyridine and aniline are described. The complexes have been characterized on ...

  16. On Bimaximal Neutrino Mixing and GUT's

    CERN Document Server

    Altarelli, Guido; Meloni, Davide

    2015-04-21

    We briefly discuss the present status of models of neutrino mixing. Among the existing viable options we review the virtues of Bimaximal Mixing (that could be implemented by an $S_4$ discrete symmetry), corrected by terms arising from the charged lepton mass diagonalization. In particular in a GUT formulation the property of quark lepton "weak" complementarity can be naturally realized. We discuss in some detail two new versions of particular GUT models, one based on $SU(5)$ and one on $SO(10)$ and the associated phenomenology. We compare these approaches based on symmetry to models based on chance, like Anarchy or $U(1)_{FN}$.

  17. Spectral characteristics of the P codas of eurasian earthquakes and explosions

    International Nuclear Information System (INIS)

    Evernden, J.F.

    1977-01-01

    Spectral analysis of ''infinite velocity sum'' subarray beams at LASA for the P codas of 36 explosions and 23 earthquakes indicates the presence of 6 to 9 Hz energy well above noise level for large explosions and earthquakes. A discriminant (D), based on use of the full spectral bandwidth from 0.4 to 9 Hz, successfully discriminates all Eurasian explosions and shallow-focus earthquakes. The basic character and contrast in spectral composition of the source spectra of earthquakes and explosions is discussed. It is pointed out that the discriminant (D), when use is made of signals recorded in the range 60 0 to 90 0 , is as or more successful in discriminating events of near m/sub b/ 4.0 as those at and above m/sub b/ 6.0, and the basis for this success is clarified. It is suggested that proper use of P coda spectral discriminants appears capable of achieving identification essentially at the detection threshold of a network, while circumventing such problems as refined depths of focus, mixed events, etc

  18. Numerical simulation using vorticity-vector potential formulation

    Science.gov (United States)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the

  19. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Clément Genet

    2018-05-01

    Full Text Available The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS, zirconium (IV propoxide (TPOZ and aluminium tri-sec-butoxide (ASB. This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  20. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating.

    Science.gov (United States)

    Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin

    2018-05-10

    The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  1. Implications of a wavepacket formulation for the nonlinear parabolized stability equations to hypersonic boundary layers

    Science.gov (United States)

    Kuehl, Joseph

    2016-11-01

    The parabolized stability equations (PSE) have been developed as an efficient and powerful tool for studying the stability of advection-dominated laminar flows. In this work, a new "wavepacket" formulation of the PSE is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening and results in disturbance saturation amplitudes consistent with experiment. A Mach 6 flared-cone example is presented. Support from the AFOSR Young Investigator Program via Grant FA9550-15-1-0129 is gratefully acknowledges.

  2. Improved surfactants formulation for remediation of oil sludge recovery

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Shahidan Radiman

    2000-01-01

    Surfactant enhanced remediation based on mobilisation of the residual NAPLs (oil sludge) which is radioactive depends on the tendency of the surfactants to lower interfacial tension. Mobilisation has greater potential than solubilisation to increase the rate of remediation. Optimised surfactants formulation was determined with concentration of Aqua 2000 and D Bond of 1% wt respectively, sodium chloride concentration of 2 gmL -1 and addition of 3% wt butanol as cosolvent. The formulation was of benefit not only able to decrease further the interfacial tension of aqueous solution containing oil emulsion, but also to make possible to be more mobile and destruction of mixed liquid crystals that formed. Formation of liquid crystals can hinders significantly recovery efficiency of aqueous solution containing oil emulsion in field remediation work. In a 100 litres soil column experiment conducted containing oil emulsion in field sludge soil and using the surfactants formulation for flushing, miniemulsion formed sizes maintained at average size between 125 nm and 280 nm before and after remediation. Total oil and grease concentration removed from the soil were significant due to the decreased in oil emulsion sizes, increase mobility and solubility. (Author)

  3. Bioequivalence of a new liquid formulation of benazepril compared with the reference tablet product.

    Science.gov (United States)

    Kelers, K; Devi, J L; Anderson, G A; Zahra, P; Vine, J H; Whittem, T

    2013-08-01

    To compare the bioequivalence and 'switchability' of two formulations of benazepril (tablet and liquid) after oral administration. Randomised cross-over design, followed by parallel comparison. Twelve mixed-breed dogs were administered either a tablet (Group A) or liquid formulation (Group B) of benazepril orally at 0.45 mg/kg daily for 4 days. With no washout period, the dogs then received the alternative treatment at the same dose for a further 4 days. Blood samples taken prior to treatment and serially after treatment were analysed for plasma concentrations of benazepril and benazeprilat and the activity and concentration of angiotensin-converting enzyme (ACE). The calculated percentage inhibition of ACE was defined as the primary outcome variable. No statistically significant differences were found between groups A and B for any variable evaluated. The mean (± SD) percentage of ACE inhibition was 85.5 ± 7.04% for the liquid formulation and 85.9 ± 6.66% for the tablet formulation. The mean of the ratios was 1.00 (80% confidence interval 0.96-1.04). No evaluated effect term (sequence, formulation or period) had any statistical effect on any outcome variable. This study supports a conclusion that, based on pharmacodynamic response, the liquid formulation of benazepril is bioequivalent to the reference tablet formulation. Further, the lack of a sequence effect supports the switchability of these two formulations. © 2013 Australian Veterinary Association.

  4. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2013-01-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''

  5. Microwave background constraints on mixing of photons with hidden photons

    International Nuclear Information System (INIS)

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter

    2008-12-01

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle χ 0 -7 - 10 -5 for hidden photon masses between 10 -14 eV and 10 -7 eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained. (orig.)

  6. Operational geometric phase for mixed quantum states

    International Nuclear Information System (INIS)

    Andersson, O; Heydari, H

    2013-01-01

    The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)

  7. Wave propagation properties of frame structures. Formulation for three-dimensional frame structures

    International Nuclear Information System (INIS)

    Nishida, Akemi

    2006-01-01

    Since it is generally difficult to predict the occurrence of natural disasters such as earth-quakes, a performance management system that constantly maintains the safety and functionality of structures is required, particularly for critical structures like nuclear power plants. In order to realize such a system, it is becoming important to carry out detailed modeling procedures and analyses to better understand actual phenomena. The aim of our research is to determine the dynamic behavior - especially the wave propagation phenomena - of piping systems in nuclear power plants, which are complicated assemblages of parts. The spectral element method is adopted in this study, and the formulation considering a shear deformation independently for a frame element is described. The Timoshenko beam theory is introduced for the purpose of this formulation. The validity of the presented element will be shown through comparisons with the conventional beam element. (author)

  8. Continuous glucose monitoring with Humalog Mix 25 versus Humalog Mix 50, twice daily: A comparative pilot study -Results from the Jikei-EValuation of insulin Lispro mixture on pharmacodynamics and glycemic VariancE (J-EVOLVE study

    Directory of Open Access Journals (Sweden)

    Morimoto Aya

    2010-05-01

    Full Text Available Abstract Objective To evaluate glycemic variability associated with two different premixed insulin analogue formulations when used in a twice-daily regimen. Patients and Methods Subjects comprised type 2 diabetic patients aged 20-79 years, treated with twice daily premixed insulin or insulin analogue formulations. All subjects were hospitalized for 6 days and randomized to receive either Humalog Mix 25 (Mix 25 or Humalog Mix 50 (Mix 50. They were then crossed over to the other arm between day 3 and day 4 of the study. Continuous glucose monitoring (CGM was performed on all subjects to examine the differences in glycemic variability. Results Eleven type 2 diabetic patients were enrolled. No significant difference was found in 24-hour mean glucose values and their SDs, pre-meal glucose values, increases from pre-meal to peak glucose values, or time to peak glucose levels between either group. However, the mean glucose values observed during 0-8 hrs were significantly lower with Mix 25 compared to Mix 50 (128 vs. 147 mg/dL; p = 0.024. Conclusions The twice-daily Mix 25 regimen provided superior overnight glycemic control compared to the Mix 50 regimen in Japanese patients with type 2 diabetes. However, both twice-daily regimens with either Mix 25 or Mix 50 provided inadequate post-lunch glycemic control. Trial Registration Current Controlled Trials UMIN000001327

  9. Main formulations of the finite element method for the problems of structural mechanics. Part 2

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    Full Text Available The author offers a classification of Finite Element formulations, which allows orienting in a great number of the published and continuing to be published works on the problem of raising the efficiency of this widespread numerical method. The second part of the article offers examination of straight formulations of FEM in the form of displacement approach, area method and classical mixed-mode method. The question of solution convergence according to FEM in the form of classical mixed-mode method is considered on the example of single-input single-output system of a beam in case of finite element grid refinement. The author draws a conclusion, that extinction of algebraic equations system of FEM in case of passage to the limit is not a peculiar feature of this method in general, but manifests itself only in some particular cases. At the same time the obtained results prove that FEM in mixed-mode form provides obtaining more stable results in case of finite element grid refinement in comparison with FEM in the form of displacement approach. It is quite obvious that the same qualities will appear also in two-dimensional systems.

  10. Topological Design for Acoustic-Structure Interaction Problems with a Mixed Finite Element Method

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz...... equation and the linear elasticity equation, the mass density as well as the shear and bulk moduli are interpolated with the design variables. In this formulation, the coupled interface boundary conditions are automatically satisfied without having to compute surface coupling integrals. Two dimensional...

  11. On Displacement Height, from Classical to Practical Formulation: Stress, Turbulent Transport and Vorticity Considerations

    Science.gov (United States)

    Sogachev, Andrey; Kelly, Mark

    2016-03-01

    Displacement height ( d) is an important parameter in the simple modelling of wind speed and vertical fluxes above vegetative canopies, such as forests. Here we show that, aside from implicit definition through a (displaced) logarithmic profile, accepted formulations for d do not consistently predict flow properties above a forest. Turbulent transport can affect the displacement height, and is an integral part of what is called the roughness sublayer. We develop a more general approach for estimation of d, through production of turbulent kinetic energy and turbulent transport, and show how previous stress-based formulations for displacement height can be seen as simplified cases of a more general definition including turbulent transport. Further, we also give a simplified and practical form for d that is in agreement with the general approach, exploiting the concept of vortex thickness scale from mixing-layer theory. We assess the new and previous displacement height formulations by using flow statistics derived from the atmospheric boundary-layer Reynolds-averaged Navier-Stokes model SCADIS as well as from wind-tunnel observations, for different vegetation types and flow regimes in neutral conditions. The new formulations tend to produce smaller d than stress-based forms, falling closer to the classic logarithmically-defined displacement height. The new, more generally defined, displacement height appears to be more compatible with profiles of components of the turbulent kinetic energy budget, accounting for the combined effects of turbulent transport and shear production. The Coriolis force also plays a role, introducing wind-speed dependence into the behaviour of the roughness sublayer; this affects the turbulent transport, shear production, stress, and wind speed, as well as the displacement height, depending on the character of the forest. We further show how our practical (`mixing-layer') form for d matches the new turbulence-based relation, as well as

  12. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    Rosenberg, D; Pouquet, A; Mininni, P D

    2007-01-01

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  13. Formulation and numerical analysis of nonisothermal multiphase flow in porous media

    International Nuclear Information System (INIS)

    Martinez, M.J.

    1995-06-01

    A mathematical formulation is presented for describing the transport of air, water and energy through porous media. The development follows a continuum mechanics approach. The theory assumes the existence of various average macroscopic variables which describe the state of the system. Balance equations for mass and energy are formulated in terms of these macroscopic variables. The system is supplemented with constitutive equations relating fluxes to the state variables, and with transport property specifications. Specification of various mixing rules and thermodynamic relations completes the system of equations. A numerical simulation scheme, employing the method of lines, is described for one-dimensional flow. The numerical method is demonstrated on sample problems involving nonisothermal flow of air and water. The implementation is verified by comparison with existing numerical solutions

  14. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements

    OpenAIRE

    Köster, U.; Jaeger, R.; Bardts, M.; Wahnes, C.; Büchner, H.; Kühn, K.-D.; Vogt, S.

    2013-01-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue pe...

  15. Radiation curable pressure sensitive adhesives (PSA) formulations from palm oil based resin

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Rosley Che Ismail; Khairul Zaman Mohd Dahlan

    2000-01-01

    Various low glass transition temperature (T g ) acrylate and methacrylate monomers were mixed with epoxidised palm oil acrylate (EPOLA) with the ratio of 50/50 prior to curing with electron beam (EB) irradiation. Methacrylate monomers such as dicyclopentenyloxyethyl methacrylate (DCPOEMA) and isobornyl methacrylate (ISBMA), although displaying relatively higher adhesive properties compared to others were finally excluded from being further utilised as monomers for PSA because of a very slow curing speed. Literally, it is suggested that poorer adhesive performances of the cured films made from 50/50:EPOLA/monomer mixture as compared to that of 100% monomer was attributed to the lack of compatibility between EPOLA and the particular monomers. Further compatibility investigations were continued using formulations prepared via prepolymer route cured by ultraviolet (UV) irradiation and the results showed that several monoacrylate monomers with polar and non-polar groups exhibited high curing speed as well as good compatibility with EPOLA as shown by their cured film properties such as surface tackiness, peel adhesion and creep resistance. It is also suggested that these monomers were acting as surfactants for EPOLA which consequently enhance their compatibility upon mixing. Earlier results of the studies on the use of several tackifiers such as poly(vinylmethylether) (PVME), liquid epoxidised natural rubber (LENR) and acrylic oligomer based active tackifier (IRR-153) in the PSA formulations showed that the addition of tackifiers, particularly 3 to 50% IRR-153 into the PSA formulations (while maintaining palm oil contents at 50% ) significantly improved the adhesive properties of cured films. The use qf tackifiers also reducing or eliminating the needs to employ prepolymer method in preparing PSA formulations since most of their viscosities are already above the optimum level (>500 Cps at 25 degree C)

  16. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  17. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo

    2015-12-11

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  18. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo; Novais, Augusto Q.

    2015-01-01

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  19. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  20. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    Science.gov (United States)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Microwave background constraints on mixing of photons with hidden photons

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max-Planck-Institut fuer Physik, Muenchen (Germany); Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-12-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0}

  2. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...

  3. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    International Nuclear Information System (INIS)

    Devi, Yendrembam Chaoba; Chakraborty, Biswajit; Prajapat, Shivraj; Mukhopadhyay, Aritra K.; Scholtz, Frederik G.

    2015-01-01

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2

  4. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds

    Science.gov (United States)

    Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.

    2017-03-01

    A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.

  5. Synthesis, characterization and electrochemical investigations of mixed-ligand copper(II)-organic supramolecular frameworks

    Science.gov (United States)

    Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish

    2017-11-01

    Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.

  6. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva Pellosi, Diogo [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil); Calori, Italo Rodrigo [Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá (Brazil); Barcelos de Paula, Leonardo [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil); Hioka, Noboru [Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá (Brazil); Quaglia, Fabiana [Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesanto 49, 80131 Napoli (Italy); Tedesco, Antonio Claudio, E-mail: atedesco@usp.br [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil)

    2017-02-01

    Nanotechnology development provides new strategies to treat cancer by integration of different treatment modalities in a single multifunctional nanoparticle. In this scenario, we applied the multifunctional Pluronic P123/F127 mixed micelles for Verteporfin-mediated photodynamic therapy in PC3 and MCF-7 cancer cells. Micelles functionalization aimed the targeted delivery by the insertion of biotin moiety on micelle surface and fluorescence image-based through rhodamine-B dye conjugation in the polymer chains. Multifunctional Pluronics formed spherical nanoparticulated micelles that efficiently encapsulated the photosensitizer Verteporfin maintaining its favorable photophysical properties. Lyophilized formulations were stable at least for 6 months and readily reconstituted in aqueous media. The multifunctional micelles were stable in protein-rich media due to the dual Pluronic mixed micelles characteristic: high drug loading capacity provided by its micellar core and high kinetic stability due its biocompatible shell. Biotin surface functionalized micelles showed higher internalization rates due biotin-mediated endocytosis, as demonstrated by competitive cellular uptake studies. Rhodamine B-tagged micelles allowed monitoring cellular uptake and intracellular distribution of the formulations. Confocal microscopy studies demonstrated a larger intracellular distribution of the formulation and photosensitizer, which could drive Verteporfin to act on multiple cell sites. Formulations were not toxic in the dark condition, but showed high Verteporfin-induced phototoxicity against both cancer cell lines at low drug and light doses. These results point Verteporfin-loaded multifunctional micelles as a promising tool to further developments in photodynamic therapy of cancer. - Highlights: • We optimized the theranostic mixed micelles – verteporfin formulations. • Multifunctional Pluronic micelles formed nano-sized spherical nanoparticles. • Biotin surface conjugation

  7. Long-acting poly(DL:lactic acid-castor oil) 3:7-bupivacaine formulation: effect of hydrophobic additives.

    Science.gov (United States)

    Sokolsky-Papkov, Marina; Golovanevski, Ludmila; Domb, Abraham J; Weiniger, Carolyn F

    2011-12-01

    To reduce formulation viscosity of bupivacaine/poly(DL lactic acid co castor oil) 3:7 without increasing bupivacaine release rates. Poly(DL lactic acid) 3:7 was synthesized and bupivacaine formulation prepared by mixing with additives ricinoleic acid or castor oil. In vitro release measurements identified optimum formulation. Anesthetized ICR mice were injected around left sciatic nerve using nerve stimulator with 0.1 mL of formulation. Animals received 10% bupivacaine-polymer formulation with 10% castor oil (p(DLLA:CO)3:7-10% bupi-10% CO) or 15% bupivacaine-polymer with 10% castor oil (p(DLLA:CO)3:7-15% bupi-10% CO). Sensory and motor block were measured. Viscosity of 10% and 15% bupivacaine-p(DLLA:CO)3:7 formulations was reduced using hydrophobic additives; however, castor oil reduced bupivacaine release rates and eliminated burst effect. Less than 10% of the incorporated bupivacaine was released during 6 h, and less than 25% released in 24 h in vitro. In vivo formulation injection resulted in a 24 h motor block and a sensory block lasting at least 72 h. Incorporation of hydrophobic low-viscosity additive reduced viscosity in addition to burst release effects. Bupivacaine-polymer formulation with castor oil additive demonstrated prolonged sensory analgesia in vivo, with reduced duration of motor block.

  8. Multivariate spectral-analysis of movement-related EEG data

    International Nuclear Information System (INIS)

    Andrew, C. M.

    1997-01-01

    The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)

  9. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-01-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  10. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  11. Quantum Spectral Curve for a cusped Wilson line in N=4 SYM

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor

    2016-01-01

    We show that the Quantum Spectral Curve (QSC) formalism, initially formulated for the spectrum of anomalous dimensions of all local single trace operators in N=4 SYM, can be extended to the generalized cusp anomalous dimension for all values of the parameters. We find that the large spectral parameter asymptotics and some analyticity properties have to be modified, but the functional relations are unchanged. As a demonstration, we find an all-loop analytic expression for the first two nontrivial terms in the small |ϕ±θ| expansion. We also present nonperturbative numerical results at generic angles which match perfectly 4-loop perturbation theory and the classical string prediction. The reformulation of the problem in terms of the QSC opens the possibility to explore many open questions. We attach to this paper several Mathematica notebooks which should facilitate future studies.

  12. Quantum Spectral Curve for a cusped Wilson line in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [King’s College London, Department of Mathematics, The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [King’s College London, Department of Mathematics, The Strand, London WC2R 2LS (United Kingdom)

    2016-04-20

    We show that the Quantum Spectral Curve (QSC) formalism, initially formulated for the spectrum of anomalous dimensions of all local single trace operators in N=4 SYM, can be extended to the generalized cusp anomalous dimension for all values of the parameters. We find that the large spectral parameter asymptotics and some analyticity properties have to be modified, but the functional relations are unchanged. As a demonstration, we find an all-loop analytic expression for the first two nontrivial terms in the small |ϕ±θ| expansion. We also present nonperturbative numerical results at generic angles which match perfectly 4-loop perturbation theory and the classical string prediction. The reformulation of the problem in terms of the QSC opens the possibility to explore many open questions. We attach to this paper several Mathematica notebooks which should facilitate future studies.

  13. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J.N.; Adam, A.J.L.; Kašalynas, I.; Gao, J.R.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ? 2.7?THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8?GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current.

  14. Mixing and Mass Transfer in Industrial Bioreactors

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...... formulas are not in any way quantitatively correct, but based on dimensional analysis one is able to extrapolate from small-to large-scale operation. It is shown that linear scale-up may not give the smallest power input for a given mixing objective. The introduction presented is the basis...... for the visionary scale-up/scale-down design principles....

  15. Parenteral formulation of an antileishmanial drug candidate--tackling poor solubility, chemical instability, and polymorphism.

    Science.gov (United States)

    Kupetz, Eva; Preu, Lutz; Kunick, Conrad; Bunjes, Heike

    2013-11-01

    The paullon chalcone derivative KuRei300 is active against Leishmania donovani, the protozoans causing visceral leishmaniasis. The aim of this study was the development of a parenteral formulation of the virtually water insoluble compound in order to enable future studies in mice. Mixed lecithin/bile salt micelles, liposomes, supercooled smectic cholesterol myristate nanoparticles, cubic phase nanoparticles and a triglyceride emulsion were screened for their solubilizing properties. Due to the limited available amount of KuRei300 a passive loading approach with pre-formulated carriers that were incubated with drug substance deposited onto the walls of glass vials was used. The loading capacities of the nanocarriers, the influence of the solid state properties of the drug and its deposits on the loading results and chemical stability aspects of KuRei300 were investigated. Employed methods included HPLC, UV spectroscopy, (1)H NMR, XRPD, and DSC. All nanocarriers substantially improved the solubility of KuRei300; the mixed micelles exhibited the highest drug load. Related to the lipid matrix, however, the smectic nanoparticles solubilized the significantly highest amount of drug. Loading from physically altered drug deposits improved the obtainable concentration to the threefold compared with untreated drug powder. Formulations with KuRei300 must be stored excluded from light under a nitrogen atmosphere as the substance is susceptible to photoisomerization and decomposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Promotional Mix Strategies to Increase Sales at PT. Polgabe Paltria Sejahtera in Pekanbaru, Riau

    OpenAIRE

    Lumban Gaol, Agoesd P.

    2014-01-01

    This study was conducted to determine the formulation of an appropriate promotional mix strategies with less characteristic of PT. Polgabe Paltria Sejahtera increase in sales volume. The population in this study is the promotional mix strategies entity PT. Plogabe Paltria Prosperous. Samples were used as respondents in this study is an integrated marketing experts in the promotional mix strategies entity PT. Polgabe Paltria Prosperity, in this case represented by the marketing manager. The da...

  17. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  18. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  19. Defect-induced mix experiment for NIF

    Directory of Open Access Journals (Sweden)

    Schmitt M.J.

    2013-11-01

    Full Text Available The Defect Induced Mix Experiment (DIME-II will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.

  20. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.

    2017-01-01

    Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  1. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  2. Matrix formulation of pebble circulation in the pebbed code

    International Nuclear Information System (INIS)

    Gougar, H.D.; Terry, W.K.; Ougouag, A.M.

    2002-01-01

    The PEBBED technique provides a foundation for equilibrium fuel cycle analysis and optimization in pebble-bed cores in which the fuel elements are continuously flowing and, if desired, recirculating. In addition to the modern analysis techniques used in or being developed for the code, PEBBED incorporates a novel nuclide-mixing algorithm that allows for sophisticated recirculation patterns using a matrix generated from basic core parameters. Derived from a simple partitioning of the pebble flow, the elements of the recirculation matrix are used to compute the spatially averaged density of each nuclide at the entry plane from the nuclide densities of pebbles emerging from the discharge conus. The order of the recirculation matrix is a function of the flexibility and sophistication of the fuel handling mechanism. This formulation for coupling pebble flow and neutronics enables core design and fuel cycle optimization to be performed by the manipulation of a few key core parameters. The formulation is amenable to modern optimization techniques. (author)

  3. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J. N.; Adam, A. J. L.; Kašalynas, I.; Gao, J. R.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ˜2.7THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current. Phase

  4. Spectral distribution study of nuclei in 2p-1f shell

    International Nuclear Information System (INIS)

    Haq, R.; Parikh, J.C.

    1975-01-01

    Systematics of nuclei in the beginning of fp-shell are investigated using the spectral distribution method of French. The centroid energies and widths for various distributions are evaluated using the interaction of Kuo with the modification suggested by McGrory et al. The two moment distributions are used to determine ground state energies, fractional occupancy of the single particle orbits for ground states and low lying spectra of various nuclei in this shell. The results are compared with the deformed configuration mixing calculations of Dhar et al. The goodness of Wigner SU(4) symmetry in these nuclei has been investigated. The mixing of various SU(4) representations near the ground state provides a measure of symmetry mixing and the substantial admixture in most of the cases shows that it is badly broken, largely due to the single particle spin orbit coupling. (author)

  5. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    Science.gov (United States)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  6. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  7. A knowledge representation model for the optimisation of electricity generation mixes

    International Nuclear Information System (INIS)

    Chee Tahir, Aidid; Bañares-Alcántara, René

    2012-01-01

    Highlights: ► Prototype energy model which uses semantic representation (ontologies). ► Model accepts both quantitative and qualitative based energy policy goals. ► Uses logic inference to formulate equations for linear optimisation. ► Proposes electricity generation mix based on energy policy goals. -- Abstract: Energy models such as MARKAL, MESSAGE and DNE-21 are optimisation tools which aid in the formulation of energy policies. The strength of these models lie in their solid theoretical foundations built on rigorous mathematical equations designed to process numerical (quantitative) data related to economics and the environment. Nevertheless, a complete consideration of energy policy issues also requires the consideration of the political and social aspects of energy. These political and social issues are often associated with non-numerical (qualitative) information. To enable the evaluation of these aspects in a computer model, we hypothesise that a different approach to energy model optimisation design is required. A prototype energy model that is based on a semantic representation using ontologies and is integrated to engineering models implemented in Java has been developed. The model provides both quantitative and qualitative evaluation capabilities through the use of logical inference. The semantic representation of energy policy goals is used (i) to translate a set of energy policy goals into a set of logic queries which is then used to determine the preferred electricity generation mix and (ii) to assist in the formulation of a set of equations which is then solved in order to obtain a proposed electricity generation mix. Scenario case studies have been developed and tested on the prototype energy model to determine its capabilities. Knowledge queries were made on the semantic representation to determine an electricity generation mix which fulfilled a set of energy policy goals (e.g. CO 2 emissions reduction, water conservation, energy supply

  8. Progress towards monochromatic imaging of mix at the NIF

    Science.gov (United States)

    Kyrala, G. A.; Murphy, T. J.; Bradley, P. A.; Krashenninnikova, N. S.; Tregillis, I. L.; Obrey, K.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Schmitt, M. J.; Kanzleiter, R. J.; Regan, S. P.; Barrios, M. A.

    2013-10-01

    Mix of non-hydrogenic (Z >1) material into the hydrogenic (D and T) ICF capsule fuel degrades implosion performance. The amount of degradation depends on the degree and the spatial distribution of mix. Experiments are underway at NIF to quantify the mix of shell material into fuel using directly driven capsules. CH or CD shells with various dopants, implanted at different depths in the shell are being used to change the amount of dopant mix. Spatially and spectrally resolved emission from the ionized dopants will be used to generate spatially and temporally dependent density and temperature maps of the ionized dopants that are mixed and heated in the core plasma. This information will be used to validate different mix models. This talk will describe the search for the appropriate dopant that gave a radiation spectrum that could be used to record images with the MMI diagnostic. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  9. Towards a unified solution of localization failure with mixed finite elements

    Science.gov (United States)

    Benedetti, Lorenzo; Cervera, Miguel; Chiumenti, Michele; Zeidler, Antonia; Fischer, Jan-Thomas

    2015-04-01

    Notwithstanding computational scientists made significant steps in the numerical simulation of failure in last three decades, the strain localization problem is still an open question. Especially in a geotechnical setting, when dealing with stability analysis of slopes, it is necessary to provide correct distribution of displacements, to evaluate the stresses in the ground and, therefore, to be able to identify the slip lines that brings to progressive collapse of the slope. Finite elements are an attractive method of solution thanks to profound mathematical foundations and the possibility of describing generic geometries. In order to account for the onset of localization band, the smeared crack approach [1] is introduced, that is the strain localization is assumed to occur in a band of finite width where the displacements are continuous and the strains are discontinuous but bounded. It is well known that this kind of approach poses some challenges. The standard irreducible formulation of FEM is known to be heavily affected by spurious mesh dependence when softening behavior occurs and, consequently, slip lines evolution is biased by the orientation of the mesh. Moreover, in the case of isochoric behavior, unbounded pressure oscillations arise and the consequent locking of the stresses pollutes the numerical solution. Both problems can be shown not to be related to the mathematical statement of the continuous problem but instead to its discrete (FEM) counterpart. Mixed finite element formulations represent a suitable alternative to mitigate these drawbacks. As it has been shown in previous works by Cervera [2], a mixed formulation in terms of displacements and pressure not only provides a propitious solution to the problem of incompressibility, but also it was found to possess the needed robustness in case of strain concentration. This presentation introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement

  10. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated

  11. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  12. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States); Ge, Wenjun [University of California Merced (United States)

    2017-04-03

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gas radiation and spectral radiation properties are important for engine-relevant conditions.

  13. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S.

    2013-01-01

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium

  14. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2013-06-15

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium.

  15. Comparison between the SIMPLE and ENERGY mixing models

    International Nuclear Information System (INIS)

    Burns, K.J.; Todreas, N.E.

    1980-07-01

    The SIMPLE and ENERGY mixing models were compared in order to investigate the limitations of SIMPLE's analytically formulated mixing parameter, relative to the experimentally calibrated ENERGY mixing parameters. For interior subchannels, it was shown that when the SIMPLE and ENERGY parameters are reduced to a common form, there is good agreement between the two models for a typical fuel geometry. However, large discrepancies exist for typical blanket (lower P/D) geometries. Furthermore, the discrepancies between the mixing parameters result in significant differences in terms of the temperature profiles generated by the ENERGY code utilizing these mixing parameters as input. For edge subchannels, the assumptions made in the development of the SIMPLE model were extended to the rectangular edge subchannel geometry used in ENERGY. The resulting effective eddy diffusivities (used by the ENERGY code) associated with the SIMPLE model are again closest to those of the ENERGY model for the fuel assembly geometry. Finally, the SIMPLE model's neglect of a net swirl effect in the edge region is most limiting for assemblies exhibiting relatively large radial power skews

  16. Suitability of different formulated carriers for sustaining microbial shelf life

    International Nuclear Information System (INIS)

    Tabassam, T.; Ali, A.

    2014-01-01

    Non-availability of a suitable carrier for bioinnoculant is a serious constraint for dissemination of biofertilizer technology in Pakistan. Present study was designed to formulate a suitable carrier from locally available cheap material and evaluate for shelf life by using locally isolated plant growth promoting rhizobacteria (PGPR) strains from maize rhizosphere. Different combinations of material were prepared using clay soil (35-50%), fly-ash (30-45%), press mud (5-15%) and lignite (5-15%). Clay soil (53% clay) was used for adhesion purpose but considering free of lump formation an important property of a good carrier, mixing 40% of soil with other material was found suitable. Using 40% of soil, six different treatments were formulated and physico-chemical characteristics were determined. Four combinations in the range of 40% clay, 30-40% fly-ash, 10-15% press mud and 10-15% lignitic coal were selected which had good adhesion capacity, moisture holding capacity, nutrient contents and investigated for microbial shelf life. Significant difference regarding microbial survival was observed between different formulations as well as between different incubation intervals. Among different carrier tested the FC-4 supported the maximum population of 33.5x10- 10.8x10 cfu g for MR-8 and 32.6x10 - 7.2x10 cfu g for MR-5. Results showed that the required population of PGPR was sustained in all the formulation tested up to six months of storage period. (author)

  17. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  18. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    Science.gov (United States)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  19. Sunlight persistence and rainfastness of spray-dried formulations of baculovirus isolated from Anagrapha falcifera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Tamez-Guerra, P; McGuire, M R; Behle, R W; Hamm, J J; Sumner, H R; Shasha, B S

    2000-04-01

    Nuclear polyhedrosis viruses such as the one isolated from the celery looper, Anagrapha falcifera (Kirby) (AfMNPV), have the potential to be successful bioinsecticides if improved formulations can prevent rapid loss of insecticidal activity from environmental conditions such as sunlight and rainfall. We tested 16 spray-dried formulations of AfMNPV to determine the effect of different ingredients (e.g., lignin, corn flour, and so on) on insecticidal activity after simulated rain and simulated sunlight (at Peoria, IL) and natural sunlight exposures (at Tifton, GA). The most effective formulation contained pregelatinized corn flour and potassium lignate, which retained more than half of its original activity after 5 cm of simulated rain, and almost full activity after 8 h of simulated sunlight. In Georgia, formulations made with and without lignin were compared for persistence of insecticidal activity when exposed to natural sunlight. In addition, the effect of fluorescent brighteners as formulation components and spray tank additives was tested. Results showed that the formulations with lignin had more insecticidal activity remaining after sunlight exposure than formulations without lignin. The inclusion of brighteners in the formulation did not improve initial activity or virus persistence. However, a 1% tank mix significantly enhanced activity and improved persistence. Scanning electron micrographs revealed discreet particles, and transmission electron micrographs showed virus embedded within microgranules. Results demonstrated that formulations made with natural ingredients could improve persistence of virus-based biopesticides.

  20. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    Science.gov (United States)

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  1. Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    Science.gov (United States)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2015-01-01

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  2. Effect of Mixing Ratio between Pork Loin and Chicken Breast on Textural and Sensory Properties of Emulsion Sausages

    Science.gov (United States)

    2014-01-01

    This study is conducted to evaluate the effects of the mixing ratio between pork loin and chicken breast for textural and sensory properties of emulsion sausages. Meat homogenates are prepared by using five mixing ratios between pork loin and chicken breast (100:0, 70:30, 50:50, 30:70, and 0:100), and the emulsion sausages are also formulated with five mixing ratios. The additions of chicken breast increase the salt soluble protein solubility due to high pH levels of chicken breast, thereby resulting in the reduction of cooking losses. In addition, the apparent viscosity of meat homogenates increase with increasing amounts of chicken breast. In terms of emulsion sausages formulated with pork loin and chicken breast, the addition of chicken breast above 50% may contribute to a softer and more flexible texture of emulsion sausages. For sensory evaluations, an increase in the added amount of chicken breast contributes to a rich umami taste and deeper flavor within the emulsion sausages, resulting in the high overall acceptance score for the formulation of 0-30% pork loin and 70-100% chicken breast. Therefore, the optimal mixing ratios between pork loin and chicken breast are 0-30% and 70-100% for enhancing the textural and sensory properties of emulsion sausages. PMID:26760930

  3. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.

    Science.gov (United States)

    Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian

    2013-06-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.

  4. Spectral Gap Estimates in Mean Field Spin Glasses

    Science.gov (United States)

    Ben Arous, Gérard; Jagannath, Aukosh

    2018-05-01

    We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.

  5. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  6. Formulation study on immobilization of spent ion exchange resins in polymer cement

    International Nuclear Information System (INIS)

    Xia Lili; Lin Meiqiong; Bao Liangjin; Fan Xianhua

    2006-01-01

    The aim of this study is to develop a formulation of cement-solidified spent radioactive ion exchange resin form. The solidified form consists of a sort of composite cement, epoxide resin emulsion, and spent ion exchange resins. The composite cement is made up of quick-setting sulphoaluminate cement, silica powder, zeolite, and fly ash in the proportion 1:0.05:0.10:0.05. Sixteen combinations of composite cement, epoxide resin emulsion and mixed anion-cation exchange resins are selected according to a three-factors-four-levels normal design table with the compression strength as the evaluation criterion. The resulted formulation is as follows: the mass ratio of polymer emulsion to composite cement is 0.55:1, the loading of mixed anion-cation exchange resins is 0.3, and the anionic-to-cationic exchange resins ratio is 2:1. The polymer cement solidified forms were tested after 28 d curing for Cs + and Sr 2+ leaching rates, pH and conductivity of the leaching water, and radiation-resistant property in addition to their compressive strength. The measurement results indicate that the performance of thus prepared solidified forms can meet the requirements of the National Standard GB14569.1-93 for near earth's surface disposal of low radioactive waste. (authors)

  7. Twisted Poincare invariance, noncommutative gauge theories and UV-IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, A.P. [Department of Physics, Syracuse University, Syracuse NY, 13244-1130 (United States)], E-mail: bal@physics.syr.edu; Pinzul, A. [Insituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)], E-mail: apinzul@fma.if.usp.br; Queiroz, A.R. [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, C.P. 04667, Brasilia, DF (Brazil); Universidade Federal de Goias, Campus Avancado de Catalao, Departamento de Fisica, St. Universitario - 75700-000, Catalao-GO (Brazil)], E-mail: amilcarq@gmail.com

    2008-10-09

    In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604 (2004) 98, (hep-th/0408069); P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quantum Grav. 22 (2005) 3511, (hep-th/0504183); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.1379 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, (arXiv: 0708.1779 [hep-th])]. In that formulation, such theories also have no UV-IR mixing [A.P. Balachandran, A. Pinzul, B.A. Qureshi, Phys. Lett. B 634 (2006) 434, (hep-th/0508151)]. Here we investigate UV-IR mixing in gauge theories with matter following the approach of [A.P. Balachandran, A. Pinzul, B. A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th])]. We prove that there is UV-IR mixing in the one-loop diagram of the S-matrix involving a coupling between gauge and matter fields on the GM plane, the gauge field being non-Abelian. There is no UV-IR mixing if it is Abelian.

  8. Bioprocessing scenarios for mixed hazardous waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.

    1994-01-01

    The potential of biological processing of mixed hazardous waste has not been determined. However, the use of selected microorganisms for the degradation and/or detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. The isolation of a unique strain of Pseudomonas Putida Idaho seems well adapted to withstand the demands of the input stream comprised of liquid scintillation waste. This paper describes the results from the continuous processing of a mixture comprised of p-xylene and surfactant as well as commercial liquid scintillation formulations. The two formulations tested contained xylene and pseudocumene as the solvent base. The process is now at the demonstration phase at one of DOE's facilities which has a substantial amount of stored waste of this type. The system at the DOE facility is comprised of two CSTR units in series

  9. Emulsions and rectal formulations containing myrrh essential oil for better patient compliance.

    Science.gov (United States)

    Etman, M; Amin, M; Nada, A H; Shams-Eldin, M; Salama, O

    2011-06-01

    Myrrh has long been used for its circulatory, disinfectant, analgesic, antirheumatic, antidiabetic, and schistosomicidal properties. Myrrh essential oil (MEO) was extracted from the oleo-gum resin of Commiphora molmol and formulated into emulsions and suppositories to mask/avoid its bitter taste. Three oil-in-water emulsions (E1-E3) were formulated and taste was evaluated by 10 volunteers. Particle size distribution was measured and correlated with excipients and the method of preparation. Physical and chemical stability testing was carried out for the optimum formulation (E2). Seven suppository formulations were investigated (F1-F7). Suppocire AML (F1) and Suppocire CM (F2) were chosen as fatty bases, and polyethylene glycol (PEG) 1500 (F3), PEG 4000 (F4), and a PEG blend (50% PEG 6000 + 30% PEG 1500 + 20% PEG 400) (F5) were chosen as water-soluble bases. A blend of PEG 1500 and Suppocire CM was also used (F7). Camphor (5%) was added to PEG 1500 (F6). Disintegration time, release rate, DSC, fracture points, and weight uniformity were evaluated. The overall average bitterness for formulations E1, E2, and E3 was 6.44, 4.15, and 3.45, respectively. Suppositories containing Suppocire AML had the fastest disintegration time (1.5 min) with dissolution efficiency (DE) of 56.8%. F3 containing PEG 1500 had a fast disintegration time of 2.5 min and maximum DE of 93.5%. The PEG blend had satisfactory release: (DE = 90.9%). A mixed fatty and water-soluble base (F7) had a disintegration time of 5 min and low DE (33.4%). A stable MEO emulsion with acceptable taste was formulated to improve patient acceptance and compliance. F3 suppositories yielded satisfactory results, while formulations containing fatsoluble bases exhibited poor release.

  10. Influence of different formulations and granulation techniques on dissolution of folic acid in film coated tablets

    Directory of Open Access Journals (Sweden)

    Ljiljana Krsteska

    2011-07-01

    Full Text Available The vitamin folic acid has received considerable attention because of it′s role in decreasing risk of neural tube birth defects, and it′s potential role in reducing risks of cardiovascular and psychiatric diseases. We evaluated compositions of 5 different formulations in terms of meeting the USP standard for dissolution and disintegration .However all the examined formulations had met the disintegration test but only 3 formulations had met the dissolution requirements to release 75 % of the active ingredient in 45 minutes. The maximum value of dissolution of 97.52 % in S5 composition was achieved by combination of certain excipients (combination of hydrophilic and hydrophobic filler and suitable wetting agent and wet high shear mixing granulation technique, resulting with optimize release of the active substance.

  11. Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens.

    Science.gov (United States)

    Qian, Yiguang; Yao, Jun; Russel, Mohammad; Chen, Ke; Wang, Xiaoyu

    2015-03-01

    The application of nanotechnology in medicine has recently been a breakthrough in therapeutic drugs formulation. This paper presents the structural and optical characterization of a new green nano-formulation (ZnO-Aloe vera) with considerable antibacterial activity against pathogenic bacteria. Its particle structure, size and morphology were characterized by XRD, TEM and SEM. And optical absorption spectra and photoluminescence were measured synchronously. Their antibacterial activity against Escherichia coli and Staphylococcus aureus was also investigated using thermokinetic profiling and agar well diffusion method. The nano-formulation is spherical shape and hexagonal with a particle size ranging from 25 to 65 nm as well as an increased crystallite size of 49 nm. For antibacterial activity, the maximum inhibition zones of ZnO and ZnO+A. vera are 18.33 and 26.45 mm for E. coli, 22.11 and 28.12 mm for S. aureus (pvera nano-formulation has a significant (p E. coli at 15 and 25mg/L. ZnO+A. vera nano-formulation is much more toxic against S. aureus than E. coli, with an IC50 of 13.12 mg/L and 21.31 mg/L, respectively. The overall results reveal that the ZnO-A. vera nano-formulation has good surface energy, crystallinity, transmission, and enriched antibacterial activities. Their antibacterial properties are possibly relevant to particle size, microstructural ionization, the crystal formation and the Gram property of pathogens. This ZnO-A. vera nano-formulation could be utilized effectively as a spectral and significant antibacterial agent for pathogens in future medical and environmental concerns. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Sensitivity experiments to mountain representations in spectral models

    Directory of Open Access Journals (Sweden)

    U. Schlese

    2000-06-01

    Full Text Available This paper describes a set of sensitivity experiments to several formulations of orography. Three sets are considered: a "Standard" orography consisting of an envelope orography produced originally for the ECMWF model, a"Navy" orography directly from the US Navy data and a "Scripps" orography based on the data set originally compiled several years ago at Scripps. The last two are mean orographies which do not use the envelope enhancement. A new filtering technique for handling the problem of Gibbs oscillations in spectral models has been used to produce the "Navy" and "Scripps" orographies, resulting in smoother fields than the "Standard" orography. The sensitivity experiments show that orography is still an important factor in controlling the model performance even in this class of models that use a semi-lagrangian formulation for water vapour, that in principle should be less sensitive to Gibbs oscillations than the Eulerian formulation. The largest impact can be seen in the stationary waves (asymmetric part of the geopotential at 500 mb where the differences in total height and spatial pattern generate up to 60 m differences, and in the surface fields where the Gibbs removal procedure is successful in alleviating the appearance of unrealistic oscillations over the ocean. These results indicate that Gibbs oscillations also need to be treated in this class of models. The best overall result is obtained using the "Navy" data set, that achieves a good compromise between amplitude of the stationary waves and smoothness of the surface fields.

  13. An adjoint-based framework for maximizing mixing in binary fluids

    Science.gov (United States)

    Eggl, Maximilian; Schmid, Peter

    2017-11-01

    Mixing in the inertial, but laminar parameter regime is a common application in a wide range of industries. Enhancing the efficiency of mixing processes thus has a fundamental effect on product quality, material homogeneity and, last but not least, production costs. In this project, we address mixing efficiency in the above mentioned regime (Reynolds number Re = 1000 , Peclet number Pe = 1000) by developing and demonstrating an algorithm based on nonlinear adjoint looping that minimizes the variance of a passive scalar field which models our binary Newtonian fluids. The numerical method is based on the FLUSI code (Engels et al. 2016), a Fourier pseudo-spectral code, which we modified and augmented by scalar transport and adjoint equations. Mixing is accomplished by moving stirrers which are numerically modeled using a penalization approach. In our two-dimensional simulations we consider rotating circular and elliptic stirrers and extract optimal mixing strategies from the iterative scheme. The case of optimizing shape and rotational speed of the stirrers will be demonstrated.

  14. Spatial and spectral interpolation of ground-motion intensity measure observations

    Science.gov (United States)

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  15. Initial analyses of surface spectral radiance between observations and Line-By-Line calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.D.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miller, N.E.; Shippert, T.R.; Turner, D.D. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1996-04-01

    The evaluation an improvement of radiative transfer calculations are essential to attain improved performance of general circulation models (GCMs) for climate change applications. A Quality Measurement Experiment (QME) is being conducted to analyze the spectral residuals between the downwelling longwave radiance measured by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) and spectral radiance calculated by the Line-By-Line Radiative Transfer Model (LBLRTM). The three critical components of this study are (1) the assessment of the quality of the high resolution AERI measurements, (2) the assessment of the ability to define the atmospheric state in the radiating column, and (3) the evaluation of the capability of LBLRTM. Validations have been performed on spectral radiance data, obtained from April 1994 through July 1994, through the analysis of the spectral interval and physical process. The results are archived as a function of time, enabling the retrieval of specific data and facilitating investigations and diurnal effects, seasonal effects, and longer-term trends. While the initial focus is restricted to clear-sky analyses, efforts are under way to include the effects of clouds and aerosols. Plans are well formulated for the extension of the current approach to the shortwave. An overview of the concept of the QME is described by Miller et al. (1994), and a detailed description of this study is provided by Clough et al. (1994).

  16. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  17. Prediction of Concrete Mix Cost Using Modified Regression Theory ...

    African Journals Online (AJOL)

    The cost of concrete production which largely depends on the cost of the constituent materials, affects the overall cost of construction. In this paper, a model based on modified regression theory is formulated to optimise concrete mix cost (in Naira). Using the model, one can predict the cost per cubic meter of concrete if the ...

  18. Compatible-strain mixed finite element methods for incompressible nonlinear elasticity

    Science.gov (United States)

    Faghih Shojaei, Mostafa; Yavari, Arash

    2018-05-01

    We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

  19. Residue behavior and risk assessment of mixed formulation of imidacloprid and chlorfenapyr in chieh-qua under field conditions.

    Science.gov (United States)

    Huang, Jian Xiang; Liu, Cong Yun; Lu, Da Hai; Chen, Jia Jia; Deng, Yi Cai; Wang, Fu Hua

    2015-10-01

    A simple and rapid method based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of imidacloprid and chlorfenapyr residues in chieh-qua. Field trials were designed to investigate the dissipation and terminal residue behavior of the mixed formulation of imidacloprid and chlorfenapyr in chieh-qua in Guangzhou and Nanning areas. Risk assessment was performed by calculating the risk quotient (RQ) values. The developed analytical method exhibited recoveries of 89.9-110.3% with relative standard deviations (RSDs) of 2.8-12.5% at the spiked levels of 0.01, 0.10, and 1.00 mg/kg. The limit of detection (LOD) was 0.003 mg/kg, and the limit of quantification (LOQ) was 0.01 mg/kg for both imidacloprid and chlorfenapyr. It was found that the half-lives of imidacloprid in chieh-qua under field conditions were 3.3 and 3.5 days in Guangzhou and Nanning at a dose of 180 g ai/ha, while the half-lives of chlorfenapyr were 3.3 and 2.6 days, respectively. The terminal residues of imidacloprid and chlorfenapyr were from 0.01 to 0.21 mg/kg and from 0.01 to 0.46 mg/kg, respectively. Results of dietary exposure assessment showed that the RQ values were much lower than 1, indicating that the risk of imidacloprid and chlorfenapyr applied in chieh-qua was negligible to human health under recommended dosage and good agricultural practices. The proposed study would provide guidance for safe and reasonable use of imidacloprid and chlorfenapyr in chieh-qua cultivation in China.

  20. Optimization of instant dalia dessert pre-mix production by using response surface methodology.

    Science.gov (United States)

    Jha, Alok; Shalini, B N; Patel, Ashok Ambalal; Singh, Mithilesh; Rasane, Prasad

    2015-02-01

    Dalia, a wheat-based, particulate containing dairy dessert is popularly consumed as a breakfast food and is also considered as a health food. Though popular throughout Northern parts of the country, its limited shelf-life even under refrigeration imposes severe restrictions on its organized manufacture and marketing. In order to promote dalia dessert as a marketable product, in the present study, a process was developed for manufacture of instant dalia pre-mix, as a dry product with long shelf-life, which could be attractively packaged and easily reconstituted for consumption. During the investigation, the effect of different levels of milk solids and wheat solids was studied on dalia pre-mix quality by employing a central composite rotatable design (CCRD). The suggested formulation had 17.82 % milk solids and 2.87 % wheat solids. This formulation was found to be most appropriate for manufacture of instant dalia pre-mix with predicted sensory scores (Max. 100) of 85.35, 41.98 and 67.27 for mouthfeel, consistency and flavor, respectively; the viscosity of the product was 941.0 cp.

  1. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  2. Formulating weak CP-violation in terms of quark mass hierarchies

    International Nuclear Information System (INIS)

    Davidson, A.

    1982-06-01

    That physics which explains Cabibbo mixing is shown to also put a lower bound on Kobayashi-Maskawa CP-violation. The observed amount epsilon = 0.002 of CP-violation in the Ksub(L) - Ksub(S) system in turn sharply requires 25 GeV <= msub(t) <= 59 GeV; msub(t) being the top-quark mass. Assuming a vanishing weak (ala strong) CP-violation amplitude for msub(u) → 0, as strongly indicated by the data, epsilon is formulated as a second order quantity in the fermionic mass hierarchy. (author)

  3. A mixed nonoverlapping covolume method on quadrilateral grids for elliptic problems

    NARCIS (Netherlands)

    Zhao, X.; Chen, Y.; Lv, J.

    2016-01-01

    A covolume method is proposed for the mixed formulation of second-order elliptic problems. The solution domain is divided by a quadrilateral grid, corresponding to which a nonoverlapping dual grid is constructed. The velocity and pressure are approximated by the lowest-order Raviart–Thomas space on

  4. Response Surface Method and Linear Programming in the development of mixed nectar of acceptability high and minimum cost

    Directory of Open Access Journals (Sweden)

    Enrique López Calderón

    2012-06-01

    Full Text Available The aim of this study was to develop a high acceptability mixed nectar and low cost. To obtain the nectar mixed considered different amounts of passion fruit, sweet pepino, sucrose, and completing 100% with water, following a two-stage design: screening (using a design of type 2 3 + 4 center points and optimization (using a design of type 2 2 + 2*2 + 4 center points; stages that allow explore a high acceptability formulation. Then we used the technique of Linear Programming to minimize the cost of high acceptability nectar. Result of this process was obtained a mixed nectar optimal acceptability (score of 7, when the formulation is between 9 and 14% of passion fruit, 4 and 5% of sucrose, 73.5% of sweet pepino juice and filling with water to the 100%. Linear Programming possible reduced the cost of nectar mixed with optimal acceptability at S/.174 for a production of 1000 L/day.

  5. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  6. Effect of liposomal formulations and immunostimulating peptidoglycan monomer (PGM) on the immune reaction to ovalbumin in mice.

    Science.gov (United States)

    Habjanec, Lidija; Frkanec, Ruza; Halassy, Beata; Tomasić, Jelka

    2006-01-01

    The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-L-Ala-D-isoGln-mesoDpm(epsilonNH2)-D-Ala-D-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).

  7. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  8. Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique

    KAUST Repository

    Gou, Kun

    2012-07-01

    An inverse spectral method is developed for recovering a spatially inhomogeneous shear modulus for soft tissue. The study is motivated by a novel use of the intravascular ultrasound technique to image arteries. The arterial wall is idealized as a nonlinear isotropic cylindrical hyperelastic body. A boundary value problem is formulated for the response of the arterial wall within a specific class of quasistatic deformations reflective of the response due to imposed blood pressure. Subsequently, a boundary value problem is developed via an asymptotic construction modeling intravascular ultrasound interrogation which generates small amplitude, high frequency time harmonic vibrations superimposed on the static finite deformation. This leads to a system of second order ordinary Sturm-Liouville boundary value problems that are then employed to reconstruct the shear modulus through a nonlinear inverse spectral technique. Numerical examples are demonstrated to show the viability of the method. © 2012 Elsevier Ltd. All rights reserved.

  9. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  10. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  11. Neural networks to formulate special fats

    Directory of Open Access Journals (Sweden)

    Garcia, R. K.

    2012-09-01

    Full Text Available Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX. All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.

    Las redes neuronales son una rama de la inteligencia artificial basadas en la estructura y funcionamiento de sistemas biológicos, teniendo como principal característica la capacidad de aprender y generalizar conocimiento. Estas son utilizadas en la resolución de problemas complejos, en los cuales los sistemas computacionales tradicionales presentan una eficiencia baja. Hasta la fecha, han sido propuestas aplicaciones para los más diversos sectores y actividades. En el área de grasas y aceites, la utilización de redes neuronales se ha concentrado principalmente en dos asuntos: la detección de adulteraciones y la formulación de productos grasos. La formulación de grasas para uso específico es el caso clásico de problema complejo donde un experto o grupo de

  12. Fuel formulation and mixing strategy for rate of heat release control with PCCI combustion

    NARCIS (Netherlands)

    Zegers, R.P.C.; Yu, M.; Luijten, C.C.M.; Dam, N.J.; Baert, R.S.G.; Goey, de L.P.H.

    2009-01-01

    Premixed charge compression ignition (or PCCI) is a new combustion concept that promises very low emissions of nitrogen oxides and of particulate matter by internal combustion engines. In the PCCIcombustion mode fuel, products from previous combustion events and air are mixed and compresseduntil the

  13. Surrogate formulations for thermal treatment of low-level mixed waste

    International Nuclear Information System (INIS)

    Chiang, J.M.; Bostick, W.D.; Hoffman, D.P.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.

    1994-01-01

    The plasma hearth process (PHP) presented in this report has been tested at a facility at Ukiah, California, in a cooperative effort between the Department of Energy (DOE), Science Applications International Corporation, Inc., and ReTech, Inc. The electrically heated plasma gas is used to destroy organic materials and bind radionuclides and Resource Conservation and Recovery Act (RCRA) metals in the glassy slag. Proof-of-principle tests were conducted successfully using nonhazardous and non-radioactive materials placed in 30-gal steel drums. On-line analyses of the gaseous effluents indicated complete combustion; emissions of CO, NO x , and particulates were low. The process also produced highly stable solid waste forms. The experiments for the next phase have been planned employing surrogates for the hazardous and radioactive components of the simulated waste streams. Natural cerium oxide is selected to simulate the behavior of radioactive actinide and transuranium elements, while natural cesium chloride is simulated for the study of relatively volatile radioactive fission products. For RCRA organics, naphthalene and 1,2-dichlorobenzene are semivolatile compounds selected to represent significant challenges to thermal destruction, whereas chlorobenzene is selected for the study of relatively volatile organics. Salts of chromium, nickel, lead, and cadmium are chosen to represent the twelve regulated toxic metals for emission and partitioning studies. The simulated waste packages presented in the text do not necessarily represent an individual waste stream within the DOE complex; rather, they were formulated to represent the most probable components in generic waste stream categories

  14. The optimized gradient method for full waveform inversion and its spectral implementation

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2016-01-01

    At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.

  15. The optimized gradient method for full waveform inversion and its spectral implementation

    KAUST Repository

    Wu, Zedong

    2016-03-28

    At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.

  16. Measurement of the Retention Time of Different Ophthalmic Formulations with Ultrahigh-Resolution Optical Coherence Tomography.

    Science.gov (United States)

    Gagliano, Caterina; Papa, Vincenzo; Amato, Roberta; Malaguarnera, Giulia; Avitabile, Teresio

    2018-04-01

    Purpose/aim of the study: The purpose of this study was to measure the pre-corneal retention time of two marketed formulations (eye drops and eye gel) of a steroid-antibiotic fixed combination (FC) containing 0.1% dexamethasone and 0.3% netilmicin. Pre-corneal retention time was evaluated in 16 healthy subjects using an ultrahigh-resolution anterior segment spectral domain optical coherence tomography (OCT). All subjects randomly received both formulations of the FC (Netildex, SIFI, Italy). Central tear film thickness (CTFT) was measured before instillation (time 0) and then after 1, 10, 20, 30, 40 50, 60 and 120 min. The pre-corneal retention time was calculated by plotting CTFT as a function of time. Differences between time points and groups were analyzed by Student's t-test. CTFT increased significantly after the instillation of the eye gel formulation (p < 0.001). CTFT reached its maximum value 1 min after instillation and returned to baseline after 60 min. No effect on CTFT was observed after the instillation of eye drops. The difference between the two formulations was statistically significant at time 1 min (p < 0.0001), 10 min (p < 0.001) and 20 min (p < 0.01). The FC formulated as eye gel was retained on the ocular surface longer than the corresponding eye drop solution. Consequently, the use of the eye gel might extend the interval between instillations and decrease the frequency of administration.

  17. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  18. Nonlinear Equalization in 40/112/224 Gbit/s Mixed Line Rate 15-Channel DP-QPSK and DP-16QAM Contiguous Spectrum Based Networks

    DEFF Research Database (Denmark)

    Asif, Rameez

    2014-01-01

    We evaluated that in-line non-linear compensation schemes decrease the com- plexity of digital back-propagation and enhance the perfor mance of 40/112/224Gbit/s mixed line rate network. Both grouped and un-grouped spectral all ocation schemes are investigated.......We evaluated that in-line non-linear compensation schemes decrease the com- plexity of digital back-propagation and enhance the perfor mance of 40/112/224Gbit/s mixed line rate network. Both grouped and un-grouped spectral all ocation schemes are investigated....

  19. Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Gargalo, Carina L.; Chairakwongsa, Siwanat

    2015-01-01

    when large problems are considered. In an earlier work, we proposed a computer-aided framework for synthesis and design of process networks. In this contribution, we expand the framework by including methods and tools developed to structure, automate and simplify the mathematical formulation......The developments obtained in recent years in the field of mathematical programming considerably reduced the computational time and resources needed to solve large and complex Mixed Integer Non Linear Programming (MINLP) problems. Nevertheless, the application of these methods in industrial practice...... is still limited by the complexity associated with the mathematical formulation of some problems. In particular, the tasks of design space definition and representation as superstructure, as well as the data collection, validation and handling may become too complex and cumbersome to execute, especially...

  20. The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2011-01-01

    For a second-order symmetric strongly elliptic operator A on a smooth bounded open set in Rn, the mixed problem is defined by a Neumann-type condition on a part Σ+ of the boundary and a Dirichlet condition on the other part Σ−. We show a Kreĭn resolvent formula, where the difference between its...... to the area of Σ+, in the case where A is principally equal to the Laplacian...

  1. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrall...

  2. Audits of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.

    1992-01-01

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team

  3. Spectral feature characterization methods for blood stain detection in crime scene backgrounds

    Science.gov (United States)

    Yang, Jie; Mathew, Jobin J.; Dube, Roger R.; Messinger, David W.

    2016-05-01

    Blood stains are one of the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Blood spectral signatures containing unique reflectance or absorption features are important both for forensic on-site investigation and laboratory testing. They can be used for target detection and identification applied to crime scene hyperspectral imagery, and also be utilized to analyze the spectral variation of blood on various backgrounds. Non-blood stains often mislead the detection and can generate false alarms at a real crime scene, especially for dark and red backgrounds. This paper measured the reflectance of liquid blood and 9 kinds of non-blood samples in the range of 350 nm - 2500 nm in various crime scene backgrounds, such as pure samples contained in petri dish with various thicknesses, mixed samples with different colors and materials of fabrics, and mixed samples with wood, all of which are examined to provide sub-visual evidence for detecting and recognizing blood from non-blood samples in a realistic crime scene. The spectral difference between blood and non-blood samples are examined and spectral features such as "peaks" and "depths" of reflectance are selected. Two blood stain detection methods are proposed in this paper. The first method uses index to denote the ratio of "depth" minus "peak" over"depth" add"peak" within a wavelength range of the reflectance spectrum. The second method uses relative band depth of the selected wavelength ranges of the reflectance spectrum. Results show that the index method is able to discriminate blood from non-blood samples in most tested crime scene backgrounds, but is not able to detect it from black felt. Whereas the relative band depth method is able to discriminate blood from non-blood samples on all of the tested background material types and colors.

  4. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  5. SUSY WT identity in a lattice formulation of 2D N=(2,2) SYM

    International Nuclear Information System (INIS)

    Kadoh, Daisuke; Suzuki, Hiroshi

    2010-01-01

    We address some issues relating to a supersymmetric (SUSY) Ward-Takahashi (WT) identity in Sugino's lattice formulation of two-dimensional (2D) N=(2,2)SU(k) supersymmetric Yang-Mills theory (SYM). A perturbative argument shows that the SUSY WT identity in the continuum theory is reproduced in the continuum limit without any operator renormalization/mixing and tuning of lattice parameters. As application of the lattice SUSY WT identity, we show that a prescription for the Hamiltonian density in this lattice formulation, proposed by Kanamori, Sugino and Suzuki, is justified also from a perspective of an operator algebra among correctly-normalized supercurrents. We explicitly confirm the SUSY WT identity in the continuum limit to the first nontrivial order in a semi-perturbative expansion.

  6. Fluid mixing in reactor containment

    International Nuclear Information System (INIS)

    Deoras M Prabhudharwadkar; Kannan N Iyer

    2005-01-01

    Full text of publication follows: Hydrogen release and distribution in nuclear power plant containment is an important safety issue. Selection of a proper turbulence model is important for accurate estimation of the mixing process. The selection of turbulence model is dictated by the best compromise between accuracy and computational efforts. For this, three different turbulence models, viz. Standard k-ε, RNG k-ε and Reynolds Stress Model, based on Reynolds averaged Navier Stokes equations (RANS) approach, were used. The computations were done using the CFD code FLUENT, which is based on the control volume methodology. The computational results were compared with the experimental results of HYMIS test facility, where helium was used to simulate hydrogen. The processes of helium plume rise, multiple plume merging, distribution and mixing were studied. Based on these computations, a simple analytical/empirical zone based model was formulated for the same problem, which predicted the helium concentration reasonably accurately and quickly. (authors)

  7. Multi-label Learning with Missing Labels Using Mixed Dependency Graphs

    KAUST Repository

    Wu, Baoyuan

    2018-04-06

    This work focuses on the problem of multi-label learning with missing labels (MLML), which aims to label each test instance with multiple class labels given training instances that have an incomplete/partial set of these labels (i.e., some of their labels are missing). The key point to handle missing labels is propagating the label information from the provided labels to missing labels, through a dependency graph that each label of each instance is treated as a node. We build this graph by utilizing different types of label dependencies. Specifically, the instance-level similarity is served as undirected edges to connect the label nodes across different instances and the semantic label hierarchy is used as directed edges to connect different classes. This base graph is referred to as the mixed dependency graph, as it includes both undirected and directed edges. Furthermore, we present another two types of label dependencies to connect the label nodes across different classes. One is the class co-occurrence, which is also encoded as undirected edges. Combining with the above base graph, we obtain a new mixed graph, called mixed graph with co-occurrence (MG-CO). The other is the sparse and low rank decomposition of the whole label matrix, to embed high-order dependencies over all labels. Combining with the base graph, the new mixed graph is called as MG-SL (mixed graph with sparse and low rank decomposition). Based on MG-CO and MG-SL, we further propose two convex transductive formulations of the MLML problem, denoted as MLMG-CO and MLMG-SL respectively. In both formulations, the instance-level similarity is embedded through a quadratic smoothness term, while the semantic label hierarchy is used as a linear constraint. In MLMG-CO, the class co-occurrence is also formulated as a quadratic smoothness term, while the sparse and low rank decomposition is incorporated into MLMG-SL, through two additional matrices (one is assumed as sparse, and the other is assumed as low

  8. Anti-correlated spectral motion in bisphthalocyanines: evidence for vibrational modulation of electronic mixing.

    Science.gov (United States)

    Prall, Bradley S; Parkinson, Dilworth Y; Ishikawa, Naoto; Fleming, Graham R

    2005-12-08

    We exploit a coherently excited nuclear wave packet to study nuclear motion modulation of electronic structure in a metal bridged phthalocyanine dimer, lutetium bisphthalocyanine, which displays two visible absorption bands. We find that the nuclear coordinate influences the energies of the underlying exciton and charge resonance states as well as their interaction; the interplay of the various couplings creates unusual anti-correlated spectral motion in the two bands. Excited state relaxation dynamics are the same regardless of which transition is pumped, with decay time constants of 1.5 and 11 ps. The dynamics are analyzed using a three-state kinetic model after relaxation from one or two additional states faster than the experimental time resolution of 50-100 fs.

  9. The spectral element method for static neutron transport in AN approximation. Part I

    International Nuclear Information System (INIS)

    Barbarino, A.; Dulla, S.; Mund, E.H.; Ravetto, P.

    2013-01-01

    Highlights: ► Spectral elements methods (SEMs) are extended for the neutronics of nuclear reactor cores. ► The second-order, A N formulation of neutron trasport is adopted. ► Results for classical benchmark cases in 2D are presented and compared to finite elements. ► The advantages of SEM in terms of precision and convergence rate are illustrated. ► SEM consitutes a promising approach for the solution of neutron transport problems. - Abstract: Spectral elements methods provide very accurate solutions of elliptic problems. In this paper we apply the method to the A N (i.e. SP 2N−1 ) approximation of neutron transport. Numerical results for classical benchmark cases highlight its performance in comparison with finite element computations, in terms of accuracy per degree of freedom and convergence rate. All calculations presented in this paper refer to two-dimensional problems. The method can easily be extended to three-dimensional cases. The results illustrate promising features of the method for more complex transport problems

  10. Integrated Data Collection Analysis (IDCA) Program - Mixing Procedures and Materials Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Olinger, Becky D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Remmers, Daniel L. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Moran, Jesse S. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States); Shelley, Timothy J. [Air Force Research Lab. (AFRL), Tyndall AFB, FL (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whipple, Richard E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kashgarian, Michaele [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-14

    Three mixing procedures have been standardized for the IDCA proficiency test—solid-solid, solid-liquid, and liquid-liquid. Due to the variety of precursors used in formulating the materials for the test, these three mixing methods have been designed to address all combinations of materials. Hand mixing is recommended for quantities less than 10 grams and Jar Mill mixing is recommended for quantities over 10 grams. Consideration must also be given to the type of container used for the mixing due to the wide range of chemical reactivity of the precursors and mixtures. Eight web site sources from container and chemical manufacturers have been consulted. Compatible materials have been compiled as a resource for selecting containers made of materials stable to the mixtures. In addition, container materials used in practice by the participating laboratories are discussed. Consulting chemical compatibility tables is highly recommended for each operation by each individual engaged in testing the materials in this proficiency test.

  11. Biodegradation of Aged Residues of Atrazine and Alachlor in a Mix-Load Site Soil by Fungal Enzymes

    OpenAIRE

    Chirnside, Anastasia E. M.; Ritter, William F.; Radosevich, Mark

    2011-01-01

    Soils from bulk pesticide mixing and loading (mix-load) sites are often contaminated with a complex mixture of pesticides, herbicides, and other organic compounds used in pesticide formulations that limits the success of remediation efforts. Therefore, there is a need to find remediation strategies that can successfully clean up these mix-load site soils. This paper examined the degradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine; AT) and alachlor (2-chloro- 2  , 6  -...

  12. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  13. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y

    2006-08-21

    The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, we caution that the energy containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper we introduce the concept of a minimum state as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper we show that the Reynolds number of the minimum state may be determined as 1.6 x 10{sup 5}. Our efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. At the last the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced supercomputing facilities increase

  14. Three-Field Modelling of Nonlinear Nonsmooth Boundary Value Problems and Stability of Differential Mixed Variational Inequalities

    Directory of Open Access Journals (Sweden)

    J. Gwinner

    2013-01-01

    Full Text Available The purpose of this paper is twofold. Firstly we consider nonlinear nonsmooth elliptic boundary value problems, and also related parabolic initial boundary value problems that model in a simplified way steady-state unilateral contact with Tresca friction in solid mechanics, respectively, stem from nonlinear transient heat conduction with unilateral boundary conditions. Here a recent duality approach, that augments the classical Babuška-Brezzi saddle point formulation for mixed variational problems to twofold saddle point formulations, is extended to the nonsmooth problems under consideration. This approach leads to variational inequalities of mixed form for three coupled fields as unknowns and to related differential mixed variational inequalities in the time-dependent case. Secondly we are concerned with the stability of the solution set of a general class of differential mixed variational inequalities. Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the associated nonlinear maps, the nonsmooth convex functionals, and the convex constraint set. We employ epiconvergence for the convergence of the functionals and Mosco convergence for set convergence. We impose weak convergence assumptions on the perturbed maps using the monotonicity method of Browder and Minty.

  15. Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces

    KAUST Repository

    Efendiev, Yalchin; Galvis, Juan; Lazarov, Raytcho; Weiß er, Steffen

    2014-01-01

    We present a Boundary Element Method (BEM)-based FEM for mixed formulations of second order elliptic problems in two dimensions. The challenge, we would like to address, is a proper construction of H(div)-conforming vector valued trial functions

  16. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2012-01-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  17. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  18. Relative bioavailability of three formulations of galunisertib administered as monotherapy in patients with advanced or metastatic cancer

    Directory of Open Access Journals (Sweden)

    Ivelina Gueorguieva

    2016-12-01

    Full Text Available Objective: Galunisertib (LY2157299 monohydrate, an inhibitor of the transforming growth factor β (TGFβ pathway, is currently under investigation in several clinical trials involving multiple tumor types. The primary objective of this study was to assess relative bioavailability of two new galunisertib formulations developed using the roller compaction (RC dry-milled (RCD and RC slurry-milled (RCS processes, compared with the existing formulation developed using the high-sheer wet granulation (HSWG process. The secondary objective was to report the safety profile after a single dose of the three formulations. Methods: Patients with advanced or metastatic cancer were enrolled into this single-center, 3-period, 6-sequence crossover study. Patients were assigned sequentially to 1 of 6 sequences in blocks of 6 to ensure that all 6 sequences have the same number of completers. A patient entering a sequence received a different galunisertib formulation as a single 150 mg dose orally during each of the 3 periods. Each period was separated from the next by a washout interval of at least 48 hours. Pharmacokinetic (PK parameters, including area under curve (AUC and Cmax, were computed using standard non-compartmentalized methods of analysis. For comparison of exposures between formulations, log-transformed AUC and Cmax values were analyzed using a linear mixed-effects model. Safety assessments included adverse event monitoring, physical examinations, and laboratory tests. Results: Of the 14 patients who entered and completed the study, 13 patients were included in the final statistical analysis. AUC(0-tlast, AUC(0-48 h, and AUC(0-∞ for the RC formulations and the HSWG formulation were similar. Cmax was reduced by approximately 22% and tmax was longer by at least 1.00 h for the RCD and RCS formulations compared with the HSWG formulation. The RC formulations demonstrated a safety profile after a single dose similar to the HSWG formulation. Conclusions

  19. Spectral decomposition of single-tone-driven quantum phase modulation

    International Nuclear Information System (INIS)

    Capmany, Jose; Fernandez-Pousa, Carlos R

    2011-01-01

    Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  20. Spectral decomposition of single-tone-driven quantum phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

    2011-02-14

    Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  1. A Mixed-Layer Model perspective on stratocumulus steady-states in a perturbed climate

    NARCIS (Netherlands)

    Dal Gesso, S.; Siebesma, A.P.; de Roode, S.R.; van Wessem, J.M.

    2013-01-01

    Equilibrium states of stratocumulus are evaluated for a range of free tropospheric conditions in a Mixed-Layer Model framework using a number of different entrainment formulations. The equilibrium states show that a reduced lower tropospheric stability (LTS) and a dryer free troposphere support a

  2. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    Science.gov (United States)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  3. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  4. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  5. Optimization model of energy mix taking into account the environmental impact

    International Nuclear Information System (INIS)

    Gruenwald, O.; Oprea, D.

    2012-01-01

    At present, the energy system in the Czech Republic needs to decide some important issues regarding limited fossil resources, greater efficiency in producing of electrical energy and reducing emission levels of pollutants. These problems can be decided only by formulating and implementing an energy mix that will meet these conditions: rational, reliable, sustainable and competitive. The aim of this article is to find a new way of determining an optimal mix for the energy system in the Czech Republic. To achieve the aim, the linear optimization model comprising several economics, environmental and technical aspects will be applied. (Authors)

  6. Microcanonical formulation of quantum field theories

    International Nuclear Information System (INIS)

    Iwazaki, A.

    1984-03-01

    A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)

  7. A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.

    Science.gov (United States)

    He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi

    2014-06-27

    The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed

  8. Reactive decontamination formulation

    Science.gov (United States)

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  9. A systematization of spectral data on the methanol molecule

    Science.gov (United States)

    Akhlyostin, A. Yu.; Voronina, S. S.; Lavrentiev, N. A.; Privezentsev, A. I.; Rodimova, O. B.; Fazliev, A. Z.

    2015-11-01

    Problems underlying a systematization of spectral data on the methanol molecule are formulated. Data on the energy levels and vacuum wavenumbers acquired from the published literature are presented in the form of information sources imported into the W@DIS information system. Sets of quantum numbers and labels used to describe the CH3OH molecular states are analyzed. The set of labels is different from universally accepted sets. A system of importing the data sources into W@DIS is outlined. The structure of databases characterizing transitions in an isolated CH3OH molecule is introduced and a digital library of the relevant published literature is discussed. A brief description is given of an imported data quality analysis and representation of the results obtained in the form of ontologies for subsequent computer processing.

  10. Phase III (full scale) agitated mixing test plan

    International Nuclear Information System (INIS)

    Ruff, D.T.

    1994-01-01

    Waste Receiving and Processing Facility Module 2A (WRAP 2A) is the proposed second module of the WRAP facility. This facility will provide the required treatment for contact Handled (CH) Low Level (LL) Mixed Waste (MW) to allow its permanent disposal. Solidification of a portion of this waste using a cement based grout has been selected in order to reduce the toxicity and mobility of the waste in the disposal site. Mixing of the waste with the cement paste and material handling constraints/requirements associated with the mixed material is, therefore, a key process in the overall treatment strategy. This test plan addresses Phase 3, Full Scale Testing. The objectives of these tests are to determine if there are scale-up issues associated with the mixing results obtained in Phase 1 and 2 mixing tests, verify the workability of mixtures resulting from previous formulation development efforts (Waste Immobilization Development [WID]), and provide a baseline for WRAP 2A mixing equipment design. To this end, the following objectives are of particular interest: determine geometric influence of mixing blade at full scale (i.e., size, type, and location: height/offset); determine if similar results in terms of mixing effectiveness and product quality are achievable at this scale; determine if vibration is as effective at this larger scale in fluidizing the mixture and aiding in cleaning the vessel; determine if baffles or sweeping blades are needed to aid in mixing at the larger size and for cleaning the vessel; and determine quality of the poured monolithic product and investigate exotherm and filling influences at this larger size

  11. A technique for determining the optimum mix of logistics service providers of a make-to-order supply chain by formulating and solving a constrained nonlinear cost optimization problem

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Roy

    2013-04-01

    Full Text Available In this paper, a technique has been developed to determine the optimum mix of logistic service providers of a make-to-order (MTO supply chain. A serial MTO supply chain with different stages/ processes has been considered. For each stage different logistic service providers with different mean processing lead times, but same lead time variances are available. A realistic assumption that for each stage, the logistic service provider who charges more for his service consumes less processing lead time and vice-versa has been made in our study. Thus for each stage, for each service provider, a combination of cost and mean processing lead time is available. Using these combinations, for each stage, a polynomial curve, expressing cost of that stage as a function of mean processing lead time is fit. Cumulating all such expressions of cost for the different stages along with incorporation of suitable constraints arising out of timely delivery, results in the formulation of a constrained nonlinear cost optimization problem. On solving the problem using mathematica, optimum processing lead time for each stage is obtained. Using these optimum processing lead times and by employing a simple technique the optimum logistic service provider mix of the supply chain along with the corresponding total cost of processing is determined. Finally to examine the effect of changes in different parameters on the optimum total processing cost of the supply chain, sensitivity analysis has been carried out graphically.

  12. Vitrification of low-level and mixed wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Bates, J.K.; Feng, Xiangdong.

    1994-01-01

    The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories

  13. Mixing states of aerosols over four environmentally distinct atmospheric regimes in Asia: coastal, urban, and industrial locations influenced by dust.

    Science.gov (United States)

    Ramachandran, S; Srivastava, Rohit

    2016-06-01

    Mixing can influence the optical, physical, and chemical characteristics of aerosols, which in turn can modify their life cycle and radiative effects. Assumptions on the mixing state can lead to uncertain estimates of aerosol radiative effects. To examine the effect of mixing on the aerosol characteristics, and their influence on radiative effects, aerosol mixing states are determined over four environmentally distinct locations (Karachi, Gwangju, Osaka, and Singapore) in Asia, an aerosol hot spot region, using measured spectral aerosol optical properties and optical properties model. Aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (g) exhibit spectral, spatial, and temporal variations. Aerosol mixing states exhibit large spatial and temporal variations consistent with aerosol characteristics and aerosol type over each location. External mixing of aerosol species is unable to reproduce measured SSA over Asia, thus providing a strong evidence that aerosols exist in mixed state. Mineral dust (MD) (core)-Black carbon (BC) (shell) is one of the most preferred aerosol mixing states. Over locations influenced by biomass burning aerosols, BC (core)-water soluble (WS, shell) is a preferred mixing state, while dust gets coated by anthropogenic aerosols (BC, WS) over urban regions influenced by dust. MD (core)-sea salt (shell) mixing is found over Gwangju corroborating the observations. Aerosol radiative forcing exhibits large seasonal and spatial variations consistent with features seen in aerosol optical properties and mixing states. TOA forcing is less negative/positive for external mixing scenario because of lower SSA. Aerosol radiative forcing in Karachi is a factor of 2 higher when compared to Gwangju, Osaka, and Singapore. The influence of g on aerosol radiative forcing is insignificant. Results emphasize that rather than prescribing one single aerosol mixing state in global climate models regionally and temporally varying aerosol

  14. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  15. The effect of dosages of microbial consortia formulation and synthetic fertilizer on the growth and yield of field-grown chili

    Science.gov (United States)

    Istifadah, N.; Sapta, D.; Krestini, H.; Natalie, B.; Suryatmana, P.; Nurbaity, A.; Hidersah, R.

    2018-03-01

    Chili (Capsicum annuum, L) is one of important horticultural crop in Indonesia. Formulation of microbial consortia containing Bacillus subtilis, Pseudomonas sp., Azotobacter chroococcum and Trichoderma harzianum has been developed. This study evaluated the effects of dosage of the microbial formulation combined with NPK fertilizer on growth and yield of chili plants in the field experiment. The experiment was arranged in completely randomized design of factorial, in which the first factor was dosage of formulation (0, 2.5, 5.0, 7.5, 10 g per plant) and the second factor was NPK fertilizer dosage (0, 25, 50 and 75% of the standard dosage). The treatments were replicated three times. For application, the formulation was mixed with chicken manure 1:10 (w/v). The results showed that application of microbial formulation solely improved the chili growth. There was interaction between dosages of the microbial formulation and NPK fertilizer in improving plant height, nitrogen availability and the chili yield, while there was no interaction between those dosages in improving the root length. Combination between microbial formulation at the dosage of 5.0-7.5 g per plant combined with NPK fertilizer with the dosage 50 or 75% of the standard dosage support relatively better growth and the chili yield.

  16. Spectral representation and QCD sum rules in hot nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.; Sarkar, Sourav

    2009-01-01

    We construct the spectral representation of spinsor two-point functions in medium, that is, at finite temperature and chemical potential. We first deal with the free spinor two-point function. Then we construct the same for interacting fields leading to the Kaellen-Lehmann representation. It is emphasised that although these two point functions have the structure of 2 x 2 matrices in the real time formulation of field theory, any one component actually suffices to describe the dynamics of the system. Our construction is then applied to write the QCD sum rules for two-point function of nucleon currents in medium. We discuss a subtracted version to increase the sensitivity of such a sum rule and point out how it differs from a conventional one. (author)

  17. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  18. Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons

    Science.gov (United States)

    K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose

    2013-01-01

    A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...

  19. Doubly end-on azido bridged mixed-valence cobalt trinuclear complex: Spectral study, VTM, inhibitory effect and antimycobacterial activity on human carcinoma and tuberculosis cells

    Science.gov (United States)

    Datta, Amitabha; Das, Kuheli; Sen, Chandana; Karan, Nirmal Kumar; Huang, Jui-Hsien; Lin, Chia-Her; Garribba, Eugenio; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Mane, Sandeep B.

    2015-09-01

    Doubly end-on azido-bridged mixed-valence trinuclear cobalt complex, [Co3(L)2(N3)6(CH3OH)2] (1) is afforded by employing a potential monoanionic tetradentate-N2O2 Schiff base precursor (2-[{[2-(dimethylamino)ethyl]imino}methyl]-6-methoxyphenol; HL). Single crystal X-ray structure reveals that in 1, the adjacent CoII and CoIII ions are linked by double end-on azido bridges and thus the full molecule is generated by the site symmetry of a crystallographic twofold rotation axis. Complex 1 is subjected on different spectral analysis such as IR, UV-vis, emission and EPR spectroscopy. On variable temperature magnetic study, we observe that during cooling, the χMT values decrease smoothly until 15 K and then reaches to the value 1.56 cm3 K mol-1 at 2 K. Complex 1 inhibits the cell growth on human lung carcinoma (A549 cells), human colorectal (COLO 205 and HT-29 cells), and human heptacellular (PLC5 cells) carcinoma cells. Complex 1 exhibits anti-mycobacterial activity and considerable efficacy on Mycobacterium tuberculosis H37Rv ATCC 27294 and H37Ra ATCC 25177 strains.

  20. A new method for the determination of the mixing ratio hydrogen to helium in the giant planets.

    Science.gov (United States)

    Gautier, D.; Grossman, K.

    1972-01-01

    By using a numerical iterative method, it is demonstrated that the mixing ratio H2/He on the giant planets can be inferred from spectral measurements of the intensity emitted by these planets in the far infrared range. The method is successfully applied to synthetic spectra of Saturn computed from atmospheric thermal models. The effect of random and systematic measurement errors on the determination of the mixing ratio is also studied.

  1. Deduction of an invariant-mass spectrum M (Σ π ) for Λ (1405 ) with mixed TΣ π ←K-p and TΣ π ←Σ π from Hemingway's data on the Σ+(1660 ) →Λ (1405 ) +π+→(Σπ ) I =0+π+ processes

    Science.gov (United States)

    Hassanvand, Maryam; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2015-10-01

    We formulated the Λ (1405 ) (abbreviated as Λ*) →(Σπ ) 0 invariant-mass spectra produced in the K-+p →Σ+(1660 ) +π- , followed by Σ+(1660 ) →Λ (1405 ) +π+→Σ π +π+ , processes at p (K-)=4.2 GeV/c , in which both the incident channel for a quasibound K-p state and its decay process to (Σπ ) 0 were taken into account realistically. We calculated M (Σ π ) spectral shapes using mixed transition matrices, T21=TΣ π ←K-p and T22=TΣ π ←Σ π , for various theoretical models involving Λ*. The asymmetric spectra were compared to old experimental data of Hemingway, and it was found that the mixing of the two channels, written as (1 -f ) T21+f T22 , gave a better result than considering the individual channels, yielding f =0 .376-0.019+0.021 , M (Λ*) =1406 .6-3.3+3.4 MeV/c2 and Γ =70 ±2 MeV, nearly consistent with the 2014 PDG values.

  2. Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation.

    Science.gov (United States)

    Alibolandi, Mona; Abnous, Khalil; Mohammadi, Marzieh; Hadizadeh, Farzin; Sadeghi, Fatemeh; Taghavi, Sahar; Jaafari, Mahmoud Reza; Ramezani, Mohammad

    2017-10-28

    Due to the severe cardiotoxicity of doxorubicin, its usage is limited. This shortcoming could be overcome by modifying pharmacokinetics of the drugs via preparation of various nanoplatforms. Doxil, a well-known FDA-approved nanoplatform of doxorubicin as antineoplastic agent, is frequently used in clinics in order to reduce cardiotoxicity of doxorubicin. Since Doxil shows some shortcomings in clinics including hand and food syndrome and very slow release pattern thus, there is a demand for the development and preparation of new doxorubicin nanoformulation with fewer side effects. The new formulation of the doxorubicin, synthesized previously by our group was extensively examined in the current study. This new formulation is doxorubicin encapsulated in PEG-PLGA polymersomes (PolyDOX). The main aim of the study was to compare the distribution and treatment efficacy of a new doxorubicin-polymersomal formulation (PolyDOX) with regular liposomal formulation (Doxil-mimic) in murine colon adenocarcinoma model. Additionally, the pathological, hematological changes, pharmacodynamics, biodistribution, tolerated dose and survival rate in vivo were evaluated and compared. Murine colon cancer model was induced by subcutaneous inoculation of BALB/c mice with C26 cells. Afterwards, either Doxil-mimic or PolyDOX was administered intravenously. The obtained results from biodistribution study showed a remarkable difference in the distribution of drugs in murine organs. In this regard, Doxil-mimic exhibited prolonged (48h) presence within liver tissues while PolyDOX preferentially accumulate in tumor and the presence in liver 48h post-treatment was significantly lower than that of Doxil-mimic. Obtained results demonstrated comparable final length of life for mice receiving either Doxil-mimic or PolyDOX formulations whereas tolerated dose of mice receiving Doxil-mimic was remarkably higher than those receiving PolyDOX. Therapeutic efficacy of formulation in term of tumor growth rate

  3. Composition-tuned band gap energy and refractive index in GaS{sub x}Se{sub 1−x} layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836, Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148, Baku (Azerbaijan)

    2017-04-01

    Transmission and reflection measurements on GaS{sub x}Se{sub 1−x} mixed crystals (0 ≤ x ≤ 1) were carried out in the 400–1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaS{sub x}Se{sub 1−x} mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. - Highlights: • Transmission and reflection experiments were performed on GaS{sub x}Se{sub 1−x} mixed crystals. • Derivative spectra of transmittance and reflectance were used for analyses. • Compositional dependence of band gap energy and refractive index were reported.

  4. Origin of Spectral Band Patterns in the Cosmic Unidentified Infrared Emission

    Science.gov (United States)

    Álvaro Galué, Héctor; Díaz Leines, Grisell

    2017-10-01

    The cosmic unidentified infrared emission (UIE) band phenomenon is generally considered as indicative of free-flying polycyclic aromatic hydrocarbon molecules in space. However, a coherent explanation of emission spectral band patterns depending on astrophysical source is yet to be resolved under this attribution. Meanwhile astronomers have restored the alternative origin as due to amorphous carbon particles, but assigning spectral patterns to specific structural elements of particles is equally challenging. Here we report a physical principle in which inclusion of nonplanar structural defects in aromatic core molecular structures (π domains) induces spectral patterns typical of the phenomenon. We show that defects in model π domains modulate the electronic-vibration coupling that activates the delocalized π -electron contribution to aromatic vibrational modes. The modulation naturally disperses C =C stretch modes in band patterns that readily resemble the UIE bands in the elusive 6 - 9 μ m range. The electron-vibration interaction mechanics governing the defect-induced band patterns underscores the importance of π delocalization in the emergence of UIE bands. We discuss the global UIE band regularity of this range as compatible with an emission from the delocalized s p2 phase, as π domains, confined in disordered carbon mixed-phase aggregates.

  5. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    Science.gov (United States)

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  6. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  7. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  8. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  9. Cluster Correlation in Mixed Models

    Science.gov (United States)

    Gardini, A.; Bonometto, S. A.; Murante, G.; Yepes, G.

    2000-10-01

    We evaluate the dependence of the cluster correlation length, rc, on the mean intercluster separation, Dc, for three models with critical matter density, vanishing vacuum energy (Λ=0), and COBE normalization: a tilted cold dark matter (tCDM) model (n=0.8) and two blue mixed models with two light massive neutrinos, yielding Ωh=0.26 and 0.14 (MDM1 and MDM2, respectively). All models approach the observational value of σ8 (and hence the observed cluster abundance) and are consistent with the observed abundance of damped Lyα systems. Mixed models have a motivation in recent results of neutrino physics; they also agree with the observed value of the ratio σ8/σ25, yielding the spectral slope parameter Γ, and nicely fit Las Campanas Redshift Survey (LCRS) reconstructed spectra. We use parallel AP3M simulations, performed in a wide box (of side 360 h-1 Mpc) and with high mass and distance resolution, enabling us to build artificial samples of clusters, whose total number and mass range allow us to cover the same Dc interval inspected through Automatic Plate Measuring Facility (APM) and Abell cluster clustering data. We find that the tCDM model performs substantially better than n=1 critical density CDM models. Our main finding, however, is that mixed models provide a surprisingly good fit to cluster clustering data.

  10. Validating the Galerkin least-squares finite element methods in predicting mixing flows in stirred tank reactors

    International Nuclear Information System (INIS)

    Johnson, K.; Bittorf, K.J.

    2002-01-01

    A novel approach for computer aided modeling and optimizing mixing process has been developed using Galerkin least-squares finite element technology. Computer aided mixing modeling and analysis involves Lagrangian and Eulerian analysis for relative fluid stretching, and energy dissipation concepts for laminar and turbulent flows. High quality, conservative, accurate, fluid velocity, and continuity solutions are required for determining mixing quality. The ORCA Computational Fluid Dynamics (CFD) package, based on a finite element formulation, solves the incompressible Reynolds Averaged Navier Stokes (RANS) equations. Although finite element technology has been well used in areas of heat transfer, solid mechanics, and aerodynamics for years, it has only recently been applied to the area of fluid mixing. ORCA, developed using the Galerkin Least-Squares (GLS) finite element technology, provides another formulation for numerically solving the RANS based and LES based fluid mechanics equations. The ORCA CFD package is validated against two case studies. The first, a free round jet, demonstrates that the CFD code predicts the theoretical velocity decay rate, linear expansion rate, and similarity profile. From proper prediction of fundamental free jet characteristics, confidence can be derived when predicting flows in a stirred tank, as a stirred tank reactor can be considered a series of free jets and wall jets. (author)

  11. The Effect of Formulation on Spray Dried Sabin Inactivated Polio Vaccine.

    Science.gov (United States)

    Kanojia, Gaurav; Ten Have, Rimko; Brugmans, Debbie; Soema, Peter C; Frijlink, Henderik W; Amorij, Jean-Pierre; Kersten, Gideon

    2018-05-19

    The objective of this study was to develop a stable spray dried formulation, containing the three serotypes of Sabin inactivated polio vaccine (sIPV), aiming for minimal loss of native conformation (D-antigen) during drying and subsequent storage. The influence of atomization and drying stress during spray drying on trivalent sIPV was investigated. This was followed by excipient screening, in which monovalent sIPV was formulated and spray dried. Excipient combinations and concentrations were tailored to maximize both the antigen recovery of respective sIPV serotypes after spray drying and storage (T= 40°C and t= 7 days). Furthermore, a fractional factorial design was developed around the most promising formulations to elucidate the contribution of each excipient in stabilizing D-antigen during drying. Serotype 1 and 2 could be dried with 98 % and 97 % recovery, respectively. When subsequently stored at 40°C for 7 days, the D-antigenicity of serotype 1 was fully retained. For serotype 2 the D-antigenicity dropped to 71 %. Serotype 3 was more challenging to stabilize and a recovery of 56 % was attained after drying, followed by a further loss of 37 % after storage at 40°C for 7 days. Further studies using a design of experiments approach demonstrated that trehalose/monosodium glutamate and maltodextrin/arginine combinations were crucial for stabilizing serotype 1 and 2, respectively. For sIPV serotype 3, the best formulation contained Medium199, glutathione and maltodextrin. For the trivalent vaccine it is therefore probably necessary to spray dry the different serotypes separately and mix the dry powders afterwards to obtain the trivalent vaccine. Copyright © 2018. Published by Elsevier B.V.

  12. Vertical mixing by Langmuir circulations

    International Nuclear Information System (INIS)

    McWilliams, James C.; Sullivan, Peter P.

    2001-01-01

    Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)

  13. An Integrated Methodology for Emulsified Formulated Product Design

    DEFF Research Database (Denmark)

    Mattei, Michele

    are mixed together to determine the desired emulsified product. They are still mainly designed and analysed through trial - and - error based exper- imental techniques, therefore a systematic approach , integrating model-based as well a s experiment - based techniques, for design of these products could......The consumer oriented chemical based products are used every day by millions of people. They are structured products constituted of numerous chemicals, and many of them, especially household and personal care products, are emulsions where active ingredients, solvents, additives and surfactants...... significantly reduce both time and cost connected to product development by doing only the necessary experi- ments , and ensuring chances for innovation . The main contribution of this project i s the development of an integrated methodology for the design of emulsified formulated products. The methodology...

  14. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments.

    Science.gov (United States)

    Xu, Xiaoming; Al-Ghabeish, Manar; Rahman, Ziyaur; Krishnaiah, Yellela S R; Yerlikaya, Firat; Yang, Yang; Manda, Prashanth; Hunt, Robert L; Khan, Mansoor A

    2015-09-30

    Owing to its unique anatomical and physiological functions, ocular surface presents special challenges for both design and performance evaluation of the ophthalmic ointment drug products formulated with a variety of bases. The current investigation was carried out to understand and identify the appropriate in vitro methods suitable for quality and performance evaluation of ophthalmic ointment, and to study the effect of formulation and process variables on its critical quality attributes (CQA). The evaluated critical formulation variables include API initial size, drug percentage, and mineral oil percentage while the critical process parameters include mixing rate, temperature, time and cooling rate. The investigated quality and performance attributes include drug assay, content uniformity, API particle size in ointment, rheological characteristics, in vitro drug release and in vitro transcorneal drug permeation. Using design of experiments (DoE) as well as a novel principle component analysis approach, five of the quality and performance attributes (API particle size, storage modulus of ointment, high shear viscosity of ointment, in vitro drug release constant and in vitro transcorneal drug permeation rate constant) were found to be highly influenced by the formulation, in particular the strength of API, and to a lesser degree by processing variables. Correlating the ocular physiology with the physicochemical characteristics of acyclovir ophthalmic ointment suggested that in vitro quality metrics could be a valuable predictor of its in vivo performance. Published by Elsevier B.V.

  15. Lipid Based Formulations of Biopharmaceutics Classification System (BCS Class II Drugs: Strategy, Formulations, Methods and Saturation

    Directory of Open Access Journals (Sweden)

    Šoltýsová I.

    2016-12-01

    Full Text Available Active ingredients in pharmaceuticals differ by their physico-chemical properties and their bioavailability therefore varies. The most frequently used and most convenient way of administration of medicines is oral, however many drugs are little soluble in water. Thus they are not sufficiently effective and suitable for such administration. For this reason a system of lipid based formulations (LBF was developed. Series of formulations were prepared and tested in water and biorelevant media. On the basis of selection criteria, there were selected formulations with the best emulsification potential, good dispersion in the environment and physical stability. Samples of structurally different drugs included in the Class II of the Biopharmaceutics classification system (BCS were obtained, namely Griseofulvin, Glibenclamide, Carbamazepine, Haloperidol, Itraconazol, Triclosan, Praziquantel and Rifaximin, for testing of maximal saturation in formulations prepared from commercially available excipients. Methods were developed for preparation of formulations, observation of emulsification and its description, determination of maximum solubility of drug samples in the respective formulation and subsequent analysis. Saturation of formulations with drugs showed that formulations 80 % XA and 20 % Xh, 35 % XF and 65 % Xh were best able to dissolve the drugs which supports the hypothesis that it is desirable to identify limited series of formulations which could be generally applied for this purpose.

  16. Formulation of microemulsion propolis fluoride (PF) as varnish topical agent to stop activity of teeth caries

    Science.gov (United States)

    Sahlan, Muhamad; Prakoso, Chandra Dwi; Darwita, Risqa Rina; Hermansyah, Heri

    2017-02-01

    Topical fluoride is proven to have higher efficacy in preventing dental caries with low production cost and easy to apply. The objective of this research is to formulate alternative agent topical fluoride NH4F 5% mixed with extract ethanol propolis (EEP) in the micro-emulsion system that has high stability, antimicrobial activity, and remineralization capability to arrest teeth caries activity. By using total plate count (TPC) analysis, formulation 2.7% EEP; 6,3% surfactant; and 90,9% NH4F shows good perform to inhibit cariogenic bacteria development around 78-80%. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) result also showed that sample successfully remineralized enamel surface. In addition, sample showed good pH, flavonoid, and polyphenol stability for 40 days.

  17. Some spectral properties of the one-dimensional disordered Dirac equation

    International Nuclear Information System (INIS)

    Bocquet, Marc

    1999-01-01

    We study spectral properties of a one-dimensional Dirac equation with various disorder. We use replicas to calculate the exact density of state and typical localization length of a Dirac particle in several cases. We show that they can be calculated, in quite a simple fashion, in any type of disorder obeying a Gaussian white noise distribution. In addition to cases involving pure types of disorder, we study a mixed disorder case where the Dyson singularity is destroyed by the mixing. We also clarify the supersymmetric alternative derivation, even though it proves less efficient than the replica treatment for such thermodynamic quantities. We show that the smallest dynamical algebra in the Hamiltonian formalism is u(1,1), preferably to u(n,n) in the replica derivation or u(1, 1 vertical bar 2) in the supersymmetric alternative. Finally, we discuss symmetries in the disorder fields and show that there exists a non-trivial mapping between the electric potential disorder and the magnetic (or mass) disorder

  18. Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory

  19. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  20. A Mixed Traffic Assignment Problem and Its Upper Bound of Efficiency Loss

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Yu

    2014-01-01

    Full Text Available A variational inequality (VI formulation of a mixed traffic assignment problem associated with user equilibrium (UE player and altruistic players (UE-AP is developed. The users governed by the UE player use the paths with minimum actual travel cost, while the users governed by altruistic players use the paths with minimum perceived travel cost, which is a linear combination of the actual and marginal travel costs. A nonlinear programming method is adopted to derive the efficiency loss of the UE-AP mixed equilibrium with polynomial cost function. Finally, numerical examples are given to verify our analytical results.

  1. Preclinical safety evaluation of intravenously administered mixed micelles.

    Science.gov (United States)

    Teelmann, K; Schläppi, B; Schüpbach, M; Kistler, A

    1984-01-01

    Mixed micelles, with their main constituents lecithin and glycocholic acid, form a new principle for the parenteral administration of compounds which are poorly water-soluble. Their composition of mainly physiological substances as well as their comparatively good stability substantiate their attractivity in comparison to existing solvents. A decomposition due to physical influences such as heat or storage for several years will almost exclusively affect the lecithin component in the form of hydrolysis into free fatty acids and lysolecithin. Their toxicity was examined experimentally in various studies using both undecomposed and artificially decomposed mixed micelles. In these studies the mixed micelles were locally and systemically well tolerated and proved to be neither embryotoxic, teratogenic nor mutagenic. Only when comparatively high doses of the undecomposed mixed micelles were administered, corresponding to approximately 30 to 50 times the anticipated clinical injection volume (of e.g. diazepam mixed micelles), did some vomitus (dogs), slight liver enzyme elevation (rats and dogs), and slightly increased liver weights (dogs) occur. After repeated injections of the artificially decomposed formulation (approximately 25% of lecithin hydrolyzed to free fatty acids and lysolecithin) effects such as intravascular haemolysis, liver enzyme elevations and intrahepatic cholestasis (dogs only) were observed but only when doses exceeding a threshold of approximately 40 to 60 mg lysolecithin/kg body weight were administered. All alterations were reversible after cessation of treatment.

  2. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  3. THE EFFECT OF FORMULATION HUMIC SUBSTANCE AND Trichoderma sp TO INCREASE PRODUCTION AND GROWTH OF CORN (Zea Mays,L

    Directory of Open Access Journals (Sweden)

    Ruly Eko Kusuma Kurniawan

    2017-06-01

    Full Text Available Research to determine of formulation humic subtance and Trichoderma sp to increase the production and growth of corn (zea mays,L. This research was conducted by extracting humic substance with fractionation organic matter method from cattle manure organic material. Trichoderma sp grow on corn medium and harvested after reaching a density of 1015 cfu. Created this compound formulation with mixing humic substance and Trichoderma sp. Indicator plant with F1 sweet corn Jago varieties. Aplication used humic substance in range 8%, 16%, and 32% on the recommended use NPK fertilizer for corn, as well as control without humic substance. The result showed application use 8% humic substance most good for plant growth and harvest. Additionally, nutrient uptake NPK fertilizer efficiency is increased and more effective than control and use of the formulation 16% and 32% humic substance.

  4. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  5. Novel technology to prepare oral formulations for preclinical safety studies.

    Science.gov (United States)

    Niwa, Toshiyuki; Hashimoto, Naofumi

    2008-02-28

    A novel method to prepare oral formulations, normally suspended dosage form, for preclinical safety studies in animals has been developed using a rotation/revolution mixer. Small hard balls made of zirconia were added to the mixing process to evaluate effectiveness in making a high quality suspension. The driving with balls loaded in the cylindrical container (vessel) of the mixer was quite efficient in dispersing and milling the particles of the active pharmaceutical ingredient (API) in an aqueous medium. The API powder and a small amount of oral aqueous medium (vehicle) were successfully mixed by the spinning motion of the balls in the vessel as though the paste-like suspension was kneaded with a mortar and pestle. It was found that the milled suspension with the mean size of 10-20microm could be prepared, in addition finer milling of less than 10microm could be achieved by selecting the material of vessel. Optimum driving conditions including mixing time, size and quantity of balls, and the standard operational procedure was established using compounds varying in physicochemical properties. The particle size and quantitative analysis by HPLC showed that the resultant suspension was well-milled and highly homogeneous with the nearly intended concentration of API. The proposed method established by this experiment could be applied to the actual safety studies in the real preparation scale of oral suspension.

  6. Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-01-15

    Mixed-symmetry arbitrary spin massive, massless, and self-dual massive fields in AdS(5) are studied. Light-cone gauge actions for such fields leading to decoupled equations of motion are constructed. Light-cone gauge formulation of mixed-symmetry anomalous conformal currents and shadows in 4d flat space is also developed. AdS/CFT correspondence for normalizable and non-normalizable modes of mixed-symmetry AdS fields and the respective boundary mixed-symmetry anomalous conformal currents and shadows is studied. We demonstrate that the light-cone gauge action for massive mixed-symmetry AdS field evaluated on solution of the Dirichlet problem amounts to the light-cone gauge 2-point vertex of mixed-symmetry anomalous shadow. Also we show that UV divergence of the action for mixed-symmetry massive AdS field with some particular value of mass parameter evaluated on the Dirichlet problem amounts to the action of long mixed-symmetry conformal field, while UV divergence of the action for mixed-symmetry massless AdS field evaluated on the Dirichlet problem amounts to the action of short mixed-symmetry conformal field. We speculate on string theory interpretation of a model which involves short low-spin conformal fields and long higher-spin conformal fields.

  7. Milk protein-gum tragacanth mixed gels: effect of heat-treatment sequence.

    Science.gov (United States)

    Hatami, Masoud; Nejatian, Mohammad; Mohammadifar, Mohammad Amin; Pourmand, Hanieh

    2014-01-30

    The aim of this study was to investigate the role of the heat-treatment sequence of biopolymer mixtures as a formulation parameter on the acid-induced gelation of tri-polymeric systems composed of sodium caseinate (Na-caseinate), whey protein concentrate (WPC), and gum tragacanth (GT). This was studied by applying four sequences of heat treatment: (A) co-heating all three biopolymers; (B) heating the milk-protein dispersion and the GT dispersion separately; (C) heating the dispersion containing Na-caseinate and GT together and heating whey protein alone; and (D) co-heating whey protein with GT and heating Na-caseinate alone. According to small-deformation rheological measurements, the strength of the mixed-gel network decreased in the order: C>B>D>A samples. SEM micrographs show that the network of sample C is much more homogenous, coarse and dense than sample A, while the networks of samples B and D are of intermediate density. The heat-treatment sequence of the biopolymer mixtures as a formulation parameter thus offers an opportunity to control the microstructure and rheological properties of mixed gels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Domain decomposition methods for the mixed dual formulation of the critical neutron diffusion problem

    International Nuclear Information System (INIS)

    Guerin, P.

    2007-12-01

    The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, diffusion approximation is often used. For this problem, the MINOS solver based on a mixed dual finite element method has shown his efficiency. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose in this dissertation two domain decomposition methods for the resolution of the mixed dual form of the eigenvalue neutron diffusion problem. The first approach is a component mode synthesis method on overlapping sub-domains. Several Eigenmodes solutions of a local problem solved by MINOS on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is a modified iterative Schwarz algorithm based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, the problem is solved on each sub domain by MINOS with the interface conditions deduced from the solutions on the adjacent sub-domains at the previous iteration. The iterations allow the simultaneous convergence of the domain decomposition and the eigenvalue problem. We demonstrate the accuracy and the efficiency in parallel of these two methods with numerical results for the diffusion model on realistic 2- and 3-dimensional cores. (author)

  9. Implications of neutrino masses and mixing for weak processes

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1981-01-01

    A general theory is presented of weak processes involving neutrinos which consistently incorporates the possibility of nonzero neutrino masses and associated lepton mixing. The theory leads to new tests for and bounds on such masses and mixing. These tests make use of (π,K)/sub l2/ decay, nuclear β decay, and μ and tau decays, among others. New experiments at SIN and KEK to apply the tests are mentioned. Further, some implications are discussed for (1) the analysis of the spectral parameters in leptonic decays to determine the Lorentz structure of the weak leptonic couplings; (2) fundamental weak interaction constants such as G/sub μ/, G/sub V/', f/sub π/, f/sub K/, V/sub uq/, q = d or s, m/sub W/, and m/sub Z/; and (3) neutrino propagation

  10. Synthesis, Characterization and Spectral Properties of Substituted Tetraphenylporphyrin Iron Chloride Complexes

    Directory of Open Access Journals (Sweden)

    Kai Li

    2011-04-01

    Full Text Available A series of substituted tetraphenylporphyrin iron chloride complexes [RTPPFe(IIICl, R=o/p-NO2, o/p-Cl, H, o/p-CH3, o/p-OCH3] were synthesized by a novel universal mixed-solvent method and the spectral properties of free base porphyrins and iron porphyrin compounds were compared with each other. The experimental results showed that the one-pot mixed solvent method was superior to the two-step method in the yields, reaction time and workup of reaction mixtures for the synthesis of iron porphyrin compounds. The highest yields (28.7%-40.4% of RTPPFe(IIICl were obtained in the mixed solvents propionic acid, glacial acetic acid and m-nitrotoluene under reflux for 2 h. A detailed analysis of ultraviolet-visible (UV-vis, infrared (IR and far-infrared (FIR spectra suggested the transformation from free base porphyrins to iron porphyrins. The red shift of the Soret band in ultraviolet-visible spectra due to the presence of p-nitrophenyl substituents and the blue shift of Fe-Cl bond of TPPFeCl in far-infrared spectra were further explained by the electron transfer and molecular planarity in the porphyrin ring.

  11. Neonates need tailored drug formulations.

    Science.gov (United States)

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  12. (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin

    International Nuclear Information System (INIS)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S.K.; Chaudhary, G.R.; Mehta, S.K.

    2016-01-01

    Highlights: • Critical micelle concentration of mixed surfactant has been measured. • Aqueous solubility and alkaline stability of curcumin has been significantly improved. • Location of curcumin within micelles has been evaluated. • Scavenging activity of curcumin has been improved. • Non-intercalative binding with ct-DNA has been observed. - Abstract: Curcumin is a potential drug for variety of diseases. Major limitations of curcumin are low water solubility, rapid hydrolytic degradation in alkaline medium and poor bioavailability. To overcome these limitations, highly potential mixed micellar system has been prepared. In order to reduce inter ionic repulsion and precipitation of surfactants, (cationic + non-ionic) mixed system have been chosen that directly influence its applicability. Hydrophobic chain of non-ionic surfactant significantly influences the cmc of mixed surfactant system as indicated by fluorescence and conductivity data. UV–visible spectroscopy analyses show that solubility, stability and antioxidant property of the curcumin is remarkably improved depending on cmc and aggregation number (N_a_g_g) of mixed surfactants, where N_a_g_g plays crucial role. Generally, curcumin undergoes complete degradation in slight basic medium, but stability has been maintained up to 8 h at pH-13 using formulated mixed micelles (only (20 to 25)% degraded). Location of curcumin which is monitored using emission spectroscopy, fluorescence quenching and "1H NMR spectroscopy techniques play the most important role. Observed results show that the major population of curcumin is located at the polar region and some are in hydrophobic region of the mixed micelles. To ensure the effect of mixed surfactants and curcumin loaded mixed surfactants on DNA, the interaction parameter indicates non-interclative interactions.

  13. The Effects of Fat Structures and Ice Cream Mix Viscosity on Physical and Sensory Properties of Ice Cream.

    Science.gov (United States)

    Amador, Julia; Hartel, Rich; Rankin, Scott

    2017-08-01

    The purpose of this work was to investigate iciness perception and other sensory textural attributes of ice cream due to ice and fat structures and mix viscosity. Two studies were carried out varying processing conditions and mix formulation. In the 1st study, ice creams were collected at -3, -5, and -7.5 °C draw temperatures. These ice creams contained 0%, 0.1%, or 0.2% emulsifier, an 80:20 blend of mono- and diglycerides: polysorbate 80. In the 2nd study, ice creams were collected at -3 °C draw temperature and contained 0%, 0.2%, or 0.4% stabilizer, a blend of guar gum, locust bean gum, and carrageenan. Multiple linear regressions were used to determine relationships between ice crystal size, destabilized fat, and sensory iciness. In the ice and fat structure study, an inverse correlation was found between fat destabilization and sensory iciness. Ice creams with no difference in ice crystal size were perceived to be less icy with increasing amounts of destabilized fat. Destabilized fat correlated inversely with drip-through rate and sensory greasiness. In the ice cream mix viscosity study, an inverse correlation was found between mix viscosity and sensory iciness. Ice creams with no difference in ice crystal size were perceived to be less icy when formulated with higher mix viscosity. A positive correlation was found between mix viscosity and sensory greasiness. These results indicate that fat structures and mix viscosity have significant effects on ice cream microstructure and sensory texture including the reduction of iciness perception. © 2017 Institute of Food Technologists®.

  14. Vitrification development for mixed wastes

    International Nuclear Information System (INIS)

    Merrill, R.; Whittington, K.; Peters, R.

    1995-02-01

    Vitrification is a promising approach to waste-form immobilization. It destroys hazardous organic compounds and produces a durable and highly stable glass. Vitrification tests were performed on three surrogate wastes during fiscal year 1994; 183-H Solar Evaporation Basin waste from Hanford, bottom ash from the Oak Ridge TSCA incinerator, and saltcrete from Rocky Flats. Preliminary glass development involved melting trials followed by visual homogeneity examination, short-duration leach tests on glass specimens, and long-term leach tests on selected glasses. Viscosity and electrical conductivity measurements were taken for the most durable glass formulations. Results for the saltcrete are presented in this paper and demonstrate the applicability of vitrification technology to this mixed waste

  15. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  16. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  17. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    Science.gov (United States)

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  18. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    Science.gov (United States)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  19. MARKETING MIX BY BED OCCUPANCY RATIO (BOR

    Directory of Open Access Journals (Sweden)

    Abdul Muhith

    2017-04-01

    Full Text Available Introduction: Bed Occupancy Ratio (BOR in RSI Arafah Mojosari during the last three years are at under ideal rate and the lowest of the three existing hospitals in the area of Mojosari. The purpose of this study was to determine the relationship marketing mix with Bed Occupancy Ratio in RSI Arafah Mojosari. Methods: This research uses analytic methods with crossectional approach. Variables in the study is marketing mix and Bed Occupancy Ratio (BOR. The population in this study were all patients hospitalized in the RSI Arafah Mojosari. Samples amounted 44 respondents taken by the Stratified random sampling technique. Data were collected using the questionnaire and analyzed using Fisher's Exact test. Result: The results obtained more than 50% of respondents (59.1% rate well against the marketing mix is developed by the hospital management and the majority of respondents (79.5% are in the treatment room that has a number BOR is not ideal. Fisher Exact test test results obtained probabililty value=0.02<0.05 so that H0 is rejected, which means there is a relationship marketing mix with the Bed Occupancy Ratio in RSI Arafah Mojosari. Discussion: Hospitals which able to develop the marketing mix very well, can attract consumers to use inpatient services at the hospital, with that BOR value will increase as the increased use of inpatient services. Hospital management must be able to formulate a good marketing mix strategy that hospital marketing objectives can be achieved. Conformity between service quality and service rates must be addressed, otherwise it extent of media promotions can attract patients to inpatient services.

  20. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  1. Minimization of mixed waste in explosive testing operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Sator, F.E.; Simmons, L.F.

    1993-02-01

    In the 1970s and 1980s, efforts to manage mixed waste and reduce pollution focused largely on post-process measures. In the late 1980s, the approach to waste management and pollution control changed, focusing on minimization and prevention rather than abatement, treatment, and disposal. The new approach, and the formulated guidance from the US Department of Energy, was to take all necessary measures to minimize waste and prevent the release of pollutants to the environment. Two measures emphasized in particular were source reduction (reducing the volume and toxicity of the waste source) and recycling. In 1988, a waste minimization and pollution prevention program was initiated at Site 300, where the Lawrence Livermore National Laboratory (LLNL) conducts explosives testing. LLNL's Defense Systems/Nuclear Design (DS/ND) Program has adopted a variety of conservation techniques to minimize waste generation and cut disposal costs associated with ongoing operations. The techniques include minimizing the generation of depleted uranium and lead mixed waste through inventory control and material substitution measures and through developing a management system to recycle surplus explosives. The changes implemented have reduced annual mixed waste volumes by more than 95% and reduced overall radioactive waste generation (low-level and mixed) by more than 75%. The measures employed were cost-effective and easily implemented

  2. Quantum Groups, Property (T), and Weak Mixing

    Science.gov (United States)

    Brannan, Michael; Kerr, David

    2018-06-01

    For second countable discrete quantum groups, and more generally second countable locally compact quantum groups with trivial scaling group, we show that property (T) is equivalent to every weakly mixing unitary representation not having almost invariant vectors. This is a generalization of a theorem of Bekka and Valette from the group setting and was previously established in the case of low dual by Daws, Skalski, and Viselter. Our approach uses spectral techniques and is completely different from those of Bekka-Valette and Daws-Skalski-Viselter. By a separate argument we furthermore extend the result to second countable nonunimodular locally compact quantum groups, which are shown in particular not to have property (T), generalizing a theorem of Fima from the discrete setting. We also obtain quantum group versions of characterizations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak mixing representations and of Connes and Weiss in terms of the prevalence of strongly ergodic actions.

  3. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  4. A fuzzy mixed integer programming for marketing planning

    Directory of Open Access Journals (Sweden)

    Abolfazl Danaei

    2014-03-01

    Full Text Available One of the primary concerns to market a product is to find appropriate channel to target customers. The recent advances on information technology have created new products with tremendous opportunities. This paper presents a mixed integer programming technique based on McCarthy's 4PS to locate suitable billboards for marketing newly introduced IPHONE product. The paper considers two types of information including age and income and tries to find the best places such that potential consumers aged 25-35 with high income visit the billboards and the cost of advertisement is minimized. The model is formulated in terms of mixed integer programming and it has been applied for potential customers who live in city of Tabriz, Iran. Using a typical software package, the model detects appropriate places in various parts of the city.

  5. Baseline LAW Glass Formulation Testing

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-01-01

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements

  6. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  7. Design procedure for formulating and assessing the durability of particulate grouts

    International Nuclear Information System (INIS)

    Okonkwo, I.O.; Altschaeff, A.G.

    1989-01-01

    The current disposal plans for low-level wastes call for stabilizing or encapsulating and storing of these wastes in steel drums which in turn are buried in shallow trenches. Complete sealing is accomplished with grout, a liquid injection comprising principally of cement and fly ash, etc. Upon solidification, the grout forms a rigid mass around the drum, thereby eliminating access of groundwater into or out of the waste barrier, or leaching of radionuclides. Since the primary mechanism for the likely introduction of hazardous and/or radioactive elements into the biosphere in this situation, is through physical or chemical deterioration of the waste barrier, it is necessary that the effect of adverse environments on the durability of the grouts be examined and incorporated in barrier design. Currently, procedures for formulating grout mixes to assure a given impermeability or durability of the grout over its service period is lacking, and so are the techniques for monitoring the in-service performance of waste barrier systems. This paper depicts a serious limitation in waste barrier system technology, for it is time that optimization in design be possible. To allow this, a method is needed that creates the grout formulation specification for an optimization of behavior parameters in the resulting product. These considerations suggest a strong need for improvement in the grout formulation specification to allow a focus upon behavior properties desired by the engineer in the creation of optimum performance. This paper addresses these problems

  8. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme.

    Science.gov (United States)

    Saxena, Vipin; Hussain, Muhammad Delwar

    2013-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in human. 17-Allylamino-17-demethoxy geldanamycin (17-AAG) is an inhibitor of heat shock protein 90 (HSP90). The highly lipophilic nature and selective targeting of tumor cells makes 17-AAG a promising candidate for therapy of GBMs but poor water solubility, short biological half-life and hepatotoxicity limited its clinical use. Polymeric mixed micelles composed of Pluronic® P-123 and F-127 (2:1 (w/w)) containing 17-AAG were prepared and characterized. Cellular uptake and in vitro cytotoxicity of the prepared micelles were determined in U87MG human glioblastoma cells. The particle size of 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles was 22.2 ± 0.1 nm; drug loading was about 4.0 ± 0.5% (w/w) with 88.2 ± 3.1% (w/w) encapsulation efficiency. About 90% of drug was released from the nanoparticles over 8 days. Cellular uptake studies showed intracellular uptake of mixed micelles. Cytotoxicity study showed 5-fold increase (P AAG-loaded mixed micelles to free 17-AAG. Due to their targeting ability, size, high drug loading and controlled release behavior, 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles might be developed as a delivery system for GBM treatment. © 2013 Elsevier B.V. All rights reserved.

  9. Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces

    KAUST Repository

    Efendiev, Yalchin

    2014-01-01

    We present a Boundary Element Method (BEM)-based FEM for mixed formulations of second order elliptic problems in two dimensions. The challenge, we would like to address, is a proper construction of H(div)-conforming vector valued trial functions on arbitrary polygonal partitions of the domain. The proposed construction generates trial functions on polygonal elements which inherit some of the properties of the unknown solution. In the numerical realization, the relevant local problems are treated by means of boundary integral formulations. We test the accuracy of the method on two model problems. © 2014 Springer-Verlag.

  10. Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes

    Science.gov (United States)

    Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.

    2015-01-01

    The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609

  11. Construction of Spectral Discoloration Model for Red Lead Pigment by Aging Test and Simulating Degradation Experiment

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2016-01-01

    Full Text Available The construction of spectral discoloration model, based on aging test and simulating degradation experiment, was proposed to detect the aging degree of red lead pigment in ancient murals and to reproduce the spectral data supporting digital restoration of the ancient murals. The degradation process of red lead pigment under the aging test conditions was revealed by X-ray diffraction, scanning electron microscopy, and spectrophotometer. The simulating degradation experiment was carried out by proportionally mixing red lead and lead dioxide with referring to the results of aging test. The experimental result indicated that the pure red lead was gradually turned into black lead dioxide, and the amount of tiny particles of the aging sample increased faced with aging process. Both the chroma and lightness of red lead pigment decreased with discoloration, and its hue essentially remains unchanged. In addition, the spectral reflectance curves of the aging samples almost started rising at about 550 nm with the inflection moving slightly from about 570 nm to 550 nm. The spectral reflectance of samples in long- and in short-wavelength regions was fitted well with the logarithmic and linear function. The spectral discoloration model was established, and the real aging red lead pigment in Dunhuang murals was measured and verified the effectiveness of the model.

  12. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  13. Examining spectral variations in localized lunar dark mantle deposits

    Science.gov (United States)

    Jawin, Erica; Besse, Sebastien; Gaddis, Lisa R.; Sunshine, Jessica; Head, James W.; Mazrouei, Sara

    2015-01-01

    The localized lunar dark mantle deposits (DMDs) in Alphonsus, J. Herschel, and Oppenheimer craters were analyzed using visible-near-infrared spectroscopy data from the Moon Mineralogy Mapper. Spectra of these localized DMDs were analyzed for compositional and mineralogical variations within the deposits and were compared with nearby mare basalt units. Spectra of the three localized DMDs exhibited mafic absorption features indicating iron-rich compositions, although the DMDs were spectrally distinct from nearby mare basalts. All of the DMDs contained spectral signatures of glassy materials, suggesting the presence of volcanic glass in varying concentrations across the individual deposits. In addition, the albedo and spectral signatures were variable within the Alphonsus and Oppenheimer crater DMDs, suggesting variable deposit thickness and/or variations in the amount of mixing with the local substrate. Two previously unidentified localized DMDs were discovered to the northeast of Oppenheimer crater. The identification of high concentrations of volcanic glass in multiple localized DMDs in different locations suggests that the distribution of volcanic glass across the lunar surface is much more widespread than has been previously documented. The presence of volcanic glass implies an explosive, vulcanian eruption style for localized DMDs, as this allows volcanic glass to rapidly quench, inhibiting crystallization, compared to the larger hawaiian-style eruptions typical of regional DMD emplacement where black beads indicate a higher degree of crystallization. Improved understanding of the local and global distributions of volcanic glass in lunar DMDs will further constrain lunar degassing and compositional evolution throughout lunar volcanic history.

  14. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations

    International Nuclear Information System (INIS)

    Zhou Ye

    2007-01-01

    The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However, Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, the energy-containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper, the concept of a minimum state is introduced as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper, the Reynolds number of the minimum state is determined as 1.6x10 5 . The temporal criterion for the minimum state is also obtained. The efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. Finally, the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced

  15. Redesigning the marketing mix for eco-friendly product consumption among non-purchasers in India

    Directory of Open Access Journals (Sweden)

    Chockalingam Senthil Nathan

    2016-04-01

    Full Text Available The present study was created in order to customise the marketing mix for non-purchasers of eco-friendly products by studying their perspectives on the introduction of eco-friendly variants of the regular products that they are using in particular product categories (personal care and home care. Overall previous literature reviews in this area imply that there is a gap in the scientific literature on the marketing mix formulation for converting non-purchasers into purchasers of eco-friendly products to augment eco-friendly product sales and adopt green marketing. As literature reviews had clearly indicated that green purchasers have a very low percentage when compared to non-purchasers, the purpose is to create new opportunities for successful green marketing as the study tries to convert non-purchasers into purchasers. We used descriptive research design to study a sample of 885 respondents, who were surveyed in 2 cities in the Tamil Nadu state in India, to acquire an in-depth understanding of consumer behaviour that would enable the consumption of eco-friendly products among non-purchasers. The results reveal the marketing mix requirement and the eco-friendly aspects needed by the non-purchasers in order to buy the eco-friendly variants. The research sheds light on the product, price and promotion components that will attract non-purchases of eco-friendly products to buy eco-friendly products, thus facilitating green marketing mix adaptation. The study will provide valuable input for further research in formulating the marketing mix necessary to enable consumption of eco-friendly products in different geographical locations and various product categories.

  16. Upper plenum mixing in a BWR

    International Nuclear Information System (INIS)

    Alamgir, M.; Andersen, J.G.M.; Parameswaran, V.

    1984-01-01

    A model for the emergency core cooling injection into the upper plenum of a boiling water reactor has been formulated and implemented into the TRACB02 computer program. The model consists of a spray model and a submerged jet model. The submerged jet model is used when the spray nozzles are covered by a two-phase mixture, and the spray model is used when the nozzles are uncovered. The upper plenum model has been assessed by comparison to an upper plenum mixing test in the Steam Sector Test Facility. It is found that the model accurately predicts the phenomena in the upper plenum of a boiling water reactor

  17. Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation

    Science.gov (United States)

    Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim

    2018-05-01

    A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.

  18. Norfloxacin mixed solvency based solid dispersions: An in-vitro and in-vivo investigation

    Directory of Open Access Journals (Sweden)

    Ravindra Kamble

    2017-05-01

    Full Text Available Norfloxacin (NF is a synthetic fluoro-quinolone molecule that is used for the treatment of urinary tract infections. However, due to its poor aqueous solubility, it has low oral bioavailability. The aim of the present study was to improve the aqueous solubility and dissolution profile of NF by formulating its mixed-solvency based solid dispersions (SDs. The NF-loaded SDs were prepared by a solvent evaporation technique using urea, sodium benzoate and a niacinamide hydrotropic mixture. The prepared SDs were evaluated regarding their solubility, mean particle size, in-vitro drug release and oral bioavailability. The optimized batch showed a high percentage yield of 99.04% , with a mean particle size of 132.91 μm. Optimized SDs Exhibit 96.48% drug release. The oral bioavailabilities of NF from the optimized SDs, drug alone and marketed formulation were evaluated in Wistar rats at a dose of 20.0 mg/kg. In comparison to the drug alone, approximately 6.90- and 5.0-fold increases in AUC and Cmax, respectively, were observed for NF from mixed-solvency based SDs. The superior dissolution rate due to its reduced particle size may have contributed to the increased oral bioavailability. This study demonstrated that mixed-solvency may be an alternative approach for poorly soluble drugs to improve their solubility and oral bioavailability.

  19. Close relationship between spectral vegetation indices and Vcmax in deciduous and mixed forests

    Directory of Open Access Journals (Sweden)

    Yanlian Zhou

    2014-04-01

    Full Text Available Seasonal variations of photosynthetic capacity parameters, notably the maximum carboxylation rate, Vcmax, play an important role in accurate estimation of CO2 assimilation in gas-exchange models. Satellite-derived normalised difference vegetation index (NDVI, enhanced vegetation index (EVI and model-data fusion can provide means to predict seasonal variation in Vcmax. In this study, Vcmax was obtained from a process-based model inversion, based on an ensemble Kalman filter (EnKF, and gross primary productivity, and sensible and latent heat fluxes measured using eddy covariance technique at two deciduous broadleaf forest sites and a mixed forest site. Optimised Vcmax showed considerable seasonal and inter-annual variations in both mixed and deciduous forest ecosystems. There was noticeable seasonal hysteresis in Vcmax in relation to EVI and NDVI from 8 d composites of satellite data during the growing period. When the growing period was phenologically divided into two phases (increasing VIs and decreasing VIs phases, significant seasonal correlations were found between Vcmax and VIs, mostly showing R2>0.95. Vcmax varied exponentially with increasing VIs during the first phase (increasing VIs, but second and third-order polynomials provided the best fits of Vcmax to VIs in the second phase (decreasing VIs. The relationships between NDVI and EVI with Vcmax were different. Further efforts are needed to investigate Vcmax–VIs relationships at more ecosystem sites to the use of satellite-based VIs for estimating Vcmax.

  20. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  1. Linear mixing model applied to AVHRR LAC data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

  2. Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints

    Directory of Open Access Journals (Sweden)

    Rosshairy Abd. Rahman

    2017-01-01

    Full Text Available Formulating feed for shrimps represents a challenge to farmers and industry partners. Most previous studies selected from only a small number of ingredients due to cost pressures, even though hundreds of potential ingredients could be used in the shrimp feed mix. Even with a limited number of ingredients, the best combination of the most appropriate ingredients is still difficult to obtain due to various constraint requirements, such as nutrition value and cost. This paper proposes a new operator which we call Power Heuristics, as part of an Evolutionary Algorithm (EA, which acts as a constraint handling technique for the shrimp feed or diet formulation. The operator is able to choose and discard certain ingredients by utilising a specialized search mechanism. The aim is to achieve the most appropriate combination of ingredients. Power Heuristics are embedded in the EA at the early stage of a semirandom initialization procedure. The resulting combination of ingredients, after fulfilling all the necessary constraints, shows that this operator is useful in discarding inappropriate ingredients when a crucial constraint is violated.

  3. A deflation based parallel algorithm for spectral element solution of the incompressible Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.F. [Brown Univ., Providence, RI (United States)

    1996-12-31

    Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.

  4. Study on the Formulation of Squid (Loligosp) Nugget Added with Yellow Pumpkin (Curcubitamoschata) Flour

    OpenAIRE

    Nurharyati, Lisa; ', Suparmi; Sari, N Ira

    2017-01-01

    This study aimed to determine the squid nugget formulation with the addition of pumpkin flour. It was evaluated for the organoleptic value and the proximate composition. The method used was an experimental method and designed as non-factorial completely randomized design (CRD). The treatments were addition of pumpkin flour into the mix, consisting of four levels, namely: N0 (without the addition of pumpkin flour), N1 (pumpkin flour 50 g), N2 (pumpkin flour 75 g) and N3 (pumpkin flour 100 g).B...

  5. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  6. Enhancement of nonlinear optical response of weakly confined excitons in GaAs thin films by spectrally rectangle-shape-pulse-excitation

    International Nuclear Information System (INIS)

    Kojima, O; Isu, T; Ishi-Hayase, J; Sasaki, M; Tsuchiya, M

    2007-01-01

    We report the enhancement of the nonlinear optical response of the weakly confined excitons with use of spectrally rectangular pulse. The nonlinear optical response was investigated as a function of excitation energy by a degenerate four-wave-mixing (DFWM) technique. In the case that the laser pulse with the controlled spectral shape excites the plural exciton states simultaneously, the DFWM signal intensity is enhanced by a factor of two in comparison with the intensity under the excitation of a single exciton state. This enhancement is caused by the superposition of the nonlinear optical responses from the plural exciton states

  7. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  8. Majorization uncertainty relations for mixed quantum states

    Science.gov (United States)

    Puchała, Zbigniew; Rudnicki, Łukasz; Krawiec, Aleksandra; Życzkowski, Karol

    2018-04-01

    Majorization uncertainty relations are generalized for an arbitrary mixed quantum state ρ of a finite size N. In particular, a lower bound for the sum of two entropies characterizing the probability distributions corresponding to measurements with respect to two arbitrary orthogonal bases is derived in terms of the spectrum of ρ and the entries of a unitary matrix U relating both bases. The results obtained can also be formulated for two measurements performed on a single subsystem of a bipartite system described by a pure state, and consequently expressed as an uncertainty relation for the sum of conditional entropies.

  9. Alternative Mixed Assessment Project (ALT.A.: The Mexican E-Learning Experience

    Directory of Open Access Journals (Sweden)

    Mónica A. López-Campos

    2010-11-01

    Full Text Available The aim of this paper is to present an experiment of mixed evaluation (summative/formative of questions formulated by students in a distance-education environment carried out in the Total Quality Management course in the B.S. degree in Industrial Engineering offered by Mexican public universities. Questions generated by students were evaluated using a specially-designed quantitative tool: Matrix Observation of four criteria with binary scoring. The experiment showed: (1 how is it possible to enrich the evaluation process, and formalize students' skills hardly recognizable with traditional forms of assessment; and (2 how the teacher-student interaction can be increased significantly by the technique mixed evaluation of questions in reverse, i.e. by the students.

  10. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.

    Science.gov (United States)

    Le, V N P; Robins, E; Flament, M P

    2012-04-01

    -milling effect could be used to ameliorate the quality of inhalation mixture of cohesive drug, such as fluticasone propionate. However, there is a threshold where an optimal amount of mixing aids should be used. Not only the drug des-aggregation reaches its peak but the increase in drug-carrier adhesion due to high energy input should balance the de-agglomeration capacity of mixing process. This approach provides a potential alternative in DPI formulation processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. GUT and flavor models for neutrino masses and mixing

    Science.gov (United States)

    Meloni, Davide

    2017-10-01

    In the recent years experiments have established the existence of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, no real illumination was sparked on the problem of flavor in the lepton sector. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.

  12. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    Science.gov (United States)

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Chemical characterization and toxicologic evaluation of airborne mixtures: chemical characterization of combusted inventory red and violet smoke mixes

    International Nuclear Information System (INIS)

    Rubin, I.B.; Buchanan, M.V.; Moneyhun, J.H.

    1982-10-01

    Red and violet smoke grenades (Grenade, Hand, Smoke, M18) were combusted within canvas tents and the combustion products were sampled and analyzed. Uncombusted red and violet smoke mixes from the same lots used to fill the combusted grenades were also analyzed. Approximately ten percent of the major dye component of the red smoke mix, methylaminoanthraquinone (MAA) was converted to aminoanthraquinones (1-AA and 2-AA). The violet smoke mix was formulated to contain 1,4-diamino-2,3-dihydroanthraquinone (DAA) and MAA. Upon combustion the DAA was converted almost completely to diaminoanthraquinone (DAA) which was a minor constituent of the uncombusted mix. As in the combusted red smoke mix, it was found that MAA was partially converted to aminoanthraquinones

  14. Mixed Reality Tools for Playful Representation of Ideation, Conceptual Blending and Pastiche in Design and Engineering

    NARCIS (Netherlands)

    Wendrich, Robert E.

    2014-01-01

    This paper describes the development and evaluation of mixed reality tools for the early stages of design and engineering processing. Externalization of ideal and real scenes, scripts, or frames are threads that stir the imaginative exploration of the mind to ideate, formulate, and represent ideas,

  15. Mixed Generalized Multiscale Finite Element Methods and Applications

    KAUST Repository

    Chung, Eric T.

    2015-03-03

    In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.

  16. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  17. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  18. Formulation of Pine Tar Antidandruff Shampoo Assessment and Comparison With Some Commercial Formulations

    Directory of Open Access Journals (Sweden)

    M. Gharavi

    1990-07-01

    Full Text Available In this study a pine tar shampoo as a new antidandruff formulation is presented. Assessment of antidandruff preparations has been hampered by the lack of standardized schedules, and reliable methods of evaluation.Some antidandruff agents such as : Zinc pyri-thione pine tar, selenium sulphide and (sulfure were used in shampoos. Samples were coded as numbers 1,2 formulated by us and 3,4 formulated commercially. The grading scheme based on 10 point scale, and corneocyte count was carried out on 50 selected volunte¬ers. Corneocyte count and fungal study proved that pine tor shampoo is effective against pityrosporum ovale. Draize lest was used for determination of the irritancy potential of the samples. Results showed that samples numbered 1,2 were relatively innocous in comparison with the others. I urthermore,s kin sensitination test on rabbit also confirmed the results obtained by Draize test. Consumer judgments proved that all formulations were acceptable.

  19. Application of a mixed Galerkin/least-squares method to axisymetric shell problems subjected to arbitrary loading

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Toledo, E.M.; Franca, L.P.; Garcia, E.L.M.

    1989-08-01

    A variationaly consistent finite element formulation for constrained problems free from shear or membrane locking is applied to axisymetric shells subjected to arbitrary loading. The governing equations are writen according to Love's classical theory for a problem of bending of axisymetric thin and moderately thick shells accounting for shear deformation. The mixed variational formulation, in terms of stresses and displacements here presented consists of classical Galerkin method plus mesh-dependent least-square type terms employed with equal-order finite element polynomials. The additional terms enhance stability and accuracy of the original Galerkin method, as already proven theoretically and confirmed trough numerical experiments. Numerical results of some examples are presented to demonstrate the good stability and accuracy of the formulation. (author) [pt

  20. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  1. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  2. Spectral element method for band-structure calculations of 3D phononic crystals

    International Nuclear Information System (INIS)

    Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Liu, Qing Huo

    2016-01-01

    The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss–Lobatto–Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals. (paper)

  3. Development of a novel and customizable two-solution mixing type spray nozzle for one-step preparation of nanoparticle-containing microparticles.

    Science.gov (United States)

    Ozeki, Tetsuya; Akiyama, Yusuke; Takahashi, Norimitsu; Tagami, Tatsuaki; Tanaka, Toshiyuki; Fujii, Masashi; Okada, Hiroaki

    2012-01-01

    Production of drug nanoparticles is an effective strategy to enhance solubility and oral absorption of water-insoluble drugs. The handling of drug nanoparticles has been an important issue in drug formulation because nanoparticles easily aggregate each other and redispersion of these particles is very difficult. In the present study, we developed a unique two-solution mixing type spray nozzle that can prepare drug nanoparticles in microparticles in one step without any common solvent and surfactant, and then, the prepared formulation were evaluated. Ethylcellulose (EC) and mannitol (MAN) were used as a model polymer of water-insoluble compound and a water-soluble carrier, respectively. We characterized the EC/MAN microparticles produced by the novel spray nozzle when customizing the nozzle parts to mix EC and MAN solution. Relatively smaller EC nanoparticles (customizable parts in the nozzle. In addition, the core of EC nanoparticles (<50 nm) was also observed by atomic force microscopy. We also found that the mixing time in the nozzle parts affected the size and the standard deviation of EC nanoparticles. These results suggest that the size of EC nanoparticles in MAN microparticles is controllable by using this unique nozzle. After all, we could prepare MAN microparticles containing EC nanoparticles in one step by using the novel nozzle. The drug/MAN microparticles formulation produced by the nozzle may be useful for the handling of drug nanoparticles.

  4. Study of technological parameters influence on homogeneity of rubber mixings by means of radiotracer methods

    International Nuclear Information System (INIS)

    Koczorowska, E.

    1995-01-01

    The radiotracer methods have been worked out for analysis of physico-chemical phenomena. The analysis were carried out for rubber mixings in technological conditions and played a deciding role for quality of manufacturing assortment. The 35 S and 65 Zn have been used as radiotracers. Analysis of different technological parameters influence on behaviour of soluble and polymerized sulfur, zinc compounds as well as other components of the rubber mixing enables to formulate the conclusions important for rubber industry and technology from view point of quality of manufacturing products

  5. Web-marketing mix 4S v malé organizaci

    OpenAIRE

    Uhlíř, Petr

    2011-01-01

    The goal of this thesis is to evaluate whether application of the model of marketing promotion in the Internet based on the concept of web-marketing mix 4S in a small organization, sales-oriented professional machines and equipment for carpentry, plumbing and metal fabrication shop can achieve synergy and formulated key performance indicators. To achieve this goal is necessary to identify and describe technologies, tools, procedures and processes based on literature and publications that are ...

  6. Beyond Simulation As Substitution: From Mixed Reality To Ego-Shots

    OpenAIRE

    Alberich Pascual, Jordi; San Cornelio Esquerdo, Gemma

    2012-01-01

    The dominant formulation of simulation theories in the 1980s and 1990s (Baudrillard, Lévy et al.) suggested a theoretical and technological paradigm based on the impersonation (when not substitution) of the real by the virtual. The present article explores the recent emergence of an integrated, mixed or altered conception of virtualisation in regards to the real, but no longer a substitutive one: a conception that is related to a significant set of digital technologies and current audiovisual...

  7. Bioprocessing of a stored mixed liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Finney, R. [Mound Applied Technologies, Miamisburg, OH (United States)] [and others

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  8. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    International Nuclear Information System (INIS)

    Santos, J.B.; Ferreira, E.A.; Silva, A.A.; Oliveira, J.A.; Fialho, C.M.T.

    2007-01-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  9. Fixation of waste materials in grouts. Part I. Empirical correlations of formulation data

    International Nuclear Information System (INIS)

    Tallent, O.K.; Gilliam, T.M.; McDaniel, E.W.; Godsey, T.T.

    1986-03-01

    Data correlations have demonstrated systematic relationships between important variables in hydrofracture grout formulation. The data are taken from an investigation to determine conditions for eliminating drainable water from the grout system. The two most important variables affecting drainable water are the amounts of Attapulgite-150 clay in the dry-solid blends and the ratios in which the blends are mixed with the waste. Empirical equations were developed relating the (1) vol % of drainable water, (2) time for free water adsorption, (3) wt % clay, (4) dry-blend liquid-waste mix ratio, (5) compressive strength, (6) wt % fly ash, and (7) pumping velocity required for turbulent flow through a 2-in.-ID pipe. The equations allow predictions of properties within the compositional range of the investigation from which the data were obtained. They also provide a relatively simple method that can be used to improve future test design, eliminate superfluous testing, decrease costs, and increase overall efficiency of individual investigations. 11 refs., 15 figs

  10. Study on the dynamic performance of concrete mixer's mixing drum

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-06-01

    Full Text Available When working, the geometric distribution shape of concrete in concrete mixing truck's rotary drum changes continuously, which cause a great difficulty for studying the dynamic performance of the mixing drum. In this paper, the mixing system of a certain type of concrete mixing truck is studied. A mathematical formulation has been derived through the force analysis to calculate the supporting force. The calculation method of the concrete distribution shape in the rotary drum is developed. A new transfer matrix is built with considering the concrete geometric distribution shape. The effects of rotating speed, inclination angle and concrete liquid level on the vibration performance of the mixing drum are studied with a specific example. Results show that with the increase of rotating speed, the vibration amplitude of the mixing drum decreases. The peak amplitude gradually moves to the right with the inclination angle increasing. The amplitude value of the peak's left side decreases when tilt angle increases, while the right side increases. The maximum unbalanced response amplitude of the drum increases with the decrease of concrete liquid level height, and the vibration peak moves to the left.

  11. Multi-unit dosage formulations of theophylline for controlled release applications.

    Science.gov (United States)

    Uhumwangho, Michael U; Okor, Roland S

    2007-01-01

    The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The

  12. How ocean lateral mixing changes Southern Ocean variability in coupled climate models

    Science.gov (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.

    2016-02-01

    The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.

  13. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.

    Science.gov (United States)

    Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li

    2017-07-01

    Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.

  14. Spectral Comparison and Stability of Red Regions on Jupiter

    Science.gov (United States)

    Simon, A. A.; Carlson, R. W.; Sanchez-Lavega, A.

    2013-01-01

    A study of absolute color on Jupiter from Hubble Space Telescope imaging data shows that the Great Red Spot (GRS) is not the reddest region of the planet. Rather, a transient red cyclone visible in 1995 and the North Equatorial Belt both show redder spectra than the GRS (i.e., more absorption at blue and green wavelengths). This cyclone is unique among vortices in that it is intensely colored yet low altitude, unlike the GRS. Temporal analysis shows that the darkest regions of the NEB are relative constant in color from 1995 to 2008, while the slope of the GRS core may vary slightly. Principal component analysis shows several spectral components are needed, in agreement with past work, and further highlights the differences between regions. These color differences may be indicative of the same chromophore(s) under different conditions, such as mixing with white clouds, longer UV irradiation at higher altitude, and thermal processing, or may indicate abundance variations in colored compounds. A single compound does not fit the spectrum of any region well and mixes of multiple compounds including NH4SH, photolyzed NH3, hydrocarbons, and possibly P4, are likely needed to fully match each spectrum.

  15. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2009-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  16. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2008-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  17. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Dispersible formulation of artemether/lumefantrine: specifically developed for infants and young children

    Directory of Open Access Journals (Sweden)

    Sagara Issaka

    2009-10-01

    Full Text Available Abstract Infants and children under five years of age are the most vulnerable to malaria with over 1,700 deaths per day from malaria in this group. However, until recently, there were no WHO-endorsed paediatric anti-malarial formulations available. Artemisinin-based combination therapy is the current standard of care for patients with uncomplicated falciparum malaria in Africa. Artemether/lumefantrine (AL meets WHO pre-qualification criteria for efficacy, safety and quality. Coartem®, a fixed dose combination of artemether and lumefantrine, has consistently achieved cure rates of >95% in clinical trials. However, AL tablets are inconvenient for caregivers to administer as they need to be crushed and mixed with water or food for infants and young children. Further, in common with other anti-malarials, they have a bitter taste, which may result in children spitting the medicine out and not receiving the full therapeutic dose. There was a clear unmet medical need for a formulation of AL specifically designed for children. Ahead of a call from WHO for child-friendly medicines, Novartis, working in partnership with Medicines for Malaria Venture (MMV, started the development of a new formulation of AL for infants and young children: Coartem® Dispersible. The excellent efficacy, safety and tolerability already demonstrated by AL tablets were confirmed with dispersible AL in a large trial comparing the crushed tablets with dispersible tablets in 899 African children with falciparum malaria. In the evaluable population, 28-day PCR-corrected cure rates of >96% were achieved. Further, its sweet taste means that it is palatable for children, and the dispersible formulation makes it easier for caregivers to administer than bitter crushed tablets. Easing administration may foster compliance, hence improving therapeutic outcomes in infants and young children and helping to preserve the efficacy of ACT.

  19. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    -CFD codes. To aid in SCTM development and validation a spectral analysis of single and two-phase bubbly DNS data in different geometries was performed with investigation of the modulation of the turbulent kinetic energy spectrum slope due to the presence of bubbles. A new spectral analysis technique was developed to show that modifications to the energy spectrum slope are due to the presence of bubble wakes. Spectral analysis results are essential aids in turbulence model development and validation. Further work on the one-dimensional (1D) SCTM formulation was performed to improve model behavior for higher Reynolds number channel flow than previously examined, where the boundary layer close to the solid wall is now resolved and good agreement was achieved between the SCTM and DNS data. The SCTM was then implemented into the 3D MCFD package NPHASE-CMFD and tested for turbulent single-phase, monodispersed bubbly twophase, and polydispersed bubbly two-phase flow in various geometries. The SCTM predictions were compared with the k-a model, experimental data, and DNS data. The objective of the work is to improve and develop the SCTM and subsequently provide the numerical framework for the SCTM to be used in M-CFD predictions of multiphase flow in complex nuclear reactor geometries.

  20. Optimization of spectral printer modeling based on a modified cellular Yule-Nielsen spectral Neugebauer model.

    Science.gov (United States)

    Liu, Qiang; Wan, Xiaoxia; Xie, Dehong

    2014-06-01

    The study presented here optimizes several steps in the spectral printer modeling workflow based on a cellular Yule-Nielsen spectral Neugebauer (CYNSN) model. First, a printer subdividing method was developed that reduces the number of sub-models while maintaining the maximum device gamut. Second, the forward spectral prediction accuracy of the CYNSN model for each subspace of the printer was improved using back propagation artificial neural network (BPANN) estimated n values. Third, a sequential gamut judging method, which clearly reduced the complexity of the optimal sub-model and cell searching process during printer backward modeling, was proposed. After that, we further modified the use of the modeling color metric and comprehensively improved the spectral and perceptual accuracy of the spectral printer model. The experimental results show that the proposed optimization approaches provide obvious improvements in aspects of the modeling accuracy or efficiency for each of the corresponding steps, and an overall improvement of the optimized spectral printer modeling workflow was also demonstrated.