WorldWideScience

Sample records for spectral lanczos decomposition

  1. Application of spectral Lanczos decomposition method to large scale problems arising geophysics

    Energy Technology Data Exchange (ETDEWEB)

    Tamarchenko, T. [Western Atlas Logging Services, Houston, TX (United States)

    1996-12-31

    This paper presents an application of Spectral Lanczos Decomposition Method (SLDM) to numerical modeling of electromagnetic diffusion and elastic waves propagation in inhomogeneous media. SLDM approximates an action of a matrix function as a linear combination of basis vectors in Krylov subspace. I applied the method to model electromagnetic fields in three-dimensions and elastic waves in two dimensions. The finite-difference approximation of the spatial part of differential operator reduces the initial boundary-value problem to a system of ordinary differential equations with respect to time. The solution to this system requires calculating exponential and sine/cosine functions of the stiffness matrices. Large scale numerical examples are in a good agreement with the theoretical error bounds and stability estimates given by Druskin, Knizhnerman, 1987.

  2. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  3. Hybrid Lanczos-type product methods

    Energy Technology Data Exchange (ETDEWEB)

    Ressel, K.J. [Swiss Center for Scientific Computing, Zuerich (Switzerland)

    1996-12-31

    A general framework is proposed to construct hybrid iterative methods for the solution of large nonsymmetric systems of linear equations. This framework is based on Lanczos-type product methods, whose iteration polynomial consists of the Lanczos polynomial multiplied by some other arbitrary, {open_quotes}shadow{close_quotes} polynomial. By using for the shadow polynomial Chebyshev (more general Faber) polynomials or L{sup 2}-optimal polynomials, hybrid (Chebyshev-like) methods are incorporated into Lanczos-type product methods. In addition, to acquire spectral information on the system matrix, which is required for such a choice of shadow polynomials, the Lanczos-process can be employed either directly or in an QMR-like approach. The QMR like approach allows the cheap computation of the roots of the B-orthogonal polynomials and the residual polynomials associated with the QMR iteration. These roots can be used as a good approximation for the spectrum of the system matrix. Different choices for the shadow polynomials and their construction are analyzed. The resulting hybrid methods are compared with standard Lanczos-type product methods, like BiOStab, BiOStab({ell}) and BiOS.

  4. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  5. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  6. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  7. Cucheb: A GPU implementation of the filtered Lanczos procedure

    Science.gov (United States)

    Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef

    2017-11-01

    This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.

  8. Spectral decomposition of tent maps using symmetry considerations

    International Nuclear Information System (INIS)

    Ordonez, G.E.; Driebe, D.J.

    1996-01-01

    The spectral decompostion of the Frobenius-Perron operator of maps composed of many tents is determined from symmetry considerations. The eigenstates involve Euler as well as Bernoulli polynomials. The authors have introduced some new techniques, based on symmetry considerations, enabling the construction of spectral decompositions in a much simpler way than previous construction algorithms, Here we utilize these techniques to construct the spectral decomposition for one- dimensional maps of the unit interval composed of many tents. The construction uses the knowledge of the spectral decomposition of the r-adic map, which involves Bernoulli polynomials and their duals. It will be seen that the spectral decomposition of the tent maps involves both Bernoulli polynomials and Euler polynomials along with the appropriate dual states

  9. Projective block Lanczos algorithm for dense, Hermitian eigensystems

    International Nuclear Information System (INIS)

    Webster, F.; Lo, G.C.

    1996-01-01

    Projection operators are used to effect open-quotes deflation by restrictionclose quotes and it is argued that this is an optimal Lanczos algorithm for memory minimization. Algorithmic optimization is constrained to dense, Hermitian eigensystems where a significant number of the extreme eigenvectors must be obtained reliably and completely. The defining constraints are operator algebra without a matrix representation and semi-orthogonalization without storage of Krylov vectors. other semi-orthogonalization strategies for Lanczos algorithms and conjugate gradient techniques are evaluated within these constraints. Large scale, sparse, complex numerical experiments are performed on clusters of magnetic dipoles, a quantum many-body system that is not block-diagonalizable. Plane-wave, density functional theory of beryllium clusters provides examples of dense complex eigensystems. Use of preconditioners and spectral transformations is evaluated in a preprocessor prior to a high accuracy self-consistent field calculation. 25 refs., 3 figs., 5 tabs

  10. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2015-01-01

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An application is illustrated by calculating the infrared vibrational dipole transition spectrum of CH based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra

  11. Lanczos-Lovelock gravity from a thermodynamic perspective

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta

    2015-01-01

    The deep connection between gravitational dynamics and horizon thermodynamics leads to several intriguing features both in general relativity and in Lanczos-Lovelock theories of gravity. Recently in http://arxiv.org/abs/1312.3253 several additional results strengthening the above connection have been established within the framework of general relativity. In this work we provide a generalization of the above setup to Lanczos-Lovelock gravity as well. To our expectation it turns out that most of the results obtained in the context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward but non-trivial manner. First, we provide an alternative and more general derivation of the connection between Noether charge for a specific time evolution vector field and gravitational heat density of the boundary surface. This will lead to holographic equipartition for static spacetimes in Lanczos-Lovelock gravity as well. Taking a cue from this, we have introduced naturally defined four-momentum current associated with gravity and matter energy momentum tensor for both Lanczos-Lovelock Lagrangian and its quadratic part. Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock gravity by providing a direct generalization of previous results derived in the context of general relativity. Another very interesting feature for gravity is that gravitational field equations for arbitrary static and spherically symmetric spacetimes with horizon can be written as a thermodynamic identity in the near horizon limit. This result holds in both general relativity and in Lanczos-Lovelock gravity as well. In a previous work [http://arxiv.org/abs/1505.05297] we have shown that, for an arbitrary spacetime, the gravitational field equations near any null surface generically leads to a thermodynamic identity. In this work, we have also generalized this result to Lanczos-Lovelock gravity by showing that gravitational field equations for Lanczos

  12. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  13. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Jornada, Felipe H. da [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.; Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Univ. of California, Berkeley, CA (United States). Dept. of Mathematics; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Louie, Steven G. [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  14. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....

  15. Spectral decomposition in advection-diffusion analysis by finite element methods

    International Nuclear Information System (INIS)

    Nickell, R.E.; Gartling, D.K.; Strang, G.

    1978-01-01

    In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies

  16. Look-ahead procedures for Lanczos-type product methods based on three-term recurrences

    Energy Technology Data Exchange (ETDEWEB)

    Gutknecht, M.H.; Ressel, K.J. [Swiss Center for Scientific Computing, Zuerich (Switzerland)

    1996-12-31

    Lanczos-type product methods for the solution of large sparse non-Hermitian linear systems either square the Lanczos process or combine it with a local minimization of the residual. They inherit from the underlying Lanczos process the danger of breakdown. For various Lanczos-type product methods that are based on the Lanczos three-term recurrence, look-ahead versions are presented, which avoid such breakdowns or near breakdowns with a small computational overhead. Different look-ahead strategies are discussed and their efficiency is demonstrated in several numerical examples.

  17. Multi-Grid Lanczos

    Science.gov (United States)

    Clark, M. A.; Jung, Chulwoo; Lehner, Christoph

    2018-03-01

    We present a Lanczos algorithm utilizing multiple grids that reduces the memory requirements both on disk and in working memory by one order of magnitude for RBC/UKQCD's 48I and 64I ensembles at the physical pion mass. The precision of the resulting eigenvectors is on par with exact deflation.

  18. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  19. Multi-Grid Lanczos

    Directory of Open Access Journals (Sweden)

    Clark M. A.

    2018-01-01

    Full Text Available We present a Lanczos algorithm utilizing multiple grids that reduces the memory requirements both on disk and in working memory by one order of magnitude for RBC/UKQCD’s 48I and 64I ensembles at the physical pion mass. The precision of the resulting eigenvectors is on par with exact deflation.

  20. The Physical Interpretation of the Lanczos Tensor

    OpenAIRE

    Roberts, Mark D.

    1999-01-01

    The field equations of general relativity can be written as first order differential equations in the Weyl tensor, the Weyl tensor in turn can be written as a first order differential equation in a three index tensor called the Lanczos tensor. The Lanczos tensor plays a similar role in general relativity to that of the vector potential in electro-magnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electro-magnetic theory the vector potential is dynamicall...

  1. The Lanczos algorithm for extensive many-body systems in the thermodynamic limit

    International Nuclear Information System (INIS)

    Witte, N.S.; Bessis, D.

    1999-01-01

    We establish rigorously the scaling properties of the Lanczos process applied to an arbitrary extensive Many-Body System which is carried to convergence n → ∞ and the thermodynamic limit N → ∞ taken. In this limit the solution for the limiting Lanczos coefficients are found exactly and generally through two equivalent sets of equations, given initial knowledge of the exact cumulant generating function. The measure and the Orthogonal Polynomial System associated with the Lanczos process in this regime are also given explicitly. Some important representations of these Lanczos functions are provided, including Taylor series expansions, and the theorems controlling their general properties are proven. (authors)

  2. Spectral decomposition of nonlinear systems with memory

    Science.gov (United States)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  3. Two aspects of black hole entropy in Lanczos-Lovelock models of gravity

    Science.gov (United States)

    Kolekar, Sanved; Kothawala, Dawood; Padmanabhan, T.

    2012-03-01

    We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic), we use a procedure motivated by earlier work by Pretorius, Vollick, and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific mth-order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different m. In the second approach (which could be called intrinsic), we generalize a procedure, previously introduced by Padmanabhan in the context of general relativity, to study off-shell entropy of a class of metrics with horizon using a path integral method. We consider the Euclidean action of Lanczos-Lovelock models for a class of metrics off shell and interpret it as a partition function. We show that in the case of spherically symmetric metrics, one can interpret the Euclidean action as the free energy and read off both the entropy and energy of a black hole spacetime. Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in Lanczos-Lovelock models obtained by other methods. We comment on possible implications of the result.

  4. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  5. Lanczos Tridiagonalization and Core Problems

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Strakoš, Zdeněk

    2007-01-01

    Roč. 421, č. 2-3 (2007), s. 243-251 ISSN 0024-3795 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear approximation problem * orthogonal transformation * core problem * Golub-Kahan bidiagonalization * Lanczos tridiagonalization * Jacobi matrix Subject RIV: BA - General Mathematics Impact factor: 0.702, year: 2007

  6. Spectral decomposition of MR spectroscopy signatures with use of eigenanalysis

    International Nuclear Information System (INIS)

    Hearshen, D.O.; Windham, J.P.; Roebuck, J.R.; Helpern, J.A.

    1989-01-01

    Partial-volume contamination and overlapping resonances are common problems in whole-body MR spectroscopy and can affect absolute or relative intensity and chemical-shift measurements. One technique, based on solution of constrained eigenvalue problems, treats spectra as N-dimensional signatures and minimizes contributions of undesired signatures while maximizing contributions of desired signatures in compromised spectra. Computer simulations and both high-resolution (400-MHz) and whole-body (63.8-MHz) phantom studies tested accuracy and reproducibility of spectral decomposition. Results demonstrated excellent decomposition and good reproducibility within certain constraints. The authors conclude that eigenanalysis may improve quantitation of spectra without introducing operator bias

  7. Use of Lanczos vectors in fluid/structure interaction problems

    International Nuclear Information System (INIS)

    Jeans, R.; Mathews, I.C.

    1992-01-01

    The goals of any numerical computational technique used for the solution of structural acoustics problems in the exterior infinite domain should be of accuracy with rapid convergence, robustness, and computational efficiency. A computer program has been developed to achieve each of these three goals. Accuracy and robustness in the numerical representation of the integral equations used to represent the infinite fluid was attained through the use of boundary element implementations of the surface Helmholtz integral equations. The computational efficiency was resolved through the use of Lanczos vectors to model the deformation characteristics of the structure. The authors have developed collocation and variational techniques to overcome the difficulties previously encountered in the numerical implementation of the hypersingular integral operator. The Cauchy singularity present in the integral formulation is made numerically amenable through the use of tangential derivatives in both the collocation and variational techniques. The variational approach has the advantage that the resulting added fluid mass term is symmetric and combines efficiently with a finite element approximation of the structural elastic response. Several different strategies making use of the Lanczos vectors have been investigated. The first involved the use of Lanczos vectors solely to characterize the structural response. This reduced form of the structural dynamical matrix was then substituted back into a Burton and Miller formulation of the acoustic problem. The second strategy investigated involved forming the complex Lanzcos vectors of the dynamical matrix formed from the addition of a symmetrical added fluid matrix to the structural mass matrix. The size of resultant matrix equation set solved at each frequency for this strategy is determined by the number of Lanczos vectors used. 19 refs., 10 figs., 2 tabs

  8. Measuring Identification and Quantification Errors in Spectral CT Material Decomposition

    Directory of Open Access Journals (Sweden)

    Aamir Younis Raja

    2018-03-01

    Full Text Available Material decomposition methods are used to identify and quantify multiple tissue components in spectral CT but there is no published method to quantify the misidentification of materials. This paper describes a new method for assessing misidentification and mis-quantification in spectral CT. We scanned a phantom containing gadolinium (1, 2, 4, 8 mg/mL, hydroxyapatite (54.3, 211.7, 808.5 mg/mL, water and vegetable oil using a MARS spectral scanner equipped with a poly-energetic X-ray source operated at 118 kVp and a CdTe Medipix3RX camera. Two imaging protocols were used; both with and without 0.375 mm external brass filter. A proprietary material decomposition method identified voxels as gadolinium, hydroxyapatite, lipid or water. Sensitivity and specificity information was used to evaluate material misidentification. Biological samples were also scanned. There were marked differences in identification and quantification between the two protocols even though spectral and linear correlation of gadolinium and hydroxyapatite in the reconstructed images was high and no qualitative segmentation differences in the material decomposed images were observed. At 8 mg/mL, gadolinium was correctly identified for both protocols, but concentration was underestimated by over half for the unfiltered protocol. At 1 mg/mL, gadolinium was misidentified in 38% of voxels for the filtered protocol and 58% of voxels for the unfiltered protocol. Hydroxyapatite was correctly identified at the two higher concentrations for both protocols, but mis-quantified for the unfiltered protocol. Gadolinium concentration as measured in the biological specimen showed a two-fold difference between protocols. In future, this methodology could be used to compare and optimize scanning protocols, image reconstruction methods, and methods for material differentiation in spectral CT.

  9. Delineating gas bearing reservoir by using spectral decomposition attribute: Case study of Steenkool formation, Bintuni Basin

    Science.gov (United States)

    Haris, A.; Pradana, G. S.; Riyanto, A.

    2017-07-01

    Tectonic setting of the Bird Head Papua Island becomes an important model for petroleum system in Eastern part of Indonesia. The current exploration has been started since the oil seepage finding in Bintuni and Salawati Basin. The biogenic gas in shallow layer turns out to become an interesting issue in the hydrocarbon exploration. The hydrocarbon accumulation appearance in a shallow layer with dry gas type, appeal biogenic gas for further research. This paper aims at delineating the sweet spot hydrocarbon potential in shallow layer by applying the spectral decomposition technique. The spectral decomposition is decomposing the seismic signal into an individual frequency, which has significant geological meaning. One of spectral decomposition methods is Continuous Wavelet Transform (CWT), which transforms the seismic signal into individual time and frequency simultaneously. This method is able to make easier time-frequency map analysis. When time resolution increases, the frequency resolution will be decreased, and vice versa. In this study, we perform low-frequency shadow zone analysis in which the amplitude anomaly at a low frequency of 15 Hz was observed and we then compare it to the amplitude at the mid (20 Hz) and the high-frequency (30 Hz). The appearance of the amplitude anomaly at a low frequency was disappeared at high frequency, this anomaly disappears. The spectral decomposition by using CWT algorithm has been successfully applied to delineate the sweet spot zone.

  10. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    Science.gov (United States)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  11. On a connection between Lanczos and Householder methods

    International Nuclear Information System (INIS)

    Sau, J.

    1979-01-01

    It is shown that the Householder method can be considered as a Lanczos method, with the same properties for the convergence of the eigenvalues. An application to a shell-model calculation is then performed

  12. Fourier coefficients of Eisenstein series formed with modular symbols and their spectral decomposition

    NARCIS (Netherlands)

    Bruggeman, R.W.; Diamantis, N.

    2016-01-01

    The Fourier coefficient of a second order Eisenstein series is described as a shifted convolution sum. This description is used to obtain the spectral decomposition of and estimates for the shifted convolution sum.

  13. Recursion relations for the overlap of a Morse continuum state with a Lanczos basis state

    International Nuclear Information System (INIS)

    Lutrus, C.K.; Suck Salk, S.H.

    1988-01-01

    In the resonant reactive scattering theory of Mundel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)], the overlap of a Morse continuum state and a Lanczos basis state appears in the expression of transition amplitude. In their study, recursion relations for Green's functions in the Lanczos basis were used for computational efficiency. In this paper we derive new recursion relations specifically for the evaluation of overlap between the Morse continuum wave and Lanczos basis state that appears in the transition amplitude of resonant scattering. They are found to be simple to use with great accuracy

  14. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  15. A novel derivation of the boundary term for the action in Lanczos-Lovelock gravity

    Science.gov (United States)

    Chakraborty, Sumanta; Parattu, Krishnamohan; Padmanabhan, T.

    2017-09-01

    We present a novel derivation of the boundary term for the action in Lanczos-Lovelock gravity, starting from the boundary contribution in the variation of the Lanczos-Lovelock action. The derivation presented here is straightforward, i.e., one starts from the Lanczos-Lovelock action principle and the action itself dictates the boundary structure and hence the boundary term one needs to add to the action to make it well-posed. It also gives the full structure of the contribution at the boundary of the complete action, enabling us to read off the degrees of freedom to be fixed at the boundary, their corresponding conjugate momenta and the total derivative contribution on the boundary. We also provide a separate derivation of the Gauss-Bonnet case.

  16. The Bach-Lanczos Lagrangian in matrix relativity

    International Nuclear Information System (INIS)

    Maluf, J.W.

    1987-01-01

    The author examines the generalisation of the Bach-Lanczos Lagrangian in matrix relativity where it is no longer a topological invariant, and find that for certain structures of the matrix affine connection a Yang-Mills type Lagrangian is obtained. Thus the possibility is considered of interpreting non-Abelian gauge fields as arising from an otherwise topological invariant. (author)

  17. The intrinsic nature of things the life and science of Cornelius Lanczos

    CERN Document Server

    Gellai, Barbara

    2010-01-01

    This book recounts the extraordinary personal journey and scientific story of Hungarian-born mathematician and physicist Cornelius Lanczos. His life and his mathematical accomplishments are inextricably linked, reflecting the social upheavals and historical events that shaped his odyssey in 20th-century Hungary, Germany, the United States, and Ireland. In his life Lanczos demonstrated a remarkable ability to be at the right place, or work with the right person, at the right time. At the start of his scientific career in Germany he worked as Einstein's assistant for one year and stayed in touch

  18. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  19. Seismic analysis of structures of nuclear power plants by Lanczos mode superposition method

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Alves, J.L.D.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1986-01-01

    The Lanczos Mode Superposition Method is applied in the seismic analysis of nuclear power plants. The coordinate transformation matrix is generated by the Lanczos algorithm. It is shown that, through a convenient choice of the starting vector of the algorithm, modes with participation factors are automatically selected. It is performed the Response Spectra analysis of a typical reactor building. The obtained results are compared with those determined by the classical aproach stressing the remarkable computer effectiveness of the proposed methodology. (Author) [pt

  20. A practical material decomposition method for x-ray dual spectral computed tomography.

    Science.gov (United States)

    Hu, Jingjing; Zhao, Xing

    2016-03-17

    X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.

  1. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    Science.gov (United States)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  2. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  3. Some uses of the symmetric Lanczos algorithm - and why it works!

    Energy Technology Data Exchange (ETDEWEB)

    Druskin, V.L. [Schlumberger-Doll Research, Ridgefield, CT (United States); Greenbaum, A. [Courant Institute of Mathematical Sciences, New York, NY (United States); Knizhnerman, L.A. [Central Geophysical Expedition, Moscow (Russian Federation)

    1996-12-31

    The Lanczos algorithm uses a three-term recurrence to construct an orthonormal basis for the Krylov space corresponding to a symmetric matrix A and a starting vector q{sub 1}. The vectors and recurrence coefficients produced by this algorithm can be used for a number of purposes, including solving linear systems Au = {var_phi} and computing the matrix exponential e{sup -tA}{var_phi}. Although the vectors produced in finite precision arithmetic are not orthogonal, we show why they can still be used effectively for these purposes. The reason is that the 2-norm of the residual is essentially determined by the tridiagonal matrix and the next recurrence coefficient produced by the finite precision Lanczos computation. It follows that if the same tridiagonal matrix and recurrence coefficient are produced by the exact Lanczos algorithm applied to some other problem, then exact arithmetic bounds on the residual for that problem will hold for the finite precision computation. In order to establish exact arithmetic bounds for the different problem, it is necessary to have some information about the eigenvalues of the new coefficient matrix. Here we make use of information already established in the literature, and we also prove a new result for indefinite matrices.

  4. An application of the discrete-time Toda lattice to the progressive algorithm by Lanczos and related problems

    Science.gov (United States)

    Nakamura, Yoshimasa; Sekido, Hiroto

    2018-04-01

    The finite or the semi-infinite discrete-time Toda lattice has many applications to various areas in applied mathematics. The purpose of this paper is to review how the Toda lattice appears in the Lanczos algorithm through the quotient-difference algorithm and its progressive form (pqd). Then a multistep progressive algorithm (MPA) for solving linear systems is presented. The extended Lanczos parameters can be given not by computing inner products of the extended Lanczos vectors but by using the pqd algorithm with highly relative accuracy in a lower cost. The asymptotic behavior of the pqd algorithm brings us some applications of MPA related to eigenvectors.

  5. The coupled-channel T-matrix: its lowest-order Born + Lanczos approximants

    International Nuclear Information System (INIS)

    Znojil, M.

    1995-01-01

    Three iterative methods of solution of the Lippmann-Schwinger equations (viz., the method of continued fractions by J.Horacek and T.Sasakawa), its Born-remainder modification and a coupled-channel matrix-continued-fraction generalization are all interpreted as special cases of a common iterative matrix prescription. Firstly, in terms of certain asymmetric projectors P≠P + , we re-derive the three particular older methods as different realizations of the well-known Lanczos inversion. Then, a generalized iteration method is proposed as a Born-like re-arrangement of any intermediate Lanczos iteration step. A maximal flexibility is achieved in the formalism which might compete with the standard Pade re-summations in practice. Its first few truncations are listed, therefore. 26 refs., 1 tab

  6. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  7. LBAS: Lanczos Bidiagonalization with Subspace Augmentation for Discrete Inverse Problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Abe, Kyniyoshi

    The regularizing properties of Lanczos bidiagonalization are powerful when the underlying Krylov subspace captures the dominating components of the solution. In some applications the regularized solution can be further improved by augmenting the Krylov subspace with a low-dimensional subspace tha...

  8. On a new implementation of the Lanczos algorithm

    International Nuclear Information System (INIS)

    Caurier, E.; Zuker, A.P.; Poves, A.

    1991-01-01

    The new implementation proposed is based on a block labelling scheme described in detail. Time reversal, f-projection, sum rule pivots and strength functions are discussed by the aid of the new implementation of the Lanczos algorithm. Energetics and magnetic dipole behaviour of 48 Ti are studied as examples illustrating the applications of the method. (G.P.) 9 refs.; 4 figs.; 1 tab

  9. The Lanczos and Conjugate Gradient Algorithms in Finite Precision Arithmetic

    Czech Academy of Sciences Publication Activity Database

    Meurant, G.; Strakoš, Zdeněk

    2006-01-01

    Roč. 15, - (2006), s. 471-542 ISSN 0962-4929 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : Lanczos method * conjugate gradient method * finite precision arithmetic * numerical stability * iterative methods Subject RIV: BA - General Mathematics

  10. Application of spectral decomposition analysis to in vivo quantification of aluminum by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D.C. E-mail: comsadc@mcmaster.ca; Prestwich, W.V.; McNeill, F.E.; Byun, S.H

    2004-12-01

    The toxic effects of aluminum are cumulative and result in painful forms of renal osteodystrophy, most notably adynamic bone disease and osteomalacia, but also other forms of disease. The Trace Element Group at McMaster University has developed an accelerator-based in vivo procedure for detecting aluminum body burden by neutron activation analysis (NAA). Further refining of the method was necessary for increasing its sensitivity. In this context, the present study proposes an improved algorithm for data analysis, based on spectral decomposition. A new minimum detectable limit (MDL) of (0.7{+-}0.1) mg Al was reached for a local dose of (20{+-}1) mSv. The study also addresses the feasibility of a new data acquisition technique, the electronic rejection of the coincident events detected by a NaI(Tl) system. It is expected that the application of this technique, together with spectral decomposition analysis, would provide an acceptable MDL for the method to be valuable in a clinical setting.

  11. Thick-Restart Lanczos Method for Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Simon, Horst D.; Wang, L.-W.; Wu, Kesheng

    1999-01-01

    This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations

  12. Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms

    International Nuclear Information System (INIS)

    Burkitt, A.N.; Irving, A.C.

    1990-01-01

    The Lanczos and conjugate gradient algorithms are widely used in lattice QCD calculations. The previously known close relationship between the two methods is explored and two commonly used implementations are shown to give identically the same results at each iteration, in exact arithmetic, for matrix inversion. The identities between the coefficients of the two algorithms are given, and many of the features of the two algorithms can now be combined. The effects of finite arithmetic are investigated and the particular Lanczos formulation is found to be most stable with respect to rounding errors. (orig.)

  13. The Lanczos method in lattice gauge theories

    International Nuclear Information System (INIS)

    Barbour, I.M.; Behilil, N.E.; Gibbs, P.E.; Teper, M.; Schierholz, G.

    1984-09-01

    We present a modified version of the Lanczos algorithm as a computational method for tridiagonalising large sparse matrices, which avoids the requirement for large amounts of storage space. It can be applied as a first step in calculating eigenvalues and eigenvectors or for obtaining the inverse of a matrix row by row. Here we describe the method and apply it to various problems in lattice gauge theories. We have found it to have excellent convergence properties. In particular it enables us to do lattice calculations at small and even zero quark mass. (orig.)

  14. Lanczos potentials and a definition of gravitational entropy for perturbed Friedman-Lemaitre-Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Mena, Filipe C; Tod, Paul

    2007-01-01

    We give a prescription for constructing a Lanczos potential for a cosmological model which is a purely gravitational perturbation of a Friedman-Lemaitre-Robertson-Walker spacetime. For the radiation equation of state, we find the Lanczos potential explicitly via Fourier transforms. As an application, we follow up a suggestion of Penrose (1979 Singularities and time-asymmetry General Relativity: An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)) and propose a definition of gravitational entropy for these cosmologies. With this definition, the gravitational entropy initially is finite if and only if the initial Weyl tensor is finite

  15. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    Science.gov (United States)

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in

  16. Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method

    Science.gov (United States)

    Tischler, V. A.; Venkayya, Vipperla B.

    1993-01-01

    The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.

  17. A singular-value decomposition approach to X-ray spectral estimation from attenuation data

    International Nuclear Information System (INIS)

    Tominaga, Shoji

    1986-01-01

    A singular-value decomposition (SVD) approach is described for estimating the exposure-rate spectral distributions of X-rays from attenuation data measured withvarious filtrations. This estimation problem with noisy measurements is formulated as the problem of solving a system of linear equations with an ill-conditioned nature. The principle of the SVD approach is that a response matrix, representing the X-ray attenuation effect by filtrations at various energies, can be expanded into summation of inherent component matrices, and thereby the spectral distributions can be represented as a linear combination of some component curves. A criterion function is presented for choosing the components needed to form a reliable estimate. The feasibility of the proposed approach is studied in detail in a computer simulation using a hypothetical X-ray spectrum. The application results of the spectral distributions emitted from a therapeutic X-ray generator are shown. Finally some advantages of this approach are pointed out. (orig.)

  18. Spectral decomposition of single-tone-driven quantum phase modulation

    International Nuclear Information System (INIS)

    Capmany, Jose; Fernandez-Pousa, Carlos R

    2011-01-01

    Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  19. Spectral decomposition of single-tone-driven quantum phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

    2011-02-14

    Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  20. A polychromatic adaption of the Beer-Lambert model for spectral decomposition

    Science.gov (United States)

    Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.

    2017-03-01

    We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.

  1. Algoritmo de lanczos na variedade de grassmann

    OpenAIRE

    Lopes, Ana Paula Ferreira Fernandes; Viamonte, Ana Júlia; Pascoal, António José

    2008-01-01

    O problema do cálculo de valores próprios, vectores próprios e subespaços invariantes está presente em áreas tão diversas como Engenharia, Física, Ciências de Computação e Matemática. Considerando a importância deste problema em tantas aplicações práticas, não é de surpreender que tenha sido e continue a ser objecto de intensa investigação, dando corpo a uma literatura muito vasta. Desenvolvemos um novo algoritmo de Lanczos na variedade de Grassmann. Este trabalho surgiu na ...

  2. Projection preconditioning for Lanczos-type methods

    Energy Technology Data Exchange (ETDEWEB)

    Bielawski, S.S.; Mulyarchik, S.G.; Popov, A.V. [Belarusian State Univ., Minsk (Belarus)

    1996-12-31

    We show how auxiliary subspaces and related projectors may be used for preconditioning nonsymmetric system of linear equations. It is shown that preconditioned in such a way (or projected) system is better conditioned than original system (at least if the coefficient matrix of the system to be solved is symmetrizable). Two approaches for solving projected system are outlined. The first one implies straightforward computation of the projected matrix and consequent using some direct or iterative method. The second approach is the projection preconditioning of conjugate gradient-type solver. The latter approach is developed here in context with biconjugate gradient iteration and some related Lanczos-type algorithms. Some possible particular choices of auxiliary subspaces are discussed. It is shown that one of them is equivalent to using colorings. Some results of numerical experiments are reported.

  3. Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system

    International Nuclear Information System (INIS)

    Leung, P.W.; Oppenheimer, P.E.

    1992-01-01

    An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed

  4. Seismic spectral decomposition and analysis based on Wigner–Ville distribution for sandstone reservoir characterization in West Sichuan depression

    International Nuclear Information System (INIS)

    Wu, Xiaoyang; Liu, Tianyou

    2010-01-01

    Reflections from a hydrocarbon-saturated zone are generally expected to have a tendency to be low frequency. Previous work has shown the application of seismic spectral decomposition for low-frequency shadow detection. In this paper, we further analyse the characteristics of spectral amplitude in fractured sandstone reservoirs with different fluid saturations using the Wigner–Ville distribution (WVD)-based method. We give a description of the geometric structure of cross-terms due to the bilinear nature of WVD and eliminate cross-terms using smoothed pseudo-WVD (SPWVD) with time- and frequency-independent Gaussian kernels as smoothing windows. SPWVD is finally applied to seismic data from West Sichuan depression. We focus our study on the comparison of SPWVD spectral amplitudes resulting from different fluid contents. It shows that prolific gas reservoirs feature higher peak spectral amplitude at higher peak frequency, which attenuate faster than low-quality gas reservoirs and dry or wet reservoirs. This can be regarded as a spectral attenuation signature for future exploration in the study area

  5. Shape coexistence, Lanczos techniques, and large-basis shell-model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W C [Washington Univ., Seattle, WA (United States). Dept. of Physics

    1992-08-01

    I discuss numerical many-body techniques based on the Lanczos algorithm and their applications to nuclear structure problems. Examples include shape coexistence, inclusive response functions, and weak interaction rates in {sup 16}O; weak-coupling descriptions of the O{sup +} bands in isotopes of Ge and Se; and the evaluation of the nuclear Green`s functions that arise in two-neutrino {beta}{beta} decay and in nuclear anapole and electric dipole moment calculations. (author). 11 refs., 2 tabs., 4 figs.

  6. The Non–Symmetric s–Step Lanczos Algorithm: Derivation of Efficient Recurrences and Synchronization–Reducing Variants of BiCG and QMR

    Directory of Open Access Journals (Sweden)

    Feuerriegel Stefan

    2015-12-01

    Full Text Available The Lanczos algorithm is among the most frequently used iterative techniques for computing a few dominant eigenvalues of a large sparse non-symmetric matrix. At the same time, it serves as a building block within biconjugate gradient (BiCG and quasi-minimal residual (QMR methods for solving large sparse non-symmetric systems of linear equations. It is well known that, when implemented on distributed-memory computers with a huge number of processes, the synchronization time spent on computing dot products increasingly limits the parallel scalability. Therefore, we propose synchronization-reducing variants of the Lanczos, as well as BiCG and QMR methods, in an attempt to mitigate these negative performance effects. These so-called s-step algorithms are based on grouping dot products for joint execution and replacing time-consuming matrix operations by efficient vector recurrences. The purpose of this paper is to provide a rigorous derivation of the recurrences for the s-step Lanczos algorithm, introduce s-step BiCG and QMR variants, and compare the parallel performance of these new s-step versions with previous algorithms.

  7. Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas

    2014-08-01

    The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.

  8. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model

    Science.gov (United States)

    Ehn, S.; Sellerer, T.; Mechlem, K.; Fehringer, A.; Epple, M.; Herzen, J.; Pfeiffer, F.; Noël, P. B.

    2017-01-01

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  9. A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. Thesis - Massachusetts Inst. of Technology, Aug. 1991

    Science.gov (United States)

    Nachtigal, Noel M.

    1991-01-01

    The Lanczos algorithm can be used both for eigenvalue problems and to solve linear systems. However, when applied to non-Hermitian matrices, the classical Lanczos algorithm is susceptible to breakdowns and potential instabilities. In addition, the biconjugate gradient (BCG) algorithm, which is the natural generalization of the conjugate gradient algorithm to non-Hermitian linear systems, has a second source of breakdowns, independent of the Lanczos breakdowns. Here, we present two new results. We propose an implementation of a look-ahead variant of the Lanczos algorithm which overcomes the breakdowns by skipping over those steps where a breakdown or a near-breakdown would occur. The new algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products per step as the classical Lanczos algorithm without look-ahead. Based on the proposed look-ahead Lanczos algorithm, we then present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which avoids the second source of breakdowns in the BCG algorithm. We present details of the new method and discuss some of its properties. In particular, we discuss the relationship between QMR and BCG, showing how one can recover the BCG iterates, when they exist, from the QMR iterates. We also present convergence results for QMR, showing the connection between QMR and the generalized minimal residual (GMRES) algorithm, the optimal method in this class of methods. Finally, we give some numerical examples, both for eigenvalue computations and for non-Hermitian linear systems.

  10. Overlapping domain decomposition preconditioners for the generalized Davidson method for the eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, A.; Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States); Saad, Y.

    1994-12-31

    The solution of the large, sparse, symmetric eigenvalue problem, Ax = {lambda}x, is central to many scientific applications. Among many iterative methods that attempt to solve this problem, the Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos method builds an orthogonal basis for the Krylov subspace, from which the required eigenvectors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical to compute but the number of iterations may grow significantly for difficult problems. The GD method can be considered a preconditioned version of Lanczos. In each step the Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual ((M {minus} {lambda}I){sup {minus}1}(A {minus} {lambda}I)x) is performed. Therefore, the GD method attempts to improve convergence and robustness at the expense of a more complicated step.

  11. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    International Nuclear Information System (INIS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-01-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene

  12. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  13. Comparison of hybrid spectral-decomposition artificial neural network models for understanding climatic forcing of groundwater levels

    Science.gov (United States)

    Abrokwah, K.; O'Reilly, A. M.

    2017-12-01

    Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.

  14. Moment methods and Lanczos methods

    International Nuclear Information System (INIS)

    Whitehead, R.R.

    1980-01-01

    In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here

  15. Algorithms for Spectral Decomposition with Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main...

  16. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  17. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  18. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Science.gov (United States)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  19. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    International Nuclear Information System (INIS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-01-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H 2 , H 2 O, NH 3 , HF, CO, and CO 2

  20. Three-dimensional magnetotelluric modeling using SLDM method; Supekutoru bunkai wo fukashita ranchosu process ni motozuku MT ho sanjigen keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K; Takasugi, S [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-10-01

    For 3-D magnetotelluric (MT) modeling, spectral Lanczos decomposition method (SLDM) was applied as high-speed high- accuracy modeling algorithm. SLDM was developed by Druskin to reduce computational time considerably by obtaining responses in the whole frequency domain all at once. The computational time of 3-D modeling was reduced by introducing Maxwell`s equation and Lanczos matrix as transformation matrix. The computation was carried out on the 1km{times}2km{times}2km low resistivity model body of 5 ohm{center_dot}m supposed in the uniform ground of 100 ohm{center_dot}m using 43{times}43{times}31 nodes at 17 frequencies ranging from 0.01Hz to 100Hz. Apparent resistivity at lower frequency decreased with approach to the low resistivity body. The computational time amounted to 6 hours 14 minutes. The 3-D MT modeling using SLDM method was independent of frequency, and its algorithm was superior in computational speed, however, it was inferior in computational time as the number of measuring nodes increased. 2 refs., 3 figs.

  1. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste (Italy); Christiansen, Ove [Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Norman, Patrick [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  2. Identity of the conjugate gradient and Lanczos algorithms for matrix inversion in lattice fermion calculations

    International Nuclear Information System (INIS)

    Burkitt, A.N.; Irving, A.C.

    1988-01-01

    Two of the methods that are widely used in lattice gauge theory calculations requiring inversion of the fermion matrix are the Lanczos and the conjugate gradient algorithms. Those algorithms are already known to be closely related. In fact for matrix inversion, in exact arithmetic, they give identical results at each iteration and are just alternative formulations of a single algorithm. This equivalence survives rounding errors. We give the identities between the coefficients of the two formulations, enabling many of the best features of them to be combined. (orig.)

  3. Spectral-decomposition techniques for the identification of radon anomalies temporally associated with earthquakes occurring in the UK in 2002 and 2008.

    Science.gov (United States)

    Crockett, R. G. M.; Gillmore, G. K.

    2009-04-01

    During the second half of 2002, the University of Northampton Radon Research Group operated two continuous hourly-sampling radon detectors 2.25 km apart in Northampton, in the (English) East Midlands. This period included the Dudley earthquake (22/09/2002) which was widely noticed by members of the public in the Northampton area. Also, at various periods during 2008 the Group has operated another pair of continuous hourly-sampling radon detectors similar distances apart in Northampton. One such period included the Market Rasen earthquake (27/02/2008) which was also widely noticed by members of the public in the Northampton area. During each period of monitoring, two time-series of radon readings were obtained, one from each detector. These have been analysed for evidence of simultaneous similar anomalies: the premise being that big disturbances occurring at big distances (in relation to the detector separation) should produce simultaneous similar anomalies but that simultaneous anomalies occurring by chance will be dissimilar. As previously reported, cross-correlating the two 2002 time-series over periods of 1-30 days duration, rolled forwards through the time-series at one-hour intervals produced two periods of significant correlation, i.e. two periods of simultaneous similar behaviour in the radon concentrations. One of these periods corresponded in time to the Dudley earthquake, the other corresponded in time to a smaller earthquake which occurred in the English Channel (26/08/2002). We here report subsequent investigation of the 2002 time-series and the 2008 time-series using spectral-decomposition techniques. These techniques have revealed additional simultaneous similar behaviour in the two radon concentrations, not revealed by the rolling correlation on the raw data. These correspond in time to the Manchester earthquake swarm of October 2002 and the Market Rasen earthquake of February 2008. The spectral-decomposition techniques effectively ‘de-noise' the

  4. 2D XXZ model ground state properties using an analytic Lanczos expansion

    International Nuclear Information System (INIS)

    Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng

    1997-01-01

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  5. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  6. Application of spectral decomposition of LIDAR-based headwind profiles in windshear detection at the Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    Tsz-Chun Wu

    2018-01-01

    Full Text Available In aviation, rapidly fluctuating headwind/tailwind may lead to high horizontal windshear, posing potential safety hazards to aircraft. So far, windshear alerts are issued by considering directly the headwind differences measured along the aircraft flight path (e.g. based on Doppler velocities from remote-sensing. In this paper, we propose and demonstrate a new methodology for windshear alerting with the technique of spectral decomposition. Through Fourier transformation of the LIDAR-based headwind profiles in 2012 and 2014 at arrival corridors 07LA and 25RA of the Hong Kong International Airport (HKIA, we study the occurrence of windshear in the spectral domain. Using a threshold-based approach, we investigate performance of single and multiple channel detection algorithms and validate the results against pilot reports. With the receiver operating characteristic (ROC diagram, we successfully demonstrate feasibility of this approach to alert windshear by showing a comparable performance of the triple channel detection algorithm and a consistent hit rate gain (07LA in particular of 4.5 to 8 % in quadruple channel detection against GLYGA, which is the currently operational algorithm in HKIA. We also observe that some length scales are particularly sensitive to windshear events which may be closely related to the local geography of HKIA. This study serves to open a new door for the methodology of windshear detection in the spectral domain for the aviation community.

  7. X-ray spectral decomposition imaging system

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-27

    Projection measurements are made of the transmitted X-ray beam in low and high energy regions. These are combined in a non-linear processor to produce atomic-number-dependent and density-dependent projection information. This information is used to provide cross-sectional images which are free of spectral-shift artifacts and completely define the specific material properties. The invention described herein was made in the course of work under a grant from the Department of Health, Education, and Welfare.

  8. Application of spectral decomposition of 222Rn activity concentration signal series measured in Niedźwiedzia Cave to identification of mechanisms responsible for different time-period variations

    International Nuclear Information System (INIS)

    Przylibski, Tadeusz Andrzej; Wyłomańska, Agnieszka; Zimroz, Radosław; Fijałkowska-Lichwa, Lidia

    2015-01-01

    The authors present an application of spectral decomposition of 222 Rn activity concentration signal series as a mathematical tool used for distinguishing processes determining temporal changes of radon concentration in cave air. The authors demonstrate that decomposition of monitored signal such as 222 Rn activity concentration in cave air facilitates characterizing the processes affecting changes in the measured concentration of this gas. Thanks to this, one can better correlate and characterize the influence of various processes on radon behaviour in cave air. Distinguishing and characterising these processes enables the understanding of radon behaviour in cave environment and it may also enable and facilitate using radon as a precursor of geodynamic phenomena in the lithosphere. Thanks to the conducted analyses, the authors confirmed the unquestionable influence of convective air exchange between the cave and the atmosphere on seasonal and short-term (diurnal) changes in 222 Rn activity concentration in cave air. Thanks to the applied methodology of signal analysis and decomposition, the authors also identified a third process affecting 222 Rn activity concentration changes in cave air. This is a deterministic process causing changes in radon concentration, with a distribution different from the Gaussian one. The authors consider these changes to be the effect of turbulent air movements caused by the movement of visitors in caves. This movement is heterogeneous in terms of the number of visitors per group and the number of groups visiting a cave per day and per year. Such a process perfectly elucidates the observed character of the registered changes in 222 Rn activity concentration in one of the decomposed components of the analysed signal. The obtained results encourage further research into precise relationships between the registered 222 Rn activity concentration changes and factors causing them, as well as into using radon as a precursor of geodynamic

  9. Singular solution of the Feller diffusion equation via a spectral decomposition

    Science.gov (United States)

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  10. Parallelization of mathematical library for generalized eigenvalue problem for real band matrices

    International Nuclear Information System (INIS)

    Tanaka, Yasuhisa.

    1997-05-01

    This research has focused on a parallelization of the mathematical library for a generalized eigenvalue problem for real band matrices on IBM SP and Hitachi SR2201. The origin of the library is LASO (Lanczos Algorithm with Selective Orthogonalization), which was developed on the basis of Block Lanczos method for standard eigenvalue problem for real band matrices at Texas University. We adopted D.O.F. (Degree Of Freedom) decomposition method for a parallelization of this library, and evaluated its parallel performance. (author)

  11. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing

    Science.gov (United States)

    Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.

    2018-03-01

    In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.

  12. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob

    2014-01-01

    are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...

  13. Identification of liquid-phase decomposition species and reactions for guanidinium azotetrazolate

    International Nuclear Information System (INIS)

    Kumbhakarna, Neeraj R.; Shah, Kaushal J.; Chowdhury, Arindrajit; Thynell, Stefan T.

    2014-01-01

    Highlights: • Guanidinium azotetrazolate (GzT) is a high-nitrogen energetic material. • FTIR spectroscopy and ToFMS spectrometry were used for species identification. • Quantum mechanics was used to identify transition states and decomposition pathways. • Important reactions in the GzT liquid-phase decomposition process were identified. • Initiation of decomposition occurs via ring opening, releasing N 2 . - Abstract: The objective of this work is to analyze the decomposition of guanidinium azotetrazolate (GzT) in the liquid phase by using a combined experimental and computational approach. The experimental part involves the use of Fourier transform infrared (FTIR) spectroscopy to acquire the spectral transmittance of the evolved gas-phase species from rapid thermolysis, as well as to acquire spectral transmittance of the condensate and residue formed from the decomposition. Time-of-flight mass spectrometry (ToFMS) is also used to acquire mass spectra of the evolved gas-phase species. Sub-milligram samples of GzT were heated at rates of about 2000 K/s to a set temperature (553–573 K) where decomposition occurred under isothermal conditions. N 2 , NH 3 , HCN, guanidine and melamine were identified as products of decomposition. The computational approach is based on using quantum mechanics for confirming the identity of the species observed in experiments and for identifying elementary chemical reactions that formed these species. In these ab initio techniques, various levels of theory and basis sets were used. Based on the calculated enthalpy and free energy values of various molecular structures, important reaction pathways were identified. Initiation of decomposition of GzT occurs via ring opening to release N 2

  14. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    OpenAIRE

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...

  15. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  16. Tensor-Based Dictionary Learning for Spectral CT Reconstruction.

    Science.gov (United States)

    Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong

    2017-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.

  17. Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

    Science.gov (United States)

    Chakraborty, Sumanta; Dadhich, Naresh

    2015-12-01

    A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

  18. Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta; Dadhich, Naresh

    2015-01-01

    A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d=2m+2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

  19. Randomized interpolative decomposition of separated representations

    Science.gov (United States)

    Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

    2015-01-01

    We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

  20. [Value of quantitative iodine-based material decomposition images with gemstone spectral CT imaging in the follow-up of patients with hepatocellular carcinoma after TACE treatment].

    Science.gov (United States)

    Xing, Gusheng; Wang, Shuang; Li, Chenrui; Zhao, Xinming; Zhou, Chunwu

    2015-03-01

    To investigate the value of quantitative iodine-based material decomposition images with gemstone spectral CT imaging in the follow-up of patients with hepatocellular carcinoma (HCC) after transcatheter arterial chemoebolization (TACE). Consecutive 32 HCC patients with previous TACE treatment were included in this study. For the follow-up, arterial phase (AP) and venous phase (VP) dual-phase CT scans were performed with a single-source dual-energy CT scanner (Discovery CT 750HD, GE Healthcare). Iodine concentrations were derived from iodine-based material-decomposition images in the liver parenchyma, tumors and coagulation necrosis (CN) areas. The iodine concentration difference (ICD) between the arterial-phase (AP) and venal-phase (VP) were quantitatively evaluated in different tissues.The lesion-to-normal parenchyma iodine concentration ratio (LNR) was calculated. ROC analysis was performed for the qualitative evaluation, and the area under ROC (Az) was calculated to represent the diagnostic ability of ICD and LNR. In all the 32 HCC patients, the region of interesting (ROI) for iodine concentrations included liver parenchyma (n=42), tumors (n=28) and coagulation necrosis (n=24). During the AP the iodine concentration of CNs (median value 0.088 µg/mm(3)) appeared significantly higher than that of the tumors (0.064 µg/mm(3), P=0.022) and liver parenchyma (0.048 µg/mm(3), P=0.005). But it showed no significant difference between liver parenchyma and tumors (P=0.454). During the VP the iodine concentration in hepatic parenchyma (median value 0.181 µg/mm(3)) was significantly higher than that in CNs (0.140 µg/mm(3), P=0.042). There was no significant difference between liver parenchyma and tumors, CNs and tumors (both P>0.05). The median value of ICD in CNs was 0.006 µg/mm(3), significantly lower than that of the HCC (0.201 µg/mm(3), Piodine-based material decomposition images with gemstone spectral CT imaging can improve the diagnostic efficacy of CT imaging

  1. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  2. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.

    2013-01-01

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods

  3. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  4. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials

    Science.gov (United States)

    Foffani, Guglielmo; Bianchi, Anna M.; Priori, Alberto; Baselli, Giuseppe

    2004-09-01

    We propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.

  5. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  6. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets

    Science.gov (United States)

    Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.

    2017-08-01

    The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.

  7. Bounding spectral gaps of Markov chains: a novel exact multi-decomposition technique

    International Nuclear Information System (INIS)

    Destainville, N

    2003-01-01

    We propose an exact technique to calculate lower bounds of spectral gaps of discrete time reversible Markov chains on finite state sets. Spectral gaps are a common tool for evaluating convergence rates of Markov chains. As an illustration, we successfully use this technique to evaluate the 'absorption time' of the 'Backgammon model', a paradigmatic model for glassy dynamics. We also discuss the application of this technique to the 'contingency table problem', a notoriously difficult problem from probability theory. The interest of this technique is that it connects spectral gaps, which are quantities related to dynamics, with static quantities, calculated at equilibrium

  8. Bounding spectral gaps of Markov chains: a novel exact multi-decomposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Destainville, N [Laboratoire de Physique Theorique - IRSAMC, CNRS/Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2003-04-04

    We propose an exact technique to calculate lower bounds of spectral gaps of discrete time reversible Markov chains on finite state sets. Spectral gaps are a common tool for evaluating convergence rates of Markov chains. As an illustration, we successfully use this technique to evaluate the 'absorption time' of the 'Backgammon model', a paradigmatic model for glassy dynamics. We also discuss the application of this technique to the 'contingency table problem', a notoriously difficult problem from probability theory. The interest of this technique is that it connects spectral gaps, which are quantities related to dynamics, with static quantities, calculated at equilibrium.

  9. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-01-01

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  10. MADCam: The multispectral active decomposition camera

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Stegmann, Mikkel Bille

    2001-01-01

    A real-time spectral decomposition of streaming three-band image data is obtained by applying linear transformations. The Principal Components (PC), the Maximum Autocorrelation Factors (MAF), and the Maximum Noise Fraction (MNF) transforms are applied. In the presented case study the PC transform...... that utilised information drawn from the temporal dimension instead of the traditional spatial approach. Using the CIF format (352x288) frame rates up to 30 Hz are obtained and in VGA mode (640x480) up to 15 Hz....

  11. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  12. SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)

    Science.gov (United States)

    Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin

    2017-02-01

    With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.

  13. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  14. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  15. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  16. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  17. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  18. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  19. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  20. Influence of Cu(NO32 initiation additive in two-stage mode conditions of coal pyrolytic decomposition

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available Two-stage process (pyrolysis and oxidation of brown coal sample with Cu(NO32 additive pyrolytic decomposition was studied. Additive was introduced by using capillary wetness impregnation method with 5% mass concentration. Sample reactivity was studied by thermogravimetric analysis with staged gaseous medium supply (argon and air at heating rate 10 °C/min and intermediate isothermal soaking. The initiative additive introduction was found to significantly reduce volatile release temperature and accelerate thermal decomposition of sample. Mass-spectral analysis results reveal that significant difference in process characteristics is connected to volatile matter release stage which is initiated by nitrous oxide produced during copper nitrate decomposition.

  1. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  2. Doing Very Big Calculations on Modest Size Computers: Reducing the Cost of Exact Diagonalization Using Singular Value Decomposition

    International Nuclear Information System (INIS)

    Weinstein, M.

    2012-01-01

    I will talk about a new way of implementing Lanczos and contraction algorithms to diagonalize lattice Hamiltonians that dramatically reduces the memory required to do the computation, without restricting to variational ansatzes. (author)

  3. Empirical projection-based basis-component decomposition method

    Science.gov (United States)

    Brendel, Bernhard; Roessl, Ewald; Schlomka, Jens-Peter; Proksa, Roland

    2009-02-01

    Advances in the development of semiconductor based, photon-counting x-ray detectors stimulate research in the domain of energy-resolving pre-clinical and clinical computed tomography (CT). For counting detectors acquiring x-ray attenuation in at least three different energy windows, an extended basis component decomposition can be performed in which in addition to the conventional approach of Alvarez and Macovski a third basis component is introduced, e.g., a gadolinium based CT contrast material. After the decomposition of the measured projection data into the basis component projections, conventional filtered-backprojection reconstruction is performed to obtain the basis-component images. In recent work, this basis component decomposition was obtained by maximizing the likelihood-function of the measurements. This procedure is time consuming and often unstable for excessively noisy data or low intrinsic energy resolution of the detector. Therefore, alternative procedures are of interest. Here, we introduce a generalization of the idea of empirical dual-energy processing published by Stenner et al. to multi-energy, photon-counting CT raw data. Instead of working in the image-domain, we use prior spectral knowledge about the acquisition system (tube spectra, bin sensitivities) to parameterize the line-integrals of the basis component decomposition directly in the projection domain. We compare this empirical approach with the maximum-likelihood (ML) approach considering image noise and image bias (artifacts) and see that only moderate noise increase is to be expected for small bias in the empirical approach. Given the drastic reduction of pre-processing time, the empirical approach is considered a viable alternative to the ML approach.

  4. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  5. Spectral and thermal investigation of tetrabenzoylacetonatobenzoylacetonediuranyl

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Klavsut', G.N.; Umrejko, D.S.

    1989-01-01

    Uranium(6) compound with benzoylacetone (NBA) of [(UO 2 ) 2 (NBA)(BA) 4 ] composition was prepared by the method of electrochemical synthesis in oxidizing medium. Spectral and thermal investigation (data of IR, Raman spectra, TG, DTA) was conducted to show that four NBA molecules entered the compound as acidoligands and one NBA molecule (being a bridge) - as neutral ligand in keto-form. Mechanism of thermal decomposition was suggested and kinetic parameters of thermolysis of examined substance were calculated

  6. Compression of Multispectral Images with Comparatively Few Bands Using Posttransform Tucker Decomposition

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Up to now, data compression for the multispectral charge-coupled device (CCD images with comparatively few bands (MSCFBs is done independently on each multispectral channel. This compression codec is called a “monospectral compressor.” The monospectral compressor does not have a removing spectral redundancy stage. To fill this gap, we propose an efficient compression approach for MSCFBs. In our approach, the one dimensional discrete cosine transform (1D-DCT is performed on spectral dimension to exploit the spectral information, and the posttransform (PT in 2D-DWT domain is performed on each spectral band to exploit the spatial information. A deep coupling approach between the PT and Tucker decomposition (TD is proposed to remove residual spectral redundancy between bands and residual spatial redundancy of each band. Experimental results on multispectral CCD camera data set show that the proposed compression algorithm can obtain a better compression performance and significantly outperforms the traditional compression algorithm-based TD in 2D-DWT and 3D-DCT domain.

  7. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  8. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2015-10-09

    The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.

  9. Pattern Decomposition Method and a New Vegetation Index for Hyper-Multispectral Satellite Data Analysis

    Science.gov (United States)

    Muramatsu, K.; Furumi, S.; Hayashi, A.; Shiono, Y.; Ono, A.; Fujiwara, N.; Daigo, M.; Ochiai, F.

    We have developed the ``pattern decomposition method'' based on linear spectral mixing of ground objects for n-dimensional satellite data. In this method, spectral response patterns for each pixel in an image are decomposed into three components using three standard spectral shape patterns determined from the image data. Applying this method to AMSS (Airborne Multi-Spectral Scanner) data, eighteen-dimensional data are successfully transformed into three-dimensional data. Using the three components, we have developed a new vegetation index in which all the multispectral data are reflected. We consider that the index should be linear to the amount of vegetation and vegetation vigor. To validate the index, its relations to vegetation types, vegetation cover ratio, and chlorophyll contents of a leaf were studied using spectral reflectance data measured in the field with a spectrometer. The index was sensitive to vegetation types and vegetation vigor. This method and index are very useful for assessment of vegetation vigor, classifying land cover types and monitoring vegetation changes

  10. Enhancing our View of the Reservoir: New Insights into Deepwater Gulf of Mexico fields using Frequency Decomposition

    Science.gov (United States)

    Murat, M.

    2017-12-01

    Color-blended frequency decomposition is a seismic attribute that can be used to educe or draw out and visualize geomorphological features enabling a better understanding of reservoir architecture and connectivity for both exploration and field development planning. Color-blended frequency decomposition was applied to seismic data in several areas of interest in the Deepwater Gulf of Mexico. The objective was stratigraphic characterization to better define reservoir extent, highlight depositional features, identify thicker reservoir zones and examine potential connectivity issues due to stratigraphic variability. Frequency decomposition is a technique to analyze changes in seismic frequency caused by changes in the reservoir thickness, lithology and fluid content. This technique decomposes or separates the seismic frequency spectra into discrete bands of frequency limited seismic data using digital filters. The workflow consists of frequency (spectral) decomposition, RGB color blending of three frequency slices, and horizon or stratal slicing of the color blended frequency data for interpretation. Patterns were visualized and identified in the data that were not obvious on standard stacked seismic sections. These seismic patterns were interpreted and compared to known geomorphological patterns and their environment of deposition. From this we inferred the distribution of potential reservoir sand versus non-reservoir shale and even finer scale details such as the overall direction of the sediment transport and relative thickness. In exploratory areas, stratigraphic characterization from spectral decomposition is used for prospect risking and well planning. Where well control exists, we can validate the seismic observations and our interpretation and use the stratigraphic/geomorphological information to better inform decisions on the need for and placement of development wells.

  11. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  12. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  13. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Serge Mazeres

    2017-08-01

    Full Text Available Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP. Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from Drosophila and Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.

  14. On the Equivalence of Nonnegative Matrix Factorization and K-means- Spectral Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chris; He, Xiaofeng; Simon, Horst D.; Jin, Rong

    2005-12-04

    We provide a systematic analysis of nonnegative matrix factorization (NMF) relating to data clustering. We generalize the usual X = FG{sup T} decomposition to the symmetric W = HH{sup T} and W = HSH{sup T} decompositions. We show that (1) W = HH{sup T} is equivalent to Kernel K-means clustering and the Laplacian-based spectral clustering. (2) X = FG{sup T} is equivalent to simultaneous clustering of rows and columns of a bipartite graph. We emphasizes the importance of orthogonality in NMF and soft clustering nature of NMF. These results are verified with experiments on face images and newsgroups.

  15. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Ballaré, Carlos L

    2010-03-09

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.

  16. [Spectral characteristics of decomposition of incorporated straw in compound polluted arid loess].

    Science.gov (United States)

    Fan, Chun-Hui; Zhang, Ying-Chao; Xu, Ji-Ting; Wang, Jia-Hong

    2014-04-01

    The original loess from western China was used as soil sample, the spectral methods of scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR) were used to investigate the characteristics of decomposed straw and formed humic acids in compound polluted arid loess. The SEM micrographs show the variation from dense to decomposed surface, and finally to damaged structure, and the EDS data reveal the phenomenon of element transfer. The newly-formed humic acids are of low aromaticity, helpful for increasing the activity of organic matters in loess. The FTIR spectra in the whole process are similar, indicating the complexity of transformation dynamics of humic acids. The molecular structure of humic acids becomes simpler, shown from 13C NMR spectra. The spectral methods are useful for humic acids identification in loess region in straw incorporation process.

  17. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  18. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    International Nuclear Information System (INIS)

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  19. The application of the Chebyshev-spectral method in transport phenomena

    CERN Document Server

    Guo, Weidong; Narayanan, Ranga

    2012-01-01

    Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character.  When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists  to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer.  To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems.  The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs.  The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interes...

  20. Spectral Inverse Quantum (Spectral-IQ Method for Modeling Mesoporous Systems: Application on Silica Films by FTIR

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2012-11-01

    Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.

  1. Spectral analysis of growing graphs a quantum probability point of view

    CERN Document Server

    Obata, Nobuaki

    2017-01-01

    This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...

  2. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  3. Central limit theorems for large graphs: Method of quantum decomposition

    International Nuclear Information System (INIS)

    Hashimoto, Yukihiro; Hora, Akihito; Obata, Nobuaki

    2003-01-01

    A new method is proposed for investigating spectral distribution of the combinatorial Laplacian (adjacency matrix) of a large regular graph on the basis of quantum decomposition and quantum central limit theorem. General results are proved for Cayley graphs of discrete groups and for distance-regular graphs. The Coxeter groups and the Johnson graphs are discussed in detail by way of illustration. In particular, the limit distributions obtained from the Johnson graphs are characterized by the Meixner polynomials which form a one-parameter deformation of the Laguerre polynomials

  4. THE STUDY OF SPECTRUM RECONSTRUCTION BASED ON FUZZY SET FULL CONSTRAINT AND MULTIENDMEMBER DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2017-09-01

    Full Text Available Hyperspectral imaging system can obtain spectral and spatial information simultaneously with bandwidth to the level of 10 nm or even less. Therefore, hyperspectral remote sensing has the ability to detect some kinds of objects which can not be detected in wide-band remote sensing, making it becoming one of the hottest spots in remote sensing. In this study, under conditions with a fuzzy set of full constraints, Normalized Multi-Endmember Decomposition Method (NMEDM for vegetation, water, and soil was proposed to reconstruct hyperspectral data using a large number of high-quality multispectral data and auxiliary spectral library data. This study considered spatial and temporal variation and decreased the calculation time required to reconstruct the hyper-spectral data. The results of spectral reconstruction based on NMEDM showed that the reconstructed data has good qualities and certain applications, which makes it possible to carry out spectral features identification. This method also extends the application of depth and breadth of remote sensing data, helping to explore the law between multispectral and hyperspectral data.

  5. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    Science.gov (United States)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  6. Blind decomposition of Herschel-HIFI spectral maps of the NGC 7023 nebula

    Science.gov (United States)

    Berné, O.; Joblin, C.; Deville, Y.; Pilleri, P.; Pety, J.; Teyssier, D.; Gerin, M.; Fuente, A.

    2012-12-01

    Large spatial-spectral surveys are more and more common in astronomy. This calls for the need of new methods to analyze such mega- to giga-pixel data-cubes. In this paper we present a method to decompose such observations into a limited and comprehensive set of components. The original data can then be interpreted in terms of linear combinations of these components. The method uses non-negative matrix factorization (NMF) to extract latent spectral end-members in the data. The number of needed end-members is estimated based on the level of noise in the data. A Monte-Carlo scheme is adopted to estimate the optimal end-members, and their standard deviations. Finally, the maps of linear coefficients are reconstructed using non-negative least squares. We apply this method to a set of hyperspectral data of the NGC 7023 nebula, obtained recently with the HIFI instrument onboard the Herschel space observatory, and provide a first interpretation of the results in terms of 3-dimensional dynamical structure of the region.

  7. AUTONOMOUS GAUSSIAN DECOMPOSITION

    International Nuclear Information System (INIS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes

  8. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  9. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    Science.gov (United States)

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  10. Ensemble empirical mode decomposition based fluorescence spectral noise reduction for low concentration PAHs

    Science.gov (United States)

    Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian

    2017-11-01

    A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.

  11. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  12. New simultaneous thermogravimetry and modulated molecular beam mass spectrometry apparatus for quantitative thermal decomposition studies

    International Nuclear Information System (INIS)

    Behrens, R. Jr.

    1987-01-01

    A new type of instrument has been designed and constructed to measure quantitatively the gas phase species evolving during thermal decompositions. These measurements can be used for understanding the kinetics of thermal decomposition, determining the heats of formation and vaporization of high-temperature materials, and analyzing sample contaminants. The new design allows measurements to be made on the same time scale as the rates of the reactions being studied, provides a universal detection technique to study a wide range of compounds, gives quantitative measurements of decomposition products, and minimizes interference from the instrument on the measurements. The instrument design is based on a unique combination of thermogravimetric analysis (TGA), differential thermal analysis (DTA), and modulated beam mass spectroscopy (MBMS) which are brought together into a symbiotic relationship through the use of differentially pumped vacuum systems, modulated molecular beam techniques, and computer control and data-acquisition systems. A data analysis technique that calculates partial pressures in the reaction cell from the simultaneous microbalance force measurements and the modulated mass spectrometry measurements has been developed. This eliminates the need to know the ionization cross section, the ion dissociation channels, the quadrupole transmission, and the ion detector sensitivity for each thermal decomposition product prior to quantifying the mass spectral data. The operation of the instrument and the data analysis technique are illustrated with the thermal decomposition of contaminants from a precipitated palladium powder

  13. Implementation of domain decomposition and data decomposition algorithms in RMC code

    International Nuclear Information System (INIS)

    Liang, J.G.; Cai, Y.; Wang, K.; She, D.

    2013-01-01

    The applications of Monte Carlo method in reactor physics analysis is somewhat restricted due to the excessive memory demand in solving large-scale problems. Memory demand in MC simulation is analyzed firstly, it concerns geometry data, data of nuclear cross-sections, data of particles, and data of tallies. It appears that tally data is dominant in memory cost and should be focused on in solving the memory problem. Domain decomposition and tally data decomposition algorithms are separately designed and implemented in the reactor Monte Carlo code RMC. Basically, the domain decomposition algorithm is a strategy of 'divide and rule', which means problems are divided into different sub-domains to be dealt with separately and some rules are established to make sure the whole results are correct. Tally data decomposition consists in 2 parts: data partition and data communication. Two algorithms with differential communication synchronization mechanisms are proposed. Numerical tests have been executed to evaluate performance of the new algorithms. Domain decomposition algorithm shows potentials to speed up MC simulation as a space parallel method. As for tally data decomposition algorithms, memory size is greatly reduced

  14. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2 kcal/Mole; La

  15. An efficient spectral crystal plasticity solver for GPU architectures

    Science.gov (United States)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  16. Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert-Huang Transform

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Giebel, Gregor; Pinson, Pierre

    2010-01-01

    a 4-yr time series of 10-min wind speed observations. An adaptive spectral analysis method called the Hilbert–Huang transform is chosen for the analysis, because the nonstationarity of time series of wind speed observations means that they are not well described by a global spectral analysis method...... such as the Fourier transform. The Hilbert–Huang transform is a local method based on a nonparametric and empirical decomposition of the data followed by calculation of instantaneous amplitudes and frequencies using the Hilbert transform. The Hilbert–Huang transformed 4-yr time series is averaged and summarized...

  17. Monte-Carlo error analysis in x-ray spectral deconvolution

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hoffman, N.M.

    1985-01-01

    The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels

  18. Parameters optimization for wavelet denoising based on normalized spectral angle and threshold constraint machine learning

    Science.gov (United States)

    Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui

    2012-01-01

    Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.

  19. Resonances and background: A decomposition of scattering information

    International Nuclear Information System (INIS)

    Engdahl, E.; Braendas, E.; Rittby, M.; Elander, N.

    1988-01-01

    An analytic representation of the full Green's function including bound states, resonances, and remaining contributions has been obtained for a class of dilatation analytic potentials, including the superimposed Coulomb potential. It is demonstrated how to obtain the locations and residues of the poles of the Green's function as well as the associated generalized spectral density. For a model potential which has a barrier and decreases exponentially at infinity we have found a certain deflation property of the generalized spectral density. A qualitative explanation of this phenomenon is suggested. This constitutes the motivation for an approximation that explicitly shows a decomposition of the (real) continuum, corresponding to scattering data, into resonances and background contributions. The present representation is also shown to incorporate the appropriate pole-background interferences. Numerical residue strings are computed and analyzed. Results for the Coulomb potential plus the above-mentioned model potential are reported and compared with the previous non-Coulomb case. A similar deflation effect is seen to occur, as well as basically the same pole- and residue-string behavior. The relevance of the present analysis in relation to recently planned experiments with electron-cooled beams of highly charged ions is briefly discussed

  20. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  1. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  2. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  3. Microwave-assisted versus conventional decomposition procedures applied to a ceramic potsherd standard reference material by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A

    2004-03-03

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a powerful, sensitive analytical technique with numerous applications in chemical characterization including that of ancient pottery, mainly due to its multi-element character, and the relatively short time required for the analysis. A critical step in characterization studies of ancient pottery is the selection of a suitable decomposition procedure for the ceramic matrix. The current work presents the results of a comparative study of six decomposition procedures applied on a standard ceramic potsherd reference material, SARM 69. The investigated decomposition procedures included three microwave-assisted decomposition procedures, one wet decomposition (WD) procedure by conventional heating, one combined microwave-assisted and conventional heating WD procedure, and one fusion procedure. Chemical analysis was carried out by ICP-AES. Five major (Si, Al, Fe, Ca, Mg), three minor (Mn, Ba, Ti) and two trace (Cu, Co) elements were determined and compared with their certified values. Quantitation was performed at two different spectral lines for each element and multi-element matrix-matched calibration standards were used. The recovery values for the six decomposition procedures ranged between 75 and 110% with a few notable exceptions. Data were processed statistically in order to evaluate the investigated decomposition procedures in terms of recovery, accuracy and precision, and eventually select the most appropriate one for ancient pottery analysis.

  4. Estimation and calibration of observation impact signals using the Lanczos method in NOAA/NCEP data assimilation system

    Directory of Open Access Journals (Sweden)

    M. Wei

    2012-09-01

    Full Text Available Despite the tremendous progress that has been made in data assimilation (DA methodology, observing systems that reduce observation errors, and model improvements that reduce background errors, the analyses produced by the best available DA systems are still different from the truth. Analysis error and error covariance are important since they describe the accuracy of the analyses, and are directly related to the future forecast errors, i.e., the forecast quality. In addition, analysis error covariance is critically important in building an efficient ensemble forecast system (EFS.

    Estimating analysis error covariance in an ensemble-based Kalman filter DA is straightforward, but it is challenging in variational DA systems, which have been in operation at most NWP (Numerical Weather Prediction centers. In this study, we use the Lanczos method in the NCEP (the National Centers for Environmental Prediction Gridpoint Statistical Interpolation (GSI DA system to look into other important aspects and properties of this method that were not exploited before. We apply this method to estimate the observation impact signals (OIS, which are directly related to the analysis error variances. It is found that the smallest eigenvalue of the transformed Hessian matrix converges to one as the number of minimization iterations increases. When more observations are assimilated, the convergence becomes slower and more eigenvectors are needed to retrieve the observation impacts. It is also found that the OIS over data-rich regions can be represented by the eigenvectors with dominant eigenvalues.

    Since only a limited number of eigenvectors can be computed due to computational expense, the OIS is severely underestimated, and the analysis error variance is consequently overestimated. It is found that the mean OIS values for temperature and wind components at typical model levels are increased by about 1.5 times when the number of eigenvectors is doubled

  5. A spectral X-ray CT simulation study for quantitative determination of iron

    Science.gov (United States)

    Su, Ting; Kaftandjian, Valérie; Duvauchelle, Philippe; Zhu, Yuemin

    2018-06-01

    Iron is an essential element in the human body and disorders in iron such as iron deficiency or overload can cause serious diseases. This paper aims to explore the ability of spectral X-ray CT to quantitatively separate iron from calcium and potassium and to investigate the influence of different acquisition parameters on material decomposition performance. We simulated spectral X-ray CT imaging of a PMMA phantom filled with iron, calcium, and potassium solutions at various concentrations (15-200 mg/cc). Different acquisition parameters were considered, such as the number of energy bins (6, 10, 15, 20, 30, 60) and exposure factor per projection (0.025, 0.1, 1, 10, 100 mA s). Based on the simulation data, we investigated the performance of two regularized material decomposition approaches: projection domain method and image domain method. It was found that the former method discriminated iron from calcium, potassium and water in all cases and tended to benefit from lower number of energy bins for lower exposure factor acquisition. The latter method succeeded in iron determination only when the number of energy bins equals 60, and in this case, the contrast-to-noise ratios of the decomposed iron images are higher than those obtained using the projection domain method. The results demonstrate that both methods are able to discriminate and quantify iron from calcium, potassium and water under certain conditions. Their performances vary with the acquisition parameters of spectral CT. One can use one method or the other to benefit better performance according to the data available.

  6. Domain decomposition method for nonconforming finite element approximations of anisotropic elliptic problems on nonmatching grids

    Energy Technology Data Exchange (ETDEWEB)

    Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)

    1996-12-31

    An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.

  7. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    International Nuclear Information System (INIS)

    Duan, X; Arbique, G; Guild, J; Anderson, J; Yagil, Y

    2016-01-01

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  8. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Arbique, G; Guild, J; Anderson, J [UT Southwestern Medical Center, Dallas, TX (United States); Yagil, Y [Philips Healthcare, Haifa (Israel)

    2016-06-15

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  9. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  10. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  11. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  12. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions

    Czech Academy of Sciences Publication Activity Database

    Acuna, A.M.; Kaňa, Radek; Gwizdala, M.; Snellenburg, J.J.; van Alphen, P.; van Oort, B.; Kirilovsky, D.; van Grondelle, R.; van Stokkum, I.H.M.

    2016-01-01

    Roč. 130, 1-3 SI (2016), s. 237-249 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : Cyanobacteria * Spectrally resolved fluorometry * Singular value decomposition Subject RIV: EF - Botanics Impact factor: 3.864, year: 2016

  13. Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator.

    Science.gov (United States)

    Li, Qianxiao; Dietrich, Felix; Bollt, Erik M; Kevrekidis, Ioannis G

    2017-10-01

    Numerical approximation methods for the Koopman operator have advanced considerably in the last few years. In particular, data-driven approaches such as dynamic mode decomposition (DMD) 51 and its generalization, the extended-DMD (EDMD), are becoming increasingly popular in practical applications. The EDMD improves upon the classical DMD by the inclusion of a flexible choice of dictionary of observables which spans a finite dimensional subspace on which the Koopman operator can be approximated. This enhances the accuracy of the solution reconstruction and broadens the applicability of the Koopman formalism. Although the convergence of the EDMD has been established, applying the method in practice requires a careful choice of the observables to improve convergence with just a finite number of terms. This is especially difficult for high dimensional and highly nonlinear systems. In this paper, we employ ideas from machine learning to improve upon the EDMD method. We develop an iterative approximation algorithm which couples the EDMD with a trainable dictionary represented by an artificial neural network. Using the Duffing oscillator and the Kuramoto Sivashinsky partical differential equation as examples, we show that our algorithm can effectively and efficiently adapt the trainable dictionary to the problem at hand to achieve good reconstruction accuracy without the need to choose a fixed dictionary a priori. Furthermore, to obtain a given accuracy, we require fewer dictionary terms than EDMD with fixed dictionaries. This alleviates an important shortcoming of the EDMD algorithm and enhances the applicability of the Koopman framework to practical problems.

  14. Reduction of Non-stationary Noise using a Non-negative Latent Variable Decomposition

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Larsen, Jan

    2008-01-01

    We present a method for suppression of non-stationary noise in single channel recordings of speech. The method is based on a non-negative latent variable decomposition model for the speech and noise signals, learned directly from a noisy mixture. In non-speech regions an over complete basis...... is learned for the noise that is then used to jointly estimate the speech and the noise from the mixture. We compare the method to the classical spectral subtraction approach, where the noise spectrum is estimated as the average over non-speech frames. The proposed method significantly outperforms...

  15. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    Science.gov (United States)

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  16. Decomposition of the swirling flow field downstream of Francis turbine runner

    International Nuclear Information System (INIS)

    Rudolf, P; Štefan, D

    2012-01-01

    Practical application of proper orthogonal decomposition (POD) is presented. Spatio-temporal behaviour of the coherent vortical structures in the draft tube of hydraulic turbine is studied for two partial load operating points. POD enables to identify the eigen modes, which compose the flow field and rank the modes according to their energy. Swirling flow fields are decomposed, which provides information about their streamwise and crosswise development and the energy transfer among modes. Presented methodology also assigns frequencies to the particular modes, which helps to identify the spectral properties of the flow with concrete mode shapes. Thus POD offers a complementary view to current time domain simulations or measurements.

  17. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    Czech Academy of Sciences Publication Activity Database

    Wall, D.H.; Bradford, M.A.; John, M.G.St.; Trofymow, J.A.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, J.M.; Parton, W.J.; Rusek, Josef; Voigt, W.; Wolters, V.; Gardel, H.Z.; Ayuke, F. O.; Bashford, R.; Beljakova, O.I.; Bohlen, P.J.; Brauman, A.; Flemming, S.; Henschel, J.R.; Johnson, D.L.; Jones, T.H.; Kovářová, Marcela; Kranabetter, J.M.; Kutny, L.; Lin, K.-Ch.; Maryati, M.; Masse, D.; Pokarzhevskii, A.; Rahman, H.; Sabará, M.G.; Salamon, J.-A.; Swift, M.J.; Varela, A.; Vasconcelos, H.L.; White, D.; Zou, X.

    2008-01-01

    Roč. 14, č. 11 (2008), s. 2661-2677 ISSN 1354-1013 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z60050516 Keywords : climate decomposition index * decomposition * litter Subject RIV: EH - Ecology, Behaviour Impact factor: 5.876, year: 2008

  18. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  19. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  20. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  1. On the velocity space discretization for the Vlasov-Poisson system: comparison between implicit Hermite spectral and Particle-in-Cell methods

    NARCIS (Netherlands)

    E. Camporeale (Enrico); G.L. Delzanno; B.K. Bergen; J.D. Moulton

    2016-01-01

    htmlabstractWe describe a spectral method for the numerical solution of the Vlasov–Poisson system where the velocity space is decomposed by means of an Hermite basis, and the configuration space is discretized via a Fourier decomposition. The novelty of our approach is an implicit time

  2. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    International Nuclear Information System (INIS)

    Desai, Ajit; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit

    2017-01-01

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolution in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.

  3. Harmonic analysis of traction power supply system based on wavelet decomposition

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.

  4. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    Science.gov (United States)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  5. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  6. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  7. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Berezkina, L.G.; Borisova, S.I.; Tamm, N.S.; Novoselova, A.V.

    1975-01-01

    Thermal decomposition of Be(ClO 4 ) 2 x4H 2 O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO 2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO 2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO 4 ) 2 x4H 2 O → Be(OH)ClO 4 +HClO 4 +3H 2 O; Be(OH)ClO 4 → BeO+HClO 4 . Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  8. A non-orthogonal decomposition of flows into discrete events

    Science.gov (United States)

    Boxx, Isaac; Lewalle, Jacques

    1998-11-01

    This work is based on the formula for the inverse Hermitian wavelet transform. A signal can be interpreted as a (non-unique) superposition of near-singular, partially overlapping events arising from Dirac functions and/or its derivatives combined with diffusion.( No dynamics implied: dimensionless diffusion is related to the definition of the analyzing wavelets.) These events correspond to local maxima of spectral energy density. We successfully fitted model events of various orders on a succession of fields, ranging from elementary signals to one-dimensional hot-wire traces. We document edge effects, event overlap and its implications on the algorithm. The interpretation of the discrete singularities as flow events (such as coherent structures) and the fundamental non-uniqueness of the decomposition are discussed. The dynamics of these events will be examined in the companion paper.

  9. A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion

    DEFF Research Database (Denmark)

    Paoletti, Valeria; Hansen, Per Christian; Hansen, Mads Friis

    2014-01-01

    In potential-field inversion, careful management of singular value decomposition components is crucial for obtaining information about the source distribution with respect to depth. In principle, the depth-resolution plot provides a convenient visual tool for this analysis, but its computational...... on memory and computing time. We used the ApproxDRP to study retrievable depth resolution in inversion of the gravity field of the Neapolitan Volcanic Area. Our main contribution is the combined use of the Lanczos bidiagonalization algorithm, established in the scientific computing community, and the depth...

  10. Spectral CT of carotid atherosclerotic plaque: comparison with histology

    Energy Technology Data Exchange (ETDEWEB)

    Zainon, R.; Doesburg, R.M. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Ronaldson, J.P.; Gieseg, S.P. [University of Otago, Centre for Bioengineering, Christchurch (New Zealand); Janmale, T. [University of Canterbury, Free Radical Biochemistry Laboratory, School of Biological Sciences, Christchurch (New Zealand); Scott, N.J. [University of Otago, Department of Medicine, Christchurch (New Zealand); Buckenham, T.M. [University of Otago, Department of Academic Radiology, Christchurch (New Zealand); Butler, A.P.H. [University of Otago, Centre for Bioengineering, Christchurch (New Zealand); University of Otago, Department of Academic Radiology, Christchurch (New Zealand); University of Canterbury, Department of Electrical and Computer Engineering, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Butler, P.H. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Roake, J.A. [Christchurch Hospital, Department of Vascular, Endovascular and Transplant Surgery, Christchurch (New Zealand); Anderson, N.G. [University of Otago, Centre for Bioengineering, Christchurch (New Zealand); University of Otago, Department of Academic Radiology, Christchurch (New Zealand); University of Otago, Christchurch, Department of Radiology, PO Box 4345, Christchurch (New Zealand)

    2012-12-15

    To distinguish components of vulnerable atherosclerotic plaque by imaging their energy response using spectral CT and comparing images with histology. After spectroscopic calibration using phantoms of plaque surrogates, excised human carotid atherosclerotic plaques were imaged using MARS CT using a photon-processing detector with a silicon sensor layer and microfocus X-ray tube (50 kVp, 0.5 mA) at 38-{mu}m voxel size. The plaques were imaged, sectioned and re-imaged using four threshold energies: 10, 16, 22 and 28 keV; then sequentially stained with modified Von Kossa, Perl's Prussian blue and Oil-Red O, and photographed. Relative Hounsfield units across the energies were entered into a linear algebraic material decomposition model to identify the unknown plaque components. Lipid, calcium, iron and water-like components of plaque have distinguishable energy responses to X-ray, visible on spectral CT images. CT images of the plaque surface correlated very well with histological photographs. Calcium deposits (>1,000 {mu}m) in plaque are larger than iron deposits (<100 {mu}m), but could not be distinguished from each other within the same voxel using the energy range available. Spectral CT displays energy information in image form at high spatial resolution, enhancing the intrinsic contrast of lipid, calcium and iron within atheroma. (orig.)

  11. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  12. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  13. Decomposition of Multi-player Games

    Science.gov (United States)

    Zhao, Dengji; Schiffel, Stephan; Thielscher, Michael

    Research in General Game Playing aims at building systems that learn to play unknown games without human intervention. We contribute to this endeavour by generalising the established technique of decomposition from AI Planning to multi-player games. To this end, we present a method for the automatic decomposition of previously unknown games into independent subgames, and we show how a general game player can exploit a successful decomposition for game tree search.

  14. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  15. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng

    2017-05-10

    Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.

  16. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  17. Spectral element method for elastic and acoustic waves in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  18. Multilinear operators for higher-order decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  19. Decomposition of tetrachloroethylene by ionizing radiation

    International Nuclear Information System (INIS)

    Hakoda, T.; Hirota, K.; Hashimoto, S.

    1998-01-01

    Decomposition of tetrachloroethylene and other chloroethenes by ionizing radiation were examined to get information on treatment of industrial off-gas. Model gases, airs containing chloroethenes, were confined in batch reactors and irradiated with electron beam and gamma ray. The G-values of decomposition were larger in the order of tetrachloro- > trichloro- > trans-dichloro- > cis-dichloro- > monochloroethylene in electron beam irradiation and tetrachloro-, trichloro-, trans-dichloro- > cis-dichloro- > monochloroethylene in gamma ray irradiation. For tetrachloro-, trichloro- and trans-dichloroethylene, G-values of decomposition in EB irradiation increased with increase of chlorine atom in a molecule, while those in gamma ray irradiation were almost kept constant. The G-value of decomposition for tetrachloroethylene in EB irradiation was the largest of those for all chloroethenes. In order to examine the effect of the initial concentration on G-value of decomposition, airs containing 300 to 1,800 ppm of tetrachloroethylene were irradiated with electron beam and gamma ray. The G-values of decomposition in both irradiation increased with the initial concentration. Those in electron beam irradiation were two times larger than those in gamma ray irradiation

  20. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  1. Thermal decomposition of γ-irradiated lead nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Kumar, T.S.S.

    1990-01-01

    The thermal decomposition of unirradiated and γ-irradiated lead nitrate was studied by the gas evolution method. The decomposition proceeds through initial gas evolution, a short induction period, an acceleratory stage and a decay stage. The acceleratory and decay stages follow the Avrami-Erofeev equation. Irradiation enhances the decomposition but does not affect the shape of the decomposition curve. (author) 10 refs.; 7 figs.; 2 tabs

  2. Decomposing Nekrasov decomposition

    International Nuclear Information System (INIS)

    Morozov, A.; Zenkevich, Y.

    2016-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  3. Decomposing Nekrasov decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); Institute for Information Transmission Problems,19-1 Bolshoy Karetniy, Moscow, 127051 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Zenkevich, Y. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Institute for Nuclear Research of Russian Academy of Sciences,6a Prospekt 60-letiya Oktyabrya, Moscow, 117312 (Russian Federation)

    2016-02-16

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  4. Freeman-Durden Decomposition with Oriented Dihedral Scattering

    Directory of Open Access Journals (Sweden)

    Yan Jian

    2014-10-01

    Full Text Available In this paper, when the azimuth direction of polarimetric Synthetic Aperature Radars (SAR differs from the planting direction of crops, the double bounce of the incident electromagnetic waves from the terrain surface to the growing crops is investigated and compared with the normal double bounce. Oriented dihedral scattering model is developed to explain the investigated double bounce and is introduced into the Freeman-Durden decomposition. The decomposition algorithm corresponding to the improved decomposition is then proposed. The airborne polarimetric SAR data for agricultural land covering two flight tracks are chosen to validate the algorithm; the decomposition results show that for agricultural vegetated land, the improved Freeman-Durden decomposition has the advantage of increasing the decomposition coherency among the polarimetric SAR data along the different flight tracks.

  5. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    Science.gov (United States)

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  6. Danburite decomposition by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Ashurov, N.A.; Mirsaidov, U.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by hydrochloric acid. The interaction of boron containing ores of Ak-Arkhar Deposit of Tajikistan with mineral acids, including hydrochloric acid was studied. The optimal conditions of extraction of valuable components from danburite composition were determined. The chemical composition of danburite of Ak-Arkhar Deposit was determined as well. The kinetics of decomposition of calcined danburite by hydrochloric acid was studied. The apparent activation energy of the process of danburite decomposition by hydrochloric acid was calculated.

  7. LMDI decomposition approach: A guide for implementation

    International Nuclear Information System (INIS)

    Ang, B.W.

    2015-01-01

    Since it was first used by researchers to analyze industrial electricity consumption in the early 1980s, index decomposition analysis (IDA) has been widely adopted in energy and emission studies. Lately its use as the analytical component of accounting frameworks for tracking economy-wide energy efficiency trends has attracted considerable attention and interest among policy makers. The last comprehensive literature review of IDA was reported in 2000 which is some years back. After giving an update and presenting the key trends in the last 15 years, this study focuses on the implementation issues of the logarithmic mean Divisia index (LMDI) decomposition methods in view of their dominance in IDA in recent years. Eight LMDI models are presented and their origin, decomposition formulae, and strengths and weaknesses are summarized. Guidelines on the choice among these models are provided to assist users in implementation. - Highlights: • Guidelines for implementing LMDI decomposition approach are provided. • Eight LMDI decomposition models are summarized and compared. • The development of the LMDI decomposition approach is presented. • The latest developments of index decomposition analysis are briefly reviewed.

  8. FDG decomposition products

    International Nuclear Information System (INIS)

    Macasek, F.; Buriova, E.

    2004-01-01

    In this presentation authors present the results of analysis of decomposition products of [ 18 ]fluorodexyglucose. It is concluded that the coupling of liquid chromatography - mass spectrometry with electrospray ionisation is a suitable tool for quantitative analysis of FDG radiopharmaceutical, i.e. assay of basic components (FDG, glucose), impurities (Kryptofix) and decomposition products (gluconic and glucuronic acids etc.); 2-[ 18 F]fluoro-deoxyglucose (FDG) is sufficiently stable and resistant towards autoradiolysis; the content of radiochemical impurities (2-[ 18 F]fluoro-gluconic and 2-[ 18 F]fluoro-glucuronic acids in expired FDG did not exceed 1%

  9. Cloud detection for MIPAS using singular vector decomposition

    Directory of Open Access Journals (Sweden)

    J. Hurley

    2009-09-01

    Full Text Available Satellite-borne high-spectral-resolution limb sounders, such as the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT, provide information on clouds, especially optically thin clouds, which have been difficult to observe in the past. The aim of this work is to develop, implement and test a reliable cloud detection method for infrared spectra measured by MIPAS.

    Current MIPAS cloud detection methods used operationally have been developed to detect cloud effective filling more than 30% of the measurement field-of-view (FOV, under geometric and optical considerations – and hence are limited to detecting fairly thick cloud, or large physical extents of thin cloud. In order to resolve thin clouds, a new detection method using Singular Vector Decomposition (SVD is formulated and tested. This new SVD detection method has been applied to a year's worth of MIPAS data, and qualitatively appears to be more sensitive to thin cloud than the current operational method.

  10. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  11. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  12. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  13. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  14. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  15. Multilevel index decomposition analysis: Approaches and application

    International Nuclear Information System (INIS)

    Xu, X.Y.; Ang, B.W.

    2014-01-01

    With the growing interest in using the technique of index decomposition analysis (IDA) in energy and energy-related emission studies, such as to analyze the impacts of activity structure change or to track economy-wide energy efficiency trends, the conventional single-level IDA may not be able to meet certain needs in policy analysis. In this paper, some limitations of single-level IDA studies which can be addressed through applying multilevel decomposition analysis are discussed. We then introduce and compare two multilevel decomposition procedures, which are referred to as the multilevel-parallel (M-P) model and the multilevel-hierarchical (M-H) model. The former uses a similar decomposition procedure as in the single-level IDA, while the latter uses a stepwise decomposition procedure. Since the stepwise decomposition procedure is new in the IDA literature, the applicability of the popular IDA methods in the M-H model is discussed and cases where modifications are needed are explained. Numerical examples and application studies using the energy consumption data of the US and China are presented. - Highlights: • We discuss the limitations of single-level decomposition in IDA applied to energy study. • We introduce two multilevel decomposition models, study their features and discuss how they can address the limitations. • To extend from single-level to multilevel analysis, necessary modifications to some popular IDA methods are discussed. • We further discuss the practical significance of the multilevel models and present examples and cases to illustrate

  16. Thermic decomposition of biphenyl; Decomposition thermique du biphenyle

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    Liquid and vapour phase pyrolysis of very pure biphenyl obtained by methods described in the text was carried out at 400 C in sealed ampoules, the fraction transformed being always less than 0.1 per cent. The main products were hydrogen, benzene, terphenyls, and a deposit of polyphenyls strongly adhering to the walls. Small quantities of the lower aliphatic hydrocarbons were also found. The variation of the yields of these products with a) the pyrolysis time, b) the state (gas or liquid) of the biphenyl, and c) the pressure of the vapour was measured. Varying the area and nature of the walls showed that in the absence of a liquid phase, the pyrolytic decomposition takes place in the adsorbed layer, and that metallic walls promote the reaction more actively than do those of glass (pyrex or silica). A mechanism is proposed to explain the results pertaining to this decomposition in the adsorbed phase. The adsorption seems to obey a Langmuir isotherm, and the chemical act which determines the overall rate of decomposition is unimolecular. (author) [French] Du biphenyle tres pur, dont la purification est decrite, est pyrolyse a 400 C en phase vapeur et en phase liquide dans des ampoules scellees sous vide, a des taux de decomposition n'ayant jamais depasse 0,1 pour cent. Les produits provenant de la pyrolyse sont essentiellement: l' hydrogene, le benzene, les therphenyles, et un depot de polyphenyles adherant fortement aux parois. En plus il se forme de faibles quantites d'hydrocarbures aliphatiques gazeux. On indique la variation des rendements des differents produits avec la duree de pyrolyse, l'etat gazeux ou liquide du biphenyle, et la pression de la vapeur. Variant la superficie et la nature des parois, on montre qu'en absence de liquide la pyrolyse se fait en phase adsorbee. La pyrolyse est plus active au contact de parois metalliques que de celles de verres (pyrex ou silice). A partir des resultats experimentaux un mecanisme de degradation du biphenyle en phase

  17. Gravitational dynamics in s+1+1 dimensions II. Hamiltonian theory

    International Nuclear Information System (INIS)

    Kovacs, Zoltan; Gergely, Laszlo A.

    2008-01-01

    We develop a Hamiltonian formalism of braneworld gravity, which singles out two preferred, mutually orthogonal directions. One is a unit twist-free field of spatial vectors with integral lines intersecting perpendicularly the brane. The other is a temporal vector field with respect to which we perform the Arnowitt-Deser-Misner decomposition of the Einstein-Hilbert Lagrangian. The gravitational variables arise from the projections of the spatial metric and their canonically conjugated momenta as tensorial, vectorial and scalar quantities defined on the family of hypersurfaces containing the brane. They represent the gravitons, a gravi-photon, and a gravi-scalar, respectively. From the action we derive the canonical evolution equations and the constraints for these gravitational degrees of freedom both on the brane and outside it. By integrating across the brane, the dynamics also generates the tensorial and scalar projection of the Lanczos equation. The vectorial projection of the Lanczos equation arises in a similar way from the diffeomorphism constraint. Both the graviton and the gravi-scalar are continuous across the brane, however the momentum of the gravi-vector has a jump, related to the energy transport (heat flow) on the brane

  18. Primary decomposition of torsion R[X]-modules

    Directory of Open Access Journals (Sweden)

    William A. Adkins

    1994-01-01

    Full Text Available This paper is concerned with studying hereditary properties of primary decompositions of torsion R[X]-modules M which are torsion free as R-modules. Specifically, if an R[X]-submodule of M is pure as an R-submodule, then the primary decomposition of M determines a primary decomposition of the submodule. This is a generalization of the classical fact from linear algebra that a diagonalizable linear transformation on a vector space restricts to a diagonalizable linear transformation of any invariant subspace. Additionally, primary decompositions are considered under direct sums and tensor product.

  19. Differential Decomposition Among Pig, Rabbit, and Human Remains.

    Science.gov (United States)

    Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe

    2018-03-30

    While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.

  20. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    Science.gov (United States)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  1. Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals

    Science.gov (United States)

    Ramachandran, E.; Ramukutty, S.

    2014-03-01

    The crystal growth of diclofenac acid in silica gel is the first to be reported in literature. The growth parameters were varied to optimize the suitable growth condition. Single crystal X-ray diffraction method was used for the conformation of the crystal structure. Morphology studies showed that the growth is prominent along the b-axis and the prominent face is {002}. Fourier transform infrared spectral study was performed to identify the functional groups present in the crystal. Thermal stability and decomposition of the material were analyzed using thermo calorimetry in the temperature range 30-500 °C.

  2. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  3. Pitfalls in VAR based return decompositions: A clarification

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten

    in their analysis is not "cashflow news" but "inter- est rate news" which should not be zero. Consequently, in contrast to what Chen and Zhao claim, their decomposition does not serve as a valid caution against VAR based decompositions. Second, we point out that in order for VAR based decompositions to be valid......Based on Chen and Zhao's (2009) criticism of VAR based return de- compositions, we explain in detail the various limitations and pitfalls involved in such decompositions. First, we show that Chen and Zhao's interpretation of their excess bond return decomposition is wrong: the residual component...

  4. Full waveform inversion based on the optimized gradient and its spectral implementation

    KAUST Repository

    Wu, Zedong

    2014-01-01

    Full waveform inversion (FWI) despite it\\'s potential suffers from the ability to converge to the desired solution due to the high nonlinearity of the objective function at conventional seismic frequencies. Even if frequencies necessary for the convergence are available, the high number of iterations required to approach a solution renders FWI as very expensive (especially in 3D). A spectral implementation in which the wavefields are extrapolated and gradients are calculated in the wavenumber domain allows for a cleaner more efficient implementation (no finite difference dispersion errors). In addition, we use not only an up and down going wavefield decomposition of the gradient to access the smooth background update, but also a right and left propagation decomposition to allow us to do that for large dips. To insure that the extracted smooth component of the gradient has the right decent direction, we solve an optimization problem to search for the smoothest component that provides a negative (decent) gradient. Application to the Marmousi model shows that this approach works well with linear increasing initial velocity model and data with frequencies above 2Hz.

  5. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).

  6. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  7. An investigation on thermal decomposition of DNTF-CMDB propellants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei; Wang, Jiangning; Ren, Xiaoning; Zhang, Laying; Zhou, Yanshui [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2007-12-15

    The thermal decomposition of DNTF-CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF-CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  9. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  10. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  11. Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Yan

    2014-01-01

    Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  12. Constructive quantum Shannon decomposition from Cartan involutions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Byron; Love, Peter [Department of Physics, 370 Lancaster Ave., Haverford College, Haverford, PA 19041 (United States)], E-mail: plove@haverford.edu

    2008-10-03

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions.

  13. Constructive quantum Shannon decomposition from Cartan involutions

    International Nuclear Information System (INIS)

    Drury, Byron; Love, Peter

    2008-01-01

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions

  14. Classification of breast microcalcifications using spectral mammography

    Science.gov (United States)

    Ghammraoui, B.; Glick, S. J.

    2017-03-01

    Purpose: To investigate the potential of spectral mammography to distinguish between type I calcifications, consisting of calcium oxalate dihydrate or weddellite compounds that are more often associated with benign lesions, and type II calcifications containing hydroxyapatite which are predominantly associated with malignant tumors. Methods: Using a ray tracing algorithm, we simulated the total number of x-ray photons recorded by the detector at one pixel from a single pencil-beam projection through a breast of 50/50 (adipose/glandular) tissues with inserted microcalcifications of different types and sizes. Material decomposition using two energy bins was then applied to characterize the simulated calcifications into hydroxyapatite and weddellite using maximumlikelihood estimation, taking into account the polychromatic source, the detector response function and the energy dependent attenuation. Results: Simulation tests were carried out for different doses and calcification sizes for multiple realizations. The results were summarized using receiver operating characteristic (ROC) analysis with the area under the curve (AUC) taken as an overall indicator of discrimination performance and showing high AUC values up to 0.99. Conclusion: Our simulation results obtained for a uniform breast imaging phantom indicate that spectral mammography using two energy bins has the potential to be used as a non-invasive method for discrimination between type I and type II microcalcifications to improve early breast cancer diagnosis and reduce the number of unnecessary breast biopsies.

  15. In situ study of glasses decomposition layer

    International Nuclear Information System (INIS)

    Zarembowitch-Deruelle, O.

    1997-01-01

    The aim of this work is to understand the involved mechanisms during the decomposition of glasses by water and the consequences on the morphology of the decomposition layer, in particular in the case of a nuclear glass: the R 7 T 7 . The chemical composition of this glass being very complicated, it is difficult to know the influence of the different elements on the decomposition kinetics and on the resulting morphology because several atoms have a same behaviour. Glasses with simplified composition (only 5 elements) have then been synthesized. The morphological and structural characteristics of these glasses have been given. They have then been decomposed by water. The leaching curves do not reflect the decomposition kinetics but the solubility of the different elements at every moment. The three steps of the leaching are: 1) de-alkalinization 2) lattice rearrangement 3) heavy elements solubilization. Two decomposition layer types have also been revealed according to the glass heavy elements rate. (O.M.)

  16. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  17. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    Science.gov (United States)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  18. Decomposition studies of group 6 hexacarbonyl complexes. Pt. 2. Modelling of the decomposition process

    Energy Technology Data Exchange (ETDEWEB)

    Usoltsev, Ilya; Eichler, Robert; Tuerler, Andreas [Paul Scherrer Institut (PSI), Villigen (Switzerland); Bern Univ. (Switzerland)

    2016-11-01

    The decomposition behavior of group 6 metal hexacarbonyl complexes (M(CO){sub 6}) in a tubular flow reactor is simulated. A microscopic Monte-Carlo based model is presented for assessing the first bond dissociation enthalpy of M(CO){sub 6} complexes. The suggested approach superimposes a microscopic model of gas adsorption chromatography with a first-order heterogeneous decomposition model. The experimental data on the decomposition of Mo(CO){sub 6} and W(CO){sub 6} are successfully simulated by introducing available thermodynamic data. Thermodynamic data predicted by relativistic density functional theory is used in our model to deduce the most probable experimental behavior of the corresponding Sg carbonyl complex. Thus, the design of a chemical experiment with Sg(CO){sub 6} is suggested, which is sensitive to benchmark our theoretical understanding of the bond stability in carbonyl compounds of the heaviest elements.

  19. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...

  20. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  1. Applications of the semiclassical spectral method to nuclear, atomic, molecular, and polymeric dynamics

    International Nuclear Information System (INIS)

    Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.

    1987-01-01

    Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics

  2. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    Science.gov (United States)

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  3. Microbiological decomposition of bagasse after radiation pasteurization

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao

    1987-01-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms. (author)

  4. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  5. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring.

    Science.gov (United States)

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  6. Self-decomposition of radiochemicals. Principles, control, observations and effects

    International Nuclear Information System (INIS)

    Evans, E.A.

    1976-01-01

    The aim of the booklet is to remind the established user of radiochemicals of the problems of self-decomposition and to inform those investigators who are new to the applications of radiotracers. The section headings are: introduction; radionuclides; mechanisms of decomposition; effects of temperature; control of decomposition; observations of self-decomposition (sections for compounds labelled with (a) carbon-14, (b) tritium, (c) phosphorus-32, (d) sulphur-35, (e) gamma- or X-ray emitting radionuclides, decomposition of labelled macromolecules); effects of impurities in radiotracer investigations; stability of labelled compounds during radiotracer studies. (U.K.)

  7. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    Science.gov (United States)

    Hartmann, L.

    2002-01-01

    As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react

  8. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  9. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  10. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon)

    International Nuclear Information System (INIS)

    Ismail, I.M.K.; Hawkins, T.

    2005-01-01

    Recently, interest in aluminium hydride (alane) as a rocket propulsion ingredient has been renewed due to improvements in its manufacturing process and an increase in thermal stability. When alane is added to solid propellant formulations, rocket performance is enhanced and the specific impulse increases. Preliminary work was performed at AFRL on the characterization and evaluation of two alane samples. Decomposition kinetics were determined from gravimetric TGA data and volumetric vacuum thermal stability (VTS) results. Chemical analysis showed the samples had 88.30% (by weight) aluminium and 9.96% hydrogen. The average density, as measured by helium pycnometery, was 1.486 g/cc. Scanning electron microscopy showed that the particles were mostly composed of sharp edged crystallographic polyhedral such as simple cubes, cubic octahedrons and hexagonal prisms. Thermogravimetric analysis was utilized to investigate the decomposition kinetics of alane in argon atmosphere and to shed light on the mechanism of alane decomposition. Two kinetic models were successfully developed and used to propose a mechanism for the complete decomposition of alane and to predict its shelf-life during storage. Alane decomposes in two steps. The slowest (rate-determining) step is solely controlled by solid state nucleation of aluminium crystals; the fastest step is due to growth of the crystals. Thus, during decomposition, hydrogen gas is liberated and the initial polyhedral AlH 3 crystals yield a final mix of amorphous aluminium and aluminium crystals. After establishing the kinetic model, prediction calculations indicated that alane can be stored in inert atmosphere at temperatures below 10 deg. C for long periods of time (e.g., 15 years) without significant decomposition. After 15 years of storage, the kinetic model predicts ∼0.1% decomposition, but storage at higher temperatures (e.g. 30 deg. C) is not recommended

  11. Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence

    Science.gov (United States)

    Wang, Wenkang; Pan, Chong; Wang, Jinjun

    2018-01-01

    The identification and separation of multi-scale coherent structures is a critical task for the study of scale interaction in wall-bounded turbulence. Here, we propose a quasi-bivariate variational mode decomposition (QB-VMD) method to extract structures with various scales from instantaneous two-dimensional (2D) velocity field which has only one primary dimension. This method is developed from the one-dimensional VMD algorithm proposed by Dragomiretskiy and Zosso (IEEE Trans Signal Process 62:531-544, 2014) to cope with a quasi-2D scenario. It poses the feature of length-scale bandwidth constraint along the decomposed dimension, together with the central frequency re-balancing along the non-decomposed dimension. The feasibility of this method is tested on both a synthetic flow field and a turbulent boundary layer at moderate Reynolds number (Re_{τ } = 3458) measured by 2D particle image velocimetry (PIV). Some other popular scale separation tools, including pseudo-bi-dimensional empirical mode decomposition (PB-EMD), bi-dimensional EMD (B-EMD) and proper orthogonal decomposition (POD), are also tested for comparison. Among all these methods, QB-VMD shows advantages in both scale characterization and energy recovery. More importantly, the mode mixing problem, which degrades the performance of EMD-based methods, is avoided or minimized in QB-VMD. Finally, QB-VMD analysis of the wall-parallel plane in the log layer (at y/δ = 0.12) of the studied turbulent boundary layer shows the coexistence of large- or very large-scale motions (LSMs or VLSMs) and inner-scaled structures, which can be fully decomposed in both physical and spectral domains.

  12. On the hadron mass decomposition

    Science.gov (United States)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  13. On the hadron mass decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2018-02-15

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)

  14. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  15. Short-time maximum entropy method analysis of molecular dynamics simulation: Unimolecular decomposition of formic acid

    Science.gov (United States)

    Takahashi, Osamu; Nomura, Tetsuo; Tabayashi, Kiyohiko; Yamasaki, Katsuyoshi

    2008-07-01

    We performed spectral analysis by using the maximum entropy method instead of the traditional Fourier transform technique to investigate the short-time behavior in molecular systems, such as the energy transfer between vibrational modes and chemical reactions. This procedure was applied to direct ab initio molecular dynamics calculations for the decomposition of formic acid. More reactive trajectories of dehydrolation than those of decarboxylation were obtained for Z-formic acid, which was consistent with the prediction of previous theoretical and experimental studies. Short-time maximum entropy method analyses were performed for typical reactive and non-reactive trajectories. Spectrograms of a reactive trajectory were obtained; these clearly showed the reactant, transient, and product regions, especially for the dehydrolation path.

  16. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  17. Early stage litter decomposition across biomes

    Science.gov (United States)

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  18. Optimization and kinetics decomposition of monazite using NaOH

    International Nuclear Information System (INIS)

    MV Purwani; Suyanti; Deddy Husnurrofiq

    2015-01-01

    Decomposition of monazite with NaOH has been done. Decomposition performed at high temperature on furnace. The parameters studied were the comparison NaOH / monazite, temperature and time decomposition. From the research decomposition for 100 grams of monazite with NaOH, it can be concluded that the greater the ratio of NaOH / monazite, the greater the conversion. In the temperature influences decomposition 400 - 700°C, the greater the reaction rate constant with increasing temperature greater decomposition. Comparison NaOH / monazite optimum was 1.5 and the optimum time of 3 hours. Relations ratio NaOH / monazite with conversion (x) following the polynomial equation y = 0.1579x 2 – 0.2855x + 0.8301 (y = conversion and x = ratio of NaOH/monazite). Decomposition reaction of monazite with NaOH was second orde reaction, the relationship between temperature (T) with a reaction rate constant (k), k = 6.106.e - 1006.8 /T or ln k = - 1006.8/T + 6.106, frequency factor A = 448.541, activation energy E = 8.371 kJ/mol. (author)

  19. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  20. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  1. Fluorescence Intrinsic Characterization of Excitation-Emission Matrix Using Multi-Dimensional Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Tzu-Chien Hsiao

    2013-11-01

    Full Text Available Excitation-emission matrix (EEM fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes.

  2. Decompositional equivalence: A fundamental symmetry underlying quantum theory

    OpenAIRE

    Fields, Chris

    2014-01-01

    Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using simple thought experiments, that quantum theory follows from decompositional equivalence together with Landauer's principle. This demonstration raises within physics a question previously left to psychology: how do human - or any - observers agree about what constitutes a "system of interest"?

  3. Generalized Fisher index or Siegel-Shapley decomposition?

    International Nuclear Information System (INIS)

    De Boer, Paul

    2009-01-01

    It is generally believed that index decomposition analysis (IDA) and input-output structural decomposition analysis (SDA) [Rose, A., Casler, S., Input-output structural decomposition analysis: a critical appraisal, Economic Systems Research 1996; 8; 33-62; Dietzenbacher, E., Los, B., Structural decomposition techniques: sense and sensitivity. Economic Systems Research 1998;10; 307-323] are different approaches in energy studies; see for instance Ang et al. [Ang, B.W., Liu, F.L., Chung, H.S., A generalized Fisher index approach to energy decomposition analysis. Energy Economics 2004; 26; 757-763]. In this paper it is shown that the generalized Fisher approach, introduced in IDA by Ang et al. [Ang, B.W., Liu, F.L., Chung, H.S., A generalized Fisher index approach to energy decomposition analysis. Energy Economics 2004; 26; 757-763] for the decomposition of an aggregate change in a variable in r = 2, 3 or 4 factors is equivalent to SDA. They base their formulae on the very complicated generic formula that Shapley [Shapley, L., A value for n-person games. In: Kuhn H.W., Tucker A.W. (Eds), Contributions to the theory of games, vol. 2. Princeton University: Princeton; 1953. p. 307-317] derived for his value of n-person games, and mention that Siegel [Siegel, I.H., The generalized 'ideal' index-number formula. Journal of the American Statistical Association 1945; 40; 520-523] gave their formulae using a different route. In this paper tables are given from which the formulae of the generalized Fisher approach can easily be derived for the cases of r = 2, 3 or 4 factors. It is shown that these tables can easily be extended to cover the cases of r = 5 and r = 6 factors. (author)

  4. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes

    Science.gov (United States)

    Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.

  5. Validation of Spectral Unmixing Results from Informed Non-Negative Matrix Factorization (INMF) of Hyperspectral Imagery

    Science.gov (United States)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2017-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from

  6. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  7. Crop residue decomposition in Minnesota biochar amended plots

    OpenAIRE

    S. L. Weyers; K. A. Spokas

    2014-01-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with ...

  8. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, J. M. [NorthWest Research Associates, Boulder, CO 80301 (United States); Codrescu, M. [Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO 80305 (United States); Fedrizzi, M.; Fuller-Rowell, T. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Hill, F. [National Solar Observatory, Boulder, CO 80303 (United States); Landi, E. [Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Woods, T., E-mail: johnf@digidyna.com [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303 (United States)

    2017-01-01

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm is used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.

  9. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  10. UTV Expansion Pack: Special-Purpose Rank-Revealing Algorithms

    DEFF Research Database (Denmark)

    Fierro, Ricardo D.; Hansen, Per Christian

    2005-01-01

    This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank-r...... values of a sparse or structured matrix. These new algorithms have applications in signal processing, optimization and LSI information retrieval.......This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank......-revealing VSV decompositions, we expand the algorithms for the ULLV decomposition of a matrix pair to handle interference-type problems with a rank-deficient covariance matrix, and we provide a robust and reliable Lanczos algorithm which - despite its simplicity - is able to capture all the dominant singular...

  11. A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems

    KAUST Repository

    Efendiev, Yalchin R.

    2015-08-01

    We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.

  12. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  13. Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.

  14. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    Science.gov (United States)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  15. Multi hollow needle to plate plasmachemical reactor for pollutant decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Kriha, V.; Viden, I.; Pospisil, M.

    2001-01-01

    Modification of the classical multipin to plate plasmachemical reactor for pollutant decomposition is proposed in this paper. In this modified reactor a mixture of air and pollutant flows through the needles, contrary to the classical reactor where a mixture of air and pollutant flows around the pins or through the channel plus through the hollow needles. We give the results of comparison of toluene decomposition efficiency for (a) a reactor with the main stream of a mixture through the channel around the needles and a small flow rate through the needles and (b) a modified reactor. It was found that for similar flow rates and similar energy deposition, the decomposition efficiency of toluene was increased more than six times in the modified reactor. This new modified reactor was also experimentally tested for the decomposition of volatile hydrocarbons from gasoline distillation range. An average efficiency of VOC decomposition of about 25% was reached. However, significant differences in the decomposition of various hydrocarbon types were observed. The best results were obtained for the decomposition of olefins (reaching 90%) and methyl-tert-butyl ether (about 50%). Moreover, the number of carbon atoms in the molecule affects the quality of VOC decomposition. (author)

  16. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  17. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  18. A handbook of decomposition methods in analytical chemistry

    International Nuclear Information System (INIS)

    Bok, R.

    1984-01-01

    Decomposition methods of metals, alloys, fluxes, slags, calcine, inorganic salts, oxides, nitrides, carbides, borides, sulfides, ores, minerals, rocks, concentrates, glasses, ceramics, organic substances, polymers, phyto- and biological materials from the viewpoint of sample preparation for analysis have been described. The methods are systemitized according to decomposition principle: thermal with the use of electricity, irradiation, dissolution with participation of chemical reactions and without it. Special equipment for different decomposition methods is described. Bibliography contains 3420 references

  19. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  20. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  1. Note on Symplectic SVD-Like Decomposition

    Directory of Open Access Journals (Sweden)

    AGOUJIL Said

    2016-02-01

    Full Text Available The aim of this study was to introduce a constructive method to compute a symplectic singular value decomposition (SVD-like decomposition of a 2n-by-m rectangular real matrix A, based on symplectic refectors.This approach used a canonical Schur form of skew-symmetric matrix and it allowed us to compute eigenvalues for the structured matrices as Hamiltonian matrix JAA^T.

  2. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    Science.gov (United States)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual

  3. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The aim of this study was to determine the decomposition characteristics of the most dominant submerged macrophyte and macroalgal species in the Great Brak Estuary. Laboratory experiments were conducted to determine the effect of different temperature regimes on the rate of decomposition of 3 macrophyte species ...

  4. Decomposition and flame structure of hydrazinium nitroformate

    NARCIS (Netherlands)

    Louwers, J.; Parr, T.; Hanson-Parr, D.

    1999-01-01

    The decomposition of hydrazinium nitroformate (HNF) was studied in a hot quartz cell and by dropping small amounts of HNF on a hot plate. The species formed during the decomposition were identified by ultraviolet-visible absorption experiments. These experiments reveal that first HONO is formed. The

  5. Eigenvalue-eigenvector decomposition (EED) analysis of dissimilarity and covariance matrix obtained from total synchronous fluorescence spectral (TSFS) data sets of herbal preparations: Optimizing the classification approach

    Science.gov (United States)

    Tarai, Madhumita; Kumar, Keshav; Divya, O.; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar

    2017-09-01

    The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix.

  6. Decomposition of forest products buried in landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-01-01

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g −1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  7. Decomposition of forest products buried in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  8. Parallel processing for pitch splitting decomposition

    Science.gov (United States)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  9. A new physics-based method for detecting weak nuclear signals via spectral decomposition

    International Nuclear Information System (INIS)

    Chan, Kung-Sik; Li, Jinzheng; Eichinger, William; Bai, Erwei

    2012-01-01

    We propose a new physics-based method to determine the presence of the spectral signature of one or more nuclides from a poorly resolved spectra with weak signatures. The method is different from traditional methods that rely primarily on peak finding algorithms. The new approach considers each of the signatures in the library to be a linear combination of subspectra. These subspectra are obtained by assuming a signature consisting of just one of the unique gamma rays emitted by the nuclei. We propose a Poisson regression model for deducing which nuclei are present in the observed spectrum. In recognition that a radiation source generally comprises few nuclear materials, the underlying Poisson model is sparse, i.e. most of the regression coefficients are zero (positive coefficients correspond to the presence of nuclear materials). We develop an iterative algorithm for a penalized likelihood estimation that prompts sparsity. We illustrate the efficacy of the proposed method by simulations using a variety of poorly resolved, low signal-to-noise ratio (SNR) situations, which show that the proposed approach enjoys excellent empirical performance even with SNR as low as to -15 db.

  10. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  11. Climate fails to predict wood decomposition at regional scales

    Science.gov (United States)

    Mark A. Bradford; Robert J. Warren; Petr Baldrian; Thomas W. Crowther; Daniel S. Maynard; Emily E. Oldfield; William R. Wieder; Stephen A. Wood; Joshua R. King

    2014-01-01

    Decomposition of organic matter strongly influences ecosystem carbon storage1. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter2, 3, 4, 5. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on...

  12. Formation of volatile decomposition products by self-radiolysis of tritiated thymidine

    International Nuclear Information System (INIS)

    Shiba, Kazuhiro; Mori, Hirofumi

    1997-01-01

    In order to estimate the internal exposure dose in an experiment using tritiated thymidine, the rate of volatile 3 H-decomposition of several tritiated thymidine samples was measured. The decomposition rate of (methyl- 3 H)thymidine in water was over 80% in less than one year after initial analysis. (methyl- 3 H)thymidine was decomposed into volatile and non-volatile 3 H-decomposition products. The ratio of volatile 3 H-decomposition products increased with increasing the rate of the decomposition of (methyl- 3 H) thymidine. The volatile 3 H-decomposition products consisted of two components, of which the main component was tritiated water. Internal exposure dose caused by the inhalation of such volatile 3 H-decomposition products of (methyl- 3 H) thymidine was assumed to be several μSv. (author)

  13. Data-free and data-driven spectral perturbations for RANS UQ

    Science.gov (United States)

    Edeling, Wouter; Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    Despite recent developments in high-fidelity turbulent flow simulations, RANS modeling is still vastly used by industry, due to its inherent low cost. Since accuracy is a concern in RANS modeling, model-form UQ is an essential tool for assessing the impacts of this uncertainty on quantities of interest. Applying the spectral decomposition to the modeled Reynolds-Stress Tensor (RST) allows for the introduction of decoupled perturbations into the baseline intensity (kinetic energy), shape (eigenvalues), and orientation (eigenvectors). This constitutes a natural methodology to evaluate the model form uncertainty associated to different aspects of RST modeling. In a predictive setting, one frequently encounters an absence of any relevant reference data. To make data-free predictions with quantified uncertainty we employ physical bounds to a-priori define maximum spectral perturbations. When propagated, these perturbations yield intervals of engineering utility. High-fidelity data opens up the possibility of inferring a distribution of uncertainty, by means of various data-driven machine-learning techniques. We will demonstrate our framework on a number of flow problems where RANS models are prone to failure. This research was partially supported by the Defense Advanced Research Projects Agency under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo), and the DOE PSAAP-II program.

  14. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  16. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  17. Thermal decomposition of UO3-2H20

    International Nuclear Information System (INIS)

    Flament, T.A.

    1998-01-01

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account

  18. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  19. Wood decomposition as influenced by invertebrates.

    Science.gov (United States)

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  1. Spectral biclustering of microarray data: coclustering genes and conditions.

    Science.gov (United States)

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T; Gerstein, Mark

    2003-04-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).

  2. Tensor decompositions for the analysis of atomic resolution electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Spiegelberg, Jakob; Rusz, Ján [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Pelckmans, Kristiaan [Department of Information Technology, Uppsala University, Box 337, S-751 05 Uppsala (Sweden)

    2017-04-15

    A selection of tensor decomposition techniques is presented for the detection of weak signals in electron energy loss spectroscopy (EELS) data. The focus of the analysis lies on the correct representation of the simulated spatial structure. An analysis scheme for EEL spectra combining two-dimensional and n-way decomposition methods is proposed. In particular, the performance of robust principal component analysis (ROBPCA), Tucker Decompositions using orthogonality constraints (Multilinear Singular Value Decomposition (MLSVD)) and Tucker decomposition without imposed constraints, canonical polyadic decomposition (CPD) and block term decompositions (BTD) on synthetic as well as experimental data is examined. - Highlights: • A scheme for compression and analysis of EELS or EDX data is proposed. • Several tensor decomposition techniques are presented for BSS on hyperspectral data. • Robust PCA and MLSVD are discussed for denoising of raw data.

  3. Eigenvalue-eigenvector decomposition (EED) analysis of dissimilarity and covariance matrix obtained from total synchronous fluorescence spectral (TSFS) data sets of herbal preparations: Optimizing the classification approach.

    Science.gov (United States)

    Tarai, Madhumita; Kumar, Keshav; Divya, O; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar

    2017-09-05

    The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparison of decomposition rates between autopsied and non-autopsied human remains.

    Science.gov (United States)

    Bates, Lennon N; Wescott, Daniel J

    2016-04-01

    Penetrating trauma has been cited as a significant factor in the rate of decomposition. Therefore, penetrating trauma may have an effect on estimations of time-since-death in medicolegal investigations and on research examining decomposition rates and processes when autopsied human bodies are used. The goal of this study was to determine if there are differences in the rate of decomposition between autopsied and non-autopsied human remains in the same environment. The purpose is to shed light on how large incisions, such as those from a thorocoabdominal autopsy, effect time-since-death estimations and research on the rate of decomposition that use both autopsied and non-autopsied human remains. In this study, 59 non-autopsied and 24 autopsied bodies were studied. The number of accumulated degree days required to reach each decomposition stage was then compared between autopsied and non-autopsied remains. Additionally, both types of bodies were examined for seasonal differences in decomposition rates. As temperature affects the rate of decomposition, this study also compared the internal body temperatures of autopsied and non-autopsied remains to see if differences between the two may be leading to differential decomposition. For this portion of this study, eight non-autopsied and five autopsied bodies were investigated. Internal temperature was collected once a day for two weeks. The results showed that differences in the decomposition rate between autopsied and non-autopsied remains was not statistically significant, though the average ADD needed to reach each stage of decomposition was slightly lower for autopsied bodies than non-autopsied bodies. There was also no significant difference between autopsied and non-autopsied bodies in the rate of decomposition by season or in internal temperature. Therefore, this study suggests that it is unnecessary to separate autopsied and non-autopsied remains when studying gross stages of human decomposition in Central Texas

  5. The platinum catalysed decomposition of hydrazine in acidic media

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.C.

    2000-01-01

    Kinetic study of the hydrazine decomposition in the solutions of HClO 4 , H 2 SO 4 and HNO 3 in the presence of Pt/SiO 2 catalyst has been undertaken. It was shown that the kinetics of the hydrazine catalytic decomposition in HClO 4 and H 2 SO 4 are identical. The process is determined by the heterogeneous catalytic auto-decomposition of N 2 H 4 on the catalyst's surface. The platinum catalysed hydrazine decomposition in the nitric acid solutions is a complex process, including heterogeneous catalytic auto-decomposition of N 2 H 4 , reaction of hydrazine with catalytically generated nitrous acid and the catalytic oxidation of hydrazine by nitric acid. The kinetic parameters of these reactions have been determined. The contribution of each reaction in the total process is determined by the liquid phase composition and by the temperature. (authors)

  6. Generalized decompositions of dynamic systems and vector Lyapunov functions

    Science.gov (United States)

    Ikeda, M.; Siljak, D. D.

    1981-10-01

    The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.

  7. In situ XAS of the solvothermal decomposition of dithiocarbamate complexes

    NARCIS (Netherlands)

    Islam, H.-U.; Roffey, A.; Hollingsworth, N.; Catlow, R.; Wolthers, M.; de Leeuw, N.H.; Bras, W.; Sankar, G.; Hogarth, G.

    2012-01-01

    An in situ XAS study of the solvothermal decomposition of iron and nickel dithiocarbamate complexes was performed in order to gain understanding of the decomposition mechanisms. This work has given insight into the steps involved in the decomposition, showing variation in reaction pathways between

  8. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former

  9. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika; Amato, Nancy M.; Lu, Yanyan; Lien, Jyh-Ming

    2013-01-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  10. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  11. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  12. Climate history shapes contemporary leaf litter decomposition

    Science.gov (United States)

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  13. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    Science.gov (United States)

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  14. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  15. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  16. HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps.

    Science.gov (United States)

    Yan, Koon-Kiu; Yardimci, Galip Gürkan; Yan, Chengfei; Noble, William S; Gerstein, Mark

    2017-07-15

    Genome-wide proximity ligation based assays like Hi-C have opened a window to the 3D organization of the genome. In so doing, they present data structures that are different from conventional 1D signal tracks. To exploit the 2D nature of Hi-C contact maps, matrix techniques like spectral analysis are particularly useful. Here, we present HiC-spector, a collection of matrix-related functions for analyzing Hi-C contact maps. In particular, we introduce a novel reproducibility metric for quantifying the similarity between contact maps based on spectral decomposition. The metric successfully separates contact maps mapped from Hi-C data coming from biological replicates, pseudo-replicates and different cell types. Source code in Julia and Python, and detailed documentation is available at https://github.com/gersteinlab/HiC-spector . koonkiu.yan@gmail.com or mark@gersteinlab.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. Abstract decomposition theorem and applications

    CERN Document Server

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  18. Forest products decomposition in municipal solid waste landfills

    International Nuclear Information System (INIS)

    Barlaz, Morton A.

    2006-01-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO 2 -neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components

  19. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    Science.gov (United States)

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  20. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  1. Joint Matrices Decompositions and Blind Source Separation

    Czech Academy of Sciences Publication Activity Database

    Chabriel, G.; Kleinsteuber, M.; Moreau, E.; Shen, H.; Tichavský, Petr; Yeredor, A.

    2014-01-01

    Roč. 31, č. 3 (2014), s. 34-43 ISSN 1053-5888 R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint matrices decomposition * tensor decomposition * blind source separation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 5.852, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/tichavsky-0427607.pdf

  2. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  3. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    International Nuclear Information System (INIS)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee; Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC

  4. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  5. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    International Nuclear Information System (INIS)

    Orr, R.M.; Sims, H.E.; Taylor, R.J.

    2015-01-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO_2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature. • New SEM

  6. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    Science.gov (United States)

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations.

  7. Fast spectral source integration in black hole perturbation calculations

    Science.gov (United States)

    Hopper, Seth; Forseth, Erik; Osburn, Thomas; Evans, Charles R.

    2015-08-01

    This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as e ≃0.7 . We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of 3 improvement in the overall speed. The primary initial application of SSI—for us its the raison d'être—is in an arbitrary precision mathematica code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high-accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.

  8. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials

    International Nuclear Information System (INIS)

    Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang

    2015-01-01

    In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu 2 (OH) 2 CO 3 with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the researches and the

  9. Two Notes on Discrimination and Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Helena Skyt

    1998-01-01

    1. It turns out that the Oaxaca-Blinder wage decomposition is inadequate when it comes to calculation of separate contributions for indicator variables. The contributions are not robust against a change of reference group. I extend the Oaxaca-Blinder decomposition to handle this problem. 2. The p....... The paper suggests how to use the logit model to decompose the gender difference in the probability of an occurrence. The technique is illustrated by an analysis of discrimination in child labor in rural Zambia....

  10. Numerical evolutions of fields on the 2-sphere using a spectral method based on spin-weighted spherical harmonics

    International Nuclear Information System (INIS)

    Beyer, Florian; Daszuta, Boris; Frauendiener, Jörg; Whale, Ben

    2014-01-01

    Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through the use of integer spin-weighted spherical harmonics, we present a method which allows for the implementation of arbitrary tensorial evolution equations. Our method combines two numerical techniques that were originally developed with different applications in mind. The first is Huffenberger and Wandelt’s spectral decomposition algorithm to perform the mapping from physical to spectral space. The second is the application of Luscombe and Luban’s method, to convert numerically divergent linear recursions into stable nonlinear recursions, to the calculation of reduced Wigner d-functions. We give a detailed discussion of the theory and numerical implementation of our algorithm. The properties of our method are investigated by solving the scalar and vectorial advection equation on the sphere, as well as the 2 + 1 Maxwell equations on a deformed sphere. (paper)

  11. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2007-11-01

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution

  12. Kinetics of the decomposition reaction of phosphorite concentrate

    Directory of Open Access Journals (Sweden)

    Huang Run

    2014-01-01

    Full Text Available Apatite is the raw material, which is mainly used in phosphate fertilizer, and part are used in yellow phosphorus, red phosphorus, and phosphoric acid in the industry. With the decrease of the high grade phosphorite lump, the agglomeration process is necessary for the phosphorite concentrate after beneficiation process. The decomposition behavior and the phase transformation are of vital importance for the agglomeration process of phosphorite. In this study, the thermal kinetic analysis method was used to study the kinetics of the decomposition of phosphorite concentrate. The phosphorite concentrate was heated under various heating rate, and the phases in the sample heated were examined by the X-ray diffraction method. It was found that the main phases in the phosphorite are fluorapatiteCa5(PO43F, quartz SiO2,and dolomite CaMg(CO32.The endothermic DSC peak corresponding to the mass loss caused by the decomposition of dolomite covers from 600°C to 850°C. The activation energy of the decomposition of dolomite, which increases with the increase in the extent of conversion, is about 71.6~123.6kJ/mol. The mechanism equation for the decomposition of dolomite agrees with the Valensi equation and G-B equation.

  13. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    Science.gov (United States)

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-09-01

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation. © 2017 American Academy of Forensic Sciences.

  14. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    Science.gov (United States)

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  15. Primary decomposition of zero-dimensional ideals over finite fields

    Science.gov (United States)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  16. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  17. The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Melius, C.F.

    1994-01-01

    Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

  18. Thermal decomposition of zirconium compounds with some aromatic hydroxycarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Koshel, A V; Malinko, L A; Karlysheva, K F; Sheka, I A; Shchepak, N I [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii

    1980-02-01

    By the thermogravimetry method investigated are processes of thermal decomposition of different zirconium compounds with mandelic, parabromomandelic, salicylic and sulphosalicylic acids. For identification of decomposition products the specimens have been kept at the temperature of effects up to the constant weight. Taken are IR-spectra, rentgenoarams, carried out is elementary analysis of decomposition products. It is stated that thermal decomposition of the investigated compounds passes in stages; the final product of thermolysis is ZrO/sub 2/. Nonhydrolized compounds are stable at heating in the air up to 200-265 deg. Hydroxy compounds begin to decompose at lower temperature (80-100 deg).

  19. Decomposition of continuum {gamma}-ray spectra using synthesized response matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Morhac, M.; Kliman, J.; Krupa, L.; Matousek, V. E-mail: vladislav.matousek@savba.sk; Hamilton, J.H.; Ramayya, A.V

    2004-01-01

    The efficient methods of decomposition of {gamma}-ray spectra, based on the Gold algorithm, are presented. They use a response matrix of Gammasphere, which was obtained by synthesis of simulated and interpolated response functions using a new developed interpolation algorithm. The decomposition method has been applied to the measured spectra of {sup 152}Eu and {sup 56}Co. The results show a very effective removal of the background counts and their concentration into the corresponding photopeaks. The peak-to-total ratio in the spectra achieved after applying the decomposition method is in the interval 0.95-0.99. In addition, a new advanced algorithm of the 'boosted' decomposition has been proposed. In the spectra obtained after applying the boosted decomposition to the measured spectra, very narrow photopeaks are observed with the counts concentrated to several channels.

  20. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  1. Decomposition of benzidine, α-naphthylamine, and p-toluidine in soils

    International Nuclear Information System (INIS)

    Graveel, J.G.; Sommers, L.E.; Nelson, D.W.

    1986-01-01

    Decomposition of 14 C-labeled benzidine, α-naphthylamine, and p-toluidine in soil was studied in laboratory experiments by monitoring CO 2 production during a 308- to 365-d incubation period. The importance of microbial activity in decomposition of all three aromatic amines was shown by decreased 14 CO 2 evolution in 60 Co treated soils. After 365 d of incubation, 8.4 to 12% of added benzidine (54.3 μmol kg -1 ) was evolved as CO 2 while 17 to 31% of added α-naphthylamine (69.8 μmol kg -1 ) and 19 to 35% of added p-toluidine (93.3 μmol kg -1 ) were evolved as CO 2 in 308 d. Decomposition was enhanced by increasing the temperature from 12 to 30 0 C. For benzidine, both the amount and proportion decomposed increased with an increase in application rate. Decomposition of aromatic amines was not enhanced by the addition of decomposable substrates. Differences in decomposition of aromatic amines occurred among soils, but consistent relationships between decomposition of amines and soil properties were not observed. In batch equilibration studies, the Freundlich equation described aromatic amine sorption. Isotherms were nonlinear for benzidine and 1 -naphthylamine and linear for p-toluidine. Desorption of sorbed amines followed the order: benzidine < p-toluidine < α-naphthylamine and was inversely related to the extent of decomposition

  2. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    Science.gov (United States)

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  3. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  4. DECOMPOSITION STUDY OF CALCIUM CARBONATE IN COCKLE SHELL

    Directory of Open Access Journals (Sweden)

    MUSTAKIMAH MOHAMED

    2012-02-01

    Full Text Available Calcium oxide (CaO is recognized as an efficient carbon dioxide (CO2 adsorbent and separation of CO2 from gas stream using CaO based adsorbent is widely applied in gas purification process especially at high temperature reaction. CaO is normally been produced via thermal decomposition of calcium carbonate (CaCO3 sources such as limestone which is obtained through mining and quarrying limestone hill. Yet, this study able to exploit the vast availability of waste resources in Malaysia which is cockle shell, as the potential biomass resources for CaCO3 and CaO. In addition, effect of particle size towards decomposition process is put under study using four particle sizes which are 0.125-0.25 mm, 0.25-0.5 mm, 1-2 mm, and 2-4 mm. Decomposition reactivity is conducted using Thermal Gravimetric Analyzer (TGA at heating rate of 20°C/minutes in inert (Nitrogen atmosphere. Chemical property analysis using x-ray fluorescence (XRF, shows cockle shell is made up of 97% Calcium (Ca element and CaO is produced after decomposition is conducted, as been analyzed by x-ray diffusivity (XRD analyzer. Besides, smallest particle size exhibits the highest decomposition rate and the process was observed to follow first order kinetics. Activation energy, E, of the process was found to vary from 179.38 to 232.67 kJ/mol. From Arrhenius plot, E increased when the particle size is larger. To conclude, cockle shell is a promising source for CaO and based on four different particles sizes used, sample at 0.125-0.25 mm offers the highest decomposition rate.

  5. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  6. Information content in spectral dependencies of optical unit volume parameters under action of He-Ne laser on blood

    Science.gov (United States)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.

    1995-01-01

    Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.

  7. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    International Nuclear Information System (INIS)

    Prasad, R.

    2003-01-01

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH 3 ) 2 C 2 O 4 of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively

  8. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Energy Technology Data Exchange (ETDEWEB)

    Orr, R.M.; Sims, H.E.; Taylor, R.J., E-mail: robin.j.taylor@nnl.co.uk

    2015-10-15

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO{sub 2} product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature.

  9. Characteristic of root decomposition in a tropical rainforest in Sarawak, Malaysi

    Science.gov (United States)

    Ohashi, Mizue; Makita, Naoki; Katayam, Ayumi; Kume, Tomonori; Matsumoto, Kazuho; Khoon Kho, L.

    2016-04-01

    Woody roots play a significant role in forest carbon cycling, as up to 60 percent of tree photosynthetic production can be allocated to belowground. Root decay is one of the main processes of soil C dynamics and potentially relates to soil C sequestration. However, much less attention has been paid for root litter decomposition compared to the studies of leaf litter because roots are hidden from view. Previous studies have revealed that physico-chemical quality of roots, climate, and soil organisms affect root decomposition significantly. However, patterns and mechanisms of root decomposition are still poorly understood because of the high variability of root properties, field environment and potential decomposers. For example, root size would be a factor controlling decomposition rates, but general understanding of the difference between coarse and fine root decompositions is still lacking. Also, it is known that root decomposition is performed by soil animals, fungi and bacteria, but their relative importance is poorly understood. In this study, therefore, we aimed to characterize the root decomposition in a tropical rainforest in Sarawak, Malaysia, and clarify the impact of soil living organisms and root sizes on root litter decomposition. We buried soil cores with fine and coarse root litter bags in soil in Lambir Hills National Park. Three different types of soil cores that are covered by 1.5 cm plastic mesh, root-impermeable sheet (50um) and fungi-impermeable sheet (1um) were prepared. The soil cores were buried in February 2013 and collected 4 times, 134 days, 226 days, 786 days and 1151 days after the installation. We found that nearly 80 percent of the coarse root litter was decomposed after two years, whereas only 60 percent of the fine root litter was decomposed. Our results also showed significantly different ratio of decomposition between different cores, suggesting the different contribution of soil living organisms to decomposition process.

  10. 22nd International Conference on Domain Decomposition Methods

    CERN Document Server

    Gander, Martin; Halpern, Laurence; Krause, Rolf; Pavarino, Luca

    2016-01-01

    These are the proceedings of the 22nd International Conference on Domain Decomposition Methods, which was held in Lugano, Switzerland. With 172 participants from over 24 countries, this conference continued a long-standing tradition of internationally oriented meetings on Domain Decomposition Methods. The book features a well-balanced mix of established and new topics, such as the manifold theory of Schwarz Methods, Isogeometric Analysis, Discontinuous Galerkin Methods, exploitation of modern HPC architectures, and industrial applications. As the conference program reflects, the growing capabilities in terms of theory and available hardware allow increasingly complex non-linear and multi-physics simulations, confirming the tremendous potential and flexibility of the domain decomposition concept.

  11. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    Science.gov (United States)

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  12. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    Science.gov (United States)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  13. Spectral CT imaging of vulnerable plaque with two independent biomarkers

    International Nuclear Information System (INIS)

    Baturin, Pavlo; Alivov, Yahya; Molloi, Sabee

    2012-01-01

    The purpose of this paper is to investigate the feasibility of a novel four-material decomposition technique for assessing the vulnerability of plaque with two contrast materials spectral computer tomography (CT) using two independent markers: plaque's inflammation and spotty calcification. A simulation study was conducted using an energy-sensitive photon-counting detector for k-edge imaging of the coronary arteries. In addition to detecting the inflammation status, which is known as a biological marker of a plaque's vulnerability, we use spotty calcium concentration as an independent marker to test a plaque's vulnerability. We have introduced a new method for detecting and quantifying calcium concentrations in the presence of two contrast materials (iodine and gold), calcium and soft tissue background. In this method, four-material decomposition was performed on a pixel-by-pixel basis, assuming there was an arbitrary mixture of materials in the voxel. The concentrations of iodine and gold were determined by the k-edge material decomposition based on the maximum likelihood method. The calibration curves of the attenuation coefficients, with respect to the concentrations of different materials, were used to separate the calcium signal from both contrast materials and different soft tissues in the mixtures. Three different materials (muscle, blood and lipid) were independently used as soft tissue. The simulations included both ideal and more realistic energy resolving detectors to measure the polychromatic photon spectrum in single slice parallel beam geometry. The ideal detector was used together with a 3 cm diameter digital phantom to demonstrate the decomposition method while a more realistic detector and a 33 × 24 cm 2 digital chest phantom were simulated to validate the vulnerability assessment technique. A 120 kVp spectrum was generated to produce photon flux sufficient for detecting contrast materials above the k-edges of iodine (33.2 keV) and gold (80.7 ke

  14. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  15. Review on Thermal Decomposition of Ammonium Nitrate

    Science.gov (United States)

    Chaturvedi, Shalini; Dave, Pragnesh N.

    2013-01-01

    In this review data from the literature on thermal decomposition of ammonium nitrate (AN) and the effect of additives to their thermal decomposition are summarized. The effect of additives like oxides, cations, inorganic acids, organic compounds, phase-stablized CuO, etc., is discussed. The effect of an additive mainly occurs at the exothermic peak of pure AN in a temperature range of 200°C to 140°C.

  16. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  17. Crop residue decomposition in Minnesota biochar-amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-06-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.

  18. Crop residue decomposition in Minnesota biochar amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  19. Effects of simulated acid precipitation and liming on pine litter decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ishac, Y.Z.; Hovland, J.

    1976-01-01

    The decomposition of withered lodgepole pine needles (Pinus contorta douglas) has been studied in a laboratory experiment. The needles were picked from trees that have been irrigated with simulated acid rain at pH 5.6 or 3.0. The soil beneath some of the trees was limed. The decomposition of the needles increased with temperature and incubation period. Liming of the soil retarded the decomposition of the needles that have been given rain at pH 3, while irrigation with 50 mm of water per month at pH 3 increased the decomposition compared with 25 mm/month. When needles were incubated in dilute sulphuric acid, the decomposition was reduced at pH 1.8 compared to the decomposition at pH 3.5. At pH 1.0 no decomposition occurred. Fungi were isolated from the needles. The different treatments did not seem to affect the composition of the fungal flora of the needles. The fungi were tested for their ability to decompose cellulose. The four most active cellulose decomposeres were Trichoderma harzianum, Coniothyrium sp., Cladosporium macrocarpum, and a sterile white mycelium. T. harzianum seemed to be more tolerant to acid conditions than the other fungi.

  20. Effect of dislocations on spinodal decomposition in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Li Yongsheng; Li Shuxiao; Zhang Tongyi

    2009-01-01

    Phase-field simulations of spinodal decomposition in Fe-Cr alloys with dislocations were performed by using the Cahn-Hilliard diffusion equation. The stress field of dislocations was calculated in real space via Stroh's formalism, while the composition inhomogeneity-induced stress field and the diffusion equation were numerically calculated in Fourier space. The simulation results indicate that dislocation stress field facilitates, energetically and kinetically, spinodal decomposition, making the phase separation faster and the separated phase particles bigger at and near the dislocation core regions. A tilt grain boundary is thus a favorable place for spinodal decomposition, resulting in a special microstructure morphology, especially at the early stage of decomposition.

  1. A test of the hierarchical model of litter decomposition

    DEFF Research Database (Denmark)

    Bradford, Mark A.; Veen, G. F.; Bonis, Anne

    2017-01-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls...... regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature...

  2. A multi-domain spectral method for time-fractional differential equations

    Science.gov (United States)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  3. Testing the Use of Pigs as Human Proxies in Decomposition Studies.

    Science.gov (United States)

    Connor, Melissa; Baigent, Christiane; Hansen, Eriek S

    2017-12-28

    Pigs are a common human analogue in taphonomic study, yet data comparing the trajectory of decomposition between the two groups are lacking. This study compared decomposition rate and gross tissue change in 17 pigs and 22 human remains placed in the Forensic Investigation Research Station in western Colorado between 2012 and 2015. Accumulated degree days (ADD) were used to assess the number of thermal units required to reach a given total body score (TBS) (1) which was used as the measure of decomposition. A comparison of slopes in linear mixed effects model indicated that decomposition rates significantly differed between human donors and pig remains χ 2 (1) = 5.662, p = 0.017. Neither the pig nor the human trajectory compared well to the TBS model. Thus, (i) pigs are not an adequate proxy for human decomposition studies, and (ii) in the semiarid environment of western Colorado, there is a need to develop a regional decomposition model. © 2017 American Academy of Forensic Sciences.

  4. Triboluminescence and associated decomposition of solid methanol

    International Nuclear Information System (INIS)

    Trout, G.J.; Moore, D.E.; Hawke, J.G.

    1975-01-01

    The decomposition is initiated by the cooling of solid methanol through the β → α transiRon at 157.8K, producing the gases hydrogen, carbon monoxide, and methane. The passage through this lambda transition causes the breakup of large crystals of β-methanol into crystallites of α-methanol and is accompanied by light emission as well as decomposition. This triboluminescence is accompanied by, and apparently produced by, electrical discharges through methanol vapor in the vicinity of the solid. The potential differences needed to produce the electrical breakdown of the methanol vapor apparently arise from the disruption of the long hydrogen bonded chains of methanol molecules present in crystalline methanol. Charge separation following crystal deformation is a characteristic of substances which exhibit gas discharge triboluminescence; solid methanol has been found to emit such luminescence when mechanically deformed in the absence of the β → α transition The decomposition products are not produced directly by the breaking up of the solid methanol but from the vapor phase methanol by the electrical discharges. That gas phase decomposition does occur was confirmed by observing that the vapors of C 2 H 5 OH, CH 3 OD, and CD 3 OD decompose on being admitted to a vessel containing methanol undergoing the β → α phase transition. (U.S.)

  5. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Taguchi, M.; Hirota, K.; Takigami, M.; Kojima, T.

    2006-01-01

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  6. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    Science.gov (United States)

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  7. The use of the empirical mode decomposition for the identification of mean field aligned reference frames

    Directory of Open Access Journals (Sweden)

    Mauro Regi

    2017-01-01

    Full Text Available The magnetic field satellite data are usually referred to geocentric coordinate reference frame. Conversely, the magnetohydrodynamic waves modes in magnetized plasma depend on the ambient magnetic field, and is then useful to rotate the magnetic field measurements into the mean field aligned (MFA coordinate system. This reference frame is useful to study the ultra low frequency magnetic field variations along the direction of the mean field and perpendicularly to it. In order to identify the mean magnetic field the classical moving average (MAVG approach is usually adopted but, under particular conditions, this procedure induces undesired features, such as spectral alteration in the rotated components. We discuss these aspects promoting an alternative and more efficient method for mean field aligned projection, based on the empirical mode decomposition (EMD.

  8. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    during the HP decomposition. The model assumes that the enzyme decay is controlled by an inactivation stoichiometry related to the HP decomposition. In order to make the model easily applicable, it is furthermore assumed that the COD is a proxy of the active biomass concentration of the water and thereby......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  9. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  10. DECOMPOSITION OF TARS IN MICROWAVE PLASMA – PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Mateusz Wnukowski

    2014-07-01

    Full Text Available The paper refers to the main problem connected with biomass gasification - a presence of tar in a product gas. This paper presents preliminary results of tar decomposition in a microwave plasma reactor. It gives a basic insight into the construction and work of the plasma reactor. During the experiment, researches were carried out on toluene as a tar surrogate. As a carrier gas for toluene and as a plasma agent, nitrogen was used. Flow rates of the gases and the microwave generator’s power were constant during the whole experiment. Results of the experiment showed that the decomposition process of toluene was effective because the decomposition efficiency attained above 95%. The main products of tar decomposition were light hydrocarbons and soot. The article also gives plans for further research in a matter of tar removal from the product gas.

  11. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  12. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  13. Doob's decomposition of set-valued submartingales via ordered ...

    African Journals Online (AJOL)

    We use ideas from measure-free martingale theory and R˚adstr¨om' completion of a near vector space to derive a Doob decomposition of submartingales in ordered near vector spaces. As a special cases thereof, we obtain the Doob decomposition of set-valued submartingales, as noted by Daures, Ni and Zhang, and an ...

  14. X-Ray Thomson Scattering Without the Chihara Decomposition

    Science.gov (United States)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  15. Decomposition of argentiferous plumbojarosite in Ca O media

    International Nuclear Information System (INIS)

    Patino, F.; Arenas, A.; Rivera, I.; Cordoba, D.A.; Hernandez, L.; Salinas, E.

    1998-01-01

    The decomposition of argentiferous plumbojarosite in CaO media is studied to determine the rates dependences with respect to concentration, energetic request and particle size. The alkaline decomposition process of jarosite phase can be represented by: Pb .05 Fe 3 (SO 4 ) 2 (OH) 6 (s) + 4 (OH) - (aq) → 0.5 Pb (OH) 2 (s) + 3 Fe (OH) 3 (s) + 2 SO 4 2- (aq). The resultant solids of the decomposition formed by a gel of iron and lead hydroxides, are amorphous and do not evolve to crystalline phases of lead ferrite type in the studied conditions. The alkaline decomposition process in CaO media is of zero order with respect to the OH - concentration for [OH - ] > 10 -3 M, presenting an order of ≅ 0.5 at lower concentrations. The temperature effect indicates an activation energy of 45 KJ/mol, while the observed rates in different sizes of aggregate, as well as the whole-one are practically identical. These dependences are indicative of chemical control of the reaction because they are incompatible with a control by diffusion in ashes cape. (Author)

  16. An optimization approach for fitting canonical tensor decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Dunlavy, Daniel M. (Sandia National Laboratories, Albuquerque, NM); Acar, Evrim; Kolda, Tamara Gibson

    2009-02-01

    Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.

  17. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  18. Decomposition of aboveground biomass of a herbaceous wetland stand

    OpenAIRE

    KLIMOVIČOVÁ, Lucie

    2010-01-01

    The master?s thesis is part of the project GA ČR č. P504/11/1151- Role of plants in the greenhouse gas budget of a sedge fen. This thesis deals with the decomposition of aboveground vegetation in a herbaceous wetland. The decomposition rate was established on the flooded part of the Wet Meadows near Třeboň. The rate of the decomposition processes was evaluated using the litter-bag method. Mesh bags filled with dry plant matter were located in the vicinity of the automatic meteorological stati...

  19. Soil fauna and plant litter decomposition in tropical and subalpine forests

    Science.gov (United States)

    G. Gonzalez; T.R. Seastedt

    2001-01-01

    The decomposition of plant residues is influenced by their chemical composition, the physical-chemical environment, and the decomposer organisms. Most studies interested in latitudinal gradients of decomposition have focused on substrate quality and climate effects on decomposition, and have excluded explicit recognition of the soil organisms involved in the process....

  20. The Slice Algorithm For Irreducible Decomposition of Monomial Ideals

    DEFF Research Database (Denmark)

    Roune, Bjarke Hammersholt

    2009-01-01

    Irreducible decomposition of monomial ideals has an increasing number of applications from biology to pure math. This paper presents the Slice Algorithm for computing irreducible decompositions, Alexander duals and socles of monomial ideals. The paper includes experiments showing good performance...

  1. An integrated condition-monitoring method for a milling process using reduced decomposition features

    International Nuclear Information System (INIS)

    Liu, Jie; Wu, Bo; Hu, Youmin; Wang, Yan

    2017-01-01

    Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification. (paper)

  2. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-11-01

    Full Text Available Sulfur hexafluoride (SF6 gas-insulated electrical equipment is widely used in high-voltage (HV and extra-high-voltage (EHV power systems. Partial discharge (PD and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES and infrared (IR spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  3. Multi-country comparisons of energy performance: The index decomposition analysis approach

    International Nuclear Information System (INIS)

    Ang, B.W.; Xu, X.Y.; Su, Bin

    2015-01-01

    Index decomposition analysis (IDA) is a popular tool for studying changes in energy consumption over time in a country or region. This specific application of IDA, which may be called temporal decomposition analysis, has been extended by researchers and analysts to study variations in energy consumption or energy efficiency between countries or regions, i.e. spatial decomposition analysis. In spatial decomposition analysis, the main objective is often to understand the relative contributions of overall activity level, activity structure, and energy intensity in explaining differences in total energy consumption between two countries or regions. We review the literature of spatial decomposition analysis, investigate the methodological issues, and propose a spatial decomposition analysis framework for multi-region comparisons. A key feature of the proposed framework is that it passes the circularity test and provides consistent results for multi-region comparisons. A case study in which 30 regions in China are compared and ranked based on their performance in energy consumption is presented. - Highlights: • We conducted cross-regional comparisons of energy consumption using IDA. • We proposed two criteria for IDA method selection in spatial decomposition analysis. • We proposed a new model for regional comparison that passes the circularity test. • Features of the new model are illustrated using the data of 30 regions in China

  4. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Science.gov (United States)

    Dong, Ming; Ren, Ming; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations. PMID:29140268

  5. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia

    Directory of Open Access Journals (Sweden)

    T. Broder

    2012-04-01

    Full Text Available Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR measurements of solid peat, C/N ratio, and δ13C and δ15N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (R2 > 0.55, p < 0.01 with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by Sphagnum mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of δ13C were 26.5 ± 2‰ in the peat and partly related to decomposition indices, while δ15N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in 13C and in 15N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, δ13C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash

  6. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions

    OpenAIRE

    Koh, Kai Seng; Chin, Jitkai; Wahida Ku Chik, Tengku F.

    2013-01-01

    Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition ...

  7. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  8. Decomposition of residual oil by large scale HSC plant

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Koichi; Ogata, Yoshitaka; Limmer, H.; Schuetter, H. (Toyo Engineering Corp., funabashi, Japan VEB Petrolchemisches Kombinat Schwedt, Schwedt (East Germany))

    1989-07-01

    Regarding large scale and high decomposition ratio visbreaker HSC, characteristic points and operation conditions of a new plant in East Germany were introduced. As for the characteristics of the process, high decomposition ratio and stable decpmposed oil, availability of high sulfur content oil or even decomposed residuum of visbreaker, stableness of produced light oil with low content of unsaturated components, low investment with low running cost, were indicated. For the realization of high decomposition ratio, designing for suppressing the decomposition in heating furnace and accelaration of it in soaking drum, high space velocity of gas phase for better agitation, were raised. As the main subject of technical development, design of soaking drum was indicated with main dimensions for the designing. Operation conditions of the process in East Germany using residual oil supplied from already working visbreaker for USSR crude oil were introduced. 6 refs., 4 figs., 2 tabs.

  9. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    International Nuclear Information System (INIS)

    Adamopoulou, Theodora; Papadaki, Maria I.; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M.Sam

    2013-01-01

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH 2 OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g −1 . The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate

  10. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Theodora [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Papadaki, Maria I., E-mail: mpapadak@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Kounalakis, Manolis [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Vazquez-Carreto, Victor; Pineda-Solano, Alba [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wang, Qingsheng [Department of Fire Protection and Safety and Department of Chemical Engineering, Oklahoma State University, 494 Cordell South, Stillwater, OK 74078 (United States); Mannan, M.Sam [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2013-06-15

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH{sub 2}OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g{sup −1}. The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate.

  11. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  12. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  13. Long-term litter decomposition controlled by manganese redox cycling.

    Science.gov (United States)

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.

  14. Fast modal decomposition for optical fibers using digital holography.

    Science.gov (United States)

    Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai

    2017-07-26

    Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.

  15. Decomposition of ammonium nitrate in homogeneous and catalytic denitration

    International Nuclear Information System (INIS)

    Anan'ev, A. V.; Tananaev, I. G.; Shilov, V. P.

    2005-01-01

    Ammonium nitrate is one of potentially explosive by-products of spent fuel reprocessing. Decomposition of ammonium nitrate in the HNO 3 -HCOOH system was studied in the presence or absence of Pt/SiO 2 catalyst. It was found that decomposition of ammonium nitrate is due to homogeneous noncatalytic oxidation of ammonium ion with nitrous acid generated in the HNO 3 -HCOOH system during denitration. The platinum catalyst initiates the reaction of HNO 3 with HCOOH to form HNO 2 . The regular trends were revealed and the optimal conditions of decomposition of ammonium nitrate in nitric acid solutions were found [ru

  16. Martensite decomposition in Cu–Al–Mn–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila Maria Andrade dos, E-mail: camilaandr@gmail.com [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, Antonio Tallarico [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Galdino da Silva, Ricardo Alexandre [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Carvalho, Thaisa Mary [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2014-12-05

    Highlights: • Martensite decomposition in Cu–Al–Mn–Ag alloys is mainly influenced by Mn. • Interaction between Cu–Mn atomic pairs increases activation energy. • Cu diffusion is disturbed by the interaction between Cu–Mn atomic pairs. - Abstract: The influence of Mn and Ag additions on the isothermal kinetics of martensite decomposition in the Cu–9wt.%Al alloy was studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXS) and microhardness changes measurements with temperature and time. The results indicated that the reaction is disturbed by the increase of Mn, an effect associated with the increase in the Al–Mn and Cu–Mn atomic pairs, which disturbs Cu diffusion and increases the activation energy for the martensite decomposition reaction.

  17. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  18. Decomposition of multilayer benzene and n-hexane films on vanadium.

    Science.gov (United States)

    Souda, Ryutaro

    2015-09-21

    Reactions of multilayer hydrocarbon films with a polycrystalline V substrate have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Most of the benzene molecules were dissociated on V, as evidenced by the strong depression in the thermal desorption yields of physisorbed species at 150 K. The reaction products dehydrogenated gradually after the multilayer film disappeared from the surface. Large amount of oxygen was needed to passivate the benzene decomposition on V. These behaviors indicate that the subsurface sites of V play a role in multilayer benzene decomposition. Decomposition of the n-hexane multilayer films is manifested by the desorption of methane at 105 K and gradual hydrogen desorption starting at this temperature, indicating that C-C bond scission precedes C-H bond cleavage. The n-hexane dissociation temperature is considerably lower than the thermal desorption temperature of the physisorbed species (140 K). The n-hexane multilayer morphology changes at the decomposition temperature, suggesting that a liquid-like phase formed after crystallization plays a role in the low-temperature decomposition of n-hexane.

  19. Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures

    Science.gov (United States)

    Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en

    2015-08-01

    Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.

  20. Bayesian Multi-Energy Computed Tomography reconstruction approaches based on decomposition models

    International Nuclear Information System (INIS)

    Cai, Caifang

    2013-01-01

    Multi-Energy Computed Tomography (MECT) makes it possible to get multiple fractions of basis materials without segmentation. In medical application, one is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical MECT measurements are usually obtained with polychromatic X-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam poly-chromaticity fail to estimate the correct decomposition fractions and result in Beam-Hardening Artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log pre-processing and the water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on non-linear forward models counting the beam poly-chromaticity show great potential for giving accurate fraction images.This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint Maximum A Posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a non-quadratic cost function. To solve it, the use of a monotone Conjugate Gradient (CG) algorithm with suboptimal descent steps is proposed.The performances of the proposed approach are analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  1. Time-frequency analysis : mathematical analysis of the empirical mode decomposition.

    Science.gov (United States)

    2009-01-01

    Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...

  2. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  3. Geometric decomposition of the conformation tensor in viscoelastic turbulence

    Science.gov (United States)

    Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.

    2018-05-01

    This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

  4. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    Science.gov (United States)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  5. rCUR: an R package for CUR matrix decomposition

    Directory of Open Access Journals (Sweden)

    Bodor András

    2012-05-01

    Full Text Available Abstract Background Many methods for dimensionality reduction of large data sets such as those generated in microarray studies boil down to the Singular Value Decomposition (SVD. Although singular vectors associated with the largest singular values have strong optimality properties and can often be quite useful as a tool to summarize the data, they are linear combinations of up to all of the data points, and thus it is typically quite hard to interpret those vectors in terms of the application domain from which the data are drawn. Recently, an alternative dimensionality reduction paradigm, CUR matrix decompositions, has been proposed to address this problem and has been applied to genetic and internet data. CUR decompositions are low-rank matrix decompositions that are explicitly expressed in terms of a small number of actual columns and/or actual rows of the data matrix. Since they are constructed from actual data elements, CUR decompositions are interpretable by practitioners of the field from which the data are drawn. Results We present an implementation to perform CUR matrix decompositions, in the form of a freely available, open source R-package called rCUR. This package will help users to perform CUR-based analysis on large-scale data, such as those obtained from different high-throughput technologies, in an interactive and exploratory manner. We show two examples that illustrate how CUR-based techniques make it possible to reduce significantly the number of probes, while at the same time maintaining major trends in data and keeping the same classification accuracy. Conclusions The package rCUR provides functions for the users to perform CUR-based matrix decompositions in the R environment. In gene expression studies, it gives an additional way of analysis of differential expression and discriminant gene selection based on the use of statistical leverage scores. These scores, which have been used historically in diagnostic regression

  6. Benders’ Decomposition for Curriculum-Based Course Timetabling

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian F.; Sørensen, Matias; Stidsen, Thomas R.

    2018-01-01

    feasibility. We compared our algorithm with other approaches from the literature for a total of 32 data instances. We obtained a lower bound on 23 of the instances, which were at least as good as the lower bounds obtained by the state-of-the-art, and on eight of these, our lower bounds were higher. On two......In this paper we applied Benders’ decomposition to the Curriculum-Based Course Timetabling (CBCT) problem. The objective of the CBCT problem is to assign a set of lectures to time slots and rooms. Our approach was based on segmenting the problem into time scheduling and room allocation problems...... of the instances, our lower bound was an improvement of the currently best-known. Lastly, we compared our decomposition to the model without the decomposition on an additional six instances, which are much larger than the other 32. To our knowledge, this was the first time that lower bounds were calculated...

  7. Spectral evolution of Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K-Y.; Durand, A. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Heintz, J-M.; Veillere, A. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Bordeaux INP, ICMCB, UPR 9048, F-33600 Pessac (France); Jubera, V., E-mail: veronique.jubera@u-bordeaux.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2016-03-15

    A Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate powder was synthetized using a polymerizable complex route. It gave rise to nanometric particles that crystallized in the fluorine structure, corresponding to the Y{sub 3}NbO{sub 7} phase. The thermal evolution of this powder was followed up to 1600 °C, using X-ray diffraction and optical characterizations. The fluorine structure was maintained in the whole temperature range. However, spectral evolution of the samples calcined above 900 °C showed a more complex situation. Emission spectra of powders heat treated at different temperatures showed an evolution of the emission lines that can be attributed first to a better crystallization of the niobate phase and second to its partial decomposition in favor of the formation of YNbO{sub 4} and Y{sub 2}O{sub 3}. Although the Y{sub 3}NbO{sub 7} phase appeared stable up to 1650 °C, from X-ray diffraction analysis, spectral analysis showed that the local environment of the doping element is modified from 1100 °C. - Graphical abstract: Spectral evolution of Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate induced by temperature.

  8. Separable decompositions of bipartite mixed states

    Science.gov (United States)

    Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.

  9. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  10. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    Science.gov (United States)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  11. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  12. Xylanase and cellulase activities during anaerobic decomposition of three aquatic macrophytes.

    Science.gov (United States)

    Nunes, Maíra F; da Cunha-Santino, Marcela B; Bianchini, Irineu

    2011-01-01

    Enzymatic activity during decomposition is extremely important to hydrolyze molecules that are assimilated by microorganisms. During aquatic macrophytes decomposition, enzymes act mainly in the breakdown of lignocellulolytic matrix fibers (i.e. cellulose, hemicellulose and lignin) that encompass the refractory fraction from organic matter. Considering the importance of enzymatic activities role in decomposition processes, this study aimed to describe the temporal changes of xylanase and cellulose activities during anaerobic decomposition of Ricciocarpus natans (freely-floating), Oxycaryum cubense (emergent) and Cabomba furcata (submersed). The aquatic macrophytes were collected in Óleo Lagoon, Luiz Antonio, São Paulo, Brazil and bioassays were accomplished.  Decomposition chambers from each species (n = 10) were set up with dried macrophyte fragments and filtered Óleo Lagoon water. The chambers were incubated at 22.5°C, in the dark and under anaerobic conditions. Enzymatic activities and remaining organic matter were measured periodically during 90 days. The temporal variation of enzymes showed that C. furcata presented the highest decay and the highest maximum enzyme production. Xylanase production was higher than cellulase production for the decomposition of the three aquatic macrophytes species.

  13. Spinodal decomposition of austenite in long-term-aged duplex stainless steel

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-02-01

    Spinodal decomposition of austenite phase in the cast duplex stainless steels CF-8 and -8M grades has been observed after long- term thermal aging at 400 and 350/degree/C for 30,000 h (3.4 yr). At 320/degree/C, the reaction was observed only at the limited region near the austenite grain boundaries. Ni segregation and ''worm-holes'' corresponding to the spatial microchemical fluctuations have been confirmed. The decomposition was observed only for heats containing relatively high overall Ni content (9.6--12.0 wt %) but not in low-Ni (8.0--9.4 wt %) heats. In some specimens showing a relatively advanced stage of decomposition, localized regions of austenite with a Vickers hardness of 340--430 were observed. However, the effect of austenite decomposition on the overall material toughness appears secondary for aging up to 3--5 yr in comparison with the effect of the faster spinodal decomposition in ferrite phase. The observation of the thermally driven spinodal decomposition of the austenite phase in cast duplex stainless steels validates the proposition that a miscibility gap occurs in Fe-Ni and ancillary systems. 16 refs., 7 figs., 1 tab

  14. Preconditioned Krylov subspace methods for eigenvalue problems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Saad, Y.; Stathopoulos, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    Lanczos algorithm is a commonly used method for finding a few extreme eigenvalues of symmetric matrices. It is effective if the wanted eigenvalues have large relative separations. If separations are small, several alternatives are often used, including the shift-invert Lanczos method, the preconditioned Lanczos method, and Davidson method. The shift-invert Lanczos method requires direct factorization of the matrix, which is often impractical if the matrix is large. In these cases preconditioned schemes are preferred. Many applications require solution of hundreds or thousands of eigenvalues of large sparse matrices, which pose serious challenges for both iterative eigenvalue solver and preconditioner. In this paper we will explore several preconditioned eigenvalue solvers and identify the ones suited for finding large number of eigenvalues. Methods discussed in this paper make up the core of a preconditioned eigenvalue toolkit under construction.

  15. Multiresolution signal decomposition transforms, subbands, and wavelets

    CERN Document Server

    Akansu, Ali N; Haddad, Paul R

    2001-01-01

    The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course

  16. Entanglement and tensor product decomposition for two fermions

    International Nuclear Information System (INIS)

    Caban, P; Podlaski, K; Rembielinski, J; Smolinski, K A; Walczak, Z

    2005-01-01

    The problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators is discussed. The set of physical states of the composite system is restricted by the superselection rule forbidding the superposition of fermions and bosons. It is shown that the Wootters concurrence is not the proper entanglement measure in this case. The explicit formula for the entanglement of formation is found. This formula shows that the entanglement of a given state depends on the tensor product decomposition of a Hilbert space. It is shown that the set of separable states is narrower than in the two-qubit case. Moreover, there exist states which are separable with respect to all tensor product decompositions of the Hilbert space. (letter to the editor)

  17. Dinitraminic acid (HDN) isomerization and self-decomposition revisited

    International Nuclear Information System (INIS)

    Rahm, Martin; Brinck, Tore

    2008-01-01

    Density functional theory (DFT) and the ab initio based CBS-QB3 method have been used to study possible decomposition pathways of dinitraminic acid HN(NO 2 ) 2 (HDN) in gas-phase. The proton transfer isomer of HDN, O 2 NNN(O)OH, and its conformers can be formed and converted into each other through intra- and intermolecular proton transfer. The latter has been shown to proceed substantially faster via double proton transfer. The main mechanism for HDN decomposition is found to be initiated by a dissociation reaction, splitting of nitrogen dioxide from either HDN or the HDN isomer. This reaction has an activation enthalpy of 36.5 kcal/mol at the CBS-QB3 level, which is in good agreement with experimental estimates of the decomposition barrier

  18. Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhanqiang; Qu, Jianfeng; Chai, Yi; Tang, Qiu; Zhou, Yuming [Chongqing University, Chongqing (China)

    2017-02-15

    The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decomposition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Finally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can accurately diagnose and identify different fault types of gear under variable conditions.

  19. Thermal decomposition of potassium metaperiodate doped with trivalent ions

    Energy Technology Data Exchange (ETDEWEB)

    Muraleedharan, K., E-mail: kmuralika@gmail.com [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India); Kannan, M.P.; Gangadevi, T. [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India)

    2010-04-20

    The kinetics of isothermal decomposition of potassium metaperiodate (KIO{sub 4}), doped with phosphate and aluminium has been studied by thermogravimetry (TG). We introduced a custom-made thermobalance that is able to record weight decrease with time under pure isothermal conditions. The decomposition proceeds mainly through two stages: an acceleratory stages up to {alpha} = 0.50 and the decay stage beyond. The decomposition data for aluminium and phosphate doped KIO{sub 4} were found to be best described by the Prout-Tompkins equation. Separate kinetic analyses of the {alpha}-t data corresponding to the acceleratory region and decay region showed that the acceleratory stage gave the best fit with Prout-Tompkins equation itself whereas the decay stage fitted better to the contracting area equation. The rate of decomposition of phosphate doped KIO{sub 4} increases approximately linearly with an increase in the dopant concentration. In the case of aluminium doped KIO{sub 4}, the rate passes through a maximum with increase in the dopant concentration. The {alpha}-t data of pure and doped KIO{sub 4} were also subjected to isoconversional studies for the determination of activation energy values. Doping did not change the activation energy of the reaction. The results favour an electron-transfer mechanism for the isothermal decomposition of KIO{sub 4}, agreeing well with our earlier observations.

  20. Challenges of including nitrogen effects on decomposition in earth system models

    Science.gov (United States)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  1. Avoiding spurious submovement decompositions: a globally optimal algorithm

    International Nuclear Information System (INIS)

    Rohrer, Brandon Robinson; Hogan, Neville

    2003-01-01

    Evidence for the existence of discrete submovements underlying continuous human movement has motivated many attempts to extract them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.

  2. Decomposition characteristics of maize ( Zea mays . L.) straw with ...

    African Journals Online (AJOL)

    Decomposition of maize straw incorporated into soil with various nitrogen amended carbon to nitrogen (C/N) ratios under a range of moisture was studied through a laboratory incubation trial. The experiment was set up to simulate the most suitable C/N ratio for straw carbon (C) decomposition and sequestering in the soil.

  3. The Products of the Thermal Decomposition of CH3CHO

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  4. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    Science.gov (United States)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  5. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  6. C7-Decompositions of the Tensor Product of Complete Graphs

    Directory of Open Access Journals (Sweden)

    Manikandan R.S.

    2017-08-01

    Full Text Available In this paper we consider a decomposition of Km × Kn, where × denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only if (1 either m or n is odd and (2 14 | m(m − 1n(n − 1. The results of this paper together with the results of [Cp-Decompositions of some regular graphs, Discrete Math. 306 (2006 429–451] and [C5-Decompositions of the tensor product of complete graphs, Australasian J. Combinatorics 37 (2007 285–293], give necessary and sufficient conditions for the existence of a p-cycle decomposition, where p ≥ 5 is a prime number, of the graph Km × Kn.

  7. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    OpenAIRE

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes ...

  8. Thermal unimolecular decomposition of methanol. Zum thermischen unimolekularen Zerfall von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, K

    1979-01-01

    The thermal unimolecular decomposition of methanol and that of acetone (1B) were investigated experimentally after reflected shockwaves, by following up the OH and CH/sub 3/ absorption or the CH/sub 3/ and acetone absorption respectively. A computer simulation of the decomposition of methanol and the subsequent reactions was done. This gave velocity constants for some reactions, which are different from those that are found in the literature. The experimental investigation of the decomposition of acetone, from comparison of the results with the data in the literature, shows that the observations of CH/sub 3/ absorption are very suitable for obtaining velocity constants for decomposition reactions, where CH/sub 3/ radicals are formed in the first stage.

  9. FTIR study of decomposition of carbon dioxide in dc corona discharges

    International Nuclear Information System (INIS)

    Horvath, G; Skalny, J D; Mason, N J

    2008-01-01

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO 2 has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO 2 decomposition is found to be dependent on the voltage, U, with a maximum CO 2 decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO 2 decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  10. FTIR study of decomposition of carbon dioxide in dc corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48, Bratislava (Slovakia); Mason, N J [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2008-11-21

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO{sub 2} has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO{sub 2} decomposition is found to be dependent on the voltage, U, with a maximum CO{sub 2} decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO{sub 2} decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  11. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    Science.gov (United States)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  12. Kinetics of the thermal decomposition of nickel iodide

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Shimizu, Saburo; Onuki, Kaoru; Ikezoe, Yasumasa; Sato, Shoichi

    1984-01-01

    Thermal decomposition kinetics of NiI 2 under constant I 2 partial pressure was studied by thermogravimetry. The reaction is considered as a reaction step of the thermochemical hydrogen production process in the Ni-I-S system. At temperatures from 775K to 869K and under I 2 pressures from 0 to 960Pa, the decomposition started at the NiI 2 pellet surface and the reactant-product interface moved interior at a constant rate until the decomposed fraction, α, reached 0.6. The overall reaction rate at a constant temperature can be expressed as the difference of the constant decomposition (forward) rate, which is proportional to the equilibrium dissociation pressure of NiI 2 , and the iodide formation (backward) rate, which is proportional to the I 2 pressure. The apparent activation energy of the decomposition was 147 kJ.mol -1 , which is very close to the heat of reaction, 152 kJ.mol -1 calculated from the equilibrium dissociation pressure. The electron microscopic observations, revealed that the reaction product obtained by decomposing NiI 2 under pure He atomosphere was composed of relatively well grown cubic Ni crystals. Whereas, the decomposed product obtained under I 2 -He mixture was composed of larger but disordered crystals. (author)

  13. Energetic contaminants inhibit plant litter decomposition in soil.

    Science.gov (United States)

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Sunahara, Geoffrey I; Hawari, Jalal

    2018-05-30

    Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes. Published by Elsevier Inc.

  14. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN solutions

    Directory of Open Access Journals (Sweden)

    Kai Seng Koh

    2013-09-01

    Full Text Available Decomposition of hydroxylammonium nitrate (HAN solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100 °C regardless of concentration of HAN. In term of power consumption, 100 W–300 W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.

  15. Using combinatorial problem decomposition for optimizing plutonium inventory management

    International Nuclear Information System (INIS)

    Niquil, Y.; Gondran, M.; Voskanian, A.; Paris-11 Univ., 91 - Orsay

    1997-03-01

    Plutonium Inventory Management Optimization can be modeled as a very large 0-1 linear program. To solve it, problem decomposition is necessary, since other classic techniques are not efficient for such a size. The first decomposition consists in favoring constraints that are the most difficult to reach and variables that have the highest influence on the cost: fortunately, both correspond to stock output decisions. The second decomposition consists in mixing continuous linear program solving and integer linear program solving. Besides, the first decisions to be taken are systematically favored, for they are based on data considered to be sure, when data supporting later decisions in known with less accuracy and confidence. (author)

  16. Using combinatorial problem decomposition for optimizing plutonium inventory management

    Energy Technology Data Exchange (ETDEWEB)

    Niquil, Y.; Gondran, M. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches; Voskanian, A. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches]|[Paris-11 Univ., 91 - Orsay (France). Lab. de Recherche en Informatique

    1997-03-01

    Plutonium Inventory Management Optimization can be modeled as a very large 0-1 linear program. To solve it, problem decomposition is necessary, since other classic techniques are not efficient for such a size. The first decomposition consists in favoring constraints that are the most difficult to reach and variables that have the highest influence on the cost: fortunately, both correspond to stock output decisions. The second decomposition consists in mixing continuous linear program solving and integer linear program solving. Besides, the first decisions to be taken are systematically favored, for they are based on data considered to be sure, when data supporting later decisions in known with less accuracy and confidence. (author) 7 refs.

  17. TRUST MODEL FOR SOCIAL NETWORK USING SINGULAR VALUE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Davis Bundi Ntwiga

    2016-06-01

    Full Text Available For effective interactions to take place in a social network, trust is important. We model trust of agents using the peer to peer reputation ratings in the network that forms a real valued matrix. Singular value decomposition discounts the reputation ratings to estimate the trust levels as trust is the subjective probability of future expectations based on current reputation ratings. Reputation and trust are closely related and singular value decomposition can estimate trust using the real valued matrix of the reputation ratings of the agents in the network. Singular value decomposition is an ideal technique in error elimination when estimating trust from reputation ratings. Reputation estimation of trust is optimal at the discounting of 20 %.

  18. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  19. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Science.gov (United States)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  20. Influence of nitrogen dioxide on the thermal decomposition of ammonium nitrate

    OpenAIRE

    Igor L. Kovalenko

    2015-01-01

    In this paper results of experimental studies of ammonium nitrate thermal decomposition in an open system under normal conditions and in NO2 atmosphere are presented. It is shown that nitrogen dioxide is the initiator of ammonium nitrate self-accelerating exothermic cyclic decomposition process. The insertion of NO2 from outside under the conditions of nonisothermal experiment reduces the characteristic temperature of the beginning of self-accelerating decomposition by 50...70 °C. Using metho...

  1. Interacting effects of insects and flooding on wood decomposition.

    Science.gov (United States)

    Michael Ulyshen

    2014-01-01

    Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L.) decomposition rates...

  2. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  3. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Yoo, J.H.; Kim, E.H.

    1998-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, the photochemical decomposition mechanism of oxalates in the presence of nitric acid was elucidated by experimental work. The decomposition of oxalates was proved to be dominated by the reaction with hydroxyl radical generated from the nitric acid, rather than with nitrite ion also formed from nitrate ion. The decomposition rate of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was found to be 0.003 M/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  4. On the correspondence between data revision and trend-cycle decomposition

    NARCIS (Netherlands)

    Dungey, M.; Jacobs, J. P. A. M.; Tian, J.; van Norden, S.

    2013-01-01

    This article places the data revision model of Jacobs and van Norden (2011) within a class of trend-cycle decompositions relating directly to the Beveridge-Nelson decomposition. In both these approaches, identifying restrictions on the covariance matrix under simple and realistic conditions may

  5. Decompositions, partitions, and coverings with convex polygons and pseudo-triangles

    NARCIS (Netherlands)

    Aichholzer, O.; Huemer, C.; Kappes, S.; Speckmann, B.; Tóth, Cs.D.

    2007-01-01

    We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex

  6. The influence of preburial insect access on the decomposition rate.

    Science.gov (United States)

    Bachmann, Jutta; Simmons, Tal

    2010-07-01

    This study compared total body score (TBS) in buried remains (35 cm depth) with and without insect access prior to burial. Sixty rabbit carcasses were exhumed at 50 accumulated degree day (ADD) intervals. Weight loss, TBS, intra-abdominal decomposition, carcass/soil interface temperature, and below-carcass soil pH were recorded and analyzed. Results showed significant differences (p decomposition rates between carcasses with and without insect access prior to burial. An approximately 30% enhanced decomposition rate with insects was observed. TBS was the most valid tool in postmortem interval (PMI) estimation. All other variables showed only weak relationships to decomposition stages, adding little value to PMI estimation. Although progress in estimating the PMI for surface remains has been made, no previous studies have accomplished this for buried remains. This study builds a framework to which further comparable studies can contribute, to produce predictive models for PMI estimation in buried human remains.

  7. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  8. Basic dye decomposition kinetics in a photocatalytic slurry reactor

    International Nuclear Information System (INIS)

    Wu, C.-H.; Chang, H.-W.; Chern, J.-M.

    2006-01-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO 2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO 2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO 2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 deg. C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO 2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO 2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well

  9. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  10. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  11. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach

    International Nuclear Information System (INIS)

    Monjoly, Stéphanie; André, Maïna; Calif, Rudy; Soubdhan, Ted

    2017-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index K_c data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model. - Highlights: • Hourly forecasting of GHI in tropical climate with many cloud formation processes. • Clear sky Index decomposition using three multiscale decomposition methods. • Combination of multiscale decomposition methods with AR-NN models to predict GHI. • Comparison of the proposed hybrid model with the classical models (AR, NN). • Best results using Wavelet-Hybrid model in comparison with classical models.

  12. The persistence of human DNA in soil following surface decomposition.

    Science.gov (United States)

    Emmons, Alexandra L; DeBruyn, Jennifer M; Mundorff, Amy Z; Cobaugh, Kelly L; Cabana, Graciela S

    2017-09-01

    Though recent decades have seen a marked increase in research concerning the impact of human decomposition on the grave soil environment, the fate of human DNA in grave soil has been relatively understudied. With the purpose of supplementing the growing body of literature in forensic soil taphonomy, this study assessed the relative persistence of human DNA in soil over the course of decomposition. Endpoint PCR was used to assess the presence or absence of human nuclear and mitochondrial DNA, while qPCR was used to evaluate the quantity of human DNA recovered from the soil beneath four cadavers at the University of Tennessee's Anthropology Research Facility (ARF). Human nuclear DNA from the soil was largely unrecoverable, while human mitochondrial DNA was detectable in the soil throughout all decomposition stages. Mitochondrial DNA copy abundances were not significantly different between decomposition stages and were not significantly correlated to soil edaphic parameters tested. There was, however, a significant positive correlation between mitochondrial DNA copy abundances and the human associated bacteria, Bacteroides, as estimated by 16S rRNA gene abundances. These results show that human mitochondrial DNA can persist in grave soil and be consistently detected throughout decomposition. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  13. Gyroscope-driven mouse pointer with an EMOTIV® EEG headset and data analysis based on Empirical Mode Decomposition.

    Science.gov (United States)

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-08-14

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.

  14. Qualitative Analysis of Chang'e-1 γ-ray Spectrometer Spectra Using Noise Adjusted Singular Value Decomposition Method

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the features of spectra shape of Chang'e-1 γ-ray spectrometer(CE1-GRS) data, it is difficult to determine elemental compositions on the lunar surface. Aimed at this problem, this paper proposes using noise adjusted singular value decomposition (NASVD) method to extract orthogonal spectral components from CE1-GRS data. Then the peak signals in the spectra of lower-order layers corresponding to the observed spectrum of each lunar region are respectively analyzed. Elemental compositions of each lunar region can be determined based upon whether the energy corresponding to each peak signal equals to the energy corresponding to the characteristic gamma-ray line emissions of specific elements. The result shows that a number of elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg, Ca and Na are qualitatively determined by this method. (authors)

  15. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  16. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  17. Basis of the biological decomposition of xenobiotica

    International Nuclear Information System (INIS)

    Mueller, R. von

    1993-01-01

    The ability of micro-organisms to decompose different molecules and to use them as a source of carbon, nitrogen, sulphur or energy is the basis for all biological processes for cleaning up contaminated soil. Therefore, the knowledge of these decomposition processes is an important precondition for judging which contamination can be treated biologically at all and which materials can be decomposed biologically. The decomposition schemes of the most important harmful material classes (aliphatic, aromatic and chlorinated hydrocarbons) are introduced and the consequences which arise for the practical application in biological cleaning up of contaminated soils are discussed. (orig.) [de

  18. Thermal decomposition of 2-methylbenzoates of rare earth elements

    International Nuclear Information System (INIS)

    Brzyska, W.; Szubartowski, L.

    1980-01-01

    The conditions of thermal decomposition of La, Ce(3), Pr, Nd, Sm and Y 2-methylbenzoates were examined. On the basis of obtained results it was stated that hydrated 2-methylbenzoates were subjected to dehydration passing into anhydrated salts and then they decomposed into oxides. The activation energy of dehydration and decomposition reactions of lanthanons, La and Y 2-methylbenzoates was determined. (author)

  19. New Parallel Algorithms for Structural Analysis and Design of Aerospace Structures

    Science.gov (United States)

    Nguyen, Duc T.

    1998-01-01

    Subspace and Lanczos iterations have been developed, well documented, and widely accepted as efficient methods for obtaining p-lowest eigen-pair solutions of large-scale, practical engineering problems. The focus of this paper is to incorporate recent developments in vectorized sparse technologies in conjunction with Subspace and Lanczos iterative algorithms for computational enhancements. Numerical performance, in terms of accuracy and efficiency of the proposed sparse strategies for Subspace and Lanczos algorithm, is demonstrated by solving for the lowest frequencies and mode shapes of structural problems on the IBM-R6000/590 and SunSparc 20 workstations.

  20. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  1. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  2. Focal decompositions for linear differential equations of the second order

    Directory of Open Access Journals (Sweden)

    L. Birbrair

    2003-01-01

    two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.

  3. Nested grids ILU-decomposition (NGILU)

    NARCIS (Netherlands)

    Ploeg, A. van der; Botta, E.F.F.; Wubs, F.W.

    1996-01-01

    A preconditioning technique is described which shows, in many cases, grid-independent convergence. This technique only requires an ordering of the unknowns based on the different levels of multigrid, and an incomplete LU-decomposition based on a drop tolerance. The method is demonstrated on a

  4. Molecular Mechanisms in the shock induced decomposition of FOX-7

    Science.gov (United States)

    Mishra, Ankit; Tiwari, Subodh C.; Nakano, Aiichiro; Vashishta, Priya; Kalia, Rajiv; CACS Team

    Experimental and first principle computational studies on FOX 7 have either involved a very small system consisting of a few atoms or they did not take into account the decomposition mechanisms under extreme conditions of temperature and pressure. We have performed a large-scale reactive MD simulation using ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical composition of the principal decomposition products correlates well with experimental observations. Furthermore, we observed that the production of N2 and H2O was inter molecular in nature and was through different chemical pathways. Moreover, the production of CO and CO2 was delayed due to production of large stable C,O atoms cluster. These critical insights into the initial processes involved in the shock induced decomposition of FOX-7 will greatly help in understanding the factors playing an important role in the insensitiveness of this high energy material. This research is supported by AFOSR Award No. FA9550-16-1-0042.

  5. Pollutant content in marine debris and characterization by thermal decomposition.

    Science.gov (United States)

    Iñiguez, M E; Conesa, J A; Fullana, A

    2017-04-15

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400-500K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A spectral differential characterization of low-mass companions

    Directory of Open Access Journals (Sweden)

    Lyubchik Y.

    2013-04-01

    Full Text Available We present a new approach with which the dynamical mass of low-mass companions around cool stars can be found. In order to discover companions to late-type stars the stellar spectrum is removed. For this we substract two spectra obtained at different orbital phases from each other in order to discover the companion spectrum in the difference spectrum in which the companion lines appear twice (positive and negative signal. The resulting radial velocity difference of these two signals provides the true mass of the companion. For our test case GJ1046, an M2V dwarf with a low-mass companion that most likely is a brown dwarf we select the CO line region in the K-band. We show that the dynamical mass of a faint companion to an M dwarf can be determined using our spectral differential technique. Only if the companion rotates rapidly and has a small radial velocity amplitude due to a high mass, does blending occur for all lines so that our approach fails. In addition to determining the companion mass, we restore the single companion spectrum from the difference spectrum using singular value decomposition.

  7. Spectral Interpretation of Wave-vortex Duality in Northern South China Sea

    Science.gov (United States)

    Cao, H.; Jing, Z.; Yan, T.

    2017-12-01

    The mesoscale to submesocale oceanic dynamics are characterized by a joint effect of vortex and wave component, which primarily declares the partition between geostrophic balanced and unbalanced flows. The spectral method is a favorable approach that can afford the muti-scale analysis. This study investigates the characteristics of horizontal wavenumber spectra in Nothern South China Sea using orbital altimeter data (SARA/AltiKa), 13-yr shipboard ADCP (Acoustic Doppler Current Profiler) measurements (2014-2016), and a high-resolution numerical simulation (llc4320 Mitgcm). The observed SSH (sea surface height) spectrum presents a conspicuous transition at scales of 50-100 km, which clearly shows the inconsistency with geostrophic balance. The Helmholtz decomposition separating the wave and vortex energy for the spectra of ADCP and numerical model data shows that ageostrophic flows should be responsible for the spectral discrepancy with the QG (qusi-geostrophic) turbulence theory. Generally, it is found that inertia-gravity waves (including internal tides) govern the significant kinetic energy in the submesoscale range in Northern South China Sea. More specific analysis suggests that the wave kinetic energy can extend to a large scale of 500 km or more from the zonal velocity spectra at the left-center of Luzon Strait, which appears to be dominated by inertia-gravity waves likely emitted by the intrusion of the west pacific at Luzon Strait. Instead, the development of eddy kinetic energy at this place is strictly constrained by the width of the strait.

  8. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    Science.gov (United States)

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones.

  9. Construct solitary solutions of discrete hybrid equation by Adomian Decomposition Method

    International Nuclear Information System (INIS)

    Wang Zhen; Zhang Hongqing

    2009-01-01

    In this paper, we apply the Adomian Decomposition Method to solving the differential-difference equations. A typical example is applied to illustrate the validity and the great potential of the Adomian Decomposition Method in solving differential-difference equation. Kink shaped solitary solution and Bell shaped solitary solution are presented. Comparisons are made between the results of the proposed method and exact solutions. The results show that the Adomian Decomposition Method is an attractive method in solving the differential-difference equations.

  10. Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition

    Science.gov (United States)

    Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji

    2017-11-01

    Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.

  11. Multivariate Empirical Mode Decomposition Based Signal Analysis and Efficient-Storage in Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu [University of Tennessee, Knoxville (UTK); Albright, Austin P [ORNL; Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Guo, Jiandong [University of Tennessee, Knoxville (UTK); Qi, Hairong [University of Tennessee, Knoxville (UTK); Liu, Yilu [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

    2017-01-01

    Wide-area-measurement systems (WAMSs) are used in smart grid systems to enable the efficient monitoring of grid dynamics. However, the overwhelming amount of data and the severe contamination from noise often impede the effective and efficient data analysis and storage of WAMS generated measurements. To solve this problem, we propose a novel framework that takes advantage of Multivariate Empirical Mode Decomposition (MEMD), a fully data-driven approach to analyzing non-stationary signals, dubbed MEMD based Signal Analysis (MSA). The frequency measurements are considered as a linear superposition of different oscillatory components and noise. The low-frequency components, corresponding to the long-term trend and inter-area oscillations, are grouped and compressed by MSA using the mean shift clustering algorithm. Whereas, higher-frequency components, mostly noise and potentially part of high-frequency inter-area oscillations, are analyzed using Hilbert spectral analysis and they are delineated by statistical behavior. By conducting experiments on both synthetic and real-world data, we show that the proposed framework can capture the characteristics, such as trends and inter-area oscillation, while reducing the data storage requirements

  12. Effect of catalyst for the decomposition of VOCs in a NTP reactor

    International Nuclear Information System (INIS)

    Mohanty, Suchitra; Das, Smrutiprava; Paikaray, Rita; Sahoo, Gourishankar; Samantaray, Subrata

    2015-01-01

    Air pollution has become a major cause of human distress both directly and indirectly. VOCs are becoming the major air pollutants. So the decomposition of VOCs is present need of our society. Non-thermal plasma reactor (NTP) is proven to be effective for low concentration VOCs decomposition. For safe and effective application of DBD, optimization of treatment process requires different plasma parameter characterization. So electron temperature and electron density parameters of VOCs show the decomposition path ways. In this piece of work by taking the emission spectra and comparing the line intensity ratios, the electron temperature and density were determined. Also the decomposition rate in terms of the deposited products on the dielectric surface was studied. Decomposition rate increases in presence of catalyst as compared to the pure compound in presence of a carrier gas. Decomposition process was studied by UV-VIS, FTIR, OES Spectroscopic methods and by GCMS. Deposited products are analyzed by UV-VIS and FTIR spectroscopy. Plasma parameters like electron temperature, density are studied with OES. And gaseous products are studied by GCMS showing the peaks for the by products. (author)

  13. INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Groer, Christopher S [ORNL; Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL

    2012-10-01

    It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.

  14. The nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Kurbonov, A.S.; Mamatov, E.D.; Suleymani, M.; Borudzherdi, A.; Mirsaidov, U.M.

    2011-01-01

    Present article is devoted to nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit of Tajikistan. The obtaining of boric acid from pre backed danburite concentrate by decomposition of nitric acid was studied. The chemical composition of danburite concentrate was determined. The laboratory study of danburite leaching by nitric acid was conducted. The influence of temperature, process duration, nitric acid concentration on nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit was studied as well. The optimal conditions of nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit, including temperature, process duration, nitric acid concentration and particle size were proposed.

  15. Radiation effects on thermal decomposition of inorganic solids

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1985-01-01

    Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)

  16. A Computationally Efficient Tool for Assessing the Depth Resolution in Potential-Field Inversion

    DEFF Research Database (Denmark)

    Paoletti, V.; Hansen, Per Christian; Hansen, Mads Friis

    In potential-field inversion problems, it can be dicult to obtain reliable information about the source distribution with respect to depth. Moreover, spatial resolution of the reconstructions decreases with depth, and in fact the more ill-posed the problem - and the more noisy the data - the less...... reliable the depth information. Based on earlier work using the singular value decomposition, we introduce a tool ApproxDRP which uses approximations of the singular vectors obtained by the iterative Lanczos bidiagonalization algorithm, making it well suited for large-scale problems. This tool allows...... successfully show the limitations of depth resolution resulting from noise in the data. This allows a reliable analysis of the retrievable depth information and effectively guides the user in choosing the optimal number of iterations, for a given problem....

  17. Application of computed tomography virtual noncontrast spectral imaging in evaluation of hepatic metastases: a preliminary study.

    Science.gov (United States)

    Tian, Shi-Feng; Liu, Ai-Lian; Liu, Jing-Hong; Sun, Mei-Yu; Wang, He-Qing; Liu, Yi-Jun

    2015-03-05

    The objective was to qualitatively and quantitatively evaluate hepatic metastases using computed tomography (CT) virtual noncontrast (VNC) spectral imaging in a retrospective analysis. Forty hepatic metastases patients underwent CT scans including the conventional true noncontrast (TNC) and the tri-phasic contrast-enhanced dual energy spectral scans in the hepatic arterial, portal venous, and equilibrium phases. The tri-phasic spectral CT images were used to obtain three groups of VNC images including in the arterial (VNCa), venous (VNCv), and equilibrium (VNCe) phase by the material decomposition process using water and iodine as a base material pair. The image quality and the contrast-to-noise ratio (CNR) of metastasis of the four groups were compared with ANOVA analysis. The metastasis detection rates with the four nonenhanced image groups were calculated and compared using the Chi-square test. There were no significant differences in image quality among TNC, VNCa and VNCv images (P > 0.05). The quality of VNCe images was significantly worse than that of other three groups (P 0.05). The metastasis detection rate of the four nonenhanced groups with no statistically significant difference (P > 0.05). The quality of VNCa and VNCv images is identical to that of TNC images, and the metastasis detection rate in VNC images is similar to that in TNC images. VNC images obtained from arterial phase show metastases more clearly. Thus, VNCa imaging may be a surrogate to TNC imaging in hepatic metastasis diagnosis.

  18. Application of Computed Tomography Virtual Noncontrast Spectral Imaging in Evaluation of Hepatic Metastases: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Shi-Feng Tian

    2015-01-01

    Full Text Available Objective: The objective was to qualitatively and quantitatively evaluate hepatic metastases using computed tomography (CT virtual noncontrast (VNC spectral imaging in a retrospective analysis. Methods: Forty hepatic metastases patients underwent CT scans including the conventional true noncontrast (TNC and the tri-phasic contrast-enhanced dual energy spectral scans in the hepatic arterial, portal venous, and equilibrium phases. The tri-phasic spectral CT images were used to obtain three groups of VNC images including in the arterial (VNCa, venous (VNCv, and equilibrium (VNCe phase by the material decomposition process using water and iodine as a base material pair. The image quality and the contrast-to-noise ratio (CNR of metastasis of the four groups were compared with ANOVA analysis. The metastasis detection rates with the four nonenhanced image groups were calculated and compared using the Chi-square test. Results: There were no significant differences in image quality among TNC, VNCa and VNCv images (P > 0.05. The quality of VNCe images was significantly worse than that of other three groups (P 0.05. The metastasis detection rate of the four nonenhanced groups with no statistically significant difference (P > 0.05. Conclusions: The quality of VNCa and VNCv images is identical to that of TNC images, and the metastasis detection rate in VNC images is similar to that in TNC images. VNC images obtained from arterial phase show metastases more clearly. Thus, VNCa imaging may be a surrogate to TNC imaging in hepatic metastasis diagnosis.

  19. Kinetics of Roasting Decomposition of the Rare Earth Elements by CaO and Coal

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2017-06-01

    Full Text Available The roasting method of magnetic tailing mixed with CaO and coal was used to recycle the rare earth elements (REE in magnetic tailing. The phase transformation and decomposition process were researched during the roasting processes. The results showed that the decomposition processes of REE in magnetic tailing were divided into two steps. The first step from 380 to 431 °C mainly entailed the decomposition of bastnaesite (REFCO3. The second step from 605 to 716 °C mainly included the decomposition of monazite (REPO4. The decomposition products were primarily RE2O3, Ce0.75Nd0.25O1.875, CeO2, Ca5F(PO43, and CaF2. Adding CaO could reduce the decomposition temperature of REFCO3 and REPO4. Meanwhile, the decomposition effect of CaO on bastnaesite and monazite was significant. Besides, the effects of the roasting time, roasting temperature, and CaO addition level on the decomposition rate were studied. The optimum technological conditions were a roasting time of 60 min; roasting temperature of 750 °C; and CaO addition level of 20% (w/w. The maximum decomposition rate of REFCO3 and REPO4 was 99.87%. The roasting time and temperature were the major factors influencing the decomposition rate. The kinetics process of the decomposition of REFCO3 and REPO4 accorded with the interfacial reaction kinetics model. The reaction rate controlling steps were divided into two steps. The first step (at low temperature was controlled by a chemical reaction with an activation energy of 52.67 kJ/mol. The second step (at high temperature was controlled by diffusion with an activation energy of 8.5 kJ/mol.

  20. Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis

    International Nuclear Information System (INIS)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K.; Guérold, François

    2016-01-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. - Highlights: • A meta-analysis was done to assess the effects of heavy metals on litter decomposition. • Heavy metals significantly and strongly inhibited litter decomposition in streams.

  1. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  2. Cellulose and cutisin decomposition in soil of Alopecuretum meadow

    Directory of Open Access Journals (Sweden)

    Zuzana Hrevušová

    2012-01-01

    Full Text Available Plant litter decomposition is a fundamental process to ecosystem functioning regulated by both abiotic and biotic factors. The aim of this study was to determine the decomposition of cellulose and protein (cutisin substrates on permanent Alopecuretum meadow under different methods of management. The treatments were following: 2 × cut, 2 × cut + NPK, 2 × mulch, 1 × cut, 1 × mulch (frequency of mowing per year and no-treated plots. Cutting or mulching was carried out in October, under the 2 × cut management also in May. In 2007–2009, cellulose and cutisin in mesh bags were placed in the soil and kept from April to October. Total mean ratios of decomposed cellulose and cutisin were 83 % and 40 % of primal substrate weight, respectively. The cellulose decomposition was affected by weather conditions, but not by applied management. The highest mean ratio of decomposed cellulose was found in 2009 (with increased amount of precipitation in May and July, the lowest in 2007. Coefficients of variation within a year and over the years were up to 22 % and 20 %, respectively. The cutisin decomposition was significantly affected by applied management in all three years. Higher rates of decomposition were noted in two times mowed treatments compared to one or not mowed treatments. Significant differences were found between years in 2× cut and 2 × cut + NPK treatments. Coefficients of variation within the year and over the years were both higher by cutisin than by cellulose samples (up to 50 and 42 %, respectively.

  3. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  4. a Novel Two-Component Decomposition for Co-Polar Channels of GF-3 Quad-Pol Data

    Science.gov (United States)

    Kwok, E.; Li, C. H.; Zhao, Q. H.; Li, Y.

    2018-04-01

    Polarimetric target decomposition theory is the most dynamic and exploratory research area in the field of PolSAR. But most methods of target decomposition are based on fully polarized data (quad pol) and seldom utilize dual-polar data for target decomposition. Given this, we proposed a novel two-component decomposition method for co-polar channels of GF-3 quad-pol data. This method decomposes the data into two scattering contributions: surface, double bounce in dual co-polar channels. To save this underdetermined problem, a criterion for determining the model is proposed. The criterion can be named as second-order averaged scattering angle, which originates from the H/α decomposition. and we also put forward an alternative parameter of it. To validate the effectiveness of proposed decomposition, Liaodong Bay is selected as research area. The area is located in northeastern China, where it grows various wetland resources and appears sea ice phenomenon in winter. and we use the GF-3 quad-pol data as study data, which which is China's first C-band polarimetric synthetic aperture radar (PolSAR) satellite. The dependencies between the features of proposed algorithm and comparison decompositions (Pauli decomposition, An&Yang decomposition, Yamaguchi S4R decomposition) were investigated in the study. Though several aspects of the experimental discussion, we can draw the conclusion: the proposed algorithm may be suitable for special scenes with low vegetation coverage or low vegetation in the non-growing season; proposed decomposition features only using co-polar data are highly correlated with the corresponding comparison decomposition features under quad-polarization data. Moreover, it would be become input of the subsequent classification or parameter inversion.

  5. Characterization of agricultural land using singular value decomposition

    Science.gov (United States)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  6. Linear, Constant-rounds Bit-decomposition

    DEFF Research Database (Denmark)

    Reistad, Tord; Toft, Tomas

    2010-01-01

    When performing secure multiparty computation, tasks may often be simple or difficult depending on the representation chosen. Hence, being able to switch representation efficiently may allow more efficient protocols. We present a new protocol for bit-decomposition: converting a ring element x ∈ ℤ M...

  7. Litter Decomposition Rate of Karst Ecosystem at Gunung Cibodas, Ciampea Bogor Indonesia

    Directory of Open Access Journals (Sweden)

    Sethyo Vieni Sari

    2016-05-01

    Full Text Available The study aims to know the productivity of litter and litter decomposition rate in karst ecosystem. This study was conducted on three altitude of 200 meter above sea level (masl, 250 masl and 300 masl in karst ecosystem at Gunung Cibodas, Ciampea, Bogor. Litter productivity measurement performed using litter-trap method and litter-bag method was used to know the rate of decomposition. Litter productivity measurement results showed that the highest total of litter productivity measurement results was on altitude of 200 masl (90.452 tons/ha/year and the lowest was on altitude of 300 masl (25.440 tons/ha/year. The litter productivity of leaves (81.425 ton/ha/year showed the highest result than twigs (16.839 ton/ha/year, as well as flowers and fruits (27.839 ton/ha/year. The rate of decomposition was influenced by rainfall. The decomposition rate and the decrease of litter dry weight on altitude of 250 masl was faster than on the altitude of 200 masl and 300 masl. The dry weight was positively correlated to the rate of decomposition. The lower of dry weight would affect the rate of decomposition become slower. The average of litter C/N ratio were ranged from 28.024%--28.716% and categorized as moderate (>25. The finding indicate that the rate of decomposition in karst ecosystem at Gunung Cibodas was slow and based on C/N ratio of litter showed the mineralization process was also slow.

  8. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  9. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  10. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  11. Decomposition of Diethylstilboestrol in Soil

    DEFF Research Database (Denmark)

    Gregers-Hansen, Birte

    1964-01-01

    The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after the e...... not inhibit the CO2 production from the soil.Experiments with γ-sterilized soil indicated that enzymes present in the soil are able to attack DES.......The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after...

  12. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  13. Spectral induced polarization for monitoring electrokinetic remediation processes

    Science.gov (United States)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  14. Silica from triethylammonium tris (oxalato) silicate (IV) thermal decomposition

    International Nuclear Information System (INIS)

    Ferracin, L.C.; Ionashiro, M.; Davolos, M.R.

    1990-01-01

    Silica can be obtained from differents precursors by differents methods. In this paper it has been investigated the thermal decomposition of triethylammonium tris (oxalato) silicate (IV) to render silica. Among the trisoxalato-complexes of silicon preparation methods reviewed it has been used the Bessler's one with the reflux adaptaded in microwave oven. Thermal decomposition analysis of the compound has been made by TG-DTG and DTA curves. Silica powders obtained and heated between 300 to 900 0 C in a oven were characterized by infrared vibrational spectroscopy, X-ray powder difraction and nitrogen adsorption isotherm (BET). The triethylammonium tris (oxalato) silicate (IV) thermal decomposition takes place at 300 0 C and the silica powder obtained is non cristalline with impurities that are eliminated with heating at 400 0 C. (author) [pt

  15. Tensor gauge condition and tensor field decomposition

    Science.gov (United States)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  16. Thermal decomposition and reaction of confined explosives

    International Nuclear Information System (INIS)

    Catalano, E.; McGuire, R.; Lee, E.; Wrenn, E.; Ornellas, D.; Walton, J.

    1976-01-01

    Some new experiments designed to accurately determine the time interval required to produce a reactive event in confined explosives subjected to temperatures which will cause decomposition are described. Geometry and boundary conditions were both well defined so that these experiments on the rapid thermal decomposition of HE are amenable to predictive modelling. Experiments have been carried out on TNT, TATB and on two plastic-bonded HMX-based high explosives, LX-04 and LX-10. When the results of these experiments are plotted as the logarithm of the time to explosion versus 1/T K (Arrhenius plot), the curves produced are remarkably linear. This is in contradiction to the results obtained by an iterative solution of the Laplace equation for a system with a first order rate heat source. Such calculations produce plots which display considerable curvature. The experiments have also shown that the time to explosion is strongly influenced by the void volume in the containment vessel. Results of the experiments with calculations based on the heat flow equations coupled with first-order models of chemical decomposition are compared. The comparisons demonstrate the need for a more realistic reaction model

  17. Decomposition and reduction of AUC in hydrogen

    International Nuclear Information System (INIS)

    Ge Qingren; Kang Shifang; Zhou Meng

    1987-01-01

    AUC (Ammonium Uranyl Carbonate) conversion processes have been adopted extensively in nuclear fuel cycle. The kinetics investigation of these processes, however, has not yet been reported in detail at the published literatures. In the present work, the decomposition kinetics of AUC in hydrogen has been determined by non-isothermal method. DSC curves are solved with computer by Ge Qingren method. The results show that the kinetics obeys Avrami-Erofeev equation within 90% conversion. The apparent activation energy and preexponent are found to be 113.0 kJ/mol and 7.11 x 10 11 s -1 respectively. The reduction kinetics of AUC decomposition product in hydrogen at the range of 450 - 600 deg C has been determined by isothermal thermogravimetric method. The results show that good linear relationship can be obtained from the plot of conversion vs time, and that the apparent activation energy is found to be 113.9 kJ/mol. The effects of particle size and partial pressure of hydrogen are examined in reduction of AUC decomposition product. The reduction mechanism and the structure of particle are discussed according to the kinetics behaviour and SEM (scanning electron microscope) photograph

  18. Pollutant content in marine debris and characterization by thermal decomposition

    International Nuclear Information System (INIS)

    Iñiguez, M.E.; Conesa, J.A.; Fullana, A.

    2017-01-01

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400–500 K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800 K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). - Highlights: • The analysis and characterization of waste from marine environment were performed. • Its pollutant content has been determined, considering PAHs, PCDD/Fs and dl-PCBs. • Thermal decomposition of MDs was studied at different atmospheres and heating rates. • Kinetic models for the combustion of the five main plastics of MDs were proposed. • Composition of the waste is calculated using thermal behavior of different plastics.

  19. Measurement of the energy dependence of X-ray-induced decomposition of potassium chlorate.

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-03-21

    We report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments. A systematic increase in the decomposition rate as the energy was decreased was observed, which agrees with the 1/E(3) trend for the photoelectric process, except at the lowest energy studied. A second experiment was performed to access lower energies (10 and 12 keV) using a beryllium gasket; suggesting an apparent resonance near 15 keV or 0.83 Ǻ maximizing the chemical decomposition rate. A third experiment was performed using KIO3 to ascertain the anionic dependence of the decomposition rate, which was observed to be far slower than in KClO3, suggesting that the O-O distance is the critical factor in chemical reactions. These results will be important for more efficiently initiating chemical decomposition in materials using selected X-ray wavelengths that maximize decomposition to aid useful hard X-ray-induced chemistry and contribute understanding of the mechanism of X-ray-induced decomposition of the chlorates.

  20. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance