WorldWideScience

Sample records for spectral imaging applications

  1. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  2. Applications of cost-effective spectral imaging microscopy in cancer research

    International Nuclear Information System (INIS)

    Barber, P R; Vojnovic, B; Atkin, G; Daley, F M; Everett, S A; Wilson, G D; Gilbey, J D

    2003-01-01

    The application of a cost-effective spectral imager to spatially segmenting absorptive and fluorescent chemical probes on the basis of their spectral characteristics has been demonstrated. The imager comprises a computer-controlled spectrally selective element that allows random access to a bandwidth of 15 nm between 400 and 700 nm. Further, the use of linear un-mixing of the spectral response of a sample at a single pixel has been facilitated using non-negative least squares fitting. Examples are given showing the separation of dye distributions, such as immunohistochemical markers for tumour hypoxia, from multiply stained thin tissue sections, imaged by trans-illumination microscopy. A quantitative study is also presented that shows a correlation between staining intensity and normal versus tumour tissue, and the advantage of reducing the amount of data captured for a particular study is also demonstrated. An example of the application to fluorescence microscopy is also given, showing the separation of green fluorescent protein, Cy3 and Cy5 at a single pixel. The system has been validated against samples of known optical density and of known overlapping combinations of coloured filters. These results confirm the ability of this technique to separate spectral responses that cannot be resolved with conventional colour imaging

  3. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  4. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Science.gov (United States)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  5. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Science.gov (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  6. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  7. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  8. Digital staining for histopathology multispectral images by the combined application of spectral enhancement and spectral transformation.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2011-01-01

    In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.

  9. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  10. Spectral imaging spreads into new industrial and on-field applications

    Science.gov (United States)

    Bouyé, Clémentine; Robin, Thierry; d'Humières, Benoît

    2018-02-01

    Numerous recent innovative developments have led to a high reduction of hyperspectral and multispectral cameras cost and size. The achieved products - compact, reliable, low-cot, easy-to-use - meet end-user requirements in major fields: agriculture, food and beverages, pharmaceutics, machine vision, health. The booming of this technology in industrial and on-field applications is getting closer. Indeed, the Spectral Imaging market is at a turning point. A high growth rate of 20% is expected in the next 5 years. The number of cameras sold will increase from 3 600 in 2017 to more than 9 000 in 2022.

  11. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    Science.gov (United States)

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  12. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  13. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  14. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  15. Multivariate statistical analysis for x-ray photoelectron spectroscopy spectral imaging: Effect of image acquisition time

    International Nuclear Information System (INIS)

    Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.

    2004-01-01

    The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images

  16. Integrating two spectral imaging systems in an automated mineralogy application

    CSIR Research Space (South Africa)

    Harris, D

    2009-11-01

    Full Text Available is treated in batches, with trays of mono-layered material presented to various imaging systems. The identification of target grains is achieved by means of spectral imaging in two wavelength bands (Visible, and Long Wave Infrared). Target grains...

  17. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  18. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  19. Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer

    Science.gov (United States)

    Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther

    2017-12-01

    Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state

  20. Regularized image denoising based on spectral gradient optimization

    International Nuclear Information System (INIS)

    Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša

    2011-01-01

    Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance

  1. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  2. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  3. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    Science.gov (United States)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  4. A novel and compact spectral imaging system based on two curved prisms

    Science.gov (United States)

    Nie, Yunfeng; Bin, Xiangli; Zhou, Jinsong; Li, Yang

    2013-09-01

    As a novel detection approach which simultaneously acquires two-dimensional visual picture and one-dimensional spectral information, spectral imaging offers promising applications on biomedical imaging, conservation and identification of artworks, surveillance of food safety, and so forth. A novel moderate-resolution spectral imaging system consisting of merely two optical elements is illustrated in this paper. It can realize the function of a relay imaging system as well as a 10nm spectral resolution spectroscopy. Compared to conventional prismatic imaging spectrometers, this design is compact and concise with only two special curved prisms by utilizing two reflective surfaces. In contrast to spectral imagers based on diffractive grating, the usage of compound-prism possesses characteristics of higher energy utilization and wider free spectral range. The seidel aberration theory and dispersive principle of this special prism are analyzed at first. According to the results, the optical system of this design is simulated, and the performance evaluation including spot diagram, MTF and distortion, is presented. In the end, considering the difficulty and particularity of manufacture and alignment, an available method for fabrication and measurement is proposed.

  5. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  6. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  7. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  8. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    Science.gov (United States)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  9. Spectral Imaging for Intracranial Stents and Stent Lumen.

    Science.gov (United States)

    Weng, Chi-Lun; Tseng, Ying-Chi; Chen, David Yen-Ting; Chen, Chi-Jen; Hsu, Hui-Ling

    2016-01-01

    Application of computed tomography for monitoring intracranial stents is limited because of stent-related artifacts. Our purpose was to evaluate the effect of gemstone spectral imaging on the intracranial stent and stent lumen. In vitro, we scanned Enterprise stent phantom and a stent-cheese complex using the gemstone spectral imaging protocol. Follow-up gemstone spectral images of 15 consecutive patients with placement of Enterprise from January 2013 to September 2014 were also retrospectively reviewed. We used 70-keV, 140-keV, iodine (water), iodine (calcium), and iodine (hydroxyapatite) images to evaluate their effect on the intracranial stent and stent lumen. Two regions of interest were individually placed in stent lumen and adjacent brain tissue. Contrast-to-noise ratio was measured to determine image quality. The maximal diameter of stent markers was also measured to evaluate stent-related artifact. Two radiologists independently graded the visibility of the lumen at the maker location by using a 4-point scale. The mean of grading score, contrast/noise ratio and maximal diameter of stent markers were compared among all modes. All results were analyzed by SPSS version 20. In vitro, iodine (water) images decreased metallic artifact of stent makers to the greatest degree. The most areas of cheese were observed on iodine (water) images. In vivo, iodine (water) images had the smallest average diameter of stent markers (0.33 ± 0.17mm; P stent lumen (160.03 ±37.79; P stent-related artifacts of Enterprise and enhance contrast of in-stent lumen. Spectral imaging may be considered a noninvasive modality for following-up patients with in-stent stenosis.

  10. A comparison of dimension reduction methods with application to multi-spectral images of sand used in concrete

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Hansen, M. E.; Ersbøll, Bjarne Kjær

    2010-01-01

    This paper presents a comparison of dimension reduction methods based on a novel machine vision application for estimating moisture content in sand used to make concrete. For the application in question it is very important to know the moisture content of the sand so as to ensure good-quality...... sand types were examined with 20-60 images for each type. To reduce the amount of data, features were extracted from the multi-spectral images; the features were summary statistics on single bands and pairs of bands as well as morphological summaries. The number of features (2,016) is high in relation...

  11. Information-efficient spectral imaging sensor

    Science.gov (United States)

    Sweatt, William C.; Gentry, Stephen M.; Boye, Clinton A.; Grotbeck, Carter L.; Stallard, Brian R.; Descour, Michael R.

    2003-01-01

    A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  12. Real-time detection of natural objects using AM-coded spectral matching imager

    Science.gov (United States)

    Kimachi, Akira

    2005-01-01

    This paper describes application of the amplitude-modulation (AM)-coded spectral matching imager (SMI) to real-time detection of natural objects such as human beings, animals, vegetables, or geological objects or phenomena, which are much more liable to change with time than artificial products while often exhibiting characteristic spectral functions associated with some specific activity states. The AM-SMI produces correlation between spectral functions of the object and a reference at each pixel of the correlation image sensor (CIS) in every frame, based on orthogonal amplitude modulation (AM) of each spectral channel and simultaneous demodulation of all channels on the CIS. This principle makes the SMI suitable to monitoring dynamic behavior of natural objects in real-time by looking at a particular spectral reflectance or transmittance function. A twelve-channel multispectral light source was developed with improved spatial uniformity of spectral irradiance compared to a previous one. Experimental results of spectral matching imaging of human skin and vegetable leaves are demonstrated, as well as a preliminary feasibility test of imaging a reflective object using a test color chart.

  13. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  14. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  15. Tomographic spectral imaging: microanalysis in 3D

    International Nuclear Information System (INIS)

    Kotula, P.G.; Keenan, M.R.; Michael, J.R.

    2003-01-01

    Full text: Spectral imaging, where a series of complete x-ray spectra are typically collected from a 2D area, holds great promise for comprehensive near-surface microanalysis. There are however numerous microanalysis problems where 3D chemical information is needed as well. In the SEM, some sort of sectioning (either mechanical or with a focused ion beam (FIB) tool) followed by x-ray mapping has, in the past, been utilized in an attempt to perform 3D microanalysis. Reliance on simple mapping has the potential to miss important chemical features as well as misidentify others. In this paper we will describe the acquisition of serial-section tomographic spectral images (TSI) with a dual-beam FIB/SEM equipped with an EDS system. We will also describe the application of a modified version of our multivariate statistical analysis algorithms to TSIs. Serial sectioning was performed with a FEI DB-235 FIB/SEM. Firstly, the specimen normal was tilted to the optic axis of the FIB column and a trench was milled into the surface of the specimen. A second trench was then milled perpendicular to the first to provide visibility of the entire analysis surface to the x-ray detector. In addition, several fiducial markers were milled into the surface to allow for alignment from slice to slice. The electron column is at an angle of 52 deg to the ion column so the electron beam can 'see' the analysis surface milled by the FIB with no additional specimen tilting or rotation. Likewise the x-ray detector is at a radial angle of 45 deg to the plane of the electron and ion columns (about the electron column) and a take-off-angle of 35 deg with respect to an untilted specimen so it can 'see' the analysis surface as well with no additional sample tilting or rotation. Spectral images were acquired from regions 40 μm wide and 20μm deep for each slice. Approximately 1μm/slice was milled and 10-12 total slices were cut. Spectral images were acquired with a Thermo NORAN Vantage (Digital imaging

  16. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  17. Application of spectral computed tomography in diagnosis of liver and gallbladder diseases

    Directory of Open Access Journals (Sweden)

    LI Bolong

    2017-03-01

    Full Text Available Spectral computed tomography (CT is a perfect combination of diamond probe and strong computer processing technology and a technological revolution of traditional CT. This article reviews the application of spectral CT in the diagnosis of liver and gallbladder diseases. It summarizes the application value of monochromatic spectral CT imaging, spectral curve, material separation and quantitation, and effective atomic number in the diagnosis and differentiation of liver and gallbladder diseases and analyze the advantages of energy spectrum in identification of small lesions, low dose, and judgment of homology. It is pointed out that the application of spectral CT can be further explored in the aspects of early identification, differentiation, and prognosis of tumors.

  18. Molecular spectral imaging system for quantitative immunohistochemical analysis of early diabetic retinopathy.

    Science.gov (United States)

    Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng

    2009-12-01

    A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.

  19. Extended SWIR imaging sensors for hyperspectral imaging applications

    Science.gov (United States)

    Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.

    2016-05-01

    AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.

  20. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  1. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.

    Science.gov (United States)

    Sereda, A; Moreau, J; Canva, M; Maillart, E

    2014-04-15

    Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.

  2. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  3. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  4. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  5. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  6. Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order.

    Science.gov (United States)

    Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor

    2017-05-12

    Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The

  7. Optimization of compressive 4D-spatio-spectral snapshot imaging

    Science.gov (United States)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  8. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

    Science.gov (United States)

    Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu

    2017-04-01

    Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.

  9. Smoothing of Fused Spectral Consistent Satellite Images with TV-based Edge Detection

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2007-01-01

    based on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. [1] proposed a method of fusion of satellite images that is based on the properties of imaging physics...... in a statistically meaningful way and was called spectral consistent panshapening (SCP). In this paper we improve this framework for satellite image fusion by introducing a better image prior, via data-dependent image smoothing. The dependency is obtained via total variation edge detection method.......Several widely used methods have been proposed for fusing high resolution panchromatic data and lower resolution multi-channel data. However, many of these methods fail to maintain the spectral consistency of the fused high resolution image, which is of high importance to many of the applications...

  10. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  11. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  12. Application of computed tomography virtual noncontrast spectral imaging in evaluation of hepatic metastases: a preliminary study.

    Science.gov (United States)

    Tian, Shi-Feng; Liu, Ai-Lian; Liu, Jing-Hong; Sun, Mei-Yu; Wang, He-Qing; Liu, Yi-Jun

    2015-03-05

    The objective was to qualitatively and quantitatively evaluate hepatic metastases using computed tomography (CT) virtual noncontrast (VNC) spectral imaging in a retrospective analysis. Forty hepatic metastases patients underwent CT scans including the conventional true noncontrast (TNC) and the tri-phasic contrast-enhanced dual energy spectral scans in the hepatic arterial, portal venous, and equilibrium phases. The tri-phasic spectral CT images were used to obtain three groups of VNC images including in the arterial (VNCa), venous (VNCv), and equilibrium (VNCe) phase by the material decomposition process using water and iodine as a base material pair. The image quality and the contrast-to-noise ratio (CNR) of metastasis of the four groups were compared with ANOVA analysis. The metastasis detection rates with the four nonenhanced image groups were calculated and compared using the Chi-square test. There were no significant differences in image quality among TNC, VNCa and VNCv images (P > 0.05). The quality of VNCe images was significantly worse than that of other three groups (P 0.05). The metastasis detection rate of the four nonenhanced groups with no statistically significant difference (P > 0.05). The quality of VNCa and VNCv images is identical to that of TNC images, and the metastasis detection rate in VNC images is similar to that in TNC images. VNC images obtained from arterial phase show metastases more clearly. Thus, VNCa imaging may be a surrogate to TNC imaging in hepatic metastasis diagnosis.

  13. Application of Computed Tomography Virtual Noncontrast Spectral Imaging in Evaluation of Hepatic Metastases: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Shi-Feng Tian

    2015-01-01

    Full Text Available Objective: The objective was to qualitatively and quantitatively evaluate hepatic metastases using computed tomography (CT virtual noncontrast (VNC spectral imaging in a retrospective analysis. Methods: Forty hepatic metastases patients underwent CT scans including the conventional true noncontrast (TNC and the tri-phasic contrast-enhanced dual energy spectral scans in the hepatic arterial, portal venous, and equilibrium phases. The tri-phasic spectral CT images were used to obtain three groups of VNC images including in the arterial (VNCa, venous (VNCv, and equilibrium (VNCe phase by the material decomposition process using water and iodine as a base material pair. The image quality and the contrast-to-noise ratio (CNR of metastasis of the four groups were compared with ANOVA analysis. The metastasis detection rates with the four nonenhanced image groups were calculated and compared using the Chi-square test. Results: There were no significant differences in image quality among TNC, VNCa and VNCv images (P > 0.05. The quality of VNCe images was significantly worse than that of other three groups (P 0.05. The metastasis detection rate of the four nonenhanced groups with no statistically significant difference (P > 0.05. Conclusions: The quality of VNCa and VNCv images is identical to that of TNC images, and the metastasis detection rate in VNC images is similar to that in TNC images. VNC images obtained from arterial phase show metastases more clearly. Thus, VNCa imaging may be a surrogate to TNC imaging in hepatic metastasis diagnosis.

  14. Research on marine and freshwater fish identification model based on hyper-spectral imaging technology

    Science.gov (United States)

    Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai

    2013-08-01

    With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.

  15. THE RESEARCH OF SPECTRAL RECONSTRUCTION FOR LARGE APERTURE STATIC IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    H. Lv

    2018-04-01

    Full Text Available Imaging spectrometer obtains or indirectly obtains the spectral information of the ground surface feature while obtaining the target image, which makes the imaging spectroscopy has a prominent advantage in fine characterization of terrain features, and is of great significance for the study of geoscience and other related disciplines. Since the interference data obtained by interferometric imaging spectrometer is intermediate data, which must be reconstructed to achieve the high quality spectral data and finally used by users. The difficulty to restrict the application of interferometric imaging spectroscopy is to reconstruct the spectrum accurately. Based on the original image acquired by Large Aperture Static Imaging Spectrometer as the input, this experiment selected the pixel that is identified as crop by artificial recognition, extract and preprocess the interferogram to recovery the corresponding spectrum of this pixel. The result shows that the restructured spectrum formed a small crest near the wavelength of 0.55 μm with obvious troughs on both sides. The relative reflection intensity of the restructured spectrum rises abruptly at the wavelength around 0.7 μm, forming a steep slope. All these characteristics are similar with the spectral reflection curve of healthy green plants. It can be concluded that the experimental result is consistent with the visual interpretation results, thus validating the effectiveness of the scheme for interferometric imaging spectrum reconstruction proposed in this paper.

  16. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    Science.gov (United States)

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  18. Parametric image reconstruction using spectral analysis of PET projection data

    International Nuclear Information System (INIS)

    Meikle, Steven R.; Matthews, Julian C.; Cunningham, Vincent J.; Bailey, Dale L.; Livieratos, Lefteris; Jones, Terry; Price, Pat

    1998-01-01

    Spectral analysis is a general modelling approach that enables calculation of parametric images from reconstructed tracer kinetic data independent of an assumed compartmental structure. We investigated the validity of applying spectral analysis directly to projection data motivated by the advantages that: (i) the number of reconstructions is reduced by an order of magnitude and (ii) iterative reconstruction becomes practical which may improve signal-to-noise ratio (SNR). A dynamic software phantom with typical 2-[ 11 C]thymidine kinetics was used to compare projection-based and image-based methods and to assess bias-variance trade-offs using iterative expectation maximization (EM) reconstruction. We found that the two approaches are not exactly equivalent due to properties of the non-negative least-squares algorithm. However, the differences are small ( 1 and, to a lesser extent, VD). The optimal number of EM iterations was 15-30 with up to a two-fold improvement in SNR over filtered back projection. We conclude that projection-based spectral analysis with EM reconstruction yields accurate parametric images with high SNR and has potential application to a wide range of positron emission tomography ligands. (author)

  19. Biomarkers and Biological Spectral Imaging

    Science.gov (United States)

    2001-01-23

    G. Sowa, H. H. Mantsch, National Research Council Canada; S. L. Zhang, Unilever Research (USA) 85 Brain tissue charcterization using spectral imaging...image registration and of the expert staff of Hill Top Research in Winnipeg for hosting the hydration study. Financial assistance from Unilever Research

  20. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  1. Gold nanoparticles : A novel application of spectral imaging in proteomics - preliminary results

    NARCIS (Netherlands)

    Dietrich, H.R.C.; Young, I.T.; Garini, Y.

    2005-01-01

    The intense research in proteomics is demanding for fast, reliable and easy-to-use methods in order to study the proteome. In this proceeding we report the development of such a novel research tool based on spectral imaging and Resonance Light Scattering gold particles. This method will allow the

  2. Hyperspectral image classifier based on beach spectral feature

    International Nuclear Information System (INIS)

    Liang, Zhang; Lianru, Gao; Bing, Zhang

    2014-01-01

    The seashore, especially coral bank, is sensitive to human activities and environmental changes. A multispectral image, with coarse spectral resolution, is inadaptable for identify subtle spectral distinctions between various beaches. To the contrary, hyperspectral image with narrow and consecutive channels increases our capability to retrieve minor spectral features which is suit for identification and classification of surface materials on the shore. Herein, this paper used airborne hyperspectral data, in addition to ground spectral data to study the beaches in Qingdao. The image data first went through image pretreatment to deal with the disturbance of noise, radiation inconsistence and distortion. In succession, the reflection spectrum, the derivative spectrum and the spectral absorption features of the beach surface were inspected in search of diagnostic features. Hence, spectra indices specific for the unique environment of seashore were developed. According to expert decisions based on image spectrums, the beaches are ultimately classified into sand beach, rock beach, vegetation beach, mud beach, bare land and water. In situ surveying reflection spectrum from GER1500 field spectrometer validated the classification production. In conclusion, the classification approach under expert decision based on feature spectrum is proved to be feasible for beaches

  3. Snapshot hyperspectral imaging and practical applications

    International Nuclear Information System (INIS)

    Wong, G

    2009-01-01

    Traditional broadband imaging involves the digital representation of a remote scene within a reduced colour space. Hyperspectral imaging exploits the full spectral dimension, which better reflects the continuous nature of actual spectra. Conventional techniques are all time-delayed whereby spatial or spectral scanning is required for hypercube generation. An innovative and patented technique developed at Heriot-Watt University offers significant potential as a snapshot sensor, to enable benefits for the wider public beyond aerospace imaging. This student-authored paper seeks to promote awareness of this field within the photonic community and its potential advantages for real-time practical applications.

  4. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  5. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  6. Spectrally Consistent Satellite Image Fusion with Improved Image Priors

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Aanæs, Henrik; Jensen, Thomas B.S.

    2006-01-01

    Here an improvement to our previous framework for satellite image fusion is presented. A framework purely based on the sensor physics and on prior assumptions on the fused image. The contributions of this paper are two fold. Firstly, a method for ensuring 100% spectrally consistency is proposed......, even when more sophisticated image priors are applied. Secondly, a better image prior is introduced, via data-dependent image smoothing....

  7. Recent progress of push-broom infrared hyper-spectral imager in SITP

    Science.gov (United States)

    Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu

    2017-02-01

    In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.

  8. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  9. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  10. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    Science.gov (United States)

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  11. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  12. Remote Sensing of Landscapes with Spectral Images

    Science.gov (United States)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  13. Application of a spectral sky in Radiance for daylighting calculations including non-image-forming light effects

    NARCIS (Netherlands)

    Khademagha, P.; Aries, M.B.C.; Rosemann, A.L.P.; van Loenen, E.J.

    2016-01-01

    Daylight is dynamic and rich in the blue part of the spectrum. To date, the spectral composition of daylight is ignored in sky models used in Radiance. Spectral sky composition is particularly important when non-image-forming (NIF) light effects are concerned, since the action spectrum for these

  14. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  15. Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering

    Science.gov (United States)

    Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier

    2012-01-01

    We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.

  16. Canny Edge Detection in Cross-Spectral Fused Images

    Directory of Open Access Journals (Sweden)

    Patricia Suárez

    2017-02-01

    Full Text Available Considering that the images of different spectra provide an ample information that helps a lo in the process of identification and distinction of objects that have unique spectral signatures. In this paper, the use of cross-spectral images in the process of edge detection is evaluated. This study aims to assess the Canny edge detector with two variants. The first relates to the use of merged cross-spectral images and the second the inclusion of morphological filters. To ensure the quality of the data used in this study the GQM (Goal-Question- Metrics, framework, was applied to reduce noise and increase the entropy on images. The metrics obtained in the experiments confirm that the quantity and quality of the detected edges increases significantly after the inclusion of a morphological filter and a channel of near infrared spectrum in the merged images.

  17. GALILEO NIMS SPECTRAL IMAGE CUBES: JUPITER OPERATIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...

  18. GALILEO NIMS SPECTRAL IMAGE TUBES: JUPITER OPERATIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...

  19. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  20. Self-training-based spectral image reconstruction for art paintings with multispectral imaging.

    Science.gov (United States)

    Xu, Peng; Xu, Haisong; Diao, Changyu; Ye, Zhengnan

    2017-10-20

    A self-training-based spectral reflectance recovery method was developed to accurately reconstruct the spectral images of art paintings with multispectral imaging. By partitioning the multispectral images with the k-means clustering algorithm, the training samples are directly extracted from the art painting itself to restrain the deterioration of spectral estimation caused by the material inconsistency between the training samples and the art painting. Coordinate paper is used to locate the extracted training samples. The spectral reflectances of the extracted training samples are acquired indirectly with a spectroradiometer, and the circle Hough transform is adopted to detect the circle measuring area of the spectroradiometer. Through simulation and a practical experiment, the implementation of the proposed method is explained in detail, and it is verified to have better reflectance recovery performance than that using the commercial target and is comparable to the approach using a painted color target.

  1. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  2. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  3. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  4. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  5. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  6. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  7. Ontology-based classification of remote sensing images using spectral rules

    Science.gov (United States)

    Andrés, Samuel; Arvor, Damien; Mougenot, Isabelle; Libourel, Thérèse; Durieux, Laurent

    2017-05-01

    Earth Observation data is of great interest for a wide spectrum of scientific domain applications. An enhanced access to remote sensing images for "domain" experts thus represents a great advance since it allows users to interpret remote sensing images based on their domain expert knowledge. However, such an advantage can also turn into a major limitation if this knowledge is not formalized, and thus is difficult for it to be shared with and understood by other users. In this context, knowledge representation techniques such as ontologies should play a major role in the future of remote sensing applications. We implemented an ontology-based prototype to automatically classify Landsat images based on explicit spectral rules. The ontology is designed in a very modular way in order to achieve a generic and versatile representation of concepts we think of utmost importance in remote sensing. The prototype was tested on four subsets of Landsat images and the results confirmed the potential of ontologies to formalize expert knowledge and classify remote sensing images.

  8. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  9. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  10. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    Science.gov (United States)

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    Science.gov (United States)

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples

  12. Remote Sensing Image Fusion at the Segment Level Using a Spatially-Weighted Approach: Applications for Land Cover Spectral Analysis and Mapping

    Directory of Open Access Journals (Sweden)

    Brian Johnson

    2015-01-01

    Full Text Available Segment-level image fusion involves segmenting a higher spatial resolution (HSR image to derive boundaries of land cover objects, and then extracting additional descriptors of image segments (polygons from a lower spatial resolution (LSR image. In past research, an unweighted segment-level fusion (USF approach, which extracts information from a resampled LSR image, resulted in more accurate land cover classification than the use of HSR imagery alone. However, simply fusing the LSR image with segment polygons may lead to significant errors due to the high level of noise in pixels along the segment boundaries (i.e., pixels containing multiple land cover types. To mitigate this, a spatially-weighted segment-level fusion (SWSF method was proposed for extracting descriptors (mean spectral values of segments from LSR images. SWSF reduces the weights of LSR pixels located on or near segment boundaries to reduce errors in the fusion process. Compared to the USF approach, SWSF extracted more accurate spectral properties of land cover objects when the ratio of the LSR image resolution to the HSR image resolution was greater than 2:1, and SWSF was also shown to increase classification accuracy. SWSF can be used to fuse any type of imagery at the segment level since it is insensitive to spectral differences between the LSR and HSR images (e.g., different spectral ranges of the images or different image acquisition dates.

  13. A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-11-01

    Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.

  14. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Yongguang Zhai

    2018-03-01

    Full Text Available Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

  15. Applicability of spectral indices on thickness identification of oil slick

    Science.gov (United States)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  16. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    Science.gov (United States)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  17. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  18. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  19. Upconversion based spectral imaging in 6 to 8 μm spectral regime

    DEFF Research Database (Denmark)

    Junaid, Saher; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    Spectral imaging in the 6 to 8μm range has great potential for medical diagnostics. Here a novel technique based on frequency upconversion of the infrared images to the near visible for subsequent acquisition using a Si-CCD camera is investigated. The upconversion unit consists of an AgGaS2 crystal...

  20. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  1. Detection of Fusarium in single wheat kernels using spectral Imaging

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Waalwijk, C.; Young, I.T.

    2005-01-01

    Fusarium head blight (FHB) is a harmful fungal disease that occurs in small grains. Non-destructive detection of this disease is traditionally done using spectroscopy or image processing. In this paper the combination of these two in the form of spectral imaging is evaluated. Transmission spectral

  2. A multi-object spectral imaging instrument

    OpenAIRE

    Gibson, G.M.; Dienerowitz, M.; Kelleher, P.A.; Harvey, A.R.; Padgett, M.J.

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the ...

  3. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  4. Lossless compression of multispectral images using spectral information

    Science.gov (United States)

    Ma, Long; Shi, Zelin; Tang, Xusheng

    2009-10-01

    Multispectral images are available for different purposes due to developments in spectral imaging systems. The sizes of multispectral images are enormous. Thus transmission and storage of these volumes of data require huge time and memory resources. That is why compression algorithms must be developed. A salient property of multispectral images is that strong spectral correlation exists throughout almost all bands. This fact is successfully used to predict each band based on the previous bands. We propose to use spectral linear prediction and entropy coding with context modeling for encoding multispectral images. Linear prediction predicts the value for the next sample and computes the difference between predicted value and the original value. This difference is usually small, so it can be encoded with less its than the original value. The technique implies prediction of each image band by involving number of bands along the image spectra. Each pixel is predicted using information provided by pixels in the previous bands in the same spatial position. As done in the JPEG-LS, the proposed coder also represents the mapped residuals by using an adaptive Golomb-Rice code with context modeling. This residual coding is context adaptive, where the context used for the current sample is identified by a context quantization function of the three gradients. Then, context-dependent Golomb-Rice code and bias parameters are estimated sample by sample. The proposed scheme was compared with three algorithms applied to the lossless compression of multispectral images, namely JPEG-LS, Rice coding, and JPEG2000. Simulation tests performed on AVIRIS images have demonstrated that the proposed compression scheme is suitable for multispectral images.

  5. Spectral differential imaging detection of planets about nearby stars

    International Nuclear Information System (INIS)

    Smith, W.H.

    1987-01-01

    Direct ground-based optical imaging of planets in orbit about nearby stars may be accomplished by spectral differential imaging using multiple passband acoustooptic filters with a CCD. This technique provides two essential results. First, it provides a means to modulate the stellar flux reflected from a planet while leaving the flux from the star and other sources in the same field of view unmodulated. Second, spectral differential imaging enables the CCD detector to achieve a sufficiently high dynamic range to locate planets near a star in spite of an integrated brightness differential of 5 x 10 8 . Spectral differential imaging at nearby diffraction limited imaging conditions with telescope apodization can reduce the time to conduct a sensitive planetary search to a few hours in some cases. The feasibility of this idea is discussed here and shown to provide, in principle, the discrimination and sensitivity to detect a Jovian-class planet about stars at distances of about 10 parsecs. The detection of brown dwarfs is shown to be feasible as well. 31 references

  6. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    Science.gov (United States)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  7. HYPERSPECTRAL HYPERION IMAGERY ANALYSIS AND ITS APPLICATION USING SPECTRAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Pervez

    2015-03-01

    Full Text Available Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more useful for its further processing/ application. Principal component (PC analysis applied to the hyperspectral calibrated bands reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998.

  8. Terahertz imaging using quantum cascade lasers—a review of systems and applications

    International Nuclear Information System (INIS)

    Dean, P; Valavanis, A; Keeley, J; Alhathlool, R; Burnett, A D; Li, L H; Khanna, S P; Indjin, D; Linfield, E H; Davies, A G; Bertling, K; Lim, Y L; Rakić, A D; Taimre, T

    2014-01-01

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging. (paper)

  9. TU-G-207-00: Emerging Applications of X-Ray Imaging

    International Nuclear Information System (INIS)

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  10. Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.

    Science.gov (United States)

    Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun

    2018-06-01

    Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.

  11. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    Science.gov (United States)

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  12. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  13. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P spectral mammographic and MR images. © RSNA, 2016.

  14. Fluorescence hyper-spectral imaging to detecting faecal contamination on fresh tomatoes

    Directory of Open Access Journals (Sweden)

    Roberto Romaniello

    2016-03-01

    Full Text Available Faecal contamination of fresh fruits represents a severe danger for human health. Thus some techniques based on microbiological testing were developed to individuate faecal contaminants but those tests do not results efficient because their non-applicability on overall vegetable unity. In this work a methodology based on hyper-spectral fluorescence imaging was developed and tested to detecting faecal contamination on fresh tomatoes. Two image-processing methods were performed to maximise the contrast between the faecal contaminant and tomatoes skin: principal component analysis and band image ratio (BRI. The BRI method allows classifying correctly 70% of contaminated area, with no false-positives in all examined cases. Thus, the developed methodology can be employed for a fast and effective detection of faecal contamination on fresh tomatoes.

  15. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    Science.gov (United States)

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  16. Terahertz detectors for long wavelength multi-spectral imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  17. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    Science.gov (United States)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  18. DETERMINING SPECTRAL REFLECTANCE COEFFICIENTS FROM HYPERSPECTRAL IMAGES OBTAINED FROM LOW ALTITUDES

    Directory of Open Access Journals (Sweden)

    P. Walczykowski

    2016-06-01

    Full Text Available Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based, object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor

  19. Determining Spectral Reflectance Coefficients from Hyperspectral Images Obtained from Low Altitudes

    Science.gov (United States)

    Walczykowski, P.; Jenerowicz, A.; Orych, A.; Siok, K.

    2016-06-01

    Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based), object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor mounted on an

  20. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale

    Directory of Open Access Journals (Sweden)

    Anne Clasen

    2015-11-01

    Full Text Available Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA and simulated Environmental Mapping and Analysis Program (EnMAP and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.

  1. Hyperspectral imaging and its applications

    Science.gov (United States)

    Serranti, S.; Bonifazi, G.

    2016-04-01

    Hyperspectral imaging (HSI) is an emerging technique that combines the imaging properties of a digital camera with the spectroscopic properties of a spectrometer able to detect the spectral attributes of each pixel in an image. For these characteristics, HSI allows to qualitatively and quantitatively evaluate the effects of the interactions of light with organic and/or inorganic materials. The results of this interaction are usually displayed as a spectral signature characterized by a sequence of energy values, in a pre-defined wavelength interval, for each of the investigated/collected wavelength. Following this approach, it is thus possible to collect, in a fast and reliable way, spectral information that are strictly linked to chemical-physical characteristics of the investigated materials and/or products. Considering that in an hyperspectral image the spectrum of each pixel can be analyzed, HSI can be considered as one of the best nondestructive technology allowing to perform the most accurate and detailed information extraction. HSI can be applied in different wavelength fields, the most common are the visible (VIS: 400-700 nm), the near infrared (NIR: 1000-1700 nm) and the short wave infrared (SWIR: 1000-2500 nm). It can be applied for inspections from micro- to macro-scale, up to remote sensing. HSI produces a large amount of information due to the great number of continuous collected spectral bands. Such an approach, when successful, is quite challenging being usually reliable, robust and characterized by lower costs, if compared with those usually associated to commonly applied analytical off-line and/or on-line analytical approaches. More and more applications have been thus developed and tested, in these last years, especially in food inspection, with a large range of investigated products, such as fruits and vegetables, meat, fish, eggs and cereals, but also in medicine and pharmaceutical sector, in cultural heritage, in material characterization and in

  2. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral

  3. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  4. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    Science.gov (United States)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  5. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports on a new property of grating, namely spectral combination, and on bi-grating diffraction imaging that is based on spectral combination. The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam. The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image. We gave the conditions necessary for obtaining the spectral combination. We also presented the equations that relate the two gratings’ spatial frequencies, diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  6. Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    2012-01-01

    Full Text Available The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

  7. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  8. ANALYSIS OF CAMOUFLAGE COVER SPECTRAL CHARACTERISTICS BY IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    A. Y. Kouznetsov

    2016-03-01

    Full Text Available Subject of Research.The paper deals with the problems of detection and identification of objects in hyperspectral imagery. The possibility of object type determination by statistical methods is demonstrated. The possibility of spectral image application for its data type identification is considered. Method. Researching was done by means of videospectral equipment for objects detection at "Fregat" substrate. The postprocessing of hyperspectral information was done with the use of math model of pattern recognition system. The vegetation indexes TCHVI (Three-Channel Vegetation Index and NDVI (Normalized Difference Vegetation Index were applied for quality control of object recognition. Neumann-Pearson criterion was offered as a tool for determination of objects differences. Main Results. We have carried out analysis of the spectral characteristics of summer-typecamouflage cover (Germany. We have calculated the density distribution of vegetation indexes. We have obtained statistical characteristics needed for creation of mathematical model for pattern recognition system. We have shown the applicability of vegetation indices for detection of summer camouflage cover on averdure background. We have presented mathematical model of object recognition based on Neumann-Pearson criterion. Practical Relevance. The results may be useful for specialists in the field of hyperspectral data processing for surface state monitoring.

  9. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  10. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  11. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  12. Hyper-Spectral Imager in visible and near-infrared band for lunar ...

    Indian Academy of Sciences (India)

    India's first lunar mission, Chandrayaan-1, will have a Hyper-Spectral Imager in the visible and near-infrared spectral ... mapping of the Moon's crust in a large number of spectral channels. The planned .... In-flight verification may be done.

  13. Superpixel segmentation and pigment identification of colored relics based on visible spectral image

    Science.gov (United States)

    Li, Junfeng; Wan, Xiaoxia

    2018-01-01

    To enrich the contents of digital archive and to guide the copy and restoration of colored relics, non-invasive methods for extraction of painting boundary and identification of pigment composition are proposed in this study based on the visible spectral images of colored relics. Superpixel concept is applied for the first time to the field of oversegmentation of visible spectral images and implemented on the visible spectral images of colored relics to extract their painting boundary. Since different pigments are characterized by their own spectrum and the same kind of pigment has the similar geometric profile in spectrum, an automatic identification method is established by comparing the proximity between the geometric profiles of the unknown spectrum from each superpixel and the pre-known spectrum from a deliberately prepared database. The methods are validated using the visible spectral images of the ancient wall paintings in Mogao Grottoes. By the way, the visible spectral images are captured by a multispectral imaging system consisting of two broadband filters and a RGB camera with high spatial resolution.

  14. Spectral autofluorescence imaging of the retina for drusen detection

    Science.gov (United States)

    Foubister, James J.; Gorman, Alistair; Harvey, Andy; Hemert, Jano van

    2018-02-01

    The presence and characteristics of drusen in retinal images, namely their size, location, and distribution, can be used to aid in the diagnosis and monitoring of Age Related Macular Degeneration (AMD); one of the leading causes for blindness in the elderly population. Current imaging techniques are effective at determining the presence and number of drusen, but fail when it comes to classifying their size and form. These distinctions are important for correctly characterising the disease, especially in the early stages where the development of just one larger drusen can indicate progression. Another challenge for automated detection is in distinguishing them from other retinal features, such as cotton wool spots. We describe the development of a multi-spectral scanning-laser ophthalmoscope that records images of retinal autofluorescence (AF) in four spectral bands. This will offer the potential to detect drusen with improved contrast based on spectral discrimination for automated classification. The resulting improved specificity and sensitivity for their detection offers more reliable characterisation of AMD. We present proof of principle images prior to further system optimisation and clinical trials for assessment of enhanced detection of drusen.

  15. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    Science.gov (United States)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  16. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  17. The Fresnel Zone Light Field Spectral Imager

    Science.gov (United States)

    2017-03-23

    detection efficiency for weak signals . Additionally, further study should be done on spectral calibration methods for a FZLFSI. When dealing with weak ... detection assembly. The different image formation planes for each wavelength are constructed synthetically through processing the collected light ...a single micro-lens image. This character- istic also holds for wavelengths other than the design wavelength. 36 modified light field PSF is detected

  18. Spectral Properties of Homogeneous and Nonhomogeneous Radar Images

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1987-01-01

    On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown that the sp......On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown...... that the spectrum of the intensityimage is in general related to the radar scene spectrum by a linearintegral equation, a Fredholm's integral equation of the third kind.Under simplifying assumptions, a closed-form equation giving theradar scene spectrum as a function of the SAR image spectrum canbe derived....

  19. Interpretation of archaeological small-scale features in spectral images

    DEFF Research Database (Denmark)

    Grøn, Ole; Palmer, Susanna; Stylegar, Frans-Arne

    2011-01-01

    The paper's focus is the use of spectral images for the distinction of small archaeological anomalies on the basis of the authors work. Special attention is given to the ground-truthing perspective in the discussion of a number of cases from Norway. Different approaches to pattern-recognition are......The paper's focus is the use of spectral images for the distinction of small archaeological anomalies on the basis of the authors work. Special attention is given to the ground-truthing perspective in the discussion of a number of cases from Norway. Different approaches to pattern...

  20. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  1. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    Science.gov (United States)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  2. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  3. Spectral analysis of mammographic images using a multitaper method

    International Nuclear Information System (INIS)

    Wu Gang; Mainprize, James G.; Yaffe, Martin J.

    2012-01-01

    Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.

  4. ANALYSIS OF SPECTRAL CHARACTERISTICS AMONG DIFFERENT SENSORS BY USE OF SIMULATED RS IMAGES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This research, by use of RS image-simulating method, simulated apparent reflectance images at sensor level and ground-reflectance images of SPOT-HRV,CBERS-CCD,Landsat-TM and NOAA14-AVHRR' s corresponding bands. These images were used to analyze sensor's differences caused by spectral sensitivity and atmospheric impacts. The differences were analyzed on Normalized Difference Vegetation Index(NDVI). The results showed that the differences of sensors' spectral characteristics cause changes of their NDVI and reflectance. When multiple sensors' data are applied to digital analysis, the error should be taken into account. Atmospheric effect makes NDVI smaller, and atn~pheric correction has the tendency of increasing NDVI values. The reflectance and their NDVIs of different sensors can be used to analyze the differences among sensor' s features. The spectral analysis method based on RS simulated images can provide a new way to design the spectral characteristics of new sensors.

  5. An improved feature extraction algorithm based on KAZE for multi-spectral image

    Science.gov (United States)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  6. Development of Fluorescence Spectral Imaging for Location of Uranium Deposited on Surfaces

    International Nuclear Information System (INIS)

    Monts, D.L.; Wang, G.; Su, Y.; Jang, P.R.; Waggoner, Ch.A.

    2009-01-01

    Since the 1980's, depleted uranium (DU) has been the primary material used by the US military in armor-piercing rounds. Domestic firing ranges that have been used for DU munitions training purposes are located around the country and have varying extents of contamination by other types of projectiles. A project is underway to develop a set of sensors to locate expended DU rounds and to process soil and debris to recover the material. In the environment, metallic DU readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450 - 650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system to locate and quantify uranyl compounds dispersed in soils and on other surfaces on domestic firing ranges; this system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. FSI images provide both spatial and spectral information. The FSI system is described and its performance characterized in the field and also by using field samples. The development and characterization of an improved transportable FSI system is presented. The applicability of this system for detection of uranium compounds deposited on surfaces for Decontaminating and Decommissioning (D and D) activities is discussed. We have successfully demonstrated in situ a first-generation, transportable Fluorescence Spectral Imaging (FSI) system for locating uranyl compounds dispersed in soils and on other surfaces of a domestic firing range. FSI images provide both spatial and spectral information. FSI images are acquired by illuminating a

  7. Women's preferences of dynamic spectral imaging colposcopy

    NARCIS (Netherlands)

    Louwers, J.A.; Zaal, Afra; Kocken, M.; Papagiannakis, E.; Meijer, C.J.; Verheijen, RHM

    2015-01-01

    Background: The focus of testing the dynamic spectral imaging (DSI) colposcope has been on the technical characteristics and clinical performance. However, aspects from a patient’s perspective are just as important. Methods: This study was designed as a substudy of the DSI validation study, a

  8. Objective image characterization of a spectral CT scanner with dual-layer detector

    Science.gov (United States)

    Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David

    2018-01-01

    This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.

  9. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  10. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    Science.gov (United States)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  11. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    Science.gov (United States)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  12. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    Science.gov (United States)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  13. Hyper-spectral modulation fluorescent imaging using double acousto-optical tunable filter based on TeO2-crystals

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Perchik, Alexey V; Chernomyrdin, Nikita V; Yurchenko, Stanislav O; Kudrin, Konstantin G; Reshetov, Igor V

    2015-01-01

    We have proposed a method for hyper-spectral fluorescent imaging based on acousto-optical filtering. The object of interest was pumped using ultraviolet radiation of mercury lamp equipped with monochromatic excitation filter with the window of transparency centered at 365 nm. Double TeO 2 -based acousto-optical filter, tunable in range from 430 to 780 nm and having 2 nm bandwidth of spectral transparency, was used in order to detect quasimonochromatic images of object fluorescence. Modulating of ultraviolet pump intensity was used in order to reduce an impact of non-fluorescent background on the sample fluorescent imaging. The technique for signal-to-noise ratio improvement, based on fluorescence intensity estimation via digital processing of modulated video sequence of fluorescent object, was introduced. We have implemented the proposed technique for the test sample studying and we have discussed its possible applications

  14. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  15. Recent applications of hyperspectral imaging in microbiology.

    Science.gov (United States)

    Gowen, Aoife A; Feng, Yaoze; Gaston, Edurne; Valdramidis, Vasilis

    2015-05-01

    Hyperspectral chemical imaging (HSI) is a broad term encompassing spatially resolved spectral data obtained through a variety of modalities (e.g. Raman scattering, Fourier transform infrared microscopy, fluorescence and near-infrared chemical imaging). It goes beyond the capabilities of conventional imaging and spectroscopy by obtaining spatially resolved spectra from objects at spatial resolutions varying from the level of single cells up to macroscopic objects (e.g. foods). In tandem with recent developments in instrumentation and sampling protocols, applications of HSI in microbiology have increased rapidly. This article gives a brief overview of the fundamentals of HSI and a comprehensive review of applications of HSI in microbiology over the past 10 years. Technical challenges and future perspectives for these techniques are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-10-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%.

  17. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  18. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang [The First Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan Province (China)

    2017-01-15

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  19. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    International Nuclear Information System (INIS)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  20. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  1. Conjugate Etalon Spectral Imager (CESI) & Scanning Etalon Methane Mapper (SEMM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Conjugate Etalon Spectral Imaging (CESI) concept enables the development of miniature instruments with high spectral resolution, suitable for LEO missions aboard...

  2. Dual-camera design for coded aperture snapshot spectral imaging.

    Science.gov (United States)

    Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng

    2015-02-01

    Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

  3. Terahertz Sensing, Imaging and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A. [RIKEN Advanced Science Institute, Sendai (Japan)

    2008-11-15

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications.

  4. Terahertz Sensing, Imaging and Applications

    International Nuclear Information System (INIS)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A.

    2008-01-01

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications

  5. a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging

    Science.gov (United States)

    Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.

    2017-08-01

    Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.

  6. A SPATIO-SPECTRAL CAMERA FOR HIGH RESOLUTION HYPERSPECTRAL IMAGING

    Directory of Open Access Journals (Sweden)

    S. Livens

    2017-08-01

    Full Text Available Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600–900 nm in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots, horticulture (crop status monitoring to evaluate irrigation management in strawberry fields and geology (meteorite detection on a grassland field. Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475–925 nm, and we discuss future work.

  7. A multi-object spectral imaging instrument

    International Nuclear Information System (INIS)

    Gibson, G M; Dienerowitz, M; Kelleher, P A; Harvey, A R; Padgett, M J

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye. (paper)

  8. WE-DE-BRA-07: Megavoltage Spectral Imaging with a Layered Detector

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Rottmann, J; Berbeco, R [Brigham and Women’s Hospital, Boston, MA (United States); Hu, Y [Dana Farber Cancer Institute, Boston, MA (United States); Wang, A; Shedlock, D; Star-Lack, J [Varian Medical Systems, Palo Alto, CA (United States); Morf, D [Varian Medical Systems, Dattwil, Aargau (Switzerland)

    2016-06-15

    Purpose: The aim of the current work is to investigate the feasibility of megavoltage spectral imaging using a multiple layered detector for enhancement of low contrast detectability through material segmentation and discrimination (such as bone, markers and metal implants). Potentially the technique can be applied to improve detection and reduce dose in Megavoltage Cone Beam Computed Tomography (MV-CBCT). Methods: Experiments were performed with a prototype multi-layer imager (MLI) which has higher detective efficiency and lower noise characteristics than conventional Electronic Portal Imaging Devices (EPIDs). Images of a solid water phantom were acquired at 2.5 MV, 6MV and 6MV without flattening filter (FFF). The following materials were placed within a stack of solid water: aluminum, copper and gold. Material separation was assessed based on Contrast-to-Noise Ratio (CNR) of the weighted image, formed by a weighted subtraction of the images from two layers of the MLI. A range of weighting factors were investigated for material separation. Results: CNR can be minimized for each material by appropriate selection of the subtraction weighting factor. This is equivalent to a selective subtraction of specific materials from the image. Using multiple layers simultaneously also decreases the dose requirement and removes any registration errors. The minimum CNR for aluminum, copper and gold at the weighted image formed with 2.5MV was obtained at weighting factors equal to 0.92, 0.76 and 0.64 respectively. The corresponding values at 6MVFFF were 0.99, 0.92 and 0.78 respectively. Conclusion: In the current work, an MV spectral imaging feasibility study was attempted using a novel multi-layer prototype EPID imager. Initial results suggest that material separation based on spectral differences between different layers is possible. This spectral imaging technique has potential advantages in MV-CBCT for real-time target tracking, patient set-up imaging and adaptive radiotherapy

  9. EVALUATION OF VARIOUS SPECTRAL INPUTS FOR ESTIMATION OF FOREST BIOCHEMICAL AND STRUCTURAL PROPERTIES FROM AIRBORNE IMAGING SPECTROSCOPY DATA

    Directory of Open Access Journals (Sweden)

    L. Homolová

    2016-06-01

    Full Text Available In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab and leaf area index (LAI from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž. The retrieval algorithm was based on a machine learning method – support vector regression (SVR. Performance of the four spectral inputs used to train SVR was evaluated: a all available hyperspectral bands, b continuum removal (CR 645 – 710 nm, c CR 705 – 780 nm, and d CR 680 – 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab −2 and for LAI < 1.5, with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 – 710 nm, whereas CR bands in range of 680 – 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  10. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  11. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Science.gov (United States)

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  12. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  13. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  14. A Lightweight Compact Multi-Spectral Imager Using Novel Computer-Generated Micro-Optics and Spectral-Extraction Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Early-stage research proposal is to demonstrate an ultra-compact, lightweight broadband hyper- and multi-spectral imaging system that is...

  15. Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization.

    Science.gov (United States)

    Gladish, James C; Duncan, Donald D

    2017-01-20

    Herein, we discuss the remote assessment of the subwavelength organizational structure of a medium. Specifically, we use spectral imaging polarimetry, as the vector nature of polarized light enables it to interact with optical anisotropies within a medium, while the spectral aspect of polarization is sensitive to small-scale structure. The ability to image these effects allows for inference of spatial structural organization parameters. This work describes a methodology for revealing structural organization by exploiting the Stokes/Mueller formalism and by utilizing measurements from a spectral imaging polarimeter constructed from liquid crystal variable retarders and a liquid crystal tunable filter. We provide results to validate the system and then show results from measurements on a mineral sample.

  16. Multi-spectral imager

    CSIR Research Space (South Africa)

    Stolper, R

    2006-02-01

    Full Text Available channel are boresighted with two beamsplitter windows; and • The IR system is boresighted. APPLICATION High-voltage environment • Detecting loose strands, bolts and nuts; • Detecting Corona discharges on insulator discs; • Detecting... and locating spark gaps; • Detecting and locating RIV sources; • Audit sub-stations and transmission lines for audio noise and Corona activities. RECORDINGS / APPLICATIONS REPORTING TOOL: MultiSOFT • Image handling software for grabbing, processing...

  17. Multi-Temporal vs. Hyper-Spectral Imaging for Future Land Imaging at 30 m

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to determine the information content of multi-temporal land imaging in discrete Landsat-like spectral bands at 30 m with a 360 km swath width and compare...

  18. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-11-01

    The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.

  19. Imaging the spectral reflectance properties of bipolar radiofrequency-fused bowel tissue

    Science.gov (United States)

    Clancy, Neil T.; Arya, Shobhit; Stoyanov, Danail; Du, Xiaofei; Hanna, George B.; Elson, Daniel S.

    2015-07-01

    Delivery of radiofrequency (RF) electrical energy is used during surgery to heat and seal tissue, such as vessels, allowing resection without blood loss. Recent work has suggested that this approach may be extended to allow surgical attachment of larger tissue segments for applications such as bowel anastomosis. In a large series of porcine surgical procedures bipolar RF energy was used to resect and re-seal the small bowel in vivo with a commercial tissue fusion device (Ligasure; Covidien PLC, USA). The tissue was then imaged with a multispectral imaging laparoscope to obtain a spectral datacube comprising both fused and healthy tissue. Maps of blood volume, oxygen saturation and scattering power were derived from the measured reflectance spectra using an optimised light-tissue interaction model. A 60% increase in reflectance of visible light (460-700 nm) was observed after fusion, with the tissue taking on a white appearance. Despite this the distinctive shape of the haemoglobin absorption spectrum was still noticeable in the 460-600 nm wavelength range. Scattering power increased in the fused region in comparison to normal serosa, while blood volume and oxygen saturation decreased. Observed fusion-induced changes in the reflectance spectrum are consistent with the biophysical changes induced through tissue denaturation and increased collagen cross-linking. The multispectral imager allows mapping of the spatial extent of these changes and classification of the zone of damaged tissue. Further analysis of the spectral data in parallel with histopathological examination of excised specimens will allow correlation of the optical property changes with microscopic alterations in tissue structure.

  20. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  1. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  2. Spatio-spectral color filter array design for optimal image recovery.

    Science.gov (United States)

    Hirakawa, Keigo; Wolfe, Patrick J

    2008-10-01

    In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

  3. X-ray spectral decomposition imaging system

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-27

    Projection measurements are made of the transmitted X-ray beam in low and high energy regions. These are combined in a non-linear processor to produce atomic-number-dependent and density-dependent projection information. This information is used to provide cross-sectional images which are free of spectral-shift artifacts and completely define the specific material properties. The invention described herein was made in the course of work under a grant from the Department of Health, Education, and Welfare.

  4. A spatial-spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations

    DEFF Research Database (Denmark)

    Rogge, Derek; Bachmann, Martin; Rivard, Benoit

    2014-01-01

    Spectral decorrelation (transformations) methods have long been used in remote sensing. Transformation of the image data onto eigenvectors that comprise physically meaningful spectral properties (signal) can be used to reduce the dimensionality of hyperspectral images as the number of spectrally...... distinct signal sources composing a given hyperspectral scene is generally much less than the number of spectral bands. Determining eigenvectors dominated by signal variance as opposed to noise is a difficult task. Problems also arise in using these transformations on large images, multiple flight...... and spectral subsampling to the data, which is accomplished by deriving a limited set of eigenvectors for spatially contiguous subsets. These subset eigenvectors are compiled together to form a new noise reduced data set, which is subsequently used to derive a set of global orthogonal eigenvectors. Data from...

  5. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis

    Science.gov (United States)

    Somers, B.; Asner, G. P.

    2014-09-01

    The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.

  6. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Gat, N.; Subramanian, S. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States); Toomarian, N. [Jet Propulsion Lab., Pasadena, CA (United States)

    1996-12-31

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  7. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    Science.gov (United States)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  8. Spectral CT imaging in patients with Budd-Chiari syndrome: investigation of image quality.

    Science.gov (United States)

    Su, Lei; Dong, Junqiang; Sun, Qiang; Liu, Jie; Lv, Peijie; Hu, Lili; Yan, Liangliang; Gao, Jianbo

    2014-11-01

    To assess the image quality of monochromatic imaging from spectral CT in patients with Budd-Chiari syndrome (BCS), fifty patients with BCS underwent spectral CT to generate conventional 140 kVp polychromatic images (group A) and monochromatic images, with energy levels from 40 to 80, 40 + 70, and 50 + 70 keV fusion images (group B) during the portal venous phase (PVP) and the hepatic venous phase (HVP). Two-sample t tests compared vessel-to-liver contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) for the portal vein (PV), hepatic vein (HV), inferior vena cava. Readers' subjective evaluations of the image quality were recorded. The highest SNR values in group B were distributed at 50 keV; the highest CNR values in group B were distributed at 40 keV. The higher CNR values and SNR values were obtained though PVP of PV (SNR 18.39 ± 6.13 vs. 10.56 ± 3.31, CNR 7.81 ± 3.40 vs. 3.58 ± 1.31) and HVP of HV (3.89 ± 2.08 vs. 1.27 ± 1.55) in the group B; the lower image noise for group B was at 70 keV and 50 + 70 keV (15.54 ± 8.39 vs. 18.40 ± 4.97, P = 0.0004 and 18.97 ± 7.61 vs. 18.40 ± 4.97, P = 0.0691); the results show that the 50 + 70 keV fusion image quality was better than that in group A. Monochromatic energy levels of 40-70, 40 + 70, and 50 + 70 keV fusion image can increase vascular contrast and that will be helpful for the diagnosis of BCS, we select the 50 + 70 keV fusion image to acquire the best BCS images.

  9. Spectral edge: gradient-preserving spectral mapping for image fusion.

    Science.gov (United States)

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  10. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Science.gov (United States)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  11. Simultaneous high-speed spectral and infrared imaging of engine combustion

    Science.gov (United States)

    Jansons, Marcis

    2005-11-01

    A novel and unique diagnostic apparatus has been developed and applied to combustion gas mixtures in engine cylinders. The computer-controlled system integrates a modified Fastie-Ebert type spectrophotometer with four infrared CCD imagers, allowing the simultaneous acquisition of the spectrum and four spatial images, each at a discrete wavelength. Data buffering allows continuous imaging of the power stroke over consecutive engine cycles at framing rates of 1850 frames/second. Spectral resolution is 28nm with an uncertainty better than 58nm. The nominal response of the instrument is in the range 1.8--4.5mum, with a peak responsivity near the important 2.7mum bands of CO2 and H2O. The spectral range per scan is approximately 1.78mum. To interpret the measured data, a line-by-line radiation model was created utilizing the High-Resolution Transmission (HITRAN) database of molecular parameters, incorporating soot and wall emission effects. Although computationally more intensive, this model represents an improvement in accuracy over the NASA single-line-group (SLG) model which does not include the 'hot' CO2 lines of the 3.8mum region. Methane/air combustion mixture thermodynamic parameters are estimated by the iteration of model variables to yield a synthetic spectrum that, when corrected for wall effects, instrument function, responsivity, window and laboratory path transmissivity, correspond to the measured spectrum. The values of the model variables are used to interpret the corresponding spatial images. For the first time in the infrared an entire engine starting sequence has been observed over consecutive cycles. Preflame spectra measured during the compression stroke of a spark-ignition engine operating with various fuels correlate well with the synthetic spectra of the particular hydrocarbon reactants. The ability to determine concentration and spatial distribution of fuel in the engine cylinder prior to ignition has applications in stratified charge studies and

  12. Infrared hyperspectral imaging miniaturized for UAV applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  13. Functional analysis, spectral theory, and applications

    CERN Document Server

    Einsiedler, Manfred

    2017-01-01

    This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

  14. Quality measures in applications of image restoration.

    Science.gov (United States)

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  15. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    Science.gov (United States)

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  16. Evaluating visibility of age spot and freckle based on simulated spectral reflectance distribution and facial color image

    Science.gov (United States)

    Hirose, Misa; Toyota, Saori; Tsumura, Norimichi

    2018-02-01

    In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.

  17. Characterisation and geostatistical analysis of clay rocks in underground facilities using hyper-spectral images

    International Nuclear Information System (INIS)

    Becker, J.K.; Marschall, P.; Brunner, P.; Cholet, C.; Renard, P.; Buckley, S.; Kurz, T.

    2012-01-01

    Document available in extended abstract form only. Flow and transport processes in geological formations are controlled by the porosity and permeability which in turn are mainly controlled by the fabric and the mineralogical composition of the rock. For the assessment of transport processes in water-saturated Clay-stone formations, the relevant scales are ranging essentially from kilometers to nanometers. The spatial variability of the mineralogical composition is a key indicator for the separation of transport scales and for the derivation of the effective transport properties at a given scale. Various laboratory and in-situ techniques are available for characterizing the mineralogical composition of a rock on different scales. The imaging spectroscopy presented in this paper is a new site investigation method suitable for mapping the mineralogical composition of geological formations in 2D on a large range of scales. A combination of imaging spectrometry with other site characterization methods allows the inference of the spatial variability of the mineralogical composition in 3D over a wide range of scales with the help of advanced geostatistical methods. The method of image spectrometry utilizes the fact that the reflection of electromagnetic radiation from a surface is a function of the wavelength, the chemical-mineralogical surface properties, and physical parameters such as the grain size and surface roughness. In remote sensing applications using the sun as the light source, the reflectance is measured within the visible and infrared range, according to the atmospheric transmissibility. Many rock-forming minerals exhibit diagnostic absorption features within this range, which are caused by electronic and vibrational processes within the crystal lattice. The exact wavelength of an absorption feature is controlled by the type of ion, as well as the position of the ion within the lattice. Spectral signatures of minerals are described by a number of authors

  18. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    Science.gov (United States)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  19. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    Science.gov (United States)

    2007-03-01

    2002. Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spec- trosc. 56 :155-166. 38. Becker, W., A. Bergmann, E. Haustein , Z...photon fluores- cence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Microsc. 185 :339-353. 45. Lin, H.J., P. Herman , and

  20. Hyperspectral Image Classification Based on the Combination of Spatial-spectral Feature and Sparse Representation

    Directory of Open Access Journals (Sweden)

    YANG Zhaoxia

    2015-07-01

    Full Text Available In order to avoid the problem of being over-dependent on high-dimensional spectral feature in the traditional hyperspectral image classification, a novel approach based on the combination of spatial-spectral feature and sparse representation is proposed in this paper. Firstly, we extract the spatial-spectral feature by reorganizing the local image patch with the first d principal components(PCs into a vector representation, followed by a sorting scheme to make the vector invariant to local image rotation. Secondly, we learn the dictionary through a supervised method, and use it to code the features from test samples afterwards. Finally, we embed the resulting sparse feature coding into the support vector machine(SVM for hyperspectral image classification. Experiments using three hyperspectral data show that the proposed method can effectively improve the classification accuracy comparing with traditional classification methods.

  1. Miniature infrared hyperspectral imaging sensor for airborne applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  2. Comparison of the Spectral Properties of Pansharpened Images Generated from AVNIR-2 and Prism Onboard Alos

    Science.gov (United States)

    Matsuoka, M.

    2012-07-01

    A considerable number of methods for pansharpening remote-sensing images have been developed to generate higher spatial resolution multispectral images by the fusion of lower resolution multispectral images and higher resolution panchromatic images. Because pansharpening alters the spectral properties of multispectral images, method selection is one of the key factors influencing the accuracy of subsequent analyses such as land-cover classification or change detection. In this study, seven pixel-based pansharpening methods (additive wavelet intensity, additive wavelet principal component, generalized Laplacian pyramid with spectral distortion minimization, generalized intensity-hue-saturation (GIHS) transform, GIHS adaptive, Gram-Schmidt spectral sharpening, and block-based synthetic variable ratio) were compared using AVNIR-2 and PRISM onboard ALOS from the viewpoint of the preservation of spectral properties of AVNIR-2. A visual comparison was made between pansharpened images generated from spatially degraded AVNIR-2 and original images over urban, agricultural, and forest areas. The similarity of the images was evaluated in terms of the image contrast, the color distinction, and the brightness of the ground objects. In the quantitative assessment, three kinds of statistical indices, correlation coefficient, ERGAS, and Q index, were calculated by band and land-cover type. These scores were relatively superior in bands 2 and 3 compared with the other two bands, especially over urban and agricultural areas. Band 4 showed a strong dependency on the land-cover type. This was attributable to the differences in the observing spectral wavelengths of the sensors and local scene variances.

  3. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    Science.gov (United States)

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  4. Infrared spectral imaging as a novel approach for histopathological recognition in colon cancer diagnosis

    Science.gov (United States)

    Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier

    2012-11-01

    Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.

  5. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.

    Science.gov (United States)

    de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger

    2015-04-01

    The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared

  6. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis

    OpenAIRE

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-01-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in can...

  7. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  8. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  9. The hyperspectral imaging trade-off

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    , this will be the standard situation, and it enables the detection of small spectral features like peaks, valleys and shoulders for a wide range of chemistries. Everything else being equal this is what you would wish for, and hyperspectral imaging is often used in research and in remote sensing because of the needs and cost......Although it has no clear-cut definition, hyperspectral imaging in the UV-Visible-NIR wavelength region seems to mean spectral image sampling in bands from 10 nm width or narrower that enables spectral reconstruction over some wavelength interval. For non-imaging spectral applications...... structures in these projects. However, hyperspectral imaging is a sampling choice within spectral imaging that typically will impose some trade-offs, and these trade-offs will not be optimal for many applications. The purpose of this presentation is to point out and increase the awareness of these trade...

  10. Chest CT using spectral filtration: radiation dose, image quality, and spectrum of clinical utility

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Franziska M.; Johnson, Thorsten R.C.; Sommer, Wieland H.; Thierfelder, Kolja M.; Meinel, Felix G. [University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-06-01

    To determine the radiation dose, image quality, and clinical utility of non-enhanced chest CT with spectral filtration. We retrospectively analysed 25 non-contrast chest CT examinations acquired with spectral filtration (tin-filtered Sn100 kVp spectrum) compared to 25 examinations acquired without spectral filtration (120 kV). Radiation metrics were compared. Image noise was measured. Contrast-to-noise-ratio (CNR) and figure-of-merit (FOM) were calculated. Diagnostic confidence for the assessment of various thoracic pathologies was rated by two independent readers. Effective chest diameters were comparable between groups (P = 0.613). In spectral filtration CT, median CTDI{sub vol}, DLP, and size-specific dose estimate (SSDE) were reduced (0.46 vs. 4.3 mGy, 16 vs. 141 mGy*cm, and 0.65 vs. 5.9 mGy, all P < 0.001). Spectral filtration CT had higher image noise (21.3 vs. 13.2 HU, P < 0.001) and lower CNR (47.2 vs. 75.3, P < 0.001), but was more dose-efficient (FOM 10,659 vs. 2,231/mSv, P < 0.001). Diagnostic confidence for parenchymal lung disease and osseous pathologies was lower with spectral filtration CT, but no significant difference was found for pleural pathologies, pulmonary nodules, or pneumonia. Non-contrast chest CT using spectral filtration appears to be sufficient for the assessment of a considerable spectrum of thoracic pathologies, while providing superior dose efficiency, allowing for substantial radiation dose reduction. (orig.)

  11. Tomato sorting using independent component analysis on spectral images

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.

    2003-01-01

    Independent Component Analysis is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the most important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  12. Spectral/ hp element methods: Recent developments, applications, and perspectives

    Science.gov (United States)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  13. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Science.gov (United States)

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  16. Development of TMA-based imaging system for hyperspectral application

    Science.gov (United States)

    Choi, Young-Wan; Yang, Seung-Uk; Kang, Myung-Seok; Kim, Ee-Eul

    2017-11-01

    Funded by the Ministry of Commerce, Industry, and Energy of Korea, SI initiated the development of the prototype model of TMA-based electro-optical system as part of the national space research and development program. Its optical aperture diameter is 120 mm, the effective focal length is 462 mm, and its full field-of-view is 5.08 degrees. The dimension is of about 600 mm × 400 mm × 400 mm and the weight is less than 15 kg. To demonstrate its performance, hyper-spectral imaging based on linear spectral filter is selected for the application of the prototype. The spectral resolution will be less than 10 nm and the number of channels will be more than 40 in visible and nearinfrared region. In this paper, the progress made so far on the prototype development will be presented

  17. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  18. Evaluation of the robustness of estimating five components from a skin spectral image

    Science.gov (United States)

    Akaho, Rina; Hirose, Misa; Tsumura, Norimichi

    2018-04-01

    We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.

  19. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  20. High-speed multispectral videography with a periscope array in a spectral shaper.

    Science.gov (United States)

    Hashimoto, Kazuki; Mizuno, Hikaru; Nakagawa, Keiichi; Horisaki, Ryoichi; Iwasaki, Atsushi; Kannari, Fumihiko; Sakuma, Ichiro; Goda, Keisuke

    2014-12-15

    We present a simple method for continuous snapshot multispectral imaging or multispectral videography that achieves high-speed spectral video recording without the need for mechanical scanning and much computation for datacube construction. The enabling component of this method is an array of periscopes placed in a prism-based spectral shaper that spectrally separates the image without image deformation. As a proof-of-principle demonstration, we show five-color multispectral video recording in the visible range (200×200 pixels per spectral image frame) at a record high frame rate of at least 2800 frames per second. Our experimental results indicate that this method holds promise for various industrial and biomedical applications such as remote sensing, food inspection, and endoscopy.

  1. Newly Diagnosed Breast Cancer: Comparison of Contrast-enhanced Spectral Mammography and Breast MR Imaging in the Evaluation of Extent of Disease.

    Science.gov (United States)

    Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita

    2017-11-01

    Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed

  2. Spectral characterization in deep UV of an improved imaging KDP acousto-optic tunable filter

    International Nuclear Information System (INIS)

    Gupta, Neelam; Voloshinov, Vitaly

    2014-01-01

    Recently, we developed a number of high quality noncollinear acousto-optic tunable filter (AOTF) cells in different birefringent materials with UV imaging capability. Cells based on a single crystal of KDP (potassium dihydrophosphate) had the best transmission efficiency and the optical throughput needed to acquire high quality spectral images at wavelengths above 220 nm. One of the main limitations of these imaging filters was their small angular aperture in air, limited to about 1.0°. In this paper, we describe an improved imaging KDP AOTF operating from the deep UV to the visible region of the spectrum. The linear and angular apertures of the new filter are 10 × 10 mm 2 and 1.8°, respectively. The spectral tuning range is 205–430 nm with a 60 cm −1 spectral resolution. We describe the filter and present experimental results on imaging using both a broadband source and a number of light emitting diodes (LEDs) in the UV, and include the measured spectra of these LEDs obtained with a collinear SiO 2 filter-based spectrometer operating above 255 nm. (paper)

  3. Spectral CT imaging in the differential diagnosis of necrotic hepatocellular carcinoma and hepatic abscess

    International Nuclear Information System (INIS)

    Yu, Y.; Guo, L.; Hu, C.; Chen, K.

    2014-01-01

    Aim: To explore the value of CT spectral imaging in the differential diagnosis of necrotic hepatocellular carcinoma (nHCC) and hepatic abscess (HA) during the arterial phase (AP) and portal venous phase (PP). Materials and methods: Sixty patients with 36 nHCCs and 24 HAs underwent spectral CT during AP and PP. Iodine or water concentration were measured and the normalized iodine concentration (NIC) and lesion-normal parenchyma iodine concentration ratio (LNR) were calculated. The two-sample t-test was used to compare quantitative parameters. Two readers qualitatively assessed lesion types according to imaging features. Sensitivity and specificity were compared between the qualitative and quantitative studies. Results: NIC and LNR in the AP for the wall of nHCC (0.14 ± 0.04 mg/ml; 2.77 ± 0.74) were higher than those of HA (0.13 ± 0.02 mg/ml; 1.4 ± 0.9). NIC and LNR in the PP for the wall of HA (0.66 ± 0.05 mg/ml; 1.2 ± 0.2) were higher than those of nHCC (0.5 ± 0.11 mg/ml; 0.94 ± 0.12). The differences in NIC in the AP were not significant but the differences in LNR in AP, and NIC and LNR in the PP were significant. The best quantitative parameter was LNR in AP, and a threshold of 1.52 would yield a sensitivity and specificity of 100% and 91.7%, respectively, for differentiating nHCC from HA. Conclusion: CT spectral imaging with quantitative iodine concentration analysis may help to increase the accuracy of differentiating nHCC from HA. - Highlights: • We preliminarily investigate the usefulness of CT spectral imaging in differentiating nHCC from HA. • CT spectral imaging may help differentiate necrotic hepatocellular carcinoma from hepatic abscess. • CT spectral imaging can evaluate the blood supply and necrotic degree of lesions. • Quantitative analysis of iodine concentration provides greater diagnostic confidence

  4. A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths

    Science.gov (United States)

    2017-10-18

    UV -­‐ VIS -­‐IR   60mm   Apo   Macro  lens   Jenoptik-­‐Inc   $5,817.36   IR... VIS /NIR Compressive Spectral Imager”, Proceedings of IEEE International Conference on Image Processing (ICIP ’15), Quebec City, Canada, (September...imaging   system   will   lead   to   a   wide-­‐band   VIS -­‐NIR-­‐SWIR   compressive  spectral  and  polarimetric

  5. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  6. Improving Spectral Image Classification through Band-Ratio Optimization and Pixel Clustering

    Science.gov (United States)

    O'Neill, M.; Burt, C.; McKenna, I.; Kimblin, C.

    2017-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) seeks to characterize non-prompt observables from underground nuclear explosions (UNE). As part of this effort, we evaluated the ability of DigitalGlobe's WorldView-3 (WV3) to detect and map UNE signatures. WV3 is the current state-of-the-art, commercial, multispectral imaging satellite; however, it has relatively limited spectral and spatial resolutions. These limitations impede image classifiers from detecting targets that are spatially small and lack distinct spectral features. In order to improve classification results, we developed custom algorithms to reduce false positive rates while increasing true positive rates via a band-ratio optimization and pixel clustering front-end. The clusters resulting from these algorithms were processed with standard spectral image classifiers such as Mixture-Tuned Matched Filter (MTMF) and Adaptive Coherence Estimator (ACE). WV3 and AVIRIS data of Cuprite, Nevada, were used as a validation data set. These data were processed with a standard classification approach using MTMF and ACE algorithms. They were also processed using the custom front-end prior to the standard approach. A comparison of the results shows that the custom front-end significantly increases the true positive rate and decreases the false positive rate.This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-3283.

  7. Accuracy in mineral identification: image spectral and spatial resolutions and mineral spectral properties

    Directory of Open Access Journals (Sweden)

    L. Pompilio

    2006-06-01

    Full Text Available Problems related to airborne hyperspectral image data are reviewed and the requirements for data analysis applied to mineralogical (rocks and soils interpretation are discussed. The variability of mineral spectral features, including absorption position, shape and depth is considered and interpreted as due to chemical composition, grain size effects and mineral association. It is also shown how this variability can be related to well defined geologic processes. The influence of sensor noise and diffuse atmospheric radiance in classification accuracy is also analyzed.

  8. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    International Nuclear Information System (INIS)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-01-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment. (paper)

  9. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    Science.gov (United States)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-05-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment.

  10. Near-IR Spectral Imaging of Semiconductor Absorption Sites in Integrated Circuits

    Directory of Open Access Journals (Sweden)

    E. C. Samson

    2004-12-01

    Full Text Available We derive spectral maps of absorption sites in integrated circuits (ICs by varying the wavelength of the optical probe within the near-IR range. This method has allowed us to improve the contrast of the acquired images by revealing structures that have a different optical absorption from neighboring sites. A false color composite image from those acquired at different wavelengths is generated from which the response of each semiconductor structure can be deduced. With the aid of the spectral maps, nonuniform absorption was also observed in a semiconductor structure located near an electrical overstress defect. This method may prove important in failure analysis of ICs by uncovering areas exhibiting anomalous absorption, which could improve localization of defective edifices in the semiconductor parts of the microchip

  11. SU-G-IeP2-09: Iodine Imaging at Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, Ohio (United States); Dhanantwari, A; Halliburton, S; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To evaluate the attenuation response of iodine and the accuracy of iodine quantification on a detector-based spectral CT scanner. Methods: A Gammex 461A phantom was scanned using a dual-layer detector (IQon, Philips) at 120 kVp using helical acquisition with a CDTIvol of 15 mGy to approximate the hospital’s clinical body protocol. No modifications to the standard protocol were necessary to enable spectral imaging. Iodine inserts at 6 concentrations (2, 5, 7.5, 10, 15, 20 mg/ml) were scanned individually at the center of the phantom and the 20 mg/ml insert was additionally scanned at the 3, 6, and 12 o’clock positions. Scans were repeated 10 times. Conventional, virtual monoenergetic (40–200 keV) and iodine-no-water images (with pixel values equal to iodine concentration of corresponding tissue) were reconstructed from acquired data. A circular ROI (diameter=30 pixels) was used in each conventional and monoenergetic image to measure the mean and standard deviation of the CT number in HU and in each iodine-no-water image to measure iodine concentration in mg/ml. Results: Mean CT number and contrast-to-noise ratio (CNR) measured from monoenergetic images increased with decreasing keV for all iodine concentrations and matched measurements from conventional images at 75 keV. Measurements from the 20 ml insert showed the CT number is independent of location and CNR is a function only of noise, which was higher in the center. Measured concentration from iodine-no-water images matched phantom manufacturer suggested concentration to within 6% on average for inserts at the center of the phantom. Measured concentrations were systematically higher due to optimization of iodine quantification parameters for clinical mixtures of iodine and blood/tissue. Conclusion: Spectral acquisition and reconstruction with a dual-layer detector represents the physical behavior of iodine as expected and accurately quantifies the material concentration. This should permit a

  12. Global Learning Spectral Archive- A new Way to deal with Unknown Urban Spectra -

    Science.gov (United States)

    Jilge, M.; Heiden, U.; Habermeyer, M.; Jürgens, C.

    2015-12-01

    Rapid urbanization processes and the need of identifying urban materials demand urban planners and the remote sensing community since years. Urban planners cannot overcome the issue of up-to-date information of urban materials due to time-intensive fieldwork. Hyperspectral remote sensing can facilitate this issue by interpreting spectral signals to provide information of occurring materials. However, the complexity of urban areas and the occurrence of diverse urban materials vary due to regional and cultural aspects as well as the size of a city, which makes identification of surface materials a challenging analysis task. For the various surface material identification approaches, spectral libraries containing pure material spectra are commonly used, which are derived from field, laboratory or the hyperspectral image itself. One of the requirements for successful image analysis is that all spectrally different surface materials are represented by the library. Currently, a universal library, applicable in every urban area worldwide and taking each spectral variability into account, is and will not be existent. In this study, the issue of unknown surface material spectra and the demand of an urban site-specific spectral library is tackled by the development of a learning spectral archive tool. Starting with an incomplete library of labelled image spectra from several German cities, surface materials of pure image pixels will be identified in a hyperspectral image based on a similarity measure (e.g. SID-SAM). Additionally, unknown image spectra of urban objects are identified based on an object- and spectral-based-rule set. The detected unknown surface material spectra are entered with additional metadata, such as regional occurrence into the existing spectral library and thus, are reusable for further studies. Our approach is suitable for pure surface material detection of urban hyperspectral images that is globally applicable by taking incompleteness into account

  13. Orthogonal polarization spectral (OPS) imaging and topographical characteristics of oral squamous cell carcinoma

    NARCIS (Netherlands)

    Lindeboom, Jerome A.; Mathura, Keshen R.; Ince, Can

    2006-01-01

    Tumor microcirculatory characteristics until now have only been assessed by histological examination of biopsies or invasive imaging technique. The recent introduction of orthogonal polarization spectral (OPS) imaging as a new tool for in vivo visualization of human microcirculation makes it

  14. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    Science.gov (United States)

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  15. Spatial and Spectral Hybrid Image Classification for Rice Lodging Assessment through UAV Imagery

    Directory of Open Access Journals (Sweden)

    Ming-Der Yang

    2017-06-01

    Full Text Available Rice lodging identification relies on manual in situ assessment and often leads to a compensation dispute in agricultural disaster assessment. Therefore, this study proposes a comprehensive and efficient classification technique for agricultural lands that entails using unmanned aerial vehicle (UAV imagery. In addition to spectral information, digital surface model (DSM and texture information of the images was obtained through image-based modeling and texture analysis. Moreover, single feature probability (SFP values were computed to evaluate the contribution of spectral and spatial hybrid image information to classification accuracy. The SFP results revealed that texture information was beneficial for the classification of rice and water, DSM information was valuable for lodging and tree classification, and the combination of texture and DSM information was helpful in distinguishing between artificial surface and bare land. Furthermore, a decision tree classification model incorporating SFP values yielded optimal results, with an accuracy of 96.17% and a Kappa value of 0.941, compared with that of a maximum likelihood classification model (90.76%. The rice lodging ratio in paddies at the study site was successfully identified, with three paddies being eligible for disaster relief. The study demonstrated that the proposed spatial and spectral hybrid image classification technology is a promising tool for rice lodging assessment.

  16. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, J. M. [NorthWest Research Associates, Boulder, CO 80301 (United States); Codrescu, M. [Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO 80305 (United States); Fedrizzi, M.; Fuller-Rowell, T. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Hill, F. [National Solar Observatory, Boulder, CO 80303 (United States); Landi, E. [Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Woods, T., E-mail: johnf@digidyna.com [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303 (United States)

    2017-01-01

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm is used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.

  17. Description and availability of the SMARTS spectral model for photovoltaic applications

    Science.gov (United States)

    Myers, Daryl R.; Gueymard, Christian A.

    2004-11-01

    Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.

  18. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    Science.gov (United States)

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole

  19. Medical hyperspectral imaging: a review

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  20. Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging

    Directory of Open Access Journals (Sweden)

    Dario Differt

    2016-09-01

    Full Text Available Evidence from behavioral experiments suggests that insects use the skyline as a cue for visual navigation. However, changes of lighting conditions, over hours, days or possibly seasons, significantly affect the appearance of the sky and ground objects. One possible solution to this problem is to extract the “skyline” by an illumination-invariant classification of the environment into two classes, ground objects and sky. In a previous study (Insect models of illumination-invariant skyline extraction from UV (ultraviolet and green channels, we examined the idea of using two different color channels available for many insects (UV and green to perform this segmentation. We found out that for suburban scenes in temperate zones, where the skyline is dominated by trees and artificial objects like houses, a “local” UV segmentation with adaptive thresholds applied to individual images leads to the most reliable classification. Furthermore, a “global” segmentation with fixed thresholds (trained on an image dataset recorded over several days using UV-only information is only slightly worse compared to using both the UV and green channel. In this study, we address three issues: First, to enhance the limited range of environments covered by the dataset collected in the previous study, we gathered additional data samples of skylines consisting of minerals (stones, sand, earth as ground objects. We could show that also for mineral-rich environments, UV-only segmentation achieves a quality comparable to multi-spectral (UV and green segmentation. Second, we collected a wide variety of ground objects to examine their spectral characteristics under different lighting conditions. On the one hand, we found that the special case of diffusely-illuminated minerals increases the difficulty to reliably separate ground objects from the sky. On the other hand, the spectral characteristics of this collection of ground objects covers well with the data collected

  1. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  2. Conjugate Etalon Spectral Imager (CESI) & Scanning Etalon Methane Mapper (SEMM), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of the CESI focal plane and optics technology will lead to miniaturized hyperspectral and SWIR-band spectral imaging instrumentation compatible with...

  3. A Stochastic Imaging Technique for Spatio-Spectral Characterization of Special Nuclear Material

    Science.gov (United States)

    Hamel, Michael C.

    Radiation imaging is advantageous for detecting, locating and characterizing special nuclear material (SNM) in complex environments. A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. The steady-state solution produced by this iterative method will have poor quality compared to solutions produced with fewer iterations. A stopping condition is required to achieve a better solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution that has image quality comparable to the best MLEM solution. The application of SOE to the DPI is presented in this work. SOE was originally applied in medical imaging applications with no mechanism to isolate spectral information based on location. This capability is critical for non-proliferation applications as complex radiation environments with multiple sources are often encountered. This dissertation extends the SOE algorithm to produce spatially dependent spectra and presents experimental result showing that the technique was effective for isolating a 4.1-kg mass of weapons grade plutonium (WGPu) when other neutron and gamma-ray sources were present. This work also demonstrates the DPI as an effective tool for localizing and characterizing highly enriched uranium (HEU). A series of experiments were performed with the DPI using a deuterium-deuterium (DD) and deuterium-tritium (DT) neutron generator, as well as

  4. The fabrication of a multi-spectral lens array and its application in assisting color blindness

    Science.gov (United States)

    Di, Si; Jin, Jian; Tang, Guanrong; Chen, Xianshuai; Du, Ruxu

    2016-01-01

    This article presents a compact multi-spectral lens array and describes its application in assisting color-blindness. The lens array consists of 9 microlens, and each microlens is coated with a different color filter. Thus, it can capture different light bands, including red, orange, yellow, green, cyan, blue, violet, near-infrared, and the entire visible band. First, the fabrication process is described in detail. Second, an imaging system is setup and a color blindness testing card is selected as the sample. By the system, the vision results of normal people and color blindness can be captured simultaneously. Based on the imaging results, it is possible to be used for helping color-blindness to recover normal vision.

  5. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    Science.gov (United States)

    Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.

  6. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Rajiah, Prabhakar; Ahn, Richard; Rassouli, Negin; Xi, Yin; Soesbe, Todd C; Lewis, Matthew A; Lenkinski, Robert E; Leyendecker, John R; Abbara, Suhny

    2017-03-01

    To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Mean difference between unenhanced and VNC attenuation was VNC attenuation were equivalent in all tissues except fat using a threshold of VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.

  7. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    Science.gov (United States)

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  8. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    Science.gov (United States)

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  9. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  10. Handheld hyperspectral imager system for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  11. Hand-held hyperspectral imager for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  12. COMBINED ANALYSIS OF IMAGES AND SPECTRAL ENERGY DISTRIBUTIONS OF TAURUS PROTOSTARS

    International Nuclear Information System (INIS)

    Gramajo, Luciana V.; Gomez, Mercedes; Whitney, Barbara A.; Robitaille, Thomas P.

    2010-01-01

    We present an analysis of spectral energy distributions (SEDs), near- and mid-infrared images, and Spitzer spectra of eight embedded Class I/II objects in the Taurus-Auriga molecular cloud. The initial model for each source was chosen using the grid of young stellar objects (YSOs) and SED fitting tool of Robitaille et al. Then the models were refined using the radiative transfer code of Whitney et al. to fit both the spectra and the infrared images of these objects. In general, our models agree with previous published analyses. However, our combined models should provide more reliable determinations of the physical and geometrical parameters since they are derived from SEDs, including the Spitzer spectra, covering the complete spectral range; and high-resolution near-infrared and Spitzer IRAC images. The combination of SED and image modeling better constrains the different components (central source, disk, envelope) of the YSOs. Our derived luminosities are higher, on average, than previous estimates because we account for the viewing angles (usually nearly edge-on) of most of the sources. Our analysis suggests that the standard rotating collapsing protostar model with disks and bipolar cavities works well for the analyzed sample of objects in the Taurus molecular cloud.

  13. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  14. Multi-spectral lifetime imaging: methods and applications

    NARCIS (Netherlands)

    Fereidouni, F.

    2013-01-01

    The aim of this PhD project is to further develop multispectral life time imaging hardware and analyses methods. The hardware system, Lambda-Tau, generates a considerable amount of data at high speed. To fully exploit the power of this new hardware, fast and reliable data analyses methods are

  15. Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.

  16. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  17. MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    CERN Document Server

    Aamir, R; Bateman, C.J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.K.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; Ruiter, N.de; Gieseg, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P.J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S.J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.J.; Hodge, K.

    2014-01-01

    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we ...

  18. Spectral-spatial classification of hyperspectral image using three-dimensional convolution network

    Science.gov (United States)

    Liu, Bing; Yu, Xuchu; Zhang, Pengqiang; Tan, Xiong; Wang, Ruirui; Zhi, Lu

    2018-01-01

    Recently, hyperspectral image (HSI) classification has become a focus of research. However, the complex structure of an HSI makes feature extraction difficult to achieve. Most current methods build classifiers based on complex handcrafted features computed from the raw inputs. The design of an improved 3-D convolutional neural network (3D-CNN) model for HSI classification is described. This model extracts features from both the spectral and spatial dimensions through the application of 3-D convolutions, thereby capturing the important discrimination information encoded in multiple adjacent bands. The designed model views the HSI cube data altogether without relying on any pre- or postprocessing. In addition, the model is trained in an end-to-end fashion without any handcrafted features. The designed model was applied to three widely used HSI datasets. The experimental results demonstrate that the 3D-CNN-based method outperforms conventional methods even with limited labeled training samples.

  19. Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging

    International Nuclear Information System (INIS)

    Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung

    2014-01-01

    In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively. (paper)

  20. High spectral resolution image of Barnacle Bill

    Science.gov (United States)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  1. Camouflage target detection via hyperspectral imaging plus information divergence measurement

    Science.gov (United States)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2016-01-01

    Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.

  2. Use of spectral pre-processing methods to compensate for the presence of packaging film in visible–near infrared hyperspectral images of food products

    Directory of Open Access Journals (Sweden)

    A.A. Gowen

    2010-10-01

    Full Text Available The presence of polymeric packaging film in images of food products may modify spectra obtained in hyperspectral imaging (HSI experiments, leading to undesirable image artefacts which may impede image classification. Some pre-processing of the image is typically required to reduce the presence of such artefacts. The objective of this research was to investigate the use of spectral pre-processing techniques to compensate for the presence of packaging film in hyperspectral images obtained in the visible–near infrared wavelength range (445–945 nm, with application in food quality assessment. A selection of commonly used pre-processing methods, used individually and in combination, were applied to hyperspectral images of flat homogeneous samples, imaged in the presence and absence of different packaging films (polyvinyl chloride and polyethylene terephthalate. Effects of the selected pre-treatments on variation due to the film’s presence were examined in principal components score space. The results show that the combination of first derivative Savitzky–Golay followed by standard normal variate transformation was useful in reducing variations in spectral response caused by the presence of packaging film. Compared to other methods examined, this combination has the benefits of being computationally fast and not requiring a priori knowledge about the sample or film used.

  3. Cost effective spectral sensor solutions for hand held and field applications

    Science.gov (United States)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  4. Spectral mixture analysis for water quality assessment over the Amazon floodplain using Hyperion/EO-1 images

    Directory of Open Access Journals (Sweden)

    Lênio Soares Galvão

    2006-12-01

    Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.

  5. Spectral mixture analysis for water quality assessment over the Amazon floodplain using Hyperion/EO-1 images

    Directory of Open Access Journals (Sweden)

    Lênio Soares Galvão

    2007-06-01

    Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.

  6. A spectral k-means approach to bright-field cell image segmentation.

    Science.gov (United States)

    Bradbury, Laura; Wan, Justin W L

    2010-01-01

    Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.

  7. Detection of plum pox virus infection in selection plum trees using spectral imaging

    Science.gov (United States)

    Angelova, Liliya; Stoev, Antoniy; Borisova, Ekaterina; Avramov, Latchezar

    2016-01-01

    Plum pox virus (PPV) is among the most studied viral diseases in the world in plants. It is considered to be one of the most devastating diseases of stone fruits in terms of agronomic impact and economic importance. Noninvasive, fast and reliable techniques are required for evaluation of the pathology in selection trees with economic impact. Such advanced tools for PPV detection could be optical techniques as light-induced fluorescence and diffuse reflectance spectroscopies. Specific regions in the electromagnetic spectra have been found to provide information about the physiological stress in plants, and consequently, diseased plants usually exhibit different spectral signature than non-stressed healthy plants in those specific ranges. In this study spectral reflectance and chlorophyll fluorescence were used for the identification of biotic stress caused by the pox virus on plum trees. The spectral responses of healthy and infected leaves from cultivars, which are widespread in Bulgaria were investigated. The two applied techniques revealed statistically significant differences between the spectral data of healthy plum leaves and those infected by PPV in the visible and near-infrared spectral ranges. Their application for biotic stress detection helps in monitoring diseases in plants using the different plant spectral properties in these spectral ranges. The strong relationship between the results indicates the applicability of diffuse reflectance and fluorescence techniques for conducting health condition assessments of vegetation and their importance for plant protection practices.

  8. A spectral image processing algorithm for evaluating the influence of the illuminants on the reconstructed reflectance

    Science.gov (United States)

    Toadere, Florin

    2017-12-01

    A spectral image processing algorithm that allows the illumination of the scene with different illuminants together with the reconstruction of the scene's reflectance is presented. Color checker spectral image and CIE A (warm light 2700 K), D65 (cold light 6500 K) and Cree TW Series LED T8 (4000 K) are employed for scene illumination. Illuminants used in the simulations have different spectra and, as a result of their illumination, the colors of the scene change. The influence of the illuminants on the reconstruction of the scene's reflectance is estimated. Demonstrative images and reflectance showing the operation of the algorithm are illustrated.

  9. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  10. Fluorescence spectral imaging as a tool for locating uranium deposited on surfaces - 16089

    International Nuclear Information System (INIS)

    Monts, David L.; Wang, Guangjun; Su, Yi; Jang, Ping-Rey; Waggoner, Charles A.

    2009-01-01

    In the environment, metallic uranium readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450-650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system as a tool for locating and quantifying uranyl compounds dispersed in soils and on other surfaces. A project is underway to develop a set of sensors to locate expended depleted uranium (DU) rounds and to process soil and debris to recover the material from domestic firing ranges. The FSI system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. The FSI image provides both spatial and spectral information. The FSI system is described and its performance characterized using field samples. (authors)

  11. Spectral theory and nonlinear analysis with applications to spatial ecology

    CERN Document Server

    Cano-Casanova, S; Mora-Corral , C

    2005-01-01

    This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.

  12. Distant Determination of Bilirubin Distribution in Skin by Multi-Spectral Imaging

    Science.gov (United States)

    Saknite, I.; Jakovels, D.; Spigulis, J.

    2011-01-01

    For mapping the bilirubin distribution in bruised skin the multi-spectral imaging technique was employed, which made it possible to observe temporal changes of the bilirubin content in skin photo-types II and III. The obtained results confirm the clinical potential of this technique for skin bilirubin diagnostics.

  13. Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

    Directory of Open Access Journals (Sweden)

    Yoshihisa Aizu

    2013-06-01

    Full Text Available A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.

  14. Fluvial particle characterization using artificial neural network and spectral image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  15. Orthogonal polarization spectral imaging of the microcirculation during acute hypervolemic hemodilution and epidural lidocaine injection

    NARCIS (Netherlands)

    van den Oever, Huub L. A.; Dzoljic, Misa; Ince, Can; Hollmann, Markus W.; Mokken, Fleur C.

    2006-01-01

    We used Orthogonal Polarization Spectral Imaging to examine the microcirculation of the vaginal mucosa in nine anesthetized patients during two consecutive anesthetic interventions: hypervolemic hemodilution using hydroxyethyl starch followed by thoracic epidural lidocaine. Images taken before and

  16. Spectral Band Characterization for Hyperspectral Monitoring of Water Quality

    Science.gov (United States)

    Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon

    2001-01-01

    A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.

  17. Potential applications of near infrared auto-fluorescence spectral polarized imaging for assessment of food quality

    Science.gov (United States)

    Zhou, Kenneth J.; Chen, Jun

    2016-03-01

    The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.

  18. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Directory of Open Access Journals (Sweden)

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  19. Dynamic Post-Earthquake Image Segmentation with an Adaptive Spectral-Spatial Descriptor

    Directory of Open Access Journals (Sweden)

    Genyun Sun

    2017-08-01

    Full Text Available The region merging algorithm is a widely used segmentation technique for very high resolution (VHR remote sensing images. However, the segmentation of post-earthquake VHR images is more difficult due to the complexity of these images, especially high intra-class and low inter-class variability among damage objects. Herein two key issues must be resolved: the first is to find an appropriate descriptor to measure the similarity of two adjacent regions since they exhibit high complexity among the diverse damage objects, such as landslides, debris flow, and collapsed buildings. The other is how to solve over-segmentation and under-segmentation problems, which are commonly encountered with conventional merging strategies due to their strong dependence on local information. To tackle these two issues, an adaptive dynamic region merging approach (ADRM is introduced, which combines an adaptive spectral-spatial descriptor and a dynamic merging strategy to adapt to the changes of merging regions for successfully detecting objects scattered globally in a post-earthquake image. In the new descriptor, the spectral similarity and spatial similarity of any two adjacent regions are automatically combined to measure their similarity. Accordingly, the new descriptor offers adaptive semantic descriptions for geo-objects and thus is capable of characterizing different damage objects. Besides, in the dynamic region merging strategy, the adaptive spectral-spatial descriptor is embedded in the defined testing order and combined with graph models to construct a dynamic merging strategy. The new strategy can find the global optimal merging order and ensures that the most similar regions are merged at first. With combination of the two strategies, ADRM can identify spatially scattered objects and alleviates the phenomenon of over-segmentation and under-segmentation. The performance of ADRM has been evaluated by comparing with four state-of-the-art segmentation methods

  20. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    Science.gov (United States)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  1. Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics

    CERN Document Server

    Shizgal, Bernard

    2015-01-01

    This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...

  2. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  3. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  4. Crop status sensing system by multi-spectral imaging sensor, 1: Image processing and paddy field sensing

    International Nuclear Information System (INIS)

    Ishii, K.; Sugiura, R.; Fukagawa, T.; Noguchi, N.; Shibata, Y.

    2006-01-01

    The objective of the study is to construct a sensing system for precision farming. A Multi-Spectral Imaging Sensor (MSIS), which can obtain three images (G. R and NIR) simultaneously, was used for detecting growth status of plants. The sensor was mounted on an unmanned helicopter. An image processing method for acquiring information of crop status with high accuracy was developed. Crop parameters that were measured include SPAD, leaf height, and stems number. Both direct seeding variety and transplant variety of paddy rice were adopted in the research. The result of a field test showed that crop status of both varieties could be detected with sufficient accuracy to apply to precision farming

  5. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).

  6. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  7. Processing of spectral X-ray data with principal components analysis

    CERN Document Server

    Butler, A P H; Cook, N J; Butzer, J; Schleich, N; Tlustos, L; Scott, N; Grasset, R; de Ruiter, N; Anderson, N G

    2011-01-01

    The goal of the work was to develop a general method for processing spectral x-ray image data. Principle component analysis (PCA) is a well understood technique for multivariate data analysis and so was investigated. To assess this method, spectral (multi-energy) computed tomography (CT) data was obtained using a Medipix2 detector in a MARS-CT (Medipix All Resolution System). PCA was able to separate bone (calcium) from two elements with k-edges in the X-ray spectrum used (iodine and barium) within a mouse. This has potential clinical application in dual-energy CT systems and future Medipix3 based spectral imaging where up to eight energies can be recorded simultaneously with excellent energy resolution. (c) 2010 Elsevier B.V. All rights reserved.

  8. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  9. Virtual Satellite Construction and Application for Image Classification

    International Nuclear Information System (INIS)

    Su, W G; Su, F Z; Zhou, C H

    2014-01-01

    Nowadays, most remote sensing image classification uses single satellite remote sensing data, so the number of bands and band spectral width is consistent. In addition, observed phenomenon such as land cover have the same spectral signature, which causes the classification accuracy to decrease as different data have unique characteristic. Therefore, this paper analyzes different optical remote sensing satellites, comparing the spectral differences and proposes the ideas and methods to build a virtual satellite. This article illustrates the research on the TM, HJ-1 and MODIS data. We obtained the virtual band X 0 through these satellites' bands combined it with the 4 bands of a TM image to build a virtual satellite with five bands. Based on this, we used these data for image classification. The experimental results showed that the virtual satellite classification results of building land and water information were superior to the HJ-1 and TM data respectively

  10. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  11. Combining Spectral Data and a DSM from UAS-Images for Improved Classification of Non-Submerged Aquatic Vegetation

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2017-03-01

    Full Text Available Monitoring of aquatic vegetation is an important component in the assessment of freshwater ecosystems. Remote sensing with unmanned aircraft systems (UASs can provide sub-decimetre-resolution aerial images and is a useful tool for detailed vegetation mapping. In a previous study, non-submerged aquatic vegetation was successfully mapped using automated classification of spectral and textural features from a true-colour UAS-orthoimage with 5-cm pixels. In the present study, height data from a digital surface model (DSM created from overlapping UAS-images has been incorporated together with the spectral and textural features from the UAS-orthoimage to test if classification accuracy can be improved further. We studied two levels of thematic detail: (a Growth forms including the classes of water, nymphaeid, and helophyte; and (b dominant taxa including seven vegetation classes. We hypothesized that the incorporation of height data together with spectral and textural features would increase classification accuracy as compared to using spectral and textural features alone, at both levels of thematic detail. We tested our hypothesis at five test sites (100 m × 100 m each with varying vegetation complexity and image quality using automated object-based image analysis in combination with Random Forest classification. Overall accuracy at each of the five test sites ranged from 78% to 87% at the growth-form level and from 66% to 85% at the dominant-taxon level. In comparison to using spectral and textural features alone, the inclusion of height data increased the overall accuracy significantly by 4%–21% for growth-forms and 3%–30% for dominant taxa. The biggest improvement gained by adding height data was observed at the test site with the most complex vegetation. Height data derived from UAS-images has a large potential to efficiently increase the accuracy of automated classification of non-submerged aquatic vegetation, indicating good possibilities

  12. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  13. A Method of Particle Swarm Optimized SVM Hyper-spectral Remote Sensing Image Classification

    International Nuclear Information System (INIS)

    Liu, Q J; Jing, L H; Wang, L M; Lin, Q Z

    2014-01-01

    Support Vector Machine (SVM) has been proved to be suitable for classification of remote sensing image and proposed to overcome the Hughes phenomenon. Hyper-spectral sensors are intrinsically designed to discriminate among a broad range of land cover classes which may lead to high computational time in SVM mutil-class algorithms. Model selection for SVM involving kernel and the margin parameter values selection which is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyper-spectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, particle swarm algorithm is introduced to the optimal selection of SVM (PSSVM) kernel parameter σ and margin parameter C to improve the modelling efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for evaluating the novel PSSVM, as well as traditional SVM classifier with general Grid-Search cross-validation method (GSSVM). And then, evaluation indexes including SVM model training time, classification Overall Accuracy (OA) and Kappa index of both PSSVM and GSSVM are all analyzed quantitatively. It is demonstrated that OA of PSSVM on test samples and whole image are 85% and 82%, the differences with that of GSSVM are both within 0.08% respectively. And Kappa indexes reach 0.82 and 0.77, the differences with that of GSSVM are both within 0.001. While the modelling time of PSSVM can be only 1/10 of that of GSSVM, and the modelling. Therefore, PSSVM is an fast and accurate algorithm for hyper-spectral image classification and is superior to GSSVM

  14. APPLICATION OF FUSION WITH SAR AND OPTICAL IMAGES IN LAND USE CLASSIFICATION BASED ON SVM

    Directory of Open Access Journals (Sweden)

    C. Bao

    2012-07-01

    Full Text Available As the increment of remote sensing data with multi-space resolution, multi-spectral resolution and multi-source, data fusion technologies have been widely used in geological fields. Synthetic Aperture Radar (SAR and optical camera are two most common sensors presently. The multi-spectral optical images express spectral features of ground objects, while SAR images express backscatter information. Accuracy of the image classification could be effectively improved fusing the two kinds of images. In this paper, Terra SAR-X images and ALOS multi-spectral images were fused for land use classification. After preprocess such as geometric rectification, radiometric rectification noise suppression and so on, the two kind images were fused, and then SVM model identification method was used for land use classification. Two different fusion methods were used, one is joining SAR image into multi-spectral images as one band, and the other is direct fusing the two kind images. The former one can raise the resolution and reserve the texture information, and the latter can reserve spectral feature information and improve capability of identifying different features. The experiment results showed that accuracy of classification using fused images is better than only using multi-spectral images. Accuracy of classification about roads, habitation and water bodies was significantly improved. Compared to traditional classification method, the method of this paper for fused images with SVM classifier could achieve better results in identifying complicated land use classes, especially for small pieces ground features.

  15. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  16. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik [Goethe University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-06-15

    Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration. (orig.)

  17. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality

    International Nuclear Information System (INIS)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-01-01

    Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration. (orig.)

  18. System overview and applications of a panoramic imaging perimeter sensor

    International Nuclear Information System (INIS)

    Pritchard, D.A.

    1995-01-01

    This paper presents an overview of the design and potential applications of a 360-degree scanning, multi-spectral intrusion detection sensor. This moderate-resolution, true panoramic imaging sensor is intended for exterior use at ranges from 50 to 1,500 meters. This Advanced Exterior Sensor (AES) simultaneously uses three sensing technologies (infrared, visible, and radar) along with advanced data processing methods to provide low false-alarm intrusion detection, tracking, and immediate visual assessment. The images from the infrared and visible detector sets and the radar range data are updated as the sensors rotate once per second. The radar provides range data with one-meter resolution. This sensor has been designed for easy use and rapid deployment to cover wide areas beyond or in place of typical perimeters, and tactical applications around fixed or temporary high-value assets. AES prototypes are in development. Applications discussed in this paper include replacements, augmentations, or new installations at fixed sites where topological features, atmospheric conditions, environmental restrictions, ecological regulations, and archaeological features limit the use of conventional security components and systems

  19. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  20. The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials

    Science.gov (United States)

    Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.

    2017-04-01

    The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).

  1. Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications.

    Science.gov (United States)

    Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing

    2017-06-01

    Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.

  2. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    Science.gov (United States)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  3. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  4. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    Science.gov (United States)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  5. Modular spectral imaging system for discrimination of pigments in cells and microbial communities.

    Science.gov (United States)

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A; Stoodley, Paul; de Beer, Dirk

    2009-02-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.

  6. 3D imaging of intrinsic crystalline defects in zinc oxide by spectrally resolved two-photon fluorescence microscopy

    Science.gov (United States)

    Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.

    2017-05-01

    We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.

  7. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).

    Science.gov (United States)

    Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J

    2015-01-01

    To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.

  8. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  9. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, Motoki, E-mail: shiga_m@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193 (Japan); Tatsumi, Kazuyoshi; Muto, Shunsuke [Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Tsuda, Koji [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561 (Japan); Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064 (Japan); Yamamoto, Yuta [High-Voltage Electron Microscope Laboratory, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Toshiyuki [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tanji, Takayoshi [Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-11-15

    Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse. - Highlights: • Automatic resolution of chemical components from spectral imaging is considered. • We propose a new non-negative matrix factorization with two new penalties. • The first penalty is sparseness to choose the number of components from data. • Experimental results with real data demonstrate effectiveness of our method.

  10. Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity

    Directory of Open Access Journals (Sweden)

    Fubiao Feng

    2017-03-01

    Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.

  11. Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.

    Science.gov (United States)

    Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2017-12-11

    We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

  12. Visible, Very Near IR and Short Wave IR Hyperspectral Drone Imaging System for Agriculture and Natural Water Applications

    Science.gov (United States)

    Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.

    2017-10-01

    The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high (  50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.

  13. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  14. Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Qingshan Liu

    2017-12-01

    Full Text Available This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM network to automatically learn the spectral-spatial features from hyperspectral images (HSIs. In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN, a convolution operator across the spatial domain is incorporated into the network to extract the spatial feature. In addition, to sufficiently capture the spectral information, a bidirectional recurrent connection is proposed. In the classification phase, the learned features are concatenated into a vector and fed to a Softmax classifier via a fully-connected operator. To validate the effectiveness of the proposed Bi-CLSTM framework, we compare it with six state-of-the-art methods, including the popular 3D-CNN model, on three widely used HSIs (i.e., Indian Pines, Pavia University, and Kennedy Space Center. The obtained results show that Bi-CLSTM can improve the classification performance by almost 1.5 % as compared to 3D-CNN.

  15. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  16. Recent applications of Chemical Imaging to pharmaceutical process monitoring and quality control.

    Science.gov (United States)

    Gowen, A A; O'Donnell, C P; Cullen, P J; Bell, S E J

    2008-05-01

    Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing CI implementation and likely future developments in the technology are also discussed.

  17. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    Science.gov (United States)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  18. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    Science.gov (United States)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  20. Installation of spectrally selective imaging system in RF negative ion source

    International Nuclear Information System (INIS)

    Ikeda, K.; Kisaki, M.; Nagaoka, K.; Nakano, H.; Osakabe, M.; Tsumori, K.; Kaneko, O.; Takeiri, Y.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Geng, S.

    2016-01-01

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (H α ) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of H α emission near the bias plate has been clearly observed. The same time trend on H α intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed

  1. The optimal monochromatic spectral computed tomographic imaging plus adaptive statistical iterative reconstruction algorithm can improve the superior mesenteric vessel image quality

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiao-Ping; Zuo, Zi-Wei; Xu, Ying-Jin; Wang, Jia-Ning [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Liu, Huai-Jun, E-mail: hebeiliu@outlook.com [Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000 (China); Liang, Guang-Lu [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Gao, Bu-Lang, E-mail: browngao@163.com [Department of Medical Research, Shijiazhuang First Hospital, Shijiazhuang, Hebei, 050011 (China)

    2017-04-15

    Objective: To investigate the effect of the optimal monochromatic spectral computed tomography (CT) plus adaptive statistical iterative reconstruction on the improvement of the image quality of the superior mesenteric artery and vein. Materials and methods: The gemstone spectral CT angiographic data of 25 patients were reconstructed in the following three groups: 70 KeV, the optimal monochromatic imaging, and the optimal monochromatic plus 40%iterative reconstruction mode. The CT value, image noises (IN), background CT value and noises, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image scores of the vessels and surrounding tissues were analyzed. Results: In the 70 KeV, the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group, the mean scores of image quality were 3.86, 4.24 and 4.25 for the superior mesenteric artery and 3.46, 3.78 and 3.81 for the superior mesenteric vein, respectively. The image quality scores for the optimal monochromatic and the optimal monochromatic plus 40% iterative reconstruction groups were significantly greater than for the 70 KeV group (P < 0.05). The vascular CT value, image noise, background noise, CNR and SNR were significantly (P < 0.001) greater in the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group than in the 70 KeV group. The optimal monochromatic plus 40% iterative reconstruction group had significantly (P < 0.05) lower image and background noise but higher CNR and SNR than the other two groups. Conclusion: The optimal monochromatic imaging combined with 40% iterative reconstruction using low-contrast agent dosage and low injection rate can significantly improve the image quality of the superior mesenteric artery and vein.

  2. Estimation of compound distribution in spectral images of tomatoes using independent component analysis

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.

    2003-01-01

    Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  3. SPEKTROP DPU: optoelectronic platform for fast multispectral imaging

    Science.gov (United States)

    Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin

    2010-09-01

    In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.

  4. The application of terahertz spectroscopy and imaging in biomedicine

    International Nuclear Information System (INIS)

    Liu Shangjian; Yu Fei; Li Kai; Zhou Jing

    2013-01-01

    Terahertz (THz) science and technology is gaining increasing attention in the biomedical field. Compared with traditional medical diagnosis methods using infrared radiation, nuclear magnetic resonance, X-rays or ultrasound, THz radiation has low energy, high spatial resolution, a broad spectral range, and is a reliable means of imaging for the human body. Terahertz waves have strong penetration and high fingerprint specificity, so they can play an important role in drug detection and identification. This paper reviews the special techniques based on conventional THz time-domain setups in disease detection and drug identification. With regard to the biomedical fields, we focus on the application of THz radiation in studies of skin tissue, gene expression, cells, cancer imaging, the quantitative analysis of drugs, and so on. We also present an overview of the future challenges and prospects of THz research in medicine. (authors)

  5. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  6. TH-AB-209-10: Breast Cancer Identification Through X-Ray Coherent Scatter Spectral Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, A; Morris, R; Albanese, K; Spencer, J; McCall, S; Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: We have previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer. Our prior evaluations were performed using either tissue surrogate phantoms or formalin-fixed tissue obtained from pathology. Here we present the first results from a scatter imaging study using fresh breast tumor tissues obtained through surgical excision. Methods: A coherent-scatter imaging system was built using a clinical X-ray tube, photon counting detectors, and custom-designed coded-apertures. System performance was characterized using calibration phantoms of biological materials. Fresh breast tumors were obtained from patients undergoing mastectomy and lumpectomy surgeries for breast cancer. Each specimen was vacuum-sealed, scanned using the scatter imaging system, and then sent to pathology for histological workup. Scatter images were generated separately for each tissue specimen and analyzed to identify voxels containing malignant tissue. The images were compared against histological analysis (H&E + pathologist identification of tumors) to assess the match between scatter-based and histological diagnosis. Results: In all specimens scanned, the scatter images showed the location of cancerous regions within the specimen. The detection and classification was performed through automated spectral matching without the need for manual intervention. The scatter spectra corresponding to cancer tissue were found to be in agreement with those reported in literature. Inter-patient variability was found to be within limits reported in literature. The scatter images showed agreement with pathologist-identified regions of cancer. Spatial resolution for this configuration of the scanner was determined to be 2–3 mm, and the total scan time for each specimen was under 15 minutes. Conclusion: This work demonstrates the utility of coherent scatter imaging in identifying cancer based on the scatter properties of the tissue. It

  7. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    Science.gov (United States)

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  8. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  9. Application of spectrometer cropscan MSR 16R and Landsat imagery for identification the spectral characteristics of land cover

    Science.gov (United States)

    Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee

    2013-09-01

    The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.

  10. Abdominal CT: An intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: snowglobe@infoseek.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2014-10-15

    Highlights: • We compared virtual monochromatic spectral (VMS) images with 120-kVp images. • VMS images are generated using accurate two-material beam-hardening correction. • Abdominal 70-keV VMS images provide better image quality than 120-kVp images. • Iterative reconstruction can further improve the image quality of VMS images. - Abstract: Objectives: To compare quantitative and subjective image quality between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp imaging performed during the same abdominal computed tomography (CT) examination. Materials and methods: Our institutional review board approved this prospective study; each participant provided written informed consent. 51 patients underwent sequential fast kVp-switching dual-energy (80/140 kVp, volume CT dose index: 12.7 mGy) and single-energy (120-kVp, 12.7 mGy) abdominal enhanced CT over an 8 cm scan length with a random acquisition order and a 4.3-s interval. VMS images with filtered back projection (VMS-FBP) and adaptive statistical iterative reconstruction (so-called hybrid IR) (VMS-ASIR) (at 70 keV), as well as 120-kVp images with FBP (120-kVp-FBP) and ASIR (120-kVp-ASIR), were generated from dual-energy and single-energy CT data, respectively. The objective image noises, signal-to-noise ratios and contrast-to-noise ratios of the liver, kidney, pancreas, spleen, portal vein and aorta, and the lesion-to-liver and lesion-to-kidney contrast-to-noise ratios were measured. Two radiologists independently and blindly assessed the subjective image quality. The results were analyzed using the paired t-test, Wilcoxon signed rank sum test and mixed-effects model with Bonferroni correction. Results: VMS-ASIR images were superior to 120-kVp-FBP, 120-kVp-ASIR and VMS-FBP images for all the quantitative assessments and the subjective overall image quality (all P < 0.001), while VMS-FBP images were superior to 120-kVp-FBP and 120-kVp-ASIR images (all P < 0.004). Conclusions: VMS

  11. Abdominal CT: An intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hosokawa, Takahiro; Tanami, Yutaka; Abe, Takayuki; Kuribayashi, Sachio

    2014-01-01

    Highlights: • We compared virtual monochromatic spectral (VMS) images with 120-kVp images. • VMS images are generated using accurate two-material beam-hardening correction. • Abdominal 70-keV VMS images provide better image quality than 120-kVp images. • Iterative reconstruction can further improve the image quality of VMS images. - Abstract: Objectives: To compare quantitative and subjective image quality between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp imaging performed during the same abdominal computed tomography (CT) examination. Materials and methods: Our institutional review board approved this prospective study; each participant provided written informed consent. 51 patients underwent sequential fast kVp-switching dual-energy (80/140 kVp, volume CT dose index: 12.7 mGy) and single-energy (120-kVp, 12.7 mGy) abdominal enhanced CT over an 8 cm scan length with a random acquisition order and a 4.3-s interval. VMS images with filtered back projection (VMS-FBP) and adaptive statistical iterative reconstruction (so-called hybrid IR) (VMS-ASIR) (at 70 keV), as well as 120-kVp images with FBP (120-kVp-FBP) and ASIR (120-kVp-ASIR), were generated from dual-energy and single-energy CT data, respectively. The objective image noises, signal-to-noise ratios and contrast-to-noise ratios of the liver, kidney, pancreas, spleen, portal vein and aorta, and the lesion-to-liver and lesion-to-kidney contrast-to-noise ratios were measured. Two radiologists independently and blindly assessed the subjective image quality. The results were analyzed using the paired t-test, Wilcoxon signed rank sum test and mixed-effects model with Bonferroni correction. Results: VMS-ASIR images were superior to 120-kVp-FBP, 120-kVp-ASIR and VMS-FBP images for all the quantitative assessments and the subjective overall image quality (all P < 0.001), while VMS-FBP images were superior to 120-kVp-FBP and 120-kVp-ASIR images (all P < 0.004). Conclusions: VMS

  12. Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems

    Science.gov (United States)

    Saager, Rolf B.; Baldado, Melissa L.; Rowland, Rebecca A.; Kelly, Kristen M.; Durkin, Anthony J.

    2018-04-01

    With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.

  13. Advances in feature selection methods for hyperspectral image processing in food industry applications: a review.

    Science.gov (United States)

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An

    2015-01-01

    There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.

  14. Live Coral Cover Index Testing and Application with Hyperspectral Airborne Image Data

    Directory of Open Access Journals (Sweden)

    Karen E. Joyce

    2013-11-01

    Full Text Available Coral reefs are complex, heterogeneous environments where it is common for the features of interest to be smaller than the spatial dimensions of imaging sensors. While the coverage of live coral at any point in time is a critical environmental management issue, image pixels may represent mixed proportions of coverage. In order to address this, we describe the development, application, and testing of a spectral index for mapping live coral cover using CASI-2 airborne hyperspectral high spatial resolution imagery of Heron Reef, Australia. Field surveys were conducted in areas of varying depth to quantify live coral cover. Image statistics were extracted from co-registered imagery in the form of reflectance, derivatives, and band ratios. Each of the spectral transforms was assessed for their correlation with live coral cover, determining that the second derivative around 564 nm was the most sensitive to live coral cover variations(r2 = 0.63. Extensive field survey was used to transform relative to absolute coral cover, which was then applied to produce a live coral cover map of Heron Reef. We present the live coral cover index as a simple and viable means to estimate the amount of live coral over potentially thousands of km2 and in clear-water reefs.

  15. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    Science.gov (United States)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  16. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion.

    Science.gov (United States)

    Yang, Chuang-Bo; Zhang, Shuang; Jia, Yong-Jun; Yu, Yong; Duan, Hai-Feng; Zhang, Xi-Rong; Ma, Guang-Ming; Ren, Chenglong; Yu, Nan

    2017-10-01

    To study the clinical value of dual-energy spectral CT in the quantitative assessment of microvascular invasion of small hepatocellular carcinoma. This study was approved by our ethics committee. 50 patients with small hepatocellular carcinoma who underwent contrast enhanced spectral CT in arterial phase (AP) and portal venous phase (VP) were enrolled. Tumour CT value and iodine concentration (IC) were measured from spectral CT images. The slope of spectral curve, normalized iodine concentration (NIC, to abdominal aorta) and ratio of IC difference between AP and VP (RIC AP-VP : [RIC AP-VP =(IC AP -IC VP )/IC AP ]) were calculated. Tumours were identified as either with or without microvascular invasion based on pathological results. Measurements were statistically compared using independent samples t test. The receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of tumours microvascular invasion assessment. The 70keV images were used to simulate the results of conventional CT scans for comparison. 56 small hepatocellular carcinomas were detected with 37 lesions (Group A) with microvascular invasion and 19 (Group B) without. There were significant differences in IC, NIC and slope in AP and RIC AP-VP between Group A (2.48±0.70mg/ml, 0.23±0.05, 3.39±1.01 and 0.28±0.16) and Group B (1.65±0.47mg/ml, 0.15±0.05, 2.22±0.64 and 0.03±0.24) (all phepatocellular carcinoma with and without microvascular invasion. Quantitative iodine concentration measurement in spectral CT may be used to provide a new method to improve the evaluation for small hepatocellular carcinoma microvascular invasion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Contrast-enhanced Spectral Mammography: Technique, Indications, and Clinical Applications.

    Science.gov (United States)

    Bhimani, Chandni; Matta, Danielle; Roth, Robyn G; Liao, Lydia; Tinney, Elizabeth; Brill, Kristin; Germaine, Pauline

    2017-01-01

    Contrast-enhanced spectral mammography (CESM) combines the benefits of full field digital mammography with the concept of tumor angiogenesis. Technique and practical applications of CESM are discussed. An overview of the technique is followed by a demonstration of practical applications of CESM in our practice. We have successfully implemented CESM into our practice as a screening, diagnostic, staging, and treatment response tool. It is important to understand the technique of CESM and how to incorporate it into practice. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  19. High Throughput Multispectral Image Processing with Applications in Food Science.

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  20. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria

    OpenAIRE

    Lalji, U. C.; Jeukens, C. R. L. P. N.; Houben, I.; Nelemans, P. J.; van Engen, R. E.; van Wylick, E.; Beets-Tan, R. G. H.; Wildberger, J. E.; Paulis, L. E.; Lobbes, M. B. I.

    2015-01-01

    Objective Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). Methods A total of 147 cases with both FFDM and LE images were independently scored by two experienced r...

  1. Spectral CT with monochromatic imaging and metal artifacts reduction software for artifacts reduction of ¹²⁵I radioactive seeds in liver brachytherapy.

    Science.gov (United States)

    Yang, Qiuxia; Peng, Sheng; Wu, Jing; Ban, Xiaohua; He, Mingyan; Xie, Chuanmiao; Zhang, Rong

    2015-11-01

    To investigate the optimal monochromatic energy for artifacts reduction from (125)I seeds as well as image improvement in the vicinity of seeds on monochromatic images with and without metal artifacts reduction software (MARS) and to compare this with traditional 120-kVp images, so as to evaluate the application value of gemstone spectral imaging for reducing artifacts from (125)I seeds in liver brachytherapy. A total of 45 tumors from 25 patients treated with (125)I seed brachytherapy in the liver were enrolled in this study. Multiphasic spectral computed tomography (CT) scanning was performed for each patient. After a delay time of 15 s of portal vein phase, a traditional 120-kVp scan was performed, focusing on several planes of (125)I seeds only. The artifact index (AI) in the vicinity of seeds and the standard deviation (SD) of the CT density of region of interest in the outside liver parenchyma were calculated. Artifact appearance was evaluated and classified on reconstructed monochromatic S and 120-kVp images. Image quality in the vicinity of seeds of three data sets were evaluated using a 1-5 scale scoring method. The Friedman rank-sum test was used to estimate the scoring results of image quality. The greatest noise in monochromatic images was found at 40 keV (SD = 27.38, AI = 206.40). The optimal monochromatic energy was found at 75 keV, which provided almost the least image noise (SD = 10.01) and good performance in artifact reduction (AI = 102.73). Image noise and AI reduction at 75 keV was decreased by 63.44 and 50.23%, compared with at 40 keV. Near-field thick artifacts were obvious in all 45 lesions, in 120-kVp images, and 75-keV images, but basically reduced in 75 keV MARS images and artifacts completely invisible in 7 lesions. The number of diagnosable images (score ≥3) was significantly more in the 75-keV MARS group (28/45), and the 75-keV group (22/45) than in the 120-kVp group (11/45) (p improve image quality, even to a state of being

  2. Ultra-thin infrared metamaterial detector for multicolor imaging applications.

    Science.gov (United States)

    Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J

    2017-09-18

    The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

  3. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    Science.gov (United States)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  4. APPLICATION OF SENSOR FUSION TO IMPROVE UAV IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    S. Jabari

    2017-08-01

    Full Text Available Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan camera along with either a colour camera or a four-band multi-spectral (MS camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC. We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  5. Application of Sensor Fusion to Improve Uav Image Classification

    Science.gov (United States)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  6. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  7. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  8. Composite multilobe descriptors for cross-spectral recognition of full and partial face

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.; Bourlai, Thirimachos

    2016-08-01

    Cross-spectral image matching is a challenging research problem motivated by various applications, including surveillance, security, and identity management in general. An example of this problem includes cross-spectral matching of active infrared (IR) or thermal IR face images against a dataset of visible light images. A summary of recent developments in the field of cross-spectral face recognition by the authors is presented. In particular, it describes the original form and two variants of a local operator named composite multilobe descriptor (CMLD) for facial feature extraction with the purpose of cross-spectral matching of near-IR, short-wave IR, mid-wave IR, and long-wave IR to a gallery of visible light images. The experiments demonstrate that the variants of CMLD outperform the original CMLD and other recently developed composite operators used for comparison. In addition to different IR spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated. Performance of CMLD I to III is evaluated for each of the three cases of distances. The newly developed operators, CMLD I to III, are further utilized to conduct a study on cross-spectral partial face recognition where different facial regions are compared in terms of the amount of useful information they contain for the purpose of conducting cross-spectral face recognition. The experimental results show that among three facial regions considered in the experiments the eye region is the most informative for all IR spectra at all standoff distances.

  9. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software

    International Nuclear Information System (INIS)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck; Park, Kwan Kyu

    2012-01-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. circle Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). circle Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution circle GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. circle However image quality is influenced by the prosthesis composition and other parameters. circle We should be aware about potential overcorrection when using GSI-MARs. (orig.)

  10. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    Bakopoulos, P; Karanasiou, I; Zakynthinos, P; Uzunoglu, N; Avramopoulos, H; Pleros, N

    2009-01-01

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  11. Application of Hymap image in the environmental survey in Shenzhen, China

    Science.gov (United States)

    Pan, Wei; Yang, Xiaomao; Chen, Xuejiao; Feng, Ping

    2017-10-01

    Hyperspectral HyMap image with synchronous in-situ spectral data were used to survey the environmental condition in Shenzhen of South China. HyMap image was measured with 3.5m spatial resolution and 15nm spectral resolution from 0.44μm-2.5μm and corrected with Modtran5 model and synchronous solar illuminance and atmospheric visibility to the ground. The spectra of rocks, soils, water and vegetation were obtained by ASD spectrometer in reflectance. Both the fresh granite and eroded sandy soil was found with absorption at 2200nm+/-in-situ spectra, but the weathered granite and sandy soil have another absorption at 880nm 940 nm. Polluted water with high ammonia nitrogen and phosphorous and BOD5 get the strongest reflectance at 550 570nm, while polluted water of high CODcr and heavy metal ions content get the peak reflectance at 450 490nm. The in-situ spectra was resampled in wavelength range and spectral resolution to that of Hymap sensor for image classification with SAM algorithm, the unpaved granite among cement the paved mine pits , the newly excavated land surface and the eroded soil was mapped out with the accuracy over 95%. We also discriminate the artificial forest from the natural with the spectral endmember extracted from the image.

  12. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    Science.gov (United States)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  13. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    Science.gov (United States)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work

  14. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    Science.gov (United States)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  15. A modified sliding spectral method and its application to COSMIC ...

    Indian Academy of Sciences (India)

    A modified sliding spectral method and its application to COSMIC radio occultation data 1751. The window length with 300 samples is supposed to provide a reasonable resolution. In a spherically symmetric atmosphere, the refractive index n as a function of tangent radius r0 can be computed from the bending angle α as.

  16. Real-time generation of images with pixel-by-pixel spectra for a coded aperture imager with high spectral resolution

    International Nuclear Information System (INIS)

    Ziock, K.P.; Burks, M.T.; Craig, W.; Fabris, L.; Hull, E.L.; Madden, N.W.

    2003-01-01

    The capabilities of a coded aperture imager are significantly enhanced when a detector with excellent energy resolution is used. We are constructing such an imager with a 1.1 cm thick, crossed-strip, planar detector which has 38 strips of 2 mm pitch in each dimension followed by a large coaxial detector. Full value from this system is obtained only when the images are 'fully deconvolved' meaning that the energy spectrum is available from each pixel in the image. The large number of energy bins associated with the spectral resolution of the detector, and the fixed pixel size, present significant computational challenges in generating an image in a timely manner at the conclusion of a data acquisition. The long computation times currently preclude the generation of intermediate images during the acquisition itself. We have solved this problem by building the images on-line as each event comes in using pre-imaged arrays of the system response. The generation of these arrays and the use of fractional mask-to-detector pixel sampling is discussed

  17. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  18. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  19. Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity.

    Science.gov (United States)

    Liu, Jia-Hui; Yang, Sheng-Tao; Chen, Xin-Xin; Wang, Haifang

    2012-10-01

    The rapid advancement of nanotechnology has brought us some new types of fluorescent probes, which are indispensable for bioimaging in life sciences. Because of their innate biocompatibility, good resistance against photobleaching, long fluorescence lifetime and wide fluorescence spectral region, fluorescent carbon quantum dots (C-Dots) and nanosized diamonds (nanodiamonds, NDs) are gradually evolving into promising reagents for bioimaging. In this review, we summarize the recent achievements in fluorescent C-Dots and NDs with emphases on their preparation, properties, imaging application, pharmacokinetics and toxicity. Perspectives on further investigations and opportunities to develop C-Dots and NDs into the safer and more sensitive imaging probes for both living cells and animal models are discussed.

  20. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Science.gov (United States)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  1. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  2. Recent developments at JPL in the application of digital image processing techniques to astronomical images

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.; Benton, W. D.

    1976-01-01

    Several techniques of a digital image-processing nature are illustrated which have proved useful in visual analysis of astronomical pictorial data. Processed digital scans of photographic plates of Stephans Quintet and NGC 4151 are used as examples to show how faint nebulosity is enhanced by high-pass filtering, how foreground stars are suppressed by linear interpolation, and how relative color differences between two images recorded on plates with different spectral sensitivities can be revealed by generating ratio images. Analyses are outlined which are intended to compensate partially for the blurring effects of the atmosphere on images of Stephans Quintet and to obtain more detailed information about Saturn's ring structure from low- and high-resolution scans of the planet and its ring system. The employment of a correlation picture to determine the tilt angle of an average spectral line in a low-quality spectrum is demonstrated for a section of the spectrum of Uranus.

  3. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.

    Science.gov (United States)

    Choudhry, Netan; Golding, John; Manry, Matthew W; Rao, Rajesh C

    2016-06-01

    To describe the spectral-domain optical coherence tomography (SD OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Observational study. A total of 68 patients (68 eyes) with 19 peripheral retinal features. Spectral-domain OCT-based structural features. Nineteen peripheral retinal features, including vortex vein, congenital hypertrophy of the retinal pigment epithelium, pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment, typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen, were identified by peripheral clinical examination. Near-infrared scanning laser ophthalmoscopy images and SD OCT of these entities were registered to UWF color photographs. Spectral-domain OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, retinal pigment epithelium loss, or hypertrophy was seen in several entities, including congenital hypertrophy of the retinal pigment epithelium, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice, and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision

  4. Spectrally resolved digital holography using a white light LED

    Science.gov (United States)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  5. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  6. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    International Nuclear Information System (INIS)

    Duan, X; Arbique, G; Guild, J; Anderson, J; Yagil, Y

    2016-01-01

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  7. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Arbique, G; Guild, J; Anderson, J [UT Southwestern Medical Center, Dallas, TX (United States); Yagil, Y [Philips Healthcare, Haifa (Israel)

    2016-06-15

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  8. Common hyperspectral image database design

    Science.gov (United States)

    Tian, Lixun; Liao, Ningfang; Chai, Ali

    2009-11-01

    This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.

  9. Spectral BRDF measurements of metallic samples for laser processing applications

    International Nuclear Information System (INIS)

    Vitali, L; Fustinoni, D; Gramazio, P; Niro, A

    2015-01-01

    The spectral bidirectional reflectance distribution function (BRDF) of metals plays an important role in industrial processing involving laser-surface interaction. In particular, in laser metal machining, absorbance is strongly dependent on the radiation incidence angle as well as on finishing and contamination grade of the surface, and in turn it can considerably affect processing results. Very recently, laser radiation is also used to structure metallic surfaces, in order to produce many particular optical effects, ranging from a high level polishing to angular color shifting. Of course, full knowledge of the spectral BRDF of these structured layers makes it possible to infer reflectance or color for any irradiation and viewing angles. In this paper, we present Vis-NIR spectral BRDF measurements of laser-polished metallic, opaque, flat samples commonly employed in such applications. The resulting optical properties seem to be dependent on the atmospheric composition during the polishing process in addition to the roughness. The measurements are carried out with a Perkin Elmer Lambda 950 double-beam spectrophotometer, equipped with the Absolute Reflectance/Transmittance Analyzer (ARTA) motorized goniometer. (paper)

  10. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  11. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA

    Science.gov (United States)

    Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan

    2016-11-01

    The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.

  12. Evolutionary Computing Methods for Spectral Retrieval

    Science.gov (United States)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  13. Spectral imaging for contamination detection in food

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    application of the technique is finding anomalies I supposedly homogeneous matter or homogeneous mixtures. This application occurs frequently in the food industry when different types of contamination are to be detected. Contaminants could be e.g. foreign matter, process-induced toxins, and microbiological...... spoilage. Many of these contaminants may be detected in the wavelength range visible to normal silicium-based camera sensors i.e. 350-1050 nm with proper care during sample preparation, sample presentation, image acquisition and analysis. This presentation will give an introduction to the techniques behind...

  14. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  15. Applications of optical imaging

    International Nuclear Information System (INIS)

    Schellenberger, E.

    2005-01-01

    Optical imaging in the form of near infrared fluorescence and bioluminescence has proven useful for a wide range of applications in the field of molecular imaging. Both techniques provide a high sensitivity (in the nanomolar range), which is of particular importance for molecular imaging. Imaging with near infrared fluorescence is especially cost-effective and can be performed, in contrast to radioactivity-based methods, with fluorescence dyes that remain stable for months. The most important advantage of bioluminescence, in turn, is the lack of background signal. Although molecular imaging with these techniques is still in the experimental phase, an application of near infrared fluorescence is already foreseeable for the imaging of superficial structures. (orig.)

  16. Infrared imaging and spectral-domain optical coherence tomography findings correlate with microperimetry in acute macular neuroretinopathy: a case report

    Directory of Open Access Journals (Sweden)

    Grover Sandeep

    2011-10-01

    Full Text Available Abstract Introduction Spectral-domain optical coherence tomography findings in a patient with acute macular neuroretinopathy, and correlation with functional defects on microperimetry, are presented. Case presentation A 25-year old Caucasian woman presented with bitemporal field defects following an upper respiratory tract infection. Her visual acuity was 20/20 in both eyes and a dilated fundus examination revealed bilateral hyperpigmentary changes in the papillomacular bundle. Our patient underwent further evaluation with spectral-domain optical coherence tomography, infrared and fundus autofluorescence imaging. Functional changes were assessed by microperimetry. Infrared imaging showed the classic wedge-shaped defects and spectral-domain optical coherence tomography exhibited changes at the inner segment-outer segment junction, with a thickened outer plexiform layer overlying these areas. Fluorescein and indocyanine green angiography did not demonstrate any perfusion defects or any other abnormality. Microperimetry demonstrated focal elevation in threshold correlating with the wedge-shaped defects in both eyes. Conclusion Spectral-domain optical coherence tomography findings provide new evidence of the involvement of the outer plexiform layer of the retina in acute macular neuroretinopathy.

  17. The Combined ASTER MODIS Emissivity over Land (CAMEL Part 1: Methodology and High Spectral Resolution Application

    Directory of Open Access Journals (Sweden)

    E. Eva Borbas

    2018-04-01

    Full Text Available As part of a National Aeronautics and Space Administration (NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments Land Surface Temperature and Emissivity project, the Space Science and Engineering Center (UW-Madison and the NASA Jet Propulsion Laboratory (JPL developed a global monthly mean emissivity Earth System Data Record (ESDR. This new Combined ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer and MODIS (Moderate Resolution Imaging Spectroradiometer Emissivity over Land (CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UW BF and the JPL ASTER Global Emissivity Dataset Version 4 (GEDv4. The dataset includes monthly global records of emissivity and related uncertainties at 13 hinge points between 3.6–14.3 µm, as well as principal component analysis (PCA coefficients at 5-km resolution for the years 2000 through 2016. A high spectral resolution (HSR algorithm is provided for HSR applications. This paper describes the 13 hinge-points combination methodology and the high spectral resolutions algorithm, as well as reports the current status of the dataset.

  18. Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-09-01

    In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.

  19. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Science.gov (United States)

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  20. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  1. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  2. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Science.gov (United States)

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  3. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-03-01

    Full Text Available Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  4. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  5. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    International Nuclear Information System (INIS)

    Molloi, S.

    2015-01-01

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  6. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  7. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  8. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device.

    Science.gov (United States)

    Hahn, Paul; Carrasco-Zevallos, Oscar; Cunefare, David; Migacz, Justin; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2015-07-01

    To characterize the first in-human intraoperative imaging using a custom prototype spectral-domain microscope-integrated optical coherence tomography (MIOCT) device during vitreoretinal surgery with instruments in the eye. Under institutional review board approval for a prospective intraoperative study, MIOCT images were obtained at surgical pauses with instruments held static in the vitreous cavity and then concurrently with surgical maneuvers. Postoperatively, MIOCT images obtained at surgical pauses were compared with images obtained with a high-resolution handheld spectral-domain OCT (HHOCT) system with objective endpoints, including acquisition of images acceptable for analysis and identification of predefined macular morphologic or pathologic features. Human MIOCT images were successfully obtained before incision and during pauses in surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as epiretinal membrane, full-thickness macular hole, and vitreomacular traction and demonstrated successful achievement of surgical goals. MIOCT and HHOCT images obtained at surgical pauses in two cohorts of five patients were comparable with greater than or equal to 80% correlation in 80% of patients. Real-time video-imaging concurrent with surgical manipulations enabled, for the first time using this device, visualization of dynamic instrument-retina interaction with targeted OCT tracking. MIOCT is successful for imaging at surgical pauses and for real-time image guidance with implementation of targeted OCT tracking. Even faster acquisition speeds are currently being developed with incorporation of a swept-source MIOCT engine. Further refinements and investigations will be directed toward continued integration for real-time volumetric imaging of surgical maneuvers. Ongoing development of seamless MIOCT systems will likely transform surgical visualization, approaches, and decision-making.

  9. Application of the spectral correction method to reanalysis data in South Africa

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries C.

    2014-01-01

    of this study is to evaluate the applicability of the method to the relevant region. The impacts from the two aspects are investigated for interior and coastal locations. Measurements from five stations from South Africa are used to evaluate the results from the spectral model S(f)=af−5/3 together...... with the hourly time series of the Climate Forecast System Reanalysis (CFSR) 10 m wind at 38 km resolution over South Africa. The results show that using the spectral correction method to the CFSR wind data produce extreme wind atlases in acceptable agreement with the atlas made from limited measurements across...

  10. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    International Nuclear Information System (INIS)

    Ozguner, O; Halliburton, S; Dhanantwari, A; Utrup, S; Wen, G; Jordan, D

    2016-01-01

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  11. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, OH (United States); Halliburton, S; Dhanantwari, A; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  12. MARS Spectral Imaging: From High-Energy Physics to a Biomedical Business

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Abstract MARS spectral scanners provide colour X-Ray images. Current MARS pre-clinical scanners enable researchers and clinicians to measure biochemical and physiological processes in specimens, and animal models of disease. The scanners have developed from a 10 year scientific collaboration between New Zealand and CERN. In parallel a company, MARS Bioimaging Ltd, was founded to commercialise the technology by productising the scanner and selling it to biomedical users around the world. The New Zealand team is now more than 30 people including staff and students from the fields of physics, engineering, computing, maths, radiology, cardiology, biochemistry, oncology, and orthopaedics. Current work with pre-clinical scanners has concluded that the technology will be  useful in heart disease, stroke, arthritis, joint replacements, and cancer. In late 2014, the government announced funding for NZ to build a MARS scanner capable of imaging humans. Bio Professor Anthony Butler is a radiologist wit...

  13. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    Science.gov (United States)

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  14. Spatial calibration and image processing requirements of an image fiber bundle based snapshot hyperspectral imaging probe: from raw data to datacube

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-06-01

    Hyperspectral imaging was first used in remote sensing and since then, it has been used in many other applications such as cancer diagnosis, precision farming and assessment of the level of flaking in ancient murals. In order to make hyperspectral imaging available for a wide variety of applications, its imagers can be made to operate using different methods and developed into different configurations. This leads to each variant having a set of specifications suitable for certain applications. The many variants of hyperspectral imager produce a set of three-dimensional spatial-spatialspectral datacube, which is made up of hundreds of spectral images of one scene. A snapshot hyperspectral imaging probe has recently been developed by integrating a fiber bundle, which is made up of specially-arranged optical fibers, with a spectrograph-based hyperspectral imager. The snapshot method is able to produce a datacube using the information from each scan. The fiber bundle has 100 fiberlets which are arranged in a row in the one-dimensional proximal end, and are rearranged into a 10×10 hexagonal array in the two-dimensional distal end. The image captured by the two-dimensional end of the fiber bundle is reduced from two to one spatial dimension at the one-dimensional end. The raw data acquired from each scan has to be remapped into a datacube with the correct representation of the spectral and spatial features of the captured scene. This paper reports the spatial calibrations of both ends of the fiber bundle and image processing that have to be performed for such a remapping.

  15. A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture

    Directory of Open Access Journals (Sweden)

    Dimitris Stratoulias

    2017-10-01

    Full Text Available Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolutions. The available bulk of data, fostered by open access policies adopted by several agencies, is setting a new landscape in remote sensing in which timeliness and efficiency are important aspects of data processing. This study presents a fully automated workflow able to process a large collection of very high spatial resolution satellite images to produce actionable information in the application framework of smallholder farming. The workflow applies sequential image processing, extracts meaningful statistical information from agricultural parcels, and stores them in a crop spectrotemporal signature library. An important objective is to follow crop development through the season by analyzing multi-temporal and multi-sensor images. The workflow is based on free and open-source software, namely R, Python, Linux shell scripts, the Geospatial Data Abstraction Library, custom FORTRAN, C++, and the GNU Make utilities. We tested and applied this workflow on a multi-sensor image archive of over 270 VHSR WorldView-2, -3, QuickBird, GeoEye, and RapidEye images acquired over five different study areas where smallholder agriculture prevails.

  16. Fusion of MODIS Images Using Kriging With External Drift

    NARCIS (Netherlands)

    Ribeiro Sales, M.H.; Souza, C.M.; Kyriakidis, P.C.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) has been used in several remote sensing studies, including land, ocean, and atmospheric applications. The advantages of this sensor are its high spectral resolution, with 36 spectral bands; its high revisiting frequency; and its public domain

  17. Neutron imaging of a commercial Li-ion battery during discharge: Application of monochromatic imaging and polychromatic dynamic tomography

    International Nuclear Information System (INIS)

    Butler, Leslie G.; Schillinger, Burkhard; Ham, Kyungmin; Dobbins, Tabbetha A.; Liu, Ping; Vajo, John J.

    2011-01-01

    A commercial lithium-ion polymer battery of prismatic construction was imaged in 2D by monochromatic neutron radiography at wavelengths around a LiC 6 spectral feature. Over the range of 3-4 A, the neutron attenuation spectra for charged and discharged batteries are distinctly different. In a real-time experiment, a battery was observed during discharge at wavelengths spanning the LiC 6 spectral feature and its disappearance monitored. No evidence of 'staging' was detected in this preliminary experiment. A similar battery was imaged in 3D with a new tomographic data acquisition scheme based on the Greek golden ratio; the scheme allows convenient post-processing to establish 'time windows' for 3D image reconstruction. The 3D images at 5% state of charge intervals are compromised by beam hardening, but still show some asymmetric battery volume change with discharge. Finally comments on the future of neutron imaging for battery experiments, whether at continuous sources at nuclear reactors or at pulsed spallation sources, are discussed.

  18. Imaging spectroscopy using embedded diffractive optical arrays

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  19. D Reconstruction from Uav-Based Hyperspectral Images

    Science.gov (United States)

    Liu, L.; Xu, L.; Peng, J.

    2018-04-01

    Reconstructing the 3D profile from a set of UAV-based images can obtain hyperspectral information, as well as the 3D coordinate of any point on the profile. Our images are captured from the Cubert UHD185 (UHD) hyperspectral camera, which is a new type of high-speed onboard imaging spectrometer. And it can get both hyperspectral image and panchromatic image simultaneously. The panchromatic image have a higher spatial resolution than hyperspectral image, but each hyperspectral image provides considerable information on the spatial spectral distribution of the object. Thus there is an opportunity to derive a high quality 3D point cloud from panchromatic image and considerable spectral information from hyperspectral image. The purpose of this paper is to introduce our processing chain that derives a database which can provide hyperspectral information and 3D position of each point. First, We adopt a free and open-source software, Visual SFM which is based on structure from motion (SFM) algorithm, to recover 3D point cloud from panchromatic image. And then get spectral information of each point from hyperspectral image by a self-developed program written in MATLAB. The production can be used to support further research and applications.

  20. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    Science.gov (United States)

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  1. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    Science.gov (United States)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies

  2. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  3. Stroke type differentiation using spectrally constrained multifrequency EIT: evaluation of feasibility in a realistic head model

    International Nuclear Information System (INIS)

    Malone, Emma; Jehl, Markus; Arridge, Simon; Betcke, Timo; Holder, David

    2014-01-01

    We investigate the application of multifrequency electrical impedance tomography (MFEIT) to imaging the brain in stroke patients. The use of MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke, and therefore improve the outcome of treatment. Recent advances in the imaging methodology suggest that the use of spectral constraints could allow for the reconstruction of a one-shot image. We performed a simulation study to investigate the feasibility of imaging stroke in a head model with realistic conductivities. We introduced increasing levels of modelling errors to test the robustness of the method to the most common sources of artefact. We considered the case of errors in the electrode placement, spectral constraints, and contact impedance. The results indicate that errors in the position and shape of the electrodes can affect image quality, although our imaging method was successful in identifying tissues with sufficiently distinct spectra. (paper)

  4. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  5. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  6. Spectral CT imaging in differential diagnosis of pancreatic serous oligocystic adenoma and mucinous cystic neoplasms

    International Nuclear Information System (INIS)

    Lin Xiaozhu; Chen Kemin; Wu Zhiyuan; Tao Ran; Guo Yan; Zhang Jing; Li Jianying; Shen Yun

    2011-01-01

    Objective: To investigate the CT spectral imaging features of pancreatic serous oligocystic adenoma and mucinous cystic neoplasms and to assess the value of spectral CT in differentiating between pancreatic serous oligocystic adenoma and mucinous cystic neoplasms. Methods: From Feb. 2010 to Dec. 2010, 27 patients with cystic neoplasms of the pancreas (group one with 15 serous oligocystic adenomas and group two with 12 mucinous cystic neoplasms) underwent dual-phase CT spectral imaging followed by surgery. Quantitative values (age, tumor size, CT value change as function of photon energy, effective-Z, iodine-water concentration, and calcium-water concentration) were compared with independent samples t test and Mann-Whitney test and non-quantitative parameters (gender, symptom, and tumor location) were compared with Chi-square test (Fisher exact). The parameters with significant differences between two groups were analyzed further and the performance of multiple parameters for joint differential diagnosis was evaluated with discriminant analysis. Results: Compared to patients with mucinous cystic neoplasms, patients with serous oligocystic adenoma had younger age, lower frequency of being symptomatic and smaller tumor size. The CT values on 40 keV to 60 keV (with 10 keV increment) in late arterial phase [(36±13) HU vs. (62±23) HU, (26±8) HU vs. (40±15) HU, and (19±6) HU vs. (27±10) HU respectively] and 40 keV to 50 keV (with 10 keV increment) in portal venous phase [(43±14) HU vs. (61±25) HU and (30±10) HU vs. (40±16) HU respectively], effective-Z (late arterial phase 7.80± 0.16 vs. 8.05±0.21, and portal venous phase 7.87±0.15 vs 8.02±0.22), concentration of calcium (water) [late arterial phase (5±3) g/L vs. (11±4) g/L, t=-3.836, P=0.001 and portal venous phase (7±3) g/L vs. (10±5) g/L, t=-2.071, P=0.049] and iodine (water) [late arterial phase (0.38±0.24) g/L vs. (0.78±0.32) g/L, t=-3.755, P=0.001 and portal venous phase (0.48± 0.24) g/L vs. (0

  7. Present and future status of flexible spectral imaging color enhancement and blue laser imaging technology.

    Science.gov (United States)

    Osawa, Hiroyuki; Yamamoto, Hironori

    2014-01-01

    The usefulness of flexible spectral imaging color enhancement (FICE) has been reported for evaluating the esophagus, stomach, and small and large intestine. Higher contrast is shown between cancer and the surrounding mucosa in the esophagus and stomach and may facilitate the detection of gastric cancers missed by white light imaging alone. The surface patterns of gastric mucosa are clearly visualized in non-malignant areas but are irregular and blurred in malignant areas, leading to clear demarcation. Capsule endoscopy with FICE detects angiodysplasia and erosions of the small intestine. The surface and vascular pattern with FICE is useful for the differential diagnosis of colorectal polyps. However, FICE remains somewhat poor at visualizing mucosal microvasculature on a tumor surface. Narrow-band imaging (NBI) is dark in observing whole gastric mucosa and poor at visualizing mucosal microstructure. Blue laser imaging (BLI) has the potential to resolve these limitations. Narrow-band laser light combined with white light shows irregular microvessels on both differentiated and undifferentiated gastric cancer similar to those using NBI. In addition, irregular surface patterns including minute white zones are clearly seen on the uneven surface of differentiated lesions, resulting in exclusion of undifferentiated lesions. Using both distant and close-up views, a high contrast between green intestinal metaplasia and brown gastric cancer may lead to early detection of gastric cancers and determination of a demarcation line. BLI produces high-contrast images in esophageal cancer with clear vision of intrapapillary capillary loops and also predicts the histopathological diagnosis and depth of invasion in colorectal neoplasms. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  8. A review of materials for spectral design coatings in signature management applications

    Science.gov (United States)

    Andersson, Kent E.; Škerlind, Christina

    2014-10-01

    The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.

  9. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    Science.gov (United States)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  10. A review of image quality assessment methods with application to computational photography

    Science.gov (United States)

    Maître, Henri

    2015-12-01

    Image quality assessment has been of major importance for several domains of the industry of image as for instance restoration or communication and coding. New application fields are opening today with the increase of embedded power in the camera and the emergence of computational photography: automatic tuning, image selection, image fusion, image data-base building, etc. We review the literature of image quality evaluation. We pay attention to the very different underlying hypotheses and results of the existing methods to approach the problem. We explain why they differ and for which applications they may be beneficial. We also underline their limits, especially for a possible use in the novel domain of computational photography. Being developed to address different objectives, they propose answers on different aspects, which make them sometimes complementary. However, they all remain limited in their capability to challenge the human expert, the said or unsaid ultimate goal. We consider the methods which are based on retrieving the parameters of a signal, mostly in spectral analysis; then we explore the more global methods to qualify the image quality in terms of noticeable defects or degradation as popular in the compression domain; in a third field the image acquisition process is considered as a channel between the source and the receiver, allowing to use the tools of the information theory and to qualify the system in terms of entropy and information capacity. However, these different approaches hardly attack the most difficult part of the task which is to measure the quality of the photography in terms of aesthetic properties. To help in addressing this problem, in between Philosophy, Biology and Psychology, we propose a brief review of the literature which addresses the problematic of qualifying Beauty, present the attempts to adapt these concepts to visual patterns and initiate a reflection on what could be done in the field of photography.

  11. Heterogeneous sharpness for cross-spectral face recognition

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2017-05-01

    Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short

  12. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  13. Design and realization of a hard X-ray prototype imager with spectral selection for the Laser MegaJoule

    International Nuclear Information System (INIS)

    Dennetiere, David

    2012-01-01

    In the Laser MegaJoule (LMJ) project context, measurements need to be done by diagnostics in order to achieve ignition. Amongst these diagnostics, some of the X-ray imagers will have to observe hydrodynamics instabilities on the micron balloon surface. X-ray radiography or self-emission imaging are the techniques used to obtain such imaging. None of the existing X-ray imagers designed for LMJ is currently able to record this kind of image. The X-ray imager designed during this thesis will have to achieve a high resolution image at high energy and will have to meet all the requirements subsequent to its use on a large facility like LMJ. We have studied and optimized an already existing diagnostic: EHRXI. We have extended its covered spectral range up to 12 keV. We measured its resolution that is under 5 μm in a 1 mm diameter field of view. This diagnostic has been successfully used on laser experiments in ELFIE 100 TW and OMEGA. After analyzing the performances and weaknesses of EHRXI, we were able to design a LMJ diagnostic prototype: Merssix. This microscope will achieve a resolution under 5 μm in a 500 μm diameter field of view with a covered spectral range up to 22 keV. Merssix has been specifically designed for LMJ and adapted to fit its experimental framework. Its design allows it in particular to be used for radiography in a complex X-ray producing environment. (author) [fr

  14. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography

    Science.gov (United States)

    Brooksby, Ben; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Srinivasan, Subhadra; Kogel, Christine; Tosteson, Tor D.; Weaver, John; Poplack, Steven P.; Paulsen, Keith D.

    2006-06-01

    Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images. hemoglobin | magnetic resonance imaging | water | fat | oxygen saturation

  15. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  16. Tensor-Based Dictionary Learning for Spectral CT Reconstruction.

    Science.gov (United States)

    Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong

    2017-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.

  17. Biopsy Diagnosis of Oral Carcinoma by the Combination of Morphological and Spectral Methods Based on Embedded Relay Lens Microscopic Hyperspectral Imaging System.

    Science.gov (United States)

    Ou-Yang, Mang; Hsieh, Yao-Fang; Lee, Cheng-Chung

    Cytopathological examination through biopsy is very important for carcinoma detection. The embedded relay lens microscopic hyperspectral imaging system (ERL-MHIS) provides a morphological image of a biopsy sample and the spectrum of each pixel in the image simultaneously. Based on the ERL-MHIS, this work develops morphological and spectral methods to diagnose oral carcinoma biopsy. In morphological discrimination, the fractal dimension method is applied to differentiate between normal and abnormal tissues. In spectral identification, normal and cancerous cells are distinguished using five methods. However, the spectra of normal and cancerous cells vary with patient. The diagnostic performances of the five methods are thus not ideal. Hence, the proposed cocktail approach is used to determine the effectiveness of the spectral methods in correlating with the sampling conditions. And then we use a combination of effective spectral methods according to the sample conditions for diagnosing a sample. A total of 68 biopsies from 34 patients are analyzed using the ERL-MHIS. The results demonstrate a sensitivity of 90 ± 4.53 % and a specificity of 87.8 ± 5.21 %. Furthermore, in our survey, this system is the first time utilized to study oral carcinoma biopsies.

  18. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  19. Application of spectral distributions in effective interaction theory

    International Nuclear Information System (INIS)

    Chang, B.D.

    1980-01-01

    The calculation of observable quantities in a large many-particle space is very complicated and often impractical. In effective interaction theory, to simplify the calculation, the full many-particle space is truncated to a small, manageable model space and the operators associated with the observables are renormalized to accommodate the truncation effects. The operator that has been most extensively studied for renormalization is the Hamiltonian. The renormalized Hamiltonian, often called the effective Hamiltonian, can be defined such that it not only gives the eigenvalues, but also the projections of the full-space (true) eigen-functions onto the model space. These projected wave functions then provide a convenient basis for renormalization of other operators. The usual framework for renormalization is perturbation theory. Unfortunately, the conventional perturbation series for effective Hamiltonians have problems with convergence and their high order terms (especially 4th or higher) are also difficult to calculate. The characteristics of spectral distributions can be helptul in determining the model space and calculating the effective Hamiltonian. In this talk applications of spectral distributions are discussed in the following areas: (1) truncation of many particle spaces by selection of configurations; (2) orthogonal polynomial expansions for the effective Hamiltonian; and (3) establishing new criteria for the effective Hamiltonian

  20. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  1. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R; Albanese, K; Lakshmanan, M; Greenberg, J; Kapadia, A [Duke University Medical Center, Durham, NC, Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2015-06-15

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality for breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded

  2. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI Data for Burned Area Discrimination

    Directory of Open Access Journals (Sweden)

    Haiyan Huang

    2016-10-01

    Full Text Available Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance and atmospherically corrected (surface reflectance images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence and non-parametric (decision tree approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms.

  3. Application of DIRI dynamic infrared imaging in reconstructive surgery

    Science.gov (United States)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  4. Observer model optimization of a spectral mammography system

    Science.gov (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  5. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  6. Martian spectral units derived from ISM imaging spectrometer data

    Science.gov (United States)

    Murchie, S.; Mustard, J.; Saylor, R.

    1993-01-01

    Based on results of the Viking mission, the soil layer of Mars has been thought to be fairly homogeneous and to consist of a mixture of as few as two components, a 'dark gray' basaltic material and a 'bright red' altered material. However, near-infrared reflectance spectra measured recently both telescopically and from spacecraft indicate compositional heterogeneity beyond what can be explained by just two components. In particular, data from the ISM imaging spectrometer, which observed much of the equatorial region at a spatial resolution of approximately 22 km, indicate spatial differences in the presence and abundance of Fe-containing phases, hydroxylated silicates, and H2O. The ISM data was used to define, characterize, and map soil 'units' based on their spectral properties. The spatial distribution of these 'units' were compared to morphologic, visible color, and thermal inertia features recognized in Viking data.

  7. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images

    Science.gov (United States)

    Bhardwaj, Kaushal; Patra, Swarnajyoti

    2018-04-01

    Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.

  8. Field Imaging Spectroscopy. Applications in Earthquake Geology

    Science.gov (United States)

    Ragona, D.; Minster, B.; Rockwell, T. K.; Fialko, Y.; Jussila, J.; Blom, R.

    2005-12-01

    Field Imaging Spectroscopy in the visible and infrared sections of the spectrum can be used as a technique to assist paleoseismological studies. Submeter range hyperspectral images of paleoseismic excavations can assist the analyisis and interpretation of the earthquake history of a site. They also provide an excellent platform for storage of the stratigraphic and structural information collected from such a site. At the present, most field data are collected descriptively. This greatly enhances the range of information that can be recorded in the field. The descriptions are documented on hand drawn field logs and/or photomosaics constructed from individual photographs. Recently developed portable hyperspectral sensors acquire high-quality spectroscopic information at high spatial resolution (pixel size ~ 0.5 mm at 50 cm) over frequencies ranging from the visible band to short wave infrared. The new data collection and interpretation methodology that we are developing (Field Imaging Spectroscopy) makes available, for the first time, a tool to quantitatively analyze paleoseismic and stratigraphic information. The reflectance spectra of each sub-millimeter portion of the material are stored in a 3-D matrix (hyperspectral cube) that can be analyzed by visual inspection, or by using a large variety of algorithms. The reflectance spectrum is related to the chemical composition and physical properties of the surface therefore hyperspectral images are capable of revealing subtle changes in texture, composition and weathering. For paleoseismic studies, we are primarily interested in distinguishing changes between layers at a given site (spectral stratigraphy) rather than the precise composition of the layers, although this is an added benefit. We have experimented with push-broom (panoramic) portable scanners, and acquired data form portions of fault exposures and cores. These images were processed using well-known imaging processing algorithms, and the results have being

  9. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy.

    Science.gov (United States)

    Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B

    2011-03-01

    To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2

  10. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  11. Analysis of optical proprieties of the water reservoir Rodolfo Costa e Silva – Itaara, RS, Brazil, with field spectral data and orbital multispectral images

    Directory of Open Access Journals (Sweden)

    Waterloo Pereira Filho

    2007-08-01

    Full Text Available An evaluation of the discrimination of water classes using continuum removal technique applied over spectral data obtained in field and multispectral images classification is presented. The study area was the Rodolfo Costa e Silva water reservoir, located in central region of Rio Grande do Sul (RS State, in Southern region of Brazil. The methodology was based on in situ data collection of: total suspended solids, chlorophyll (a, b and c, water transparency, and bidirectional spectral reflectance. These data were collected in 21 point (samples in May 16, 2006. The continuum removal technique was applied on the spectral data over 4 absorption bands: 400-550nm, 610-640nm, 650-680nm e 580-700nm. The continuum removal parameters analyzed for each absorption band were: depth, area and width. The multispectral images used were CBERS-2/CCD and Landsat 5/TM. The images were acquired in a date nearest to field work and with appropriate weather conditions. These images were corrected by removing atmospheric effects and then classified. According to the results obtained from the continuum removal technique, it was verified that band depth, area and width did not present a good potential to separate different water classes. Digital classification results did not show significant correlations with the limnological parameters collected in field and, therefore, could not be used to characterize spectrally different water classes or compartments. The main problem of establishing relationships between spectral reflectance and water quality parameters was due to the low variability of optical components in the water of Rodolfo Costa e Silva Reservoir. In this case the spectral analyses (considering both techniques were not sensitive to the relative small variations observed in field data.

  12. Contrast-enhanced spectral mammography with a photon-counting detector.

    Science.gov (United States)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  13. Contrast-enhanced spectral mammography with a photon-counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden)

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  14. Analysis of In-Situ Spectral Reflectance of Sago and Other Palms: Implications for Their Detection in Optical Satellite Images

    Science.gov (United States)

    Rendon Santillan, Jojene; Makinano-Santillan, Meriam

    2018-04-01

    We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.

  15. Fusion of MultiSpectral and Panchromatic Images Based on Morphological Operators.

    Science.gov (United States)

    Restaino, Rocco; Vivone, Gemine; Dalla Mura, Mauro; Chanussot, Jocelyn

    2016-04-20

    Nonlinear decomposition schemes constitute an alternative to classical approaches for facing the problem of data fusion. In this paper we discuss the application of this methodology to a popular remote sensing application called pansharpening, which consists in the fusion of a low resolution multispectral image and a high resolution panchromatic image. We design a complete pansharpening scheme based on the use of morphological half gradients operators and demonstrate the suitability of this algorithm through the comparison with state of the art approaches. Four datasets acquired by the Pleiades, Worldview-2, Ikonos and Geoeye-1 satellites are employed for the performance assessment, testifying the effectiveness of the proposed approach in producing top-class images with a setting independent of the specific sensor.

  16. Spectral features based tea garden extraction from digital orthophoto maps

    Science.gov (United States)

    Jamil, Akhtar; Bayram, Bulent; Kucuk, Turgay; Zafer Seker, Dursun

    2018-05-01

    The advancements in the photogrammetry and remote sensing technologies has made it possible to extract useful tangible information from data which plays a pivotal role in various application such as management and monitoring of forests and agricultural lands etc. This study aimed to evaluate the effectiveness of spectral signatures for extraction of tea gardens from 1 : 5000 scaled digital orthophoto maps obtained from Rize city in Turkey. First, the normalized difference vegetation index (NDVI) was derived from the input images to suppress the non-vegetation areas. NDVI values less than zero were discarded and the output images was normalized in the range 0-255. Individual pixels were then mapped into meaningful objects using global region growing technique. The resulting image was filtered and smoothed to reduce the impact of noise. Furthermore, geometrical constraints were applied to remove small objects (less than 500 pixels) followed by morphological opening operator to enhance the results. These objects served as building blocks for further image analysis. Finally, for the classification stage, a range of spectral values were empirically calculated for each band and applied on candidate objects to extract tea gardens. For accuracy assessment, we employed an area based similarity metric by overlapping obtained tea garden boundaries with the manually digitized tea garden boundaries created by experts of photogrammetry. The overall accuracy of the proposed method scored 89 % for tea gardens from 10 sample orthophoto maps. We concluded that exploiting the spectral signatures using object based analysis is an effective technique for extraction of dominant tree species from digital orthophoto maps.

  17. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  18. Spectrally constrained NIR tomography for breast imaging: simulations and clinical results

    Science.gov (United States)

    Srinivasan, Subhadra; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Paulsen, Keith D.

    2005-04-01

    A multi-spectral direct chromophore and scattering reconstruction for frequency domain NIR tomography has been implemented using constraints of the known molar spectra of the chromophores and a Mie theory approximation for scattering. This was tested in a tumor-simulating phantom containing an inclusion with higher hemoglobin, lower oxygenation and contrast in scatter. The recovered images were quantitatively accurate and showed substantial improvement over existing methods; and in addition, showed robust results tested for up to 5% noise in amplitude and phase measurements. When applied to a clinical subject with fibrocystic disease, the tumor was visible in hemoglobin and water, but no decrease in oxygenation was observed, making oxygen saturation, a potential diagnostic indicator.

  19. Imaging of the iridocorneal angle with the RTVue spectral domain optical coherence tomography.

    Science.gov (United States)

    Perera, Shamira A; Ho, Ching Lin; Aung, Tin; Baskaran, Mani; Ho, Henrietta; Tun, Tin A; Lee, Tian Loon; Kumar, Rajesh S

    2012-04-02

    To determine the ability of the RTVue spectral domain optical coherence tomography (SDOCT) to image the anterior chamber angle (ACA). Consecutive subjects, recruited from glaucoma clinics, prospectively underwent ophthalmic evaluation including gonioscopy by an ophthalmologist and anterior chamber imaging with SDOCT, adapted with a corneal lens adapter (cornea anterior module-low magnification [CAM-L]) and anterior segment OCT (ASOCT), both performed by a technician. Two different ophthalmologists, masked to gonioscopy findings, assessed visualization of the scleral spur (SS), Schwalbe's line (SL), and trabecular meshwork (TM) by the two modalities. The ability to detect a closed angle was compared with gonioscopy. The average age (SD) of the 81 subjects enrolled was 64.1 (11.4) years; the majority were Chinese (91.4%) and female (61.7%). SDOCT images revealed the SS in 26.9% (56/324) of quadrants and the SL in 44.1% (143/324) of quadrants; in ASOCT images, the SS could be visualized in 69.1% (224/324) of quadrants (P gonioscopy. When analyzing the horizontal quadrants only, both modalities agreed well with gonioscopy, 0.75 and 0.74, respectively (AC1 statistics). The RTVue SDOCT allowed visualization of SL, TM, and SS. However, these landmarks were not detected in a large percentage of images.

  20. Opto-mechanical design of the MTG FCI spectral separation assembly

    Science.gov (United States)

    Riguet, François; Brousse, Emmanuel; Carel, Jean-Louis; Cottenye, Justine; Harmann, David; Joncour, Marc; Makhlouf, Houssine; Mouricaud, Daniel; Oussalah, Meihdi; Rodolfo, Jacques

    2015-09-01

    The Spectral Separation Assembly is a key component of the Flexible Combined Imager, an instrument that will be on-board Meteosat Third Generation. It splits the input beam coming from the telescope into five spectral groups, for a total of 16 channels, from 0.4 to 13.3 μm. It comprises a set of four dichroics separators followed by four collimating optics for the infrared spectral groups, which feed the cold imaging optics. The visible spectral group is directly imaged on a detector. This paper presents the optical design of the assembly, the mechanical mounting of the optical components, and the coatings developed for the dichroics, mirrors and lenses.

  1. Application of image editing software for forensic detection of image ...

    African Journals Online (AJOL)

    Application of image editing software for forensic detection of image. ... The image editing software's available today is apt for creating visually compelling and sophisticated fake images, ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  2. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    Science.gov (United States)

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  3. Applications of the semiclassical spectral method to nuclear, atomic, molecular, and polymeric dynamics

    International Nuclear Information System (INIS)

    Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.

    1987-01-01

    Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics

  4. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  5. Fundamentals and applications of neutron imaging. Application part 3. Application of neutron imaging in aircraft, space rocket, car and gunpowder industries

    International Nuclear Information System (INIS)

    Ikeda, Yasushi

    2007-01-01

    Neutron imaging is applied to nondestructive test. Four neutron imaging facilities are used in Japan. The application examples of industries are listed in the table: space rocket, aircraft, car, liquid metal, and works of art. Neutron imaging of transportation equipments are illustrated as an application to industry. X-ray radiography testing (XRT) image and neutron radiography testing (NRT) image of turbine blade of aircraft engine, honeycomb structure of aircraft, helicopter rotor blade, trigger tube, separation nut of space rocket, carburetor of car, BMW engine, fireworks and ammunitions are illustrated. (S.Y.)

  6. Multi-tissue partial volume quantification in multi-contrast MRI using an optimised spectral unmixing approach.

    Science.gov (United States)

    Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme

    2018-06-01

    Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  8. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  9. Classification of Astaxanthin Colouration of Salmonid Fish using Spectral Imaging and Tricolour Measurement

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Dissing, Bjørn Skovlund; Nielsen, Michael Engelbrecht

    capturing, tricolour CIELAB measurement, and manual SalmoFan inspection. Furthermore it was tested whether the best predictions come from measurements of the steak or the fillet of the fish. Methods used for classication were linear discriminant analysis (LDA), quadratic discriminant analysis (QDA......The goal of this study was to investigate if it is possible to differentiate between rainbow trout (Oncorhynchus mykiss) having been fed with natural or synthetic astaxanthin. Three different techniques were used for visual inspection of the surface colour of the fish meat: multi-spectral image...

  10. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  11. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  12. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    Energy Technology Data Exchange (ETDEWEB)

    Barber, W.C., E-mail: william.barber@dxray.com [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Wessel, J.C. [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Nygard, E. [Interon AS, Asker (Norway); Iwanczyk, J.S. [DxRay, Inc., Northridge, CA (United States)

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  13. Efficient and compact hyperspectral imager for space-borne applications

    Science.gov (United States)

    Pisani, Marco; Zucco, Massimo

    2017-11-01

    In the last decades Hyperspectral Imager (HI) have become irreplaceable space-borne instruments for an increasing number of applications. A number of HIs are now operative onboard (e.g. CHRIS on PROBA), others are going to be launched (e.g. PRISMA, EnMAP, HyspIRI), many others are at the breadboard level. The researchers goal is to realize HI with high spatial and spectral resolution, having low weight and contained dimensions. The most common HI technique is based on the use of a dispersive mean (a grating or a prism) or on the use of band pass filters (tunable or linear variable). These approaches have the advantages of allowing compact devices. Another approach is based on the use of interferometer based spectrometers (Michelson or Sagnac type). The advantage of the latter is a very high efficiency in light collection because of the well-known Felgett and Jaquinot principles.

  14. A hyperspectral fluorescence system for 3D in vivo optical imaging

    International Nuclear Information System (INIS)

    Zavattini, Guido; Vecchi, Stefania; Mitchell, Gregory; Weisser, Ulli; Leahy, Richard M; Pichler, Bernd J; Smith, Desmond J; Cherry, Simon R

    2006-01-01

    In vivo optical instruments designed for small animal imaging generally measure the integrated light intensity across a broad band of wavelengths, or make measurements at a small number of selected wavelengths, and primarily use any spectral information to characterize and remove autofluorescence. We have developed a flexible hyperspectral imaging instrument to explore the use of spectral information to determine the 3D source location for in vivo fluorescence imaging applications. We hypothesize that the spectral distribution of the emitted fluorescence signal can be used to provide additional information to 3D reconstruction algorithms being developed for optical tomography. To test this hypothesis, we have designed and built an in vivo hyperspectral imaging system, which can acquire data from 400 to 1000 nm with 3 nm spectral resolution and which is flexible enough to allow the testing of a wide range of illumination and detection geometries. It also has the capability to generate a surface contour map of the animal for input into the reconstruction process. In this paper, we present the design of the system, demonstrate the depth dependence of the spectral signal in phantoms and show the ability to reconstruct 3D source locations using the spectral data in a simple phantom. We also characterize the basic performance of the imaging system

  15. Wavelets: Applications to Image Compression-II

    Indian Academy of Sciences (India)

    Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.

  16. Wavelets: Applications to Image Compression-I

    Indian Academy of Sciences (India)

    form (OWl). Digital imaging has had an enormous impact on ... Digital images have become an important source of in- ... media applications and is the focus of this article. ..... Theory and Applications, Pearson Education InC., Delhi, India, 2000.

  17. ANALYSIS OF IN-SITU SPECTRAL REFLECTANCE OF SAGO AND OTHER PALMS: IMPLICATIONS FOR THEIR DETECTION IN OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    J. R. Santillan

    2018-04-01

    Full Text Available We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345–1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2. Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.

  18. Four novel alkyl 2-cyanoacylate monomers and their use in latent fingermark detection by mid-infrared spectral imaging.

    Science.gov (United States)

    Tahtouh, Mark; Scott, Sonia A; Kalman, John R; Reedy, Brian J

    2011-04-15

    Four novel alkyl 2-cyanoacrylate monomers (alkyl=1-cyanoethyl, 2-cyanoethyl, trideuteromethyl and pentadeuteroethyl) have been tested for their ability to develop latent fingermarks that can then be visualized using mid-infrared spectral (chemical) imaging. Each of the four monomers was chosen for its potential to produce a strong, isolated infrared spectral band in its corresponding polymer (to provide spectral contrast against most backgrounds), as well as for its potential ability to be fumed onto fingermarks in the manner of conventional ethyl 2-cyanoacrylate (superglue). With the exception of the 2-cyanoethyl 2-cyanoacrylate, which had to be fumed under reduced pressure, all of the monomers were found to be sufficiently volatile to be fumed in a conventional fuming cabinet. All four monomers polymerized selectively on fingermark ridges on a variety of non-porous and semi-porous surfaces, leading to excellent development of the fingermarks. Unfortunately, although high quality mid-infrared spectral images of the fingermarks could be formed for all of the polymers at various frequencies, the new CN or CD stretching vibrations did not give rise to strong enough absorption intensities for good contrast on difficult backgrounds such as polymer banknotes. However, in the 1-cyanoethyl 2-cyanoacrylate polymer, the presence of the additional nitrile group had the unintended but desirable effect of shifting the strong CO absorption to higher frequencies, moving it away from interfering banknote absorptions. This enabled fingermark contrast to be achieved even against the intaglio printing on the banknotes. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  20. Solar occultation images analysis using Zernike polynomials ­— an ALTIUS imaging spectrometer application

    Science.gov (United States)

    Dekemper, Emmanuel; Fussen, Didier; Loodts, Nicolas; Neefs, Eddy

    The ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) instrument is a major project of the Belgian Institute for Space Aeronomy (BIRA-IASB) in Brussels, Belgium. It has been designed to profit from the benefits of the limb scattering ge-ometry (vertical resolution, global coverage,...), while providing better accuracy on the tangent height knowledge than classical "knee" methods used by scanning spectrometers. The optical concept is based on 3 AOTF's (UV-Vis-NIR) responsible for the instantaneous spectral filtering of the incoming image (complete FOV larger than 100km x 100km at tangent point), ranging from 250nm to 1800nm, with a moderate resolution of a few nm and a typical acquisition time of 1-10s per image. While the primary goal of the instrument is the measurement of ozone with a good vertical resolution, the ability to record full images of the limb can lead to other applications, like solar occultations. With a pixel FOV of 200rad, the full high-sun image is formed of 45x45 pixels, which is sufficient for pattern recognition using moments analysis for instance. The Zernike polynomials form a complete othogonal set of functions over the unit circle. It is well suited for images showing circular shape. Any such image can then be decomposed into a finite set of weighted polynomials, the weighting is called the moments. Due to atmospheric refraction, the sun shape is modified during apparent sunsets and sunrises. The sun appears more flattened which leads to a modification of its zernike moment description. A link between the pressure or the temperature profile (equivalent to air density through the perfect gas law and the hydrostatic equation) and the Zernike moments of a given image can then be made and used to retrieve these atmospheric parameters, with the advantage that the whole sun is used and not only central or edge pixels. Some retrievals will be performed for different conditions and the feasibility of the method

  1. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  2. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    NARCIS (Netherlands)

    B. Antony (Bhavna); M.D. Abràmoff (Michael); L. Tang (Li); W.D. Ramdas (Wishal); J.R. Vingerling (Hans); N.M. Jansonius (Nomdo); K. Lee (Kyungmoo); Y.H. Kwon (Young); M. Sonka (Milan); M.K. Garvin (Mona)

    2011-01-01

    textabstractThe 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate

  3. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  4. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  5. Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral Modeling of Fat: Blinded Comparison with MR Spectroscopy

    Science.gov (United States)

    Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude

  6. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  7. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  8. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    NARCIS (Netherlands)

    Antony, Bhavna; Abramoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.

    2011-01-01

    The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct

  9. Bloodstain detection and discrimination impacted by spectral shift when using an interference filter-based visible and near-infrared multispectral crime scene imaging system

    Science.gov (United States)

    Yang, Jie; Messinger, David W.; Dube, Roger R.

    2018-03-01

    Bloodstain detection and discrimination from nonblood substances on various substrates are critical in forensic science as bloodstains are a critical source for confirmatory DNA tests. Conventional bloodstain detection methods often involve time-consuming sample preparation, a chance of harm to investigators, the possibility of destruction of blood samples, and acquisition of too little data at crime scenes either in the field or in the laboratory. An imaging method has the advantages of being nondestructive, noncontact, real-time, and covering a large field-of-view. The abundant spectral information provided by multispectral imaging makes it a potential presumptive bloodstain detection and discrimination method. This article proposes an interference filter (IF) based area scanning three-spectral-band crime scene imaging system used for forensic bloodstain detection and discrimination. The impact of large angle of views on the spectral shift of calibrated IFs is determined, for both detecting and discriminating bloodstains from visually similar substances on multiple substrates. Spectral features in the visible and near-infrared portion employed by the relative band depth method are used. This study shows that 1 ml bloodstain on black felt, gray felt, red felt, white cotton, white polyester, and raw wood can be detected. Bloodstains on the above substrates can be discriminated from cola, coffee, ketchup, orange juice, red wine, and green tea.

  10. iSpectra: An Open Source Toolbox For The Analysis of Spectral Images Recorded on Scanning Electron Microscopes.

    Science.gov (United States)

    Liebske, Christian

    2015-08-01

    iSpectra is an open source and system-independent toolbox for the analysis of spectral images (SIs) recorded on energy-dispersive spectroscopy (EDS) systems attached to scanning electron microscopes (SEMs). The aim of iSpectra is to assign pixels with similar spectral content to phases, accompanied by cumulative phase spectra with superior counting statistics for quantification. Pixel-to-phase assignment starts with a threshold-based pre-sorting of spectra to create groups of pixels with identical elemental budgets, similar to a method described by van Hoek (2014). Subsequent merging of groups and re-assignments of pixels using elemental or principle component histogram plots enables the user to generate chemically and texturally plausible phase maps. A variety of standard image processing algorithms can be applied to groups of pixels to optimize pixel-to-phase assignments, such as morphology operations to account for overlapping excitation volumes over pixels located at phase boundaries. iSpectra supports batch processing and allows pixel-to-phase assignments to be applied to an unlimited amount of SIs, thus enabling phase mapping of large area samples like petrographic thin sections.

  11. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  12. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    Science.gov (United States)

    2010-01-01

    Texas coastal fish skin preparations with the HyperSpectral Imager mounted on a stereomicroscope in Norway in April (Dierssen). g) Camouflage...on fish skin preparations. B) Matlab image of skin preparation showing the boxed area used in the spectral analysis. C) Median reflectance

  13. Implementation of webcam-based hyperspectral imaging system

    Science.gov (United States)

    Balooch, Ali; Nazeri, Majid; Abbasi, Hamed

    2018-02-01

    In the present work, a hyperspectral imaging system (imaging spectrometer) using a commercial webcam has been designed and developed. This system was able to capture two-dimensional spectra (in emission, transmission and reflection modes) directly from the scene in the desired wavelengths. Imaging of the object is done directly by linear sweep (pushbroom method). To do so, the spectrometer is equipped with a suitable collecting lens and a linear travel stage. A 1920 x 1080 pixel CMOS webcam was used as a detector. The spectrometer has been calibrated by the reference spectral lines of standard lamps. The spectral resolution of this system was about 2nm and its spatial resolution was about 1 mm for a 10 cm long object. The hardware solution is based on data acquisition working on the USB platform and controlled by a LabVIEW program. In this system, the initial output was a three-dimensional matrix in which two dimensions of the matrix were related to the spatial information of the object and the third dimension was the spectrum of any point of the object. Finally, the images in different wavelengths were created by reforming the data of the matrix. The free spectral range (FSR) of the system was 400 to 1100 nm. The system was successfully tested for some applications, such as plasma diagnosis as well as applications in food and agriculture sciences.

  14. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  15. Hyperspectral Imaging of Forest Resources: The Malaysian Experience

    Science.gov (United States)

    Mohd Hasmadi, I.; Kamaruzaman, J.

    2008-08-01

    Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.

  16. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  17. Using Image Texture and Spectral Reflectance Analysis to Detect Yellowness and Esca in Grapevines at Leaf-Level

    Directory of Open Access Journals (Sweden)

    Hania Al-Saddik

    2018-04-01

    Full Text Available Plant diseases are one of the main reasons behind major economic and production losses in the agricultural field. Current research activities enable large fields monitoring and plant disease detection using innovative and robust technologies. French grapevines have a reputation for producing premium quality wines, however, these major fruit crops are susceptible to many diseases, including Esca, Downy mildew, Powdery mildew, Yellowing, and many others. In this study, we focused on two main infections (Esca and Yellowing, and data were gathered from fields that were located in Aquitaine and Burgundy regions, France. Since plant diseases can be diagnosed from the properties of the leaf, we acquired both Red-Green-Blue (RGB digital image and hyperspectral reflectance data from infected and healthy leaves. Biophysical parameters that were produced by the PROSPECT model inversion together with texture parameters compiled from the literature were deduced. Then we investigated their relationship to damage caused by Yellowing and Esca. This study examined whether spectral and textural data can identify the two diseases through the use of Neural Networks. We obtained an overall accuracy of 99% for both of the diseases when textural and spectral data are combined. These results suggest that, first, biophysical parameters present a valid dimension reduction tool that could replace the use of complete hyperspectral data. Second, remote sensing using spectral reflectance and digital images can make an overall nondestructive, rapid, cost-effective, and reproducible technique to determine diseases in grapevines with a good level of accuracy.

  18. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    Science.gov (United States)

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  19. Compact Micro-Imaging Spectrometer (CMIS): Investigation of Imaging Spectroscopy and Its Application to Mars Geology and Astrobiology

    Science.gov (United States)

    Staten, Paul W.

    2005-01-01

    Future missions to Mars will attempt to answer questions about Mars' geological and biological history. The goal of the CMIS project is to design, construct, and test a capable, multi-spectral micro-imaging spectrometer use in such missions. A breadboard instrument has been constructed with a micro-imaging camera and Several multi-wavelength LED illumination rings. Test samples have been chosen for their interest to spectroscopists, geologists and astrobiologists. Preliminary analysis has demonstrated the advantages of isotropic illumination and micro-imaging spectroscopy over spot spectroscopy.

  20. Apparatus and method using a holographic optical element for converting a spectral distribution to image points

    Science.gov (United States)

    McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)

    2001-01-01

    A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.

  1. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  2. Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-05-01

    Full Text Available Segmentation, which is usually the first step in object-based image analysis (OBIA, greatly influences the quality of final OBIA results. In many existing multi-scale segmentation algorithms, a common problem is that under-segmentation and over-segmentation always coexist at any scale. To address this issue, we propose a new method that integrates the newly developed constrained spectral variance difference (CSVD and the edge penalty (EP. First, initial segments are produced by a fast scan. Second, the generated segments are merged via a global mutual best-fitting strategy using the CSVD and EP as merging criteria. Finally, very small objects are merged with their nearest neighbors to eliminate the remaining noise. A series of experiments based on three sets of remote sensing images, each with different spatial resolutions, were conducted to evaluate the effectiveness of the proposed method. Both visual and quantitative assessments were performed, and the results show that large objects were better preserved as integral entities while small objects were also still effectively delineated. The results were also found to be superior to those from eCongnition’s multi-scale segmentation.

  3. Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)

    Science.gov (United States)

    Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya

    2017-08-01

    Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.

  4. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    Cheng Weifeng; Li Zheng; Chen Zhiqiang; Zhang Li; Gao Wenhuan

    2002-01-01

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  5. Classification of objects on hyperspectral images — further developments

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey V.; Williams, Paul

    Classification of objects (such as tablets, cereals, fruits, etc.) is one of the very important applications of hyperspectral imaging and image analysis. Quite often, a hyperspectral image is represented and analyzed just as a bunch of spectra without taking into account spatial information about...... the pixels, which makes classification objects inefficient. Recently, several methods, which combine spectral and spatial information, has been also developed and this approach becomes more and more wide-spread. The methods use local rank, topology, spectral features calculated for separate objects and other...... spatial characteristics. In this work we would like to show several improvements to the classification method, which utilizes spectral features calculated for individual objects [1]. The features are based (in general) on descriptors of spatial patterns of individual object’s pixels in a common principal...

  6. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  7. SU-D-218-05: Material Quantification in Spectral X-Ray Imaging: Optimization and Validation.

    Science.gov (United States)

    Nik, S J; Thing, R S; Watts, R; Meyer, J

    2012-06-01

    To develop and validate a multivariate statistical method to optimize scanning parameters for material quantification in spectral x-rayimaging. An optimization metric was constructed by extensively sampling the thickness space for the expected number of counts for m (two or three) materials. This resulted in an m-dimensional confidence region ofmaterial quantities, e.g. thicknesses. Minimization of the ellipsoidal confidence region leads to the optimization of energy bins. For the given spectrum, the minimum counts required for effective material separation can be determined by predicting the signal-to-noise ratio (SNR) of the quantification. A Monte Carlo (MC) simulation framework using BEAM was developed to validate the metric. Projection data of the m-materials was generated and material decomposition was performed for combinations of iodine, calcium and water by minimizing the z-score between the expected spectrum and binned measurements. The mean square error (MSE) and variance were calculated to measure the accuracy and precision of this approach, respectively. The minimum MSE corresponds to the optimal energy bins in the BEAM simulations. In the optimization metric, this is equivalent to the smallest confidence region. The SNR of the simulated images was also compared to the predictions from the metric. TheMSE was dominated by the variance for the given material combinations,which demonstrates accurate material quantifications. The BEAMsimulations revealed that the optimization of energy bins was accurate to within 1keV. The SNRs predicted by the optimization metric yielded satisfactory agreement but were expectedly higher for the BEAM simulations due to the inclusion of scattered radiation. The validation showed that the multivariate statistical method provides accurate material quantification, correct location of optimal energy bins and adequateprediction of image SNR. The BEAM code system is suitable for generating spectral x- ray imaging simulations.

  8. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    Science.gov (United States)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  9. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    International Nuclear Information System (INIS)

    Taguchi, K.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  10. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  11. Multispectral analysis tools can increase utility of RGB color images in histology

    Science.gov (United States)

    Fereidouni, Farzad; Griffin, Croix; Todd, Austin; Levenson, Richard

    2018-04-01

    Multispectral imaging (MSI) is increasingly finding application in the study and characterization of biological specimens. However, the methods typically used come with challenges on both the acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging times and possible phototoxicity and photobleaching. The resulting datasets can be large and complex, prompting the development of a number of mathematical approaches for segmentation and signal unmixing. We show that under certain circumstances, just three spectral channels provided by standard color cameras, coupled with multispectral analysis tools, including a more recent spectral phasor approach, can efficiently provide useful insights. These findings are supported with a mathematical model relating spectral bandwidth and spectral channel number to achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative matrix factorization and phasor analysis tools all provide useful results, with phasors generating particularly helpful spectral display plots for sample exploration.

  12. Recent Applications of Chemical Imaging to Pharmaceutical Process Monitoring and Quality Control

    OpenAIRE

    Gowen, A. A.; O'Donnell, Colm; Cullen, Patrick; Bell, S.

    2008-01-01

    Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutica...

  13. Image applications for coastal resource planning: Elkhorn Slough Pilot Project

    Science.gov (United States)

    Kvitek, Rikk G.; Sharp, Gary D.; VanCoops, Jonathan; Fitzgerald, Michael

    1995-01-01

    The purpose of this project has been to evaluate the utility of digital spectral imagery at two levels of resolution for large scale, accurate, auto-classification of land cover along the Central California Coast. Although remote sensing technology offers obvious advantages over on-the-ground mapping, there are substantial trade-offs that must be made between resolving power and costs. Higher resolution images can theoretically be used to identify smaller habitat patches, but they usually require more scenes to cover a given area and processing these images is computationally intense requiring much more computer time and memory. Lower resolution images can cover much larger areas, are less costly to store, process, and manipulate, but due to their larger pixel size can lack the resolving power of the denser images. This lack of resolving power can be critical in regions such as the Central California Coast where important habitat change often occurs on a scale of 10 meters. Our approach has been to compare vegetation and habitat classification results from two aircraft-based spectral scenes covering the same study area but at different levels of resolution with a previously produced ground-truthed land cover base map of the area. Both of the spectral images used for this project were of significantly higher resolution than the satellite-based LandSat scenes used in the C-CAP program. The lower reaches of the Elkhorn Slough watershed was chosen as an ideal study site because it encompasses a suite of important vegetation types and habitat loss processes characteristic of the central coast region. Dramatic habitat alterations have and are occurring within the Elkhorn Slough drainage area, including erosion and sedimentation, land use conversion, wetland loss, and incremental loss due to development and encroachnnent by agriculture. Additonally, much attention has already been focused on the Elkhorn Slough due to its status as a National Marine Education and Research

  14. CT spectral imaging for monitoring the therapeutic efficacy of VEGF receptor kinase inhibitor AG-013736 in rabbit VX2 liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Yan, Xiaopeng; Chai, Yaru; Chen, Yan; Gao, Jianbo; Pan, Yuanwei; Li, Shuai; Guo, Hua; Zhou, Yue [The First Affiliated Hospital of Zhengzhou University, The Department of Radiology, Zhengzhou, Henan Province (China)

    2017-03-15

    The aim of this study was to evaluate the value of computed tomography (CT) spectral imaging in assessing the therapeutic efficacy of a vascular endothelial growth factor (VEGF) receptor inhibitor AG-013736 in rabbit VX2 liver tumours. Twenty-three VX2 liver tumour-bearing rabbits were scanned with CT in spectral imaging mode during the arterial phase (AP) and portal phase (PP). The iodine concentrations(ICs)of tumours normalized to aorta (nICs) at different time points (baseline, 2, 4, 7, 10, and 14 days after treatment) were compared within the treated group (n = 17) as well as between the control (n = 6) and treated groups. Correlations between the tumour size, necrotic fraction (NF), microvessel density (MVD), and nICs were analysed. The change of nICs relative to baseline in the treated group was lower compared to the control group. A greater decrease in the nIC of a tumour at 2 days was positively correlated with a smaller increase in tumour size at 14 days (P < 0.05 for both). The tumour nIC values in AP and PP had correlations with MVD (r = 0.71 and 0.52) and NF (r = -0.54 and -0.51) (P < 0.05 for all). CT spectral imaging allows for the evaluation and early prediction of tumour response to AG-013736. (orig.)

  15. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  16. Algorithms for Spectral Decomposition with Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main...

  17. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  18. Fuzzy image processing and applications with Matlab

    CERN Document Server

    Chaira, Tamalika

    2009-01-01

    In contrast to classical image analysis methods that employ ""crisp"" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge.Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging,

  19. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    Science.gov (United States)

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  20. UTILIZATION OF FUNDUS AUTOFLUORESCENCE, SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY, AND ENHANCED DEPTH IMAGING IN THE CHARACTERIZATION OF BIETTI CRYSTALLINE DYSTROPHY IN DIFFERENT STAGES.

    Science.gov (United States)

    Li, Qian; Li, Yang; Zhang, Xiaohui; Xu, Zhangxing; Zhu, Xiaoqing; Ma, Kai; She, Haicheng; Peng, Xiaoyan

    2015-10-01

    To characterize Bietti crystalline dystrophy (BCD) in different stages using multiple imaging modalities. Sixteen participants clinically diagnosed as BCD were included in the retrospective study and were categorized into 3 stages according to fundus photography. Eleven patients were genetically confirmed. Fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging features of BCD were analyzed. On fundus autofluorescence, the abnormal autofluorescence was shown to enlarge in area and decrease in intensity with stages. Using spectral domain optical coherence tomography, the abnormalities in Stage 1 were observed to localize in outer retinal layers, whereas in Stage 2 and Stage 3, more extensive retinal atrophy was seen. In enhanced depth imaging, the subfoveal choroidal layers were delineated clearly in Stage 1; in Stage 2, destructions were primarily found in the choriocapillaris with associated alterations in the outer vessels; Stage 3 BCD displayed severe choroidal thinning. Choroidal neovascularization and macular edema were exhibited with high incidence. IVS6-8del17bp/inGC of the CYP4V2 gene was the most common mutant allele. Noninvasive fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging may help to characterize the chorioretinal pathology of BCD at different degrees, and therefore, we propose staging of BCD depending on those methods. Physicians should be cautious of the vision-threatening complications of the disease.