WorldWideScience

Sample records for spectral density

  1. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  2. Finite size scaling and spectral density studies

    International Nuclear Information System (INIS)

    Berg, B.A.

    1991-01-01

    Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)

  3. Spectral density regression for bivariate extremes

    KAUST Repository

    Castro Camilo, Daniela

    2016-05-11

    We introduce a density regression model for the spectral density of a bivariate extreme value distribution, that allows us to assess how extremal dependence can change over a covariate. Inference is performed through a double kernel estimator, which can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are replaced by mean constrained densities on the unit interval. Numerical experiments with the methods illustrate their resilience in a variety of contexts of practical interest. An extreme temperature dataset is used to illustrate our methods. © 2016 Springer-Verlag Berlin Heidelberg

  4. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi

    2017-04-12

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  5. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo

    2017-01-01

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  6. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  7. Hamiltonian indices and rational spectral densities

    Science.gov (United States)

    Byrnes, C. I.; Duncan, T. E.

    1980-01-01

    Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.

  8. Correlation and spectral density measurements by LDA

    International Nuclear Information System (INIS)

    Pfeifer, H.J.

    1986-01-01

    The present paper is intended to give a review on the state-of-the art in correlation and spectral density measurements by means of laser Doppler anemometry. As will be shown in detail the most important difference in performing this type of studies is the fact that laser anemometry relies on the presence of particles in the flow serving as flow velocity indicators. This means that, except in heavily seeded flows, the instantaneous velocity can only be sampled at random instants. This calls for new algorithms to calculate estimates of both correlation functions and power spectra. Various possibilities to handle the problem of random sampling have been developed in the past. They are explained from the theoretical point of view and the experimental aspects are detailed as far as they are different from conventional applications of laser anemometry

  9. Ultra-High Density Spectral Storage Materials

    National Research Council Canada - National Science Library

    Hasan, Zameer U

    2002-01-01

    .... Being atomic scale storage, spectral storage has the potential of providing orders of magnitude denser memories than present day memories that depend on the hulk properties of the storage medium...

  10. Spectral density regression for bivariate extremes

    KAUST Repository

    Castro Camilo, Daniela; de Carvalho, Miguel

    2016-01-01

    can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are replaced by mean constrained densities on the unit interval. Numerical experiments with the methods illustrate their resilience in a variety of contexts

  11. Spectral density and a family of Dirac operators

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1985-01-01

    The spectral density for a class Dirac operators is investigated by relating its even and odd parts to the Riemann zeta-function and to the eta-invariant by Atiyah, Padoti and Singer. Asymptotic expansions are studied and a 'hidden' supersymmetry is revealed and used to relate the Dirac operator to a supersymmetric quantum mechanics. A general method for the computation of the odd spectral density is developed, and various applications are discussed. In particular the connection to the fermion number and a relation between the odd spectral density and some ratios of Jost functions and relative phase shifts are pointed out. Chiral symmetry breaking is investigated using methods analogous to those applied in the investigation of the fermion number, and related to supersymmetry breaking in the corresponding quantum mechanical model. (orig.)

  12. Spectral function from Reduced Density Matrix Functional Theory

    Science.gov (United States)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  13. Spectral density of electron concentration fluctuations in ionospheric D region

    International Nuclear Information System (INIS)

    Martynenko, S.I.

    1989-01-01

    Expression for spectral density of electron concentration fluctuations in D-region with regard to the effect of ionization-recombination proceses and negative ions is obtained in terms of atmospheric turbulence model which obeys Kolmogorov-Obukhov 2/3 law

  14. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  15. Atmospheric turbulence profiling with unknown power spectral density

    Science.gov (United States)

    Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny

    2018-04-01

    Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.

  16. Geometrical Description in Binary Composites and Spectral Density Representation

    Directory of Open Access Journals (Sweden)

    Enis Tuncer

    2010-01-01

    Full Text Available In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ = (εe − εm(εi − εm−1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell

  17. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  18. K-correlation power spectral density and surface scatter model

    Science.gov (United States)

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  19. Power-spectral-density relationship for retarded differential equations

    Science.gov (United States)

    Barker, L. K.

    1974-01-01

    The power spectral density (PSD) relationship between input and output of a set of linear differential-difference equations of the retarded type with real constant coefficients and delays is discussed. The form of the PSD relationship is identical with that applicable to unretarded equations. Since the PSD relationship is useful if and only if the system described by the equations is stable, the stability must be determined before applying the PSD relationship. Since it is sometimes difficult to determine the stability of retarded equations, such equations are often approximated by simpler forms. It is pointed out that some common approximations can lead to erroneous conclusions regarding the stability of a system and, therefore, to the possibility of obtaining PSD results which are not valid.

  20. Power Spectral Density Evaluation of Laser Milled Surfaces

    Directory of Open Access Journals (Sweden)

    Raoul-Amadeus Lorbeer

    2017-12-01

    Full Text Available Ablating surfaces with a pulsed laser system in milling processes often leads to surface changes depending on the milling depth. Especially if a constant surface roughness and evenness is essential to the process, structural degradation may advance until the process fails. The process investigated is the generation of precise thrust by laser ablation. Here, it is essential to predict or rather control the evolution of the surfaces roughness. Laser ablative milling with a short pulse laser system in vacuum (≈1 Pa were performed over depths of several 10 µm documenting the evolution of surface roughness and unevenness with a white light interference microscope. Power spectral density analysis of the generated surface data reveals a strong influence of the crystalline structure of the solid. Furthermore, it was possible to demonstrate that this effect could be suppressed for gold.

  1. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  2. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  3. Evaluation the complex lithologies in the oil well using spectral density instrument

    International Nuclear Information System (INIS)

    Zivanov, M.; Martinovic, S.; Jakovljevic, B.

    1991-01-01

    Spectral density instrument for logging in the oil wells, beside density, measure photo electrical cross section. The principles of logging are discussed of modern spectral density. Results of logging are used dor determining the complex lithology in the oil well. With this instrument are obtained the more accurate and reliable logging results and better lithology rate and reliable logging results and better lithology determination in the formations. (author)

  4. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  5. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  6. Weld defect identification in friction stir welding using power spectral density

    Science.gov (United States)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  7. Experimental evaluation of noise spectral density to investigate structure defects and electrical behavior of solar cells

    International Nuclear Information System (INIS)

    Ashur, S. M.

    2007-01-01

    In this work current voltage characteristics and voltage spectral density, in both forward and reverse bias operations were evaluated for a group of mono- crystalline silicon solar cells. The cells were tested for the sake of device quality evaluation and identification of failure modes and mechanisms. Experimental results showed transport characteristics with varying slopes. In addition, electrical noise density versus frequency response, for the constant voltage mode, showed an extremum of noise voltage spectral density at zero D.C. frequency. It decreased with increasing frequency and revealed spikes of the noise voltage density at certain frequencies. (author)

  8. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  9. A Fiber-Optic System Generating Pulses of High Spectral Density

    Science.gov (United States)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  10. Transfer equations for spectral densities of inhomogeneous MHD turbulence

    International Nuclear Information System (INIS)

    Tu, C.-Y.; Marsch, E.

    1990-01-01

    On the basis of the dynamic equations governing the evolution of magnetohydrodynamic fluctuations expressed in terms of Elsaesser variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented describing the evolutions of the energy spectrum e ± and of the residual energy spectra e R and e S of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e ± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for e R the triple correlations do not correspond to an 'energy' conserving process, but also represent a nonlinear source term for e R . If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations. (author)

  11. Non destructive defect detection by spectral density analysis.

    Science.gov (United States)

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD).

  12. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  13. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  14. Evaluation of plasma-wave spectral density from cross-power spectra

    International Nuclear Information System (INIS)

    Ilic, D.B.; Harker, K.J.

    1975-01-01

    The plasma-wave spectral density is evaluated by performing a spatial Fourier transform on experimental cross-power spectra of ion acoustic waves. The cross-power spectra are recorded on analog magnetic tape, converted to digital form, transferred to digital magnetic tape, and Fourier transformed on a digital computer. The important effects of sampling, finite data strings, and data smoothing on the end results are discussed and illustrated. The results indicate the usefulness of the spectral density method for the study of nonlinear wave phenomena. (auth)

  15. Dirac spectral density and mass anomalous dimension in 2+1 flavor QCD

    Directory of Open Access Journals (Sweden)

    Nakayama Katsumasa

    2018-01-01

    Full Text Available We compute the Dirac spectral density of QCD in a wide range of eigenvalues by using a stochastic method. We use 2+1 flavor lattice ensembles generated with Mobius domain-wall fermion at three lattice spacings (a = 0:083; 0:055; 0:044 fm to estimate the continuum limit. The discretization effect can be minimized by a generalization of the valence domain-wall fermion. The spectral density at relatively high eigenvalues can be matched with perturbation theory. We compare the lattice results with the perturbative expansion available to O(α4s.

  16. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  17. Inference of core barrel motion from neutron noise spectral density. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.C.; Shahrokhi, F.; Kryter, R.C.

    1977-03-15

    A method was developed for inference of core barrel motion from the following statistical descriptors: cross-power spectral density, autopower spectral density, and amplitude probability density. To quantify the core barrel motion in a typical pressurized water reactor (PWR), a scale factor was calculated in both one- and two-dimensional geometries using forward, variational, and perturbation methods of discrete ordinates neutron transport. A procedure for selection of the proper frequency band limits for the statistical descriptors was developed. It was found that although perturbation theory is adequate for the calculation of the scale factor, two-dimensional geometric effects are important enough to rule out the use of a one-dimensional approximation for all but the crudest calculations. It was also found that contributions of gamma rays can be ignored and that the results are relatively insensitive to the cross-section set employed. The proper frequency band for the statistical descriptors is conveniently determined from the coherence and phase information from two ex-core power range neutron monitors positioned diametrically across the reactor vessel. Core barrel motion can then be quantified from the integral of the band-limited cross-power spectral density of two diametrically opposed ex-core monitors or, if the coherence between the pair is greater than or equal to 0.7, from a properly band-limited amplitude probability density function. Wide-band amplitude probability density functions were demonstrated to yield erroneous estimates for the magnitude of core barrel motion.

  18. Surface of Maximums of AR(2 Process Spectral Densities and its Application in Time Series Statistics

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2017-09-01

    Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2 process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.

  19. Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method

    DEFF Research Database (Denmark)

    Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno

    2015-01-01

    SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....

  20. Extracting the noise spectral densities parameters of JFET transistor by modeling a nuclear electronics channel response

    International Nuclear Information System (INIS)

    Assaf, J.

    2009-07-01

    Mathematical model for the RMS noise of JFET transistor has been realized. Fitting the model according to the experimental results gives the noise spectral densities values. Best fitting was for the model of three noise sources and real preamplifier transfer function. After gamma irradiation, an additional and important noise sources appeared and two point defects are estimated through the fitting process. (author)

  1. Effects of motor programming on the power spectral density function of finger and wrist movements

    NARCIS (Netherlands)

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower

  2. Spectral density of oscillator with bilinear stiffness and white noise excitation

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2003-01-01

    The power spectral density of an oscillator with bilinear stiffness excited by Gaussian white noise is considered. A method originally proposed by Krenk and Roberts [J Appl Mech 66 (1999) 225] relying on slowly changing energy for lightly damped systems is applied. In this method an approximate...

  3. Structure-property relationship in dielectric mixtures: application of the spectral density theory

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    This paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites. The influence of structural differences and intrinsic electrical properties of constituents on the composite's overall electrical properties is investigated. The structural differences are resolved by fitting the dielectric data with an empirical formula and by the spectral density representation approach. At low concentrations of inclusions (concentrations lower than the percolation threshold), the spectral density functions are delta-sequences, which corresponds to the predictions of the general Maxwell-Garnett (MG) mixture formula. At high concentrations of inclusions (close to the percolation threshold) systems exhibit non-Debye-type dielectric dispersions, and the spectral density functions differ from each other and that predicted by the MG expression. The analysis of the dielectric dispersions with an empirical formula also brings out the structural differences between the considered geometries, however, the information is not qualitative. The empirical formula can only be used to compare structures. The spectral representation method on the other hand is a concrete way of characterizing the structures of the dielectric mixtures. Therefore, as in other spectroscopic techniques, a look-up table might be useful to classify/characterize structures of composite materials. This can be achieved by generating dielectric data for known structures by using ab initio calculations, as presented and emphasized in this study. The numerical technique presented here is not based on any a priori assumption methods

  4. Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    International Nuclear Information System (INIS)

    Fiebig, H. Rudolf

    2002-01-01

    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach

  5. Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)

    2016-09-15

    Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  6. Sum rules and spectral density flow in QCD and in superconformal theories

    Directory of Open Access Journals (Sweden)

    Costantini Antonio

    2014-01-01

    Full Text Available We discuss the signature of the anomalous breaking of the superconformal symmetry in N${\\cal N}$ = 1 super Yang Mills theory and its manifestation in the form of anomaly poles. Moreover, we describe the massive deformations of the N${\\cal N}$ = 1 theory and the spectral densities of the corresponding anomaly form factors. These are characterized by spectral densities which flow with the mass deformation and turn the continuum contributions from the two-particle cuts of the intermediate states into poles, with a single sum rule satisfied by each component. The poles can be interpreted as signaling the exchange of a composite axion/dilaton/dilatino (ADD multiplet in the effective Lagrangian. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields.

  7. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    Science.gov (United States)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  8. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  9. Entanglement in random pure states: spectral density and average von Neumann entropy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Pandey, Akhilesh, E-mail: skumar.physics@gmail.com, E-mail: ap0700@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2011-11-04

    Quantum entanglement plays a crucial role in quantum information, quantum teleportation and quantum computation. The information about the entanglement content between subsystems of the composite system is encoded in the Schmidt eigenvalues. We derive here closed expressions for the spectral density of Schmidt eigenvalues for all three invariant classes of random matrix ensembles. We also obtain exact results for average von Neumann entropy. We find that maximum average entanglement is achieved if the system belongs to the symplectic invariant class. (paper)

  10. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  11. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  12. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  13. Statistical algorithm for automated signature analysis of power spectral density data

    International Nuclear Information System (INIS)

    Piety, K.R.

    1977-01-01

    A statistical algorithm has been developed and implemented on a minicomputer system for on-line, surveillance applications. Power spectral density (PSD) measurements on process signals are the performance signatures that characterize the ''health'' of the monitored equipment. Statistical methods provide a quantitative basis for automating the detection of anomalous conditions. The surveillance algorithm has been tested on signals from neutron sensors, proximeter probes, and accelerometers to determine its potential for monitoring nuclear reactors and rotating machinery

  14. Response of Spectral Reflectances and Vegetation Indices on Varying Juniper Cone Densities

    Directory of Open Access Journals (Sweden)

    Guillermo E. Ponce-Campos

    2013-10-01

    Full Text Available Juniper trees are widely distributed throughout the world and are common sources of allergies when microscopic pollen grains are transported by wind and inhaled. In this study, we investigated the spectral influences of pollen-discharging male juniper cones within a juniper canopy. This was done through a controlled outdoor experiment involving ASD FieldSpec Pro Spectroradiometer measurements over juniper canopies of varying cone densities. Broadband and narrowband spectral reflectance and vegetation index (VI patterns were evaluated as to their sensitivity and their ability to discriminate the presence of cones. The overall aim of this research was to assess remotely sensed phenological capabilities to detect pollen-bearing juniper trees for public health applications. A general decrease in reflectance values with increasing juniper cone density was found, particularly in the Green (545–565 nm and NIR (750–1,350 nm regions. In contrast, reflectances in the shortwave-infrared (SWIR, 2,000 nm to 2,350 nm region decreased from no cone presence to intermediate amounts (90 g/m2 and then increased from intermediate levels to the highest cone densities (200 g/m2. Reflectance patterns in the Red (620–700 nm were more complex due to shifting contrast patterns in absorptance between cones and juniper foliage, where juniper foliage is more absorbing than cones only within the intense narrowband region of maximum chlorophyll absorption near 680 nm. Overall, narrowband reflectances were more sensitive to cone density changes than the equivalent MODIS broadbands. In all VIs analyzed, there were significant relationships with cone density levels, particularly with the narrowband versions and the two-band vegetation index (TBVI based on Green and Red bands, a promising outcome for the use of phenocams in juniper phenology trait studies. These results indicate that spectral indices are sensitive to certain juniper phenologic traits that can potentially be

  15. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1997-01-01

    Full Text Available The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general case of matching a target probability density function using a zero memory nonlinear (ZMNL function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.

  16. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  17. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    International Nuclear Information System (INIS)

    Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-01-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  18. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  19. Correlation between blood and lymphatic vessel density and results of contrast-enhanced spectral mammography.

    Science.gov (United States)

    Luczynska, Elzbieta; Niemiec, Joanna; Ambicka, Aleksandra; Adamczyk, Agnieszka; Walasek, Tomasz; Ryś, Janusz; Sas-Korczyńska, Beata

    2015-09-01

    Contrast-enhanced spectral mammography (CESM) is a novel technique used for detection of tumour vascularity by imaging the moment in which contrast, delivered to the lesion by blood vessels, leaks out of them, and flows out through lymphatic vessels. In our study, we included 174 women for whom spectral mammography was performed for diagnostic purposes. The relationship between enhancement in CESM and blood vessel density (BVD), lymphatic vessel density (LVD) or the percentage of fields with at least one lymphatic vessel (distribution of podoplanin-positive vessels - DPV) and other related parameters was assessed in 55 cases. BVD, LVD and DPV were assessed immunohistochemically, applying podoplanin and CD31/CD34 as markers of lymphatic and blood vessels, respectively. The sensitivity (in detection of malignant lesions) of CESM was 100%, while its specificity - 39%. We found a significant positive correlation between the intensity of enhancement in CESM and BVD (p = 0.007, r = 0.357) and a negative correlation between the intensity of enhancement in CESM and DPV (p = 0.003, r = -0.390). Lesions with the highest enhancement in CESM showed a high number of blood vessels and a low number of lymphatics. 1) CESM is a method characterized by high sensitivity and acceptable specificity; 2) the correlation between CESM results and blood/lymphatic vessel density confirms its utility in detection of tissue angiogenesis and/or lymphangiogenesis.

  20. Measurement of reactor parameters of the 'Nora' reactor by noise analysis method - power spectral density

    International Nuclear Information System (INIS)

    Jovanovic, S.; Stormark, E.

    1966-01-01

    Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr

  1. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  2. A numerical spectral approach to solve the dislocation density transport equation

    International Nuclear Information System (INIS)

    Djaka, K S; Taupin, V; Berbenni, S; Fressengeas, C

    2015-01-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme. (paper)

  3. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  4. Measurements and analysis of the noise spectral density of YBCO films

    International Nuclear Information System (INIS)

    Taoufik, A.; Bghour, M.; Labrag, A.; Bouaaddi, A.; Abaragh, A.; Ramzi, A.; Senoussi, S.; Tirbiyine, A.

    2006-01-01

    We studied the voltage noise spectral density S V (f,T,H) dependence on frequency f, temperature T and applied magnetic field H in YBa 2 Cu 3 O 7-δ films. The voltage noise spectral density S V (f) as a function of frequency exhibits 1/f behavior according to a Lorentzian shape A [(1+πf/f 0 ) B ] C , where A, f 0 , B, C constants which are determined and compared for many values of H. The influence of temperature and magnetic field is clearly observed as a function of temperature, S V (T) is found to vanish at T g , the temperature of vortex glass transition, according to a (T-T g ) x law. We interpreted those results by the formation of a large distribution of glass vortex domains. Approaching T g , these domains grow in size and lifetime, while at T g those parameters diverge. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Beam alignment based on two-dimensional power spectral density of a near-field image.

    Science.gov (United States)

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  6. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  7. Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    Science.gov (United States)

    Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio

    2018-02-01

    The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.

  8. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  9. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  10. Intercomparison of auto- and cross-power spectral density surveillance systems for sodium boiling detection in fast reactors

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1979-01-01

    Theoretical and experimental investigations on detection systems for small narrow-band components in noise signals were conducted. These detectionn systems are based on the continuous surveillance of the power spectral density for characteristic peaks. Detection sensitivity for auto- and cross-correlation measurements was computed for signals with normally distributed amplitudes in dependence of signal coherence. The derived detection criteria allowed the comparison of auto- and cross-power spectral density surveillance. Theoretical results were confirmed in a number of experimental parameter studies. Special theoretical investigations were done for the optimal detection of local sodium boiling in liquid-metal fast breeder reactors

  11. The mass spectral density in quantitative time-of-flight mass spectrometry of polymers

    Science.gov (United States)

    Tate, Ranjeet S.; Ebeling, Dan; Smith, Lloyd M.

    2001-03-01

    Time-of-flight mass spectrometry (TOF-MS) is being increasingly used for the study of polymers, for example to obtain the distribution of molecular masses for polymer samples. Serious efforts have also been underway to use TOF-MS for DNA sequencing. In TOF-MS the data is obtained in the form of a time-series that represents the distribution in arrival times of ions of various m/z ratios. This time-series data is then converted to a "mass-spectrum" via a coordinate transformation from the arrival time (t) to the corresponding mass-to-charge ratio (m/z = const. t^2). In this transformation, it is important to keep in mind that spectra are distributions, or densities of weight +1, and thus do not transform as functions. To obtain the mass-spectral density, it is necessary to include a multiplicative factor of √m/z. Common commercial instruments do not take this factor into account. Dropping this factor has no effect on qualitative analysis (detection) or local quantitative measurements, since S/N or signal-to-baseline ratios are unaffected for peaks with small dispersions. However, there are serious consequences for general quantitative analyses. In DNA sequencing applications, loss of signal intensity is in part attributed to multiple charging; however, since the √m/z factor is not taken into account, this conclusion is based on an overestimate (by a factor of √z) of the relative amount of the multiply charged species. In the study of polymers, the normalized dispersion is underestimated by approximately (M_w/Mn -1)/2. In terms of M_w/Mn itself, for example, a M_w/M_n=1.5 calculated without the √m factor corresponds in fact to a M_w/M_n=1.88.

  12. Theoretical remarks on the statistics of three discriminants in Piety's automated signature analysis of PSD [Power Spectral Density] data

    International Nuclear Information System (INIS)

    Behringer, K.; Spiekerman, G.

    1984-01-01

    Piety (1977) proposed an automated signature analysis of power spectral density data. Eight statistical decision discriminants are introduced. For nearly all the discriminants, improved confidence statements can be made. The statistical characteristics of the last three discriminants, which are applications of non-parametric tests, are considered. (author)

  13. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the

  14. Substructure identification for shear structures: cross-power spectral density method

    International Nuclear Information System (INIS)

    Zhang, Dongyu; Johnson, Erik A

    2012-01-01

    In this paper, a substructure identification method for shear structures is proposed. A shear structure is divided into many small substructures; utilizing the dynamic equilibrium of a one-floor substructure, an inductive identification problem is formulated, using the cross-power spectral densities between structural floor accelerations and a reference response, to estimate the parameters of that one story. Repeating this procedure, all story parameters of the shear structure are identified from top to bottom recursively. An identification error analysis is performed for the proposed substructure method, revealing how uncertain factors (e.g. measurement noise) in the identification process affect the identification accuracy. According to the error analysis, a smart reference selection rule is designed to choose the optimal reference response that further enhances the identification accuracy. Moreover, based on the identification error analysis, explicit formulae are developed to calculate the variances of the parameter identification errors. A ten-story shear structure is used to illustrate the effectiveness of the proposed substructure method. The simulation results show that the method, combined with the reference selection rule, can very accurately identify structural parameters despite large measurement noise. Furthermore, the proposed formulae provide good predictions for the variances of the parameter identification errors, which are vital for providing accurate warnings of structural damage. (paper)

  15. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    Science.gov (United States)

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  16. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-01-01

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  17. THE X-RAY POWER SPECTRAL DENSITY FUNCTION OF THE SEYFERT ACTIVE GALACTIC NUCLEUS NGC 7469

    International Nuclear Information System (INIS)

    Markowitz, A.

    2010-01-01

    We present the broadband X-ray power spectral density (PSD) function of the X-ray-luminous Seyfert 1.2 NGC 7469, measured from Rossi X-ray Timing Explorer monitoring data and two XMM-Newton observations. We find significant evidence for a turnover in the 2-10 keV PSD at a temporal frequency of 2.0 +3.0 -0.8 x 10 -6 Hz or 1.0 +3.0 -0.6 x 10 -6 Hz, depending on the exact form of the break (sharply broken or slowly bending power law, respectively). The 'surrogate' Monte Carlo method of Press et al. was used to map out the probability distributions of PSD model parameters and obtain reliable uncertainties (68% confidence limits quoted here). The corresponding break timescale of 5.8 ± 3.5 days or 11.6 +17.5 -8.7 days, respectively, is consistent with the empirical relation between PSD break timescale, black hole mass, and bolometric luminosity of McHardy et al. Compared to the 2-10 keV PSD, the 10-20 keV PSD has a much flatter shape at high temporal frequencies, and no PSD break is significantly detected, suggesting an energy-dependent evolution not unlike that exhibited by several Galactic black hole systems.

  18. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    invariance: Iq(f) ~ f-?(q) , ?(q) is the scaling exponent. This allows to characterize the scaling behavior of a process: fractal or multifractal with intermittent properties. For q = 2, the Hilbert spectrum is defined. In this work, The data are collected at the University site of Guadeloupe, an island in the West Indies, located at 16°15 N latitude 60°30 W longitude. Our measurements sampled at 1 Hz were performed during one year period. The analyzed data present a power spectral density E(f) displaying a power law of the form E(f) ~ f-β with 1.6 ˜ β ˜ 2.2 for frequencies f ˜ 0.1 Hz, corresponding to time scales T × 10 s. Furthermore, global solar radiation data possesses multifractal properties. For comparison, other multifractal analysis techniques such as structure functions, MDFA, wavelet leaders are also used. This preliminary work set the basis for further investigation dedicated to simulate and forecast a sequence of solar energy fluctuation under different meteorological conditions, in the multifractal framework.

  19. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces

    Science.gov (United States)

    Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.

    2017-12-01

    In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.

  1. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hamersvelt, Robbert W. van; Schilham, Arnold M.R.; Harder, Annemarie M. den; Leiner, Tim; Jong, Pim A. de; Willemink, Martin J. [University Medical Centre Utrecht, Department of Radiology, P.O. Box 85500, Utrecht (Netherlands); Engelke, Klaus [University of Erlangen-Nuernberg, Institute of Medical Physics, Erlangen (Germany); Keizer, Bart de [University Medical Centre Utrecht, Department of Nuclear Medicine, Utrecht (Netherlands); Verhaar, Harald J. [University Medical Centre Utrecht, Department of Geriatric Medicine, Utrecht (Netherlands)

    2017-10-15

    To investigate the accuracy of bone mineral density (BMD) quantification using dual-layer spectral detector CT (SDCT) at various scan protocols. Two validated anthropomorphic phantoms containing inserts of 50-200 mg/cm{sup 3} calcium hydroxyapatite (HA) were scanned using a 64-slice SDCT scanner at various acquisition protocols (120 and 140 kVp, and 50, 100 and 200 mAs). Regions of interest (ROIs) were placed in each insert and mean attenuation profiles at monochromatic energy levels (90-200 keV) were constructed. These profiles were fitted to attenuation profiles of pure HA and water to calculate HA concentrations. For comparison, one phantom was scanned using dual energy X-ray absorptiometry (DXA). At both 120 and 140 kVp, excellent correlations (R = 0.97, P < 0.001) were found between true and measured HA concentrations. Mean error for all measurements at 120 kVp was -5.6 ± 5.7 mg/cm{sup 3} (-3.6 ± 3.2%) and at 140 kVp -2.4 ± 3.7 mg/cm{sup 3} (-0.8 ± 2.8%). Mean measurement errors were smaller than 6% for all acquisition protocols. Strong linear correlations (R{sup 2} ≥ 0.970, P < 0.001) with DXA were found. SDCT allows for accurate BMD quantification and potentially opens up the possibility for osteoporosis evaluation and opportunistic screening in patients undergoing SDCT for other clinical indications. However, patient studies are needed to extend and translate our findings. (orig.)

  2. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  3. On the influence of density and temperature fluctuations on the formation of spectral lines in stellar atmospheres

    International Nuclear Information System (INIS)

    Stahlberg, J.

    1985-01-01

    A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)

  4. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  5. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    Science.gov (United States)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  6. Study on spectral entropy of two-phase flow density wave instability

    International Nuclear Information System (INIS)

    Zhang Zuoyi

    1992-05-01

    By using mathematic proof, spectral entropy calculations for simple examples and a practical two-phase flow system, it has been proved that under the same stochastic input, the output spectral entropy of a stable linear system is in maximum, while for an unstable linear system, its entropy is in relative lower level. Because the spectral entropy describes the output uncertainty of a system and the second law of thermodynamics rules the direction of natural tendency, the spontaneous process can develop only toward the direction of uncertainty increasing, and the opposite is impossible. It seems that the physical mechanism of the stability of a system can be explained as following: Any deviation from its original state of a stable system will reduce the spectral entropy and violate the natural tendency so that the system will return to original state. On the contrary, the deviation from its original state of an unstable system will increase the spectral entropy that will enhance the deviation and the system will be further away from its original state

  7. Calculus of the Power Spectral Density of Ultra Wide Band Pulse Position Modulation Signals Coded with Totally Flipped Code

    Directory of Open Access Journals (Sweden)

    DURNEA, T. N.

    2009-02-01

    Full Text Available UWB-PPM systems were noted to have a power spectral density (p.s.d. consisting of a continuous portion and a line spectrum, which is composed of energy components placed at discrete frequencies. These components are the major source of interference to narrowband systems operating in the same frequency interval and deny harmless coexistence of UWB-PPM and narrowband systems. A new code denoted as Totally Flipped Code (TFC is applied to them in order to eliminate these discrete spectral components. The coded signal transports the information inside pulse position and will have the amplitude coded to generate a continuous p.s.d. We have designed the code and calculated the power spectral density of the coded signals. The power spectrum has no discrete components and its envelope is largely flat inside the bandwidth with a maximum at its center and a null at D.C. These characteristics make this code suited for implementation in the UWB systems based on PPM-type modulation as it assures a continuous spectrum and keeps PPM modulation performances.

  8. Increasing the Accuracy of Mapping Urban Forest Carbon Density by Combining Spatial Modeling and Spectral Unmixing Analysis

    Directory of Open Access Journals (Sweden)

    Hua Sun

    2015-11-01

    Full Text Available Accurately mapping urban vegetation carbon density is challenging because of complex landscapes and mixed pixels. In this study, a novel methodology was proposed that combines a linear spectral unmixing analysis (LSUA with a linear stepwise regression (LSR, a logistic model-based stepwise regression (LMSR and k-Nearest Neighbors (kNN, to map the forest carbon density of Shenzhen City of China, using Landsat 8 imagery and sample plot data collected in 2014. The independent variables that contributed to statistically significantly improving the fit of a model to data and reducing the sum of squared errors were first selected from a total of 284 spectral variables derived from the image bands. The vegetation fraction from LSUA was then added as an independent variable. The results obtained using cross-validation showed that: (1 Compared to the methods without the vegetation information, adding the vegetation fraction increased the accuracy of mapping carbon density by 1%–9.3%; (2 As the observed values increased, the LSR and kNN residuals showed overestimates and underestimates for the smaller and larger observations, respectively, while LMSR improved the systematical over and underestimations; (3 LSR resulted in illogically negative and unreasonably large estimates, while KNN produced the greatest values of root mean square error (RMSE. The results indicate that combining the spatial modeling method LMSR and the spectral unmixing analysis LUSA, coupled with Landsat imagery, is most promising for increasing the accuracy of urban forest carbon density maps. In addition, this method has considerable potential for accurate, rapid and nondestructive prediction of urban and peri-urban forest carbon stocks with an acceptable level of error and low cost.

  9. A novel construction of complex-valued Gaussian processes with arbitrary spectral densities and its application to excitation energy transfer.

    Science.gov (United States)

    Chen, Xin; Cao, Jianshu; Silbey, Robert J

    2013-06-14

    The recent experimental discoveries about excitation energy transfer (EET) in light harvesting antenna (LHA) attract a lot of interest. As an open non-equilibrium quantum system, the EET demands more rigorous theoretical framework to understand the interaction between system and environment and therein the evolution of reduced density matrix. A phonon is often used to model the fluctuating environment and convolutes the reduced quantum system temporarily. In this paper, we propose a novel way to construct complex-valued Gaussian processes to describe thermal quantum phonon bath exactly by converting the convolution of influence functional into the time correlation of complex Gaussian random field. Based on the construction, we propose a rigorous and efficient computational method, the covariance decomposition and conditional propagation scheme, to simulate the temporarily entangled reduced system. The new method allows us to study the non-Markovian effect without perturbation under the influence of different spectral densities of the linear system-phonon coupling coefficients. Its application in the study of EET in the Fenna-Matthews-Olson model Hamiltonian under four different spectral densities is discussed. Since the scaling of our algorithm is linear due to its Monte Carlo nature, the future application of the method for large LHA systems is attractive. In addition, this method can be used to study the effect of correlated initial condition on the reduced dynamics in the future.

  10. Calculation of the intrinsic spectral density of current fluctuations in nanometric Schottky-barrier diodes at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F.Z. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria)], E-mail: fati_zo_mahi2002@yahoo.fr; Helmaoui, A. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria); Varani, L. [Institut d' Electronique du Sud (CNRS UMR 5214), Universite Montpellier II, 34095 Montpellier (France); Shiktorov, P.; Starikov, E.; Gruzhinskis, V. [Semiconductor Physics Institute, 01108 Vilnius (Lithuania)

    2008-10-01

    An analytical model for the noise spectrum of nanometric Schottky-barrier diodes (SBD) is developed. The calculated frequency dependence of the spectral density of current fluctuations exhibits resonances in the terahertz domain which are discussed and analyzed as functions of the length of the diode, free carrier concentration, length of the depletion region and applied voltage. A good agreement obtained with direct Monte Carlo simulations of GaAs SBDs operating from barrier-limited to flat-band conditions fully validates the proposed approach.

  11. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    Science.gov (United States)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  12. Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data

    Science.gov (United States)

    Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli

    2018-01-01

    Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.

  13. A spectral scheme for Kohn–Sham density functional theory of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu

    2015-04-15

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  14. A spectral scheme for Kohn-Sham density functional theory of clusters

    Science.gov (United States)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-04-01

    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  15. A spectral scheme for Kohn–Sham density functional theory of clusters

    International Nuclear Information System (INIS)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-01-01

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed

  16. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    International Nuclear Information System (INIS)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-01-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band (<5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is -110 dB/Hz, with uncertainty ≤0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by ≤0.2 dB. [copyright] 2001 Optical Society of America

  17. Validation of the α-μ Model of the Power Spectral Density of GPS Ionospheric Amplitude Scintillation

    Directory of Open Access Journals (Sweden)

    Kelias Oliveira

    2014-01-01

    Full Text Available The α-μ model has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided by α-μ model in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on the α-μ model is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S, Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.

  18. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    Energy Technology Data Exchange (ETDEWEB)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-06-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band ({lt}5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is {minus}110 dB/Hz, with uncertainty {le}0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by {le}0.2 dB. {copyright} 2001 Optical Society of America

  19. Spatiotemporal Built-up Land Density Mapping Using Various Spectral Indices in Landsat-7 ETM+ and Landsat-8 OLI/TIRS (Case Study: Surakarta City)

    Science.gov (United States)

    Risky, Yanuar S.; Aulia, Yogi H.; Widayani, Prima

    2017-12-01

    Spectral indices variations support for rapid and accurate extracting information such as built-up density. However, the exact determination of spectral waves for built-up density extraction is lacking. This study explains and compares the capabilities of 5 variations of spectral indices in spatiotemporal built-up density mapping using Landsat-7 ETM+ and Landsat-8 OLI/TIRS in Surakarta City on 2002 and 2015. The spectral indices variations used are 3 mid-infrared (MIR) based indices such as the Normalized Difference Built-up Index (NDBI), Urban Index (UI) and Built-up and 2 visible based indices such as VrNIR-BI (visible red) and VgNIR-BI (visible green). Linear regression statistics between ground value samples from Google Earth image in 2002 and 2015 and spectral indices for determining built-up land density. Ground value used amounted to 27 samples for model and 7 samples for accuracy test. The classification of built-up density mapping is divided into 9 classes: unclassified, 0-12.5%, 12.5-25%, 25-37.5%, 37.5-50%, 50-62.5%, 62.5-75%, 75-87.5% and 87.5-100 %. Accuracy of built-up land density mapping in 2002 and 2015 using VrNIR-BI (81,823% and 73.235%), VgNIR-BI (78.934% and 69.028%), NDBI (34.870% and 74.365%), UI (43.273% and 64.398%) and Built-up (59.755% and 72.664%). Based all spectral indices, Surakarta City on 2000-2015 has increased of built-up land density. VgNIR-BI has better capabilities for built-up land density mapping on Landsat-7 ETM + and Landsat-8 OLI/TIRS.

  20. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  1. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-07-10

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s{sup 1} bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  2. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    International Nuclear Information System (INIS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-01-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene

  3. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Science.gov (United States)

    Xu, Chen; Tian, Hui; Reece, Charles E.; Kelley, Michael J.

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  4. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    International Nuclear Information System (INIS)

    Reece, Charles; Tian, Hui; Kelley, Michael; Xu, Chen

    2012-01-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  5. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  6. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  7. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities: a spectral approach

    Science.gov (United States)

    Cally, Paul S.; Xiong, Ming

    2018-01-01

    Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.

  8. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  9. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    Science.gov (United States)

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  10. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  11. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  12. Effective spectral densities for system-environment dynamics at conical intersections: S{sub 2}-S{sub 1} conical intersection in pyrazine

    Energy Technology Data Exchange (ETDEWEB)

    Martinazzo, Rocco [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martelli, Fausto [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20122 Milan (Italy); Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Burghardt, Irene, E-mail: irene.burghardt@ens.fr [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France)

    2010-11-25

    Graphical abstract: The effect of high-dimensional environments on conical intersections can be described by hierarchies of approximate spectral densities, which translate to truncated effective-mode chains in the time domain. Abstract: A recently developed effective-mode representation is employed to characterize the influence of a multi-dimensional environment on the S{sub 2}-S{sub 1} conical intersection in pyrazine, taken as a paradigm case of high-dimensional dynamics at a conical intersection. We consider a simplified model by which four modes are strongly coupled to the electronic subsystem while a number of weakly coupled tuning modes, inducing energy gap fluctuations, are sampled from a spectral density. The latter is approximated by a series of simplified spectral densities which can be cast into a continued-fraction form, as previously demonstrated in Hughes et al. (K.H. Hughes, C.D. Christ, I. Burghardt, J. Chem. Phys. 131 (2009) 124108). In the time domain, the hierarchy of spectral densities translates to truncated effective-mode chains with a Markovian or quasi-Markovian (Rubin type) closure. A sequential deconvolution procedure is employed to generate this chain representation. The implications for the ultrafast dynamics and its representation in terms of reduced-dimensional models are discussed.

  13. Estimation of the two-dimensional power spectral density of spatial fluctuation in terrestrial gamma-ray dose rate

    International Nuclear Information System (INIS)

    Minato, Susumu

    2000-01-01

    The multiple regression analysis done for 50 sets of data of natural terrestrial gamma-ray dose rates collected from different sites of the world led to an empirical formula for the variance of the data as a function of mean value and area. The mean values and areas studied in this paper range from 10 to 100 (nGy/h) and from 10 -3 to 10 7 (km 2 ), respectively. For an isotropic field of fluctuation, a two-dimensional power spectral density (2D PSD) was derived theoretically from the above mentioned empirical formula in a form of S(k)=0.952 x 10 -3 m 2.02 k -2.36 , where k (cycles/km) and m (nGy/h) are the wave number and the mean, respectively. The validity of the estimated 2D PSD was confirmed by comparing with PSDs obtained by the following two methods. One is the spatial auto-correlation analysis for several sets of randomly distributed 2D data consisting of more than 170 samples taken through ground surveys. The other is the direct 2D Fourier transform for two sets of 100 x 100 data matrix picked up from a dose rate map produced through airborne surveys. (author)

  14. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    Science.gov (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  15. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    Science.gov (United States)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  16. Influence of Laser Radiation Power Density on the Intensity of Spectral Lines for Main Components in a Clay Laser-Induced Plasma

    Science.gov (United States)

    Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.

    2018-05-01

    We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.

  17. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    Science.gov (United States)

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  18. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    Directory of Open Access Journals (Sweden)

    Kevin S Saroka

    Full Text Available In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m and magnetic field (pT components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV obtained by whole brain quantitative electroencephalography (QEEG between rostral-caudal and left-right (hemispheric comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz, second (13-14 Hz and third (19-20 Hz harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  19. The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes

    KAUST Repository

    Schillinger, Dominik

    2013-07-01

    The method of separation can be used as a non-parametric estimation technique, especially suitable for evolutionary spectral density functions of uniformly modulated and strongly narrow-band stochastic processes. The paper at hand provides a consistent derivation of method of separation based spectrum estimation for the general multi-variate and multi-dimensional case. The validity of the method is demonstrated by benchmark tests with uniformly modulated spectra, for which convergence to the analytical solution is demonstrated. The key advantage of the method of separation is the minimization of spectral dispersion due to optimum time- or space-frequency localization. This is illustrated by the calibration of multi-dimensional and multi-variate geometric imperfection models from strongly narrow-band measurements in I-beams and cylindrical shells. Finally, the application of the method of separation based estimates for the stochastic buckling analysis of the example structures is briefly discussed. © 2013 Elsevier Ltd.

  20. The Renormalization-Group Method in the Problem on Calculation of the Spectral Energy Density of Fluid Turbulence

    Science.gov (United States)

    Teodorovich, E. V.

    2018-03-01

    In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.

  1. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    Science.gov (United States)

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  2. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    Science.gov (United States)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  3. From coherent motion to localization: II. Dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature

    International Nuclear Information System (INIS)

    Wang Haobin; Thoss, Michael

    2010-01-01

    Graphical abstract: □□□ - Abstract: The dynamics of the spin-boson model at zero temperature is studied for a bath characterized by a sub-Ohmic spectral density. Using the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method, the population dynamics of the two-level subsystem has been investigated in a broad range of parameter space. The results show the transition of the dynamics from weakly damped coherent motion to localization upon increase of the system-bath coupling strength. Comparison of the exact ML-MCTDH simulations with the non-interacting blip approximation (NIBA) shows that the latter performs rather poorly in the weak coupling regime with small Kondo parameters. However, NIBA improves significantly upon increase in the coupling strength and is quantitatively correct in the strong coupling, nonadiabatic limit. The transition from coherent motion to localization as a function of the different parameters of the model is analyzed in some detail.

  4. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  5. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  6. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism

    International Nuclear Information System (INIS)

    Gardet, G.

    1995-01-01

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)

  7. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  8. Image quality improvements using adaptive statistical iterative reconstruction for evaluating chronic myocardial infarction using iodine density images with spectral CT.

    Science.gov (United States)

    Kishimoto, Junichi; Ohta, Yasutoshi; Kitao, Shinichiro; Watanabe, Tomomi; Ogawa, Toshihide

    2018-04-01

    Single-source dual-energy CT (ssDECT) allows the reconstruction of iodine density images (IDIs) from projection based computing. We hypothesized that adding adaptive statistical iterative reconstruction (ASiR) could improve image quality. The aim of our study was to evaluate the effect and determine the optimal blend percentages of ASiR for IDI of myocardial late iodine enhancement (LIE) in the evaluation of chronic myocardial infarction using ssDECT. A total of 28 patients underwent cardiac LIE using a ssDECT scanner. IDIs between 0 and 100% of ASiR contributions in 10% increments were reconstructed. The signal-to-noise ratio (SNR) of remote myocardia and the contrast-to-noise ratio (CNR) of infarcted myocardia were measured. Transmural extent of infarction was graded using a 5-point scale. The SNR, CNR, and transmural extent were assessed for each ASiR contribution ratio. The transmural extents were compared with MRI as a reference standard. Compared to 0% ASiR, the use of 20-100% ASiR resulted in a reduction of image noise (p ASiR images, reconstruction with 100% ASiR image showed the highest improvement in SNR (229%; p ASiR above 80% showed the highest ratio (73.7%) of accurate transmural extent classification. In conclusion, ASiR intensity of 80-100% in IDIs can improve image quality without changes in signal and maximizes the accuracy of transmural extent in infarcted myocardium.

  9. Short-Term Variability and Power Spectral Density Analysis of the Radio-Loud Active Galactic Nucleus 3C 390.3

    Science.gov (United States)

    Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.

    2009-09-01

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43+34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br, M BH, and L bol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  10. SHORT-TERM VARIABILITY AND POWER SPECTRAL DENSITY ANALYSIS OF THE RADIO-LOUD ACTIVE GALACTIC NUCLEUS 3C 390.3

    International Nuclear Information System (INIS)

    Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.

    2009-01-01

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43 +34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br , M BH , and L bol , followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  11. Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole

    International Nuclear Information System (INIS)

    Krizova, Hana; Zidek, Lukas; Stone, Martin J.; Novotny, Milos V.; Sklenar, Vladimir

    2004-01-01

    Backbone dynamics of mouse major urinary protein I (MUP-I) was studied by 15 N NMR relaxation. Data were collected at multiple temperatures for a complex of MUP-I with its natural pheromonal ligand, 2-sec-4,5-dihydrothiazole, and for the free protein. The measured relaxation rates were analyzed using the reduced spectral density mapping. Graphical analysis of the spectral density values provided an unbiased qualitative picture of the internal motions. Varying temperature greatly increased the range of analyzed spectral density values and therefore improved reliability of the analysis. Quantitative parameters describing the dynamics on picosecond to nanosecond time scale were obtained using a novel method of simultaneous data fitting at multiple temperatures. Both methods showed that the backbone flexibility on the fast time scale is slightly increased upon pheromone binding, in accordance with the previously reported results. Zero-frequency spectral density values revealed conformational changes on the microsecond to millisecond time scale. Measurements at different temperatures allowed to monitor temperature depencence of the motional parameters

  12. THE X-RAY POWER SPECTRAL DENSITY FUNCTION AND BLACK HOLE MASS ESTIMATE FOR THE SEYFERT ACTIVE GALACTIC NUCLEUS IC 4329a

    International Nuclear Information System (INIS)

    Markowitz, A.

    2009-01-01

    We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD using a broken power-law PSD shape, a break in power-law slope is significantly detected at a temporal frequency of 2.5 +2.5 -1.7 x 10 -6 Hz, which corresponds to a PSD break timescale T b of 4.6 +10.1 -2.3 days. Using the relation between T b , black hole mass M BH , and bolometric luminosity as quantified by McHardy and coworkers, we infer a black hole mass estimate of M BH = 1.3 +1.0 -0.3 x 10 8 M sun and an accretion rate relative to Eddington of 0.21 +0.06 -0.10 for this source. Our estimate of M BH is consistent with other estimates, including that derived by the relation between M BH and stellar velocity dispersion. We also present PSDs for the 10-20 and 20-40 keV bands; they lack sufficient temporal frequency coverage to reveal a significant break, but are consistent with the same PSD shape and break frequency as in the 3-10 keV band.

  13. Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory

    International Nuclear Information System (INIS)

    Han, Deming; Zhang, Gang; Cai, Hongxing; Zhang, Xihe; Zhao, Lihui

    2013-01-01

    We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine] 2 (picolinate), where X=–CH 3 (1), –H (2), –CN (3), –NO 2 (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ hole/electron ) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs

  14. Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Han, Deming [International Joint Research Center for Nanophotonics and Biophotonics, School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Cai, Hongxing; Zhang, Xihe [International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Zhao, Lihui, E-mail: zhaolihui@yahoo.com [International Joint Research Center for Nanophotonics and Biophotonics, School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-06-15

    We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine]{sub 2}(picolinate), where X=–CH{sub 3} (1), –H (2), –CN (3), –NO{sub 2} (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ{sub hole/electron}) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs.

  15. Evaluation of the methodologies used to generate random pavement profiles based on the power spectral density: An approach based on the International Roughness Index

    Directory of Open Access Journals (Sweden)

    Boris Jesús Goenaga

    2017-01-01

    Full Text Available The pavement roughness is the main variable that produces the vertical excitation in vehicles. Pavement profiles are the main determinant of (i discomfort perception on users and (ii dynamic loads generated at the tire-pavement interface, hence its evaluation constitutes an essential step on a Pavement Management System. The present document evaluates two specific techniques used to simulate pavement profiles; these are the shaping filter and the sinusoidal approach, both based on the Power Spectral Density. Pavement roughness was evaluated using the International Roughness Index (IRI, which represents the most used index to characterize longitudinal road profiles. Appropriate parameters were defined in the simulation process to obtain pavement profiles with specific ranges of IRI values using both simulation techniques. The results suggest that using a sinusoidal approach one can generate random profiles with IRI values that are representative of different road types, therefore, one could generate a profile for a paved or an unpaved road, representing all the proposed categories defined by ISO 8608 standard. On the other hand, to obtain similar results using the shaping filter approximation a modification in the simulation parameters is necessary. The new proposed values allow one to generate pavement profiles with high levels of roughness, covering a wider range of surface types. Finally, the results of the current investigation could be used to further improve our understanding on the effect of pavement roughness on tire pavement interaction. The evaluated methodologies could be used to generate random profiles with specific levels of roughness to assess its effect on dynamic loads generated at the tire-pavement interface and user’s perception of road condition.

  16. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  17. MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-10-01

    Full Text Available In order to promote the development of the passive DOAS technique the Multi Axis DOAS – Comparison campaign for Aerosols and Trace gases (MAD-CAT was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs of nitrous acid (HONO derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3  ×  1015 molecules cm−2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7  ×  1015 molecules cm−2. Although the HONO delta SCDs are normally smaller than 6  ×  1015 molecules cm−2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63  ×  1015 molecules cm−2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3  ×  1015 molecules cm−2, which is

  18. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  19. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  20. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  1. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  2. Further developments in the study of harmonic analysis by the correlation and spectral density methods, and its application to the adult rabbit EEG

    International Nuclear Information System (INIS)

    Meilleurat, Michele

    1973-07-01

    The application of harmonic analysis to the brain spontaneous electrical activity has been studied theoretically and practically in 30 adult rabbits chronically implanted with electrodes. Theoretically, an accurate energetic study of the signal can only be achieved by the calculation of the autocorrelation function and its Fourier transform, the power density spectrum. Secondly, a comparative study has been made of the analogical methods using analogic or hybrid devices and the digital method with an analysis and computing program (the sampling rate, the delay, the period of integration and the problems raised by the amplification of the biological signals and sampling). Data handling is discussed, the method mainly retaining the study of variance, the calculation of the total energy carried by the signal and the energies carried along the frequency bandwidth ΔF, their percentage as related to the total energy, the relationships of these various values for various electroencephalographic states. Experimentally, the general aspect of the spontaneous electric activity of the dorsal hippocampus and the visual cortex during vigilance variations is accurately described by the calculation of the variance and the study of the position of the maximum values of the peaks of the power density spectra on the frequency axis as well as by the calculation of the energies carried in various frequency bands, 0-4, 4-8, 8-12 Hz. With the same theoretical bases, both the analogical and digital methods lead to similar results, the former being easier to operate, the latter more accurate. (author) [fr

  3. Spectral variations and energy transfer processes on both Er 3+ ion concentration and excitation densities in Yb 3+-Er 3+ codoped LaF3 materials

    International Nuclear Information System (INIS)

    Zhang Jisen; Qin Weiping; Zhao Dan; Degejihu; Zhang Jishuang; Wang Yan; Cao Chunyan

    2007-01-01

    In comparison with the up-conversion spectra of Yb 3+ -Er 3+ codopded systems reported previously, the interesting intensity changes of up-conversion luminescence between the violet, the blue, the green and the red on the both Er 3+ ion concentration and excitation density with 978 nm laser diodes as an excitation source were observed in Yb 3+ -Er 3+ codopded LaF 3 powders. In order to clarify the change mechanisms, the up-conversion spectra of LaF 3 : 10 mol% Yb 3+ , 0.5 mol% Er 3+ and LaF 3 : 10 mol% Yb 3+ , 1 mol% Er 3+ were investigated and the results indicated that the cross-relaxation processes between Er 3+ ions and the thermal population of the 2 H 11/2 level play significant roles

  4. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    Science.gov (United States)

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  5. Power Spectral Density and Hilbert Transform

    Science.gov (United States)

    2016-12-01

    there is 1.3 W of power. How much bandwidth does a pure sine wave require? The bandwidth of an ideal sine wave is 0 Hz. How do you represent a 1-W...the Hilbert transform. 2.3 Hilbert Transform The Hilbert transform is a math function used to convert a real function into an analytic signal...The math operation minus 2 means to move 2 steps back on the number line. For minus –2, we move 2 steps backwards from –2, which is the same as

  6. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  7. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  8. An OFF–ON–OFF type of pH fluorescent sensor: Benzo[c,d]indole-based dimethine cyanine dye-synthesis, spectral properties and density functional theory studies

    International Nuclear Information System (INIS)

    Liu, Qi; Hong Su, Xiao; Ying Wang, Lan; Sun, Wei; Bo Lei, Yi; Yi Wen, Zhen

    2014-01-01

    We synthesized a novel OFF–ON–OFF type of pH-dependent fluorescent sensor: benzo[c,d]indole-based dimethine cyanine dye D1, with donor-π-acceptor (D-π-A) structure based on intramolecular charge transfer system (ICT), which employed dimethine cyanine dye as a fluorophore and pentavalent nitrogen NH + group as a pH modulator, respectively. The product was identified by 1 H NMR, 13 C NMR, IR, UV–vis and HRMS. The investigation of spectral properties found that dye D1 showed excellent spectroscopic properties and its absorption maxima and fluorescence quantum yield were basically larger in protic solvent than in aprotic solvent. Meanwhile, the absorption spectra of D1 were revealed to hypochromatic-shift and the absorption intensity was gradually decreased along with the increase of pH value. Interestingly, dye D1 showed remarkable fluorescence when pH value was in the range of 6.00–9.80 with the peak at 8.21, which was defined as an OFF–ON–OFF type of pH-dependent fluorescent sensors based on ICT. In addition, dye D1 exhibited a high selectivity for H + over other common ions, such as Cl − , K + , Fe 2+ etc. Theoretical calculations based on density functional theory (DFT) were employed to provide a better understanding of this particular dye sensor. These results indicated that D1 would be able to act as an efficient pH-sensor and had a potential to play an important role in biological and medical study. - Highlights: • A new benzo[c,d]indole-based pH fluorescent sensor was synthesized without adding catalyst. • The absorption spectra of dye D1 were associated with the solvents’ pK a value. • The sensor showed OFF–ON–OFF fluorescence in pH buffer, with the peak at 8.21. • The sensor had high sensitivity and selectivity

  9. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  10. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  11. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  12. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  13. Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Martel, P.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Minguez, E.

    2013-01-01

    In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code. -- Highlights: ► Spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated. ► Corona, local thermodynamic and non-local thermodynamic equilibrium regimes are analyzed. ► Simulations performed using the computational package ABAKO/RAPCAL. ► A criterion for the establishment of the thermodynamic regime is proposed.

  14. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  15. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques

    Directory of Open Access Journals (Sweden)

    D. Kozak

    2012-01-01

    Full Text Available Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using methods of the spectral analysis. Topographic data are acquired by means of the optical profilometr MicroProf®FRT. Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to the fine texture of the surface studied.

  16. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  17. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.

  18. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  19. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    2015-09-29

    Sep 29, 2015 ... A divergence measure on spectral densities is used to quantify the distances ..... We have downloaded the list of enzymes of the 79 complete- ly sequenced ... dataset. They have excluded currency metabolites to make.

  20. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  1. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  2. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  3. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.; Hale, Nicholas

    2015-01-01

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon

  4. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  5. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  6. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  7. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  8. Continuity of integrated density of states – independent randomness

    Indian Academy of Sciences (India)

    Abstract. In this paper we discuss the continuity properties of the integrated density ... Density of states; Wegner estimate; Hölder continuous. 1. Introduction ..... and inverse spectral theory (Goa, 2000), Proc. Indian Acad. Sci. (Math. Sci.) 112(1).

  9. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism.; Application et developpement de calculs type fonctionnelle de la densite pour la determination de proprietes spectrales structurales et energetiques d`agregats de lithium

    Energy Technology Data Exchange (ETDEWEB)

    Gardet, G.

    1995-06-14

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author).

  10. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  11. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  12. Spectral backward radiation profile

    International Nuclear Information System (INIS)

    Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo

    2004-01-01

    Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.

  13. Spectral characteristics of seismic noise using data of Kazakhstan monitoring stations

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Komarov, I.I.

    2006-01-01

    Spectral specifications of seismic noise research for PS23-Makanchi, Karatau, Akbulak, AS057-Borovoye and new three-component station AS059-Aktyubinsk was done. Spectral noise density models were obtained for day and night time and spectral density values variation. Noise close to low-level universal noise model is peculiar for all stations, which provides their high efficiency while seismic monitoring. Noise parameters dependence on seismic receivers installation conditions was investigated separately. Based on three stations (Makanchi, Borovoye, and Aktyubinsk), spectral density change features are shown after borehole equipment installation. (author)

  14. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  15. Spectral Analysis of Vector Magnetic Field Profiles

    Science.gov (United States)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  16. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  17. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1981-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel

  18. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1982-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)

  19. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  20. Visual Method for Spectral Energy Distribution Calculation of ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we propose to use 'The Geometer's Sketchpad' to the fitting of a spectral energy distribution of blazar based on three effective spectral indices, αRO, αOX, and αRX and the flux density in the radio band. It can make us to see the fitting in detail with both the peak frequency and peak luminosity given ...

  1. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  2. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  3. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  4. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  5. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.

  6. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  7. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  8. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Doshi, P.K.; George, R.A.; Dollard, W.J.

    1982-01-01

    A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)

  9. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  10. Spectral shift reactor

    International Nuclear Information System (INIS)

    Carlson, W.R.; Piplica, E.J.

    1982-01-01

    A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)

  11. Density operators in quantum mechanics

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    A brief discussion and resume of density operator formalism in the way it occurs in modern physics (in quantum optics, quantum statistical physics, quantum theory of radiation) is presented. Particularly we emphasize the projection operator method, application of spectral theorems and superoperators formalism in operator Hilbert spaces (Hilbert-Schmidt type). The paper includes an appendix on direct sums and direct products of spaces and operators, and problems of reducibility for operator class by using the projection operators. (author)

  12. Level densities

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.

    1998-01-01

    For any applications of the statistical theory of nuclear reactions it is very important to obtain the parameters of the level density description from the reliable experimental data. The cumulative numbers of low-lying levels and the average spacings between neutron resonances are usually used as such data. The level density parameters fitted to such data are compiled in the RIPL Starter File for the tree models most frequently used in practical calculations: i) For the Gilber-Cameron model the parameters of the Beijing group, based on a rather recent compilations of the neutron resonance and low-lying level densities and included into the beijing-gc.dat file, are chosen as recommended. As alternative versions the parameters provided by other groups are given into the files: jaeri-gc.dat, bombay-gc.dat, obninsk-gc.dat. Additionally the iljinov-gc.dat, and mengoni-gc.dat files include sets of the level density parameters that take into account the damping of shell effects at high energies. ii) For the backed-shifted Fermi gas model the beijing-bs.dat file is selected as the recommended one. Alternative parameters of the Obninsk group are given in the obninsk-bs.dat file and those of Bombay in bombay-bs.dat. iii) For the generalized superfluid model the Obninsk group parameters included into the obninsk-bcs.dat file are chosen as recommended ones and the beijing-bcs.dat file is included as an alternative set of parameters. iv) For the microscopic approach to the level densities the files are: obninsk-micro.for -FORTRAN 77 source for the microscopical statistical level density code developed in Obninsk by Ignatyuk and coworkers, moller-levels.gz - Moeller single-particle level and ground state deformation data base, moller-levels.for -retrieval code for Moeller single-particle level scheme. (author)

  13. Pervasive randomness in physics: an introduction to its modelling and spectral characterisation

    Science.gov (United States)

    Howard, Roy

    2017-10-01

    An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.

  14. Spectral Hounsfield units: a new radiological concept

    International Nuclear Information System (INIS)

    Hurrell, Michael Anthony; Butler, Anthony Philip Howard; Cook, Nicholas James; Butler, Philip Howard; Ronaldson, J.P.; Zainon, Rafidah

    2012-01-01

    Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon. This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage. While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density. Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU keV . (orig.)

  15. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  16. Information theory, spectral geometry, and quantum gravity.

    Science.gov (United States)

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  17. X-ray spectral decomposition imaging system

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-27

    Projection measurements are made of the transmitted X-ray beam in low and high energy regions. These are combined in a non-linear processor to produce atomic-number-dependent and density-dependent projection information. This information is used to provide cross-sectional images which are free of spectral-shift artifacts and completely define the specific material properties. The invention described herein was made in the course of work under a grant from the Department of Health, Education, and Welfare.

  18. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  19. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  20. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  1. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  2. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  3. ATR neutron spectral characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  4. The dynamics of variable-density turbulence

    International Nuclear Information System (INIS)

    Sandoval, D.L.

    1995-11-01

    The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field, is in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128 3 grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations. In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields are statistically dependent, however, the decay process is significantly affected by the density fluctuations. For the case of buoyancy-generated turbulence, variable-density departures from the Boussinesq approximation are studied. The results of the buoyancy-generated turbulence are compared with variable-density model predictions. Both a one-point (engineering) model and a two-point (spectral) model are tested against the numerical data. Some deficiencies in these variable-density models are discussed and modifications are suggested

  5. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    .... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...

  6. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  7. Spectral dimensionality of random superconducting networks

    International Nuclear Information System (INIS)

    Day, A.R.; Xia, W.; Thorpe, M.F.

    1988-01-01

    We compute the spectral dimensionality d of random superconducting-normal networks by directly examining the low-frequency density of states at the percolation threshold. We find that d = 4.1 +- 0.2 and 5.8 +- 0.3 in two and three dimensions, respectively, which confirms the scaling relation d = 2d/(2-s/ν), where s is the superconducting exponent and ν the correlation-length exponent for percolation. We also consider the one-dimensional problem where scaling arguments predict, and our numerical simulations confirm, that d = 0. A simple argument provides an expression for the density of states of the localized high-frequency modes in this special case. We comment on the connection between our calculations and the ''termite'' problem of a random walker on a random superconducting-normal network and point out difficulties in inferring d from simulations of the termite problem

  8. Convergence analysis of spectral element method for electromechanical devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2017-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the

  9. Convergence analysis of spectral element method for magnetic devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2018-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with

  10. Spectral properties of superpositions of Ornstein-Uhlenbeck type processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    Stationary processes with prescribed one-dimensional marginal laws and long-range dependence are constructed. The asymptotic properties of the spectral densities are studied. The possibility of Mittag-Leffler decay in the autocorrelation function of superpositions of Ornstein-Uhlenbeck type...... processes is proved....

  11. Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests.

    Science.gov (United States)

    Narne, Vijaya Kumar; Sharma, Mridula; Van Dun, Bram; Bansal, Shalini; Prabhu, Latika; Moore, Brian C J

    2016-12-01

    The main aim of this study was to use spectral smearing to evaluate the efficacy of a spectral ripple test (SRt) using stationary sounds and a recent variant with gliding ripples called the spectro-temporal ripple test (STRt) in measuring reduced spectral resolution. In experiment 1 the highest detectable ripple density was measured using four amounts of spectral smearing (unsmeared, mild, moderate, and severe). The thresholds worsened with increasing smearing and were similar for the SRt and the STRt across the three conditions with smearing. For unsmeared stimuli, thresholds were significantly higher (better) for the STRt than for the SRt. An amplitude fluctuation at the outputs of simulated (gammatone) auditory filters centered above 6400 Hz was identified as providing a potential detection cue for the STRt stimuli. Experiment 2 used notched noise with energy below and above the passband of the SRt and STRt stimuli to reduce confounding cues in the STRt. Thresholds were almost identical for the STRt and SRt for both unsmeared and smeared stimuli, indicating that the confounding cue for the STRt was eliminated by the notched noise. Thresholds obtained with notched noise present could be predicted reasonably accurately using an excitation-pattern model.

  12. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  13. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  14. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs.

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-22

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  15. QEEG Spectral and Coherence Assessment of Autistic Children in Three Different Experimental Conditions

    Science.gov (United States)

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-01-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…

  16. Spectral distribution of radiation on plane and axial channeling of ultrarelativistic electrons

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Glebov, V.I.; Zhevago, N.K.

    1980-01-01

    The spectral angular and polarization charactristics of the radiation from channeled ultrarelativistic electrons are calculated. Analytic expressions for the spectral-angular power density of the radiation are obtained for some realistic models of the continuous potential of the crystal planes and axes. A critical analysis is also presented of some existent results of the theory of radiation on channeling

  17. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  18. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  19. Finite entanglement entropy and spectral dimension in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Arzano, Michele [Rome Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Calcagni, Gianluca [CSIC, Madrid (Spain). Inst. de Estructura de la Materia

    2017-12-15

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  20. Finite entanglement entropy and spectral dimension in quantum gravity

    International Nuclear Information System (INIS)

    Arzano, Michele; Calcagni, Gianluca

    2017-01-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  1. Finite entanglement entropy and spectral dimension in quantum gravity

    Science.gov (United States)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  2. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  3. Effective spectral index properties for Fermi blazars

    Science.gov (United States)

    Yang, JiangHe; Fan, JunHui; Liu, Yi; Zhang, YueLian; Tuo, ManXian; Nie, JianJun; Yuan, YuHai

    2018-05-01

    Blazars are a special subclass of active galactic nuclei with extreme observation properties. This subclass can be divided into two further subclasses of flat spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs) according to their emission line features. To compare the spectral properties of FSRQs and BL Lacs, the 1.4 GHz radio, optical R-band, 1 keV X-ray, and 1 GeV γ-ray flux densities for 1108 Fermi blazars are calculated to discuss the properties of the six effective spectral indices of radio to optical ( α RO), radio to X-ray ( α RX), radio to γ ray ( α Rγ), optical to X-ray ( α OX), optical to γ ray ( α Oγ), and X-ray to γ ray ( α Xγ). The main results are as follows: For the averaged effective spectral indices, \\overline {{α _{OX}}} > \\overline {{α _{Oγ }}} > \\overline {{α _{Xγ }}} > \\overline {{α _{Rγ }}} > \\overline {{α _{RX}}} > \\overline {{α _{RO}}} for samples of whole blazars and BL Lacs; \\overline {{α _{Xγ }}} ≈ \\overline {{α _{Rγ }}} ≈ \\overline {{α _{RX}}} for FSRQs and low-frequency-peaked BL Lacs (LBLs); and \\overline {{α _{OX}}} ≈ \\overline {{α _{Oγ }}} ≈ \\overline {{α _{Xγ }}} for high-synchrotron-frequency-peaked BL Lacs (HBLs). The distributions of the effective spectral indices involving optical emission ( α RO, α OX, and α Oγ) for LBLs are different from those for FSRQs, but if the effective spectral index does not involve optical emission ( α RX, α Rγ, and α Xγ), the distributions for LBLs and FSRQs almost come from the same parent population. X-ray emissions from blazars include both synchrotron and inverse Compton (IC) components; the IC component for FSRQs and LBLs accounts for a larger proportion than that for HBLs; and the radiation mechanism for LBLs is similar to that for FSRQs, but the radiation mechanism for HBLs is different from that for both FSRQs and LBLs in X-ray bands. The tendency of α Rγ decreasing from LBLs to HBLs suggests that the synchrotron self

  4. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  5. Spectral characterization of natural backgrounds

    Science.gov (United States)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  6. Density of states functions for photonic crystals

    International Nuclear Information System (INIS)

    McPhedran, R.C.; McOrist, J.; Sterke, C.M. de; Nicorovici, N.A.; Botten, L.C.; Asatryan, A.A.

    2004-01-01

    We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem for arrays of cylinders of arbitrary cross section. We introduce the mutual density of states (MDOS), and show that this function can be used to calculate both the local density of states (LDOS), which gives position information for emission of radiation from photonic crystals, and the spectral density of states (SDOS), which gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional density of states, which depends only on frequency. We relate all four functions to the band structure and propagating states within the crystal, and give numerical examples of the relation between band structure and density of states functions

  7. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  8. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  9. Spectrally based mapping of riverbed composition

    Science.gov (United States)

    Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.

    2016-01-01

    Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader

  10. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  11. Prediction of impurity spectral emission in plasmas

    International Nuclear Information System (INIS)

    Gordon, H.; Summers, H.P.

    1985-01-01

    This paper summarises the development of a set of general purpose computational procedures for the prediction of spectral emission from plasmas, with emphasis on fusion plasmas. The first stage was concerned with the calculation of populations of low levels of impurity ions in a statistical balance approximation in thermal plasmas of arbitrary electron and proton temperatures and densities. This was merged with associated calculations of ionisation stage abundances in equilibrium, time dependent and spatially inhomogeneous conditions to yield spectrum line emissivities of direct relevance for comparative and diagnostic studies of observed spectra. The integrated computer program package draws upon sets or basic atomic data. In the present work the compilation of this basic data is adressed. A set of computer programs has beeen developed and used to convert systematically atomic rate data, drawn from the literature, to standard forms and parameter ranges. Regularities in this data along isoelectronic sequences are exploited to infer rates for an arbitrary ion from a set of representative data (termed the 'general Z' database). From this, the input for the spectral prediction codes above is generated. Presently data in the H, He, Li and Be isoelectronic sequences is prepared. The operation of the procedures is illustrated. (orig.)

  12. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  13. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  14. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  15. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  16. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  17. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  18. Power spectral analysis of heart rate in hyperthyroidism.

    Science.gov (United States)

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P activity and, thus, a relative hypersympathetic tone.

  19. Spectral ellipsometry of a nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S. G.; Gordeev, S. K.; Garriga, M.; Alonso, I. A.; Ivanov-Omskii, V. I.

    2006-01-01

    Optical properties of a nanodiamond composite were analyzed by methods of spectral ellipsometry in the range of photon energies 1.4-5 eV, which are characteristic of π-π* transitions in amorphous carbon. The nanocomposite was synthesized by molding nanodiamond powder with subsequent binding of diamond nanoparticles by pyrocarbon formed as a result of the heterogeneous chemical reaction of methane decomposition. The dispersion curves of the imaginary and real parts of the dielectric function were reconstructed. It is shown that the imaginary part of the dielectric function can be represented as the sum of two components generated by the two types of π-π* optical transitions. The maximum contribution of the transitions of the first and second types manifests itself at energies of 2.6 and 5.6 eV, respectively, which correspond to peaks in optical density at 2.9 and 6.11 eV. It was established that the main specific features of the normalized optical density of the nanodiamond composite almost coincide with those for poly(para-phenylenevinylene). It was found that the energy of a σ + π plasmon of the pyrocarbon component of the nanodiamond composite is 24.2 eV. On the basis on this value, the pyrocarbon density matrix was estimated to be 2 g/cm 3 . Within the concepts of optimum filling of an elementary volume by carbon atoms in an amorphous material with such a density, the allotropic composition of the pyrocarbon matrix was restored

  20. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  1. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  2. An introduction to random vibrations, spectral & wavelet analysis

    CERN Document Server

    Newland, D E

    2005-01-01

    One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation

  3. Noise analysis role in reactor safety, Spectral analysis (PSD)

    International Nuclear Information System (INIS)

    Jovanovic, S.; Velickovic, Lj.

    1967-11-01

    Spectral power density of a zero power reactor is frequency dependent and related to transfer function of the reactor and to spectral density of the input disturbance. Measurement of spectral power density of a critical system is used to obtain the ratio (β/l), β is the effective yield of delayed neutrons, and l is the effective mean neutron lifetime. When reactor is subcritical, if the effective yie ald of delayed neutrons, the effective mean neutron lifetime are known, the shutdown margin can be determined by relation α = (1 - k (1- β0)/l, k is the effective multiplication factor. Output neutron spectrum at the RB reactor in Vinca was measured for a few reactor core configurations and for a few levels of heavy water at subcritical state. Measured values were satisfactory when the reactor was critical, but the reactor noise of subcritical system was covered by the white noise of the detector and electronic equipment. The Ra-Be source was under the reactor vessel when measurements of subcritical system were done. More efficient detector or external random stimulus for increasing the intensity of neutron fluctuations would be needed to obtain results for subcritical system

  4. Observed spectral features of dust

    International Nuclear Information System (INIS)

    Willner, S.P.

    1984-01-01

    The author concentrates on the observed properties of dust spectral features. Identifications, based on laboratory data, are given whenever plausible ones exist. There are a very large number of papers in the literature of even such a young field as infrared spectroscopy, and therefore the author refers only to the most recent paper on a topic or to another review. (Auth.)

  5. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  6. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency ...

  7. Spectral ansatz in quantum electrodynamics

    International Nuclear Information System (INIS)

    Atkinson, D.; Slim, H.A.

    1979-01-01

    An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented

  8. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  9. Biomarkers and Biological Spectral Imaging

    Science.gov (United States)

    2001-01-23

    G. Sowa, H. H. Mantsch, National Research Council Canada; S. L. Zhang, Unilever Research (USA) 85 Brain tissue charcterization using spectral imaging...image registration and of the expert staff of Hill Top Research in Winnipeg for hosting the hydration study. Financial assistance from Unilever Research

  10. Autoionization spectral line shapes in dense plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A.Ya.; Pikuz, T.A.; Suess, W.; Geissel, M.

    2001-01-01

    The distortion of resonance line shapes due to the accumulation of a large number of satellite transitions is discovered by means of X-ray optical methods with simultaneous high spectral (λ/δλ≅8000) and spatial resolution (δx≅7 μm). Disappearance of the He α resonance line emission near the target surface is observed while Rydberg satellite intensity accumulates near the resonance line position. He β and He γ resonance line shapes are also shown to be seriously affected by opacity, higher-order line emissions from autoionizing states and inhomogeneous spatial emission. Opposite to resonance line emissions the He β satellites originate only from a very narrow spatial interval. New temperature and density diagnostics employing the 1s2131' and 1s3131'-satellites are developed. Moreover, even-J components of the satellite line emissions were resolved in the present high resolution experiments. Line transitions from the autoionizing states 1s2131' are therefore also proposed for space resolved Stark broadening analysis and local high density probing. Theorists are encouraged to provide accurate Stark broadening data for the transitions 1s2131 ' →1s 2 21+hv

  11. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  12. Spectral Index Properties of millijansky Radio Sources in ATLAS

    Science.gov (United States)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  13. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  14. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euán, Carolina

    2018-04-12

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms. The extent of similarity between a pair of time series is measured using the total variation distance between their estimated spectral densities. At each step of the algorithm, every time two clusters merge, a new spectral density is estimated using the whole information present in both clusters, which is representative of all the series in the new cluster. The method is implemented in an R package HSMClust. We present two applications of the HSM method, one to data coming from wave-height measurements in oceanography and the other to electroencefalogram (EEG) data.

  15. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  16. Spectral Ripple Discrimination in Normal Hearing Infants

    Science.gov (United States)

    Horn, David L.; Won, Jong Ho; Rubinstein, Jay T.; Werner, Lynne A.

    2016-01-01

    Objectives Spectral resolution is a correlate of open-set speech understanding in post-lingually deaf adults as well as pre-lingually deaf children who use cochlear implants (CIs). In order to apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in NH children. In this study, spectral ripple discrimination (SRD) was used to measure listeners’ sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. Design SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90 degree shift in phase of the sinusoidally-modulated amplitude spectrum. A 2X3 between subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough “depth” (10, 13, and 20 dB) on SRD in normal hearing listeners (Experiment 1). In Experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In Experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). Results In Experiment 1, there was a significant interaction between age and ripple depth. The Infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in Experiment 2 infant performance was

  17. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2001-02-01

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.Key words. Ionosphere (ionospheric irregularities

  18. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.

    Key words. Ionosphere (ionospheric irregularities

  19. Spectral synchronicity in brain signals

    KAUST Repository

    de Jesus Euan Campos, Carolina; Ombao, Hernando; Ortega, Joaquí n

    2018-01-01

    This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.

  20. Spectral synchronicity in brain signals

    KAUST Repository

    de Jesus Euan Campos, Carolina

    2018-05-04

    This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.

  1. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan

    2001-01-01

    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  2. Spectral and temporal cues for perception of material and action categories in impacted sound sources

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; McAdams, Stephen

    2016-01-01

    In two experiments, similarity ratings and categorization performance with recorded impact sounds representing three material categories (wood, metal, glass) being manipulated by three different categories of action (drop, strike, rattle) were examined. Previous research focusing on single impact...... correlated with the pattern of confusion in categorization judgments. Listeners tended to confuse materials with similar spectral centroids, and actions with similar temporal centroids and onset densities. To confirm the influence of these different features, spectral cues were removed by applying...

  3. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    International Nuclear Information System (INIS)

    Perley, R. A.; Butler, B. J.

    2013-01-01

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than ∼5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  4. Modal planes are spectral triples

    International Nuclear Information System (INIS)

    Gayral, Victor; Iochum, Bruno; Schuecker, Thomas; Gracia-Bondia, Jose M.; Varilly, Joseph C.

    2003-09-01

    Axioms for nonunital spectral triples, extending those introduced in the unital case by Connes, are proposed. As a guide, and for the sake of their importance in noncommutative quantum field theory, the spaces R 2N endowed with Moyal products are intensively investigated. Some physical applications, such as the construction of noncommutative Wick monomials and the computation of the Connes-Lott functional action, are given for these noncommutative hyperplanes. (author)

  5. Chebyshev and Fourier spectral methods

    CERN Document Server

    Boyd, John P

    2001-01-01

    Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

  6. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  7. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  8. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  9. Spectral Analysis of Polynomial Nonlinearity with Applications to RF Power Amplifiers

    Directory of Open Access Journals (Sweden)

    G. Tong Zhou

    2004-09-01

    Full Text Available The majority of the nonlinearity in a communication system is attributed to the power amplifier (PA present at the final stage of the transmitter chain. In this paper, we consider Gaussian distributed input signals (such as OFDM, and PAs that can be modeled by memoryless or memory polynomials. We derive closed-form expressions of the PA output power spectral density, for an arbitrary nonlinear order, based on the so-called Leonov-Shiryaev formula. We then apply these results to answer practical questions such as the contribution of AM/PM conversion to spectral regrowth and the relationship between memory effects and spectral asymmetry.

  10. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  11. Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order.

    Science.gov (United States)

    Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor

    2017-05-12

    Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The

  12. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  13. Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering.

    Science.gov (United States)

    Nie, Feiping; Zeng, Zinan; Tsang, Ivor W; Xu, Dong; Zhang, Changshui

    2011-11-01

    Spectral clustering (SC) methods have been successfully applied to many real-world applications. The success of these SC methods is largely based on the manifold assumption, namely, that two nearby data points in the high-density region of a low-dimensional data manifold have the same cluster label. However, such an assumption might not always hold on high-dimensional data. When the data do not exhibit a clear low-dimensional manifold structure (e.g., high-dimensional and sparse data), the clustering performance of SC will be degraded and become even worse than K -means clustering. In this paper, motivated by the observation that the true cluster assignment matrix for high-dimensional data can be always embedded in a linear space spanned by the data, we propose the spectral embedded clustering (SEC) framework, in which a linearity regularization is explicitly added into the objective function of SC methods. More importantly, the proposed SEC framework can naturally deal with out-of-sample data. We also present a new Laplacian matrix constructed from a local regression of each pattern and incorporate it into our SEC framework to capture both local and global discriminative information for clustering. Comprehensive experiments on eight real-world high-dimensional datasets demonstrate the effectiveness and advantages of our SEC framework over existing SC methods and K-means-based clustering methods. Our SEC framework significantly outperforms SC using the Nyström algorithm on unseen data.

  14. Spectral properties of generalized eigenparameter dependent ...

    African Journals Online (AJOL)

    Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...

  15. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  16. Adinkras, Dessins, Origami, and Supersymmetry Spectral Triples

    OpenAIRE

    Marcolli, Matilde; Zolman, Nick

    2016-01-01

    We investigate the spectral geometry and spectral action functionals associated to 1D Supersymmetry Algebras, using the classification of these superalgebras in terms of Adinkra graphs and the construction of associated dessin d'enfant and origami curves. The resulting spectral action functionals are computed in terms of the Selberg (super) trace formula.

  17. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    Science.gov (United States)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  18. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  19. Spectral methods. Fundamentals in single domains

    International Nuclear Information System (INIS)

    Canuto, C.

    2006-01-01

    Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)

  20. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  1. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  2. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul; Hugues, M.; Vézian, S.; Childs, D. T. D.; Hogg, R. A.

    2012-01-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  3. Spectral Properties of Chaotic Signals Generated by the Bernoulli Map

    Directory of Open Access Journals (Sweden)

    Rafael A. da Costa

    2014-11-01

    Full Text Available In the last decades, the use of chaotic signals as broadband carriers has been considered in Telecommunications. Despite the relevance of the frequency domain analysis in this field, there are few studies that are concerned with spectral properties of chaotic signals. Bearing this in mind, this paper aims the characterization of the power spectral density (PSD of chaotic orbits generated by Bernoulli maps. We obtain analytic expressions for autocorrelation sequence, PSD and essential bandwidth for chaotic orbits generated by this map as function of the family parameter and Lyapunov exponent. Moreover, we verify that analytical expressions match numerical results. We conclude that the power of the generated orbits is concentrated in low frequencies for all parameters values. Besides, it is possible to obtain chaotic narrowband signals.

  4. Outlier Detection with Space Transformation and Spectral Analysis

    DEFF Research Database (Denmark)

    Dang, Xuan-Hong; Micenková, Barbora; Assent, Ira

    2013-01-01

    which rely on notions of distances or densities, this approach introduces a novel concept based on local quadratic entropy for evaluating the similarity of a data object with its neighbors. This information theoretic quantity is used to regularize the closeness amongst data instances and subsequently......Detecting a small number of outliers from a set of data observations is always challenging. In this paper, we present an approach that exploits space transformation and uses spectral analysis in the newly transformed space for outlier detection. Unlike most existing techniques in the literature...... benefits the process of mapping data into a usually lower dimensional space. Outliers are then identified by spectral analysis of the eigenspace spanned by the set of leading eigenvectors derived from the mapping procedure. The proposed technique is purely data-driven and imposes no assumptions regarding...

  5. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  6. Spectral representation in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi.

    1988-10-01

    A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)

  7. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....

  8. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  9. Curvature Effect and the Spectral Softening Phenomenon Detected ...

    Indian Academy of Sciences (India)

    soft spectral evolution, indicating that this spectral softening is not a rare phenomenon .... of time, there exists a temporal steep decay phase accompanied by spectral softening. (d) In most cases, the temporal power law index α and the spectral.

  10. Densities of carbon foils

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.

    1991-01-01

    The densities of arc-evaporated carbon target foils have been measured by several methods. The density depends upon the method used to measure it; for the same surface density, values obtained by different measurement techniques may differ by fifty percent or more. The most reliable density measurements are by flotation, yielding a density of 2.01±0.03 g cm -3 , and interferometric step height with the surface density known from auxiliary measurements, yielding a density of 2.61±0.4 g cm -3 . The difference between these density values mayy be due in part to the compressive stresses that carbon films have while still on their substrates, uncertainties in the optical calibration of surface densities of carbon foils, and systematic errors in step-height measurements. Mechanical thickness measurements by micrometer caliper are unreliable due to nonplanarity of these foils. (orig.)

  11. Relationship between behavioral and physiological spectral-ripple discrimination.

    Science.gov (United States)

    Won, Jong Ho; Clinard, Christopher G; Kwon, Seeyoun; Dasika, Vasant K; Nie, Kaibao; Drennan, Ward R; Tremblay, Kelly L; Rubinstein, Jay T

    2011-06-01

    Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (r = 0.84, p = 0.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 "change" responses were significantly correlated with d' values from the single-interval behavioral

  12. Stark Broadening of Cr III Spectral Lines: DO White Dwarfs

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2018-04-01

    Full Text Available Using the modified semiempirical method of Dimitrijević and Konjević, Stark widths have been calculated for six Cr III transitions, for an electron density of 10 17 cm ‒ 3 and for temperatures from 5000–80,000 K. Results have been used for the investigation of the influence of Stark broadening on spectral lines in cool DO white dwarf atmospheres. Calculated Stark widths will be implemented in the STARK-B database, which is also a part of the Virtual Atomic and Molecular Data Center (VAMDC.

  13. Orthogonal polynomials on the unit circle part 2 spectral theory

    CERN Document Server

    Simon, Barry

    2013-01-01

    This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po

  14. Spectral dimension in causal set quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Mizera, Sebastian

    2014-01-01

    We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)

  15. Future Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  16. Spectral measurements of loess TL

    International Nuclear Information System (INIS)

    Rendell, H.M.; Mann, S.J.; Townsend, P.D.

    1988-01-01

    Variations in thermoluminescence (TL) glow curves are reported for two loess samples when examined with broad band filters in the range 275-650 nm. Samples show striking differences in bleaching behaviour, when their TL emissions are observed in the u.v., blue, green and yellow spectral regions. The age estimates, given by the equivalent dose (ED) values, differ by up to a factor of two for analyses using the green and u.v. TL signals. These ED values also vary with prolonged room temperature storage between the bleaching and irradiation steps. The anomalies in the bleaching behaviour are interpreted in terms of changes in TL efficiency. The results have major implications for the regeneration method of TL dating for these fine-grained sediments and suggest that reliable dates obtained by it may be fortuitous. (author)

  17. Spectral properties of nuclear matter

    International Nuclear Information System (INIS)

    Bozek, P

    2006-01-01

    We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent

  18. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P spectral mammographic and MR images. © RSNA, 2016.

  19. Elementary principles of spectral distributions

    International Nuclear Information System (INIS)

    French, J.B.

    1980-01-01

    It is a common observation that as we add particles, one by one, to a simple system, things get steadily more and more complicated. For example if the system is describable in shell-model terms, i.e., with a model space in which m particles are distributed over N single-particle states, then as long as m << N, the dimensionality increases rapidly with particle number. On the other hand, for the usual (1 + 2)-body Hamiltonian, the (m greater than or equal to 2)-particle spectrum and wave functions are determined by operators defined in the one-particle space (for the single-particle energies) and the two-particle space (for the interactions). We may say then that the input information becomes more and more fragmented as the particle number increases, the fixed amount of information being distributed over more and more matrix elements. On the other hand there arise also new simplicities whose origin is connected with the operation of statistical laws. There is a macroscopic simplicity corresponding to the fact that the smoothed spectrum takes on a characteristic shape defined by a few parameters (low-order moments) of the spectrum. There is a microscopic simplicity corresponding to a remarkable spectral rigidity which extends over the entire spectrum and guarantees us that the fluctuations from uniformity in the spectrum are small and in many cases carry little information. The purpose of spectral-distribution theory, as applied to these problems, is to deal with the complexities by taking advantage of the simplicities

  20. Spectral monitoring of AB Aur

    Science.gov (United States)

    Rodríguez Díaz, L. F.; Oostra, B.

    2017-07-01

    The Astronomical Observatory of the Universidad de los Andes in Bogotá, Colombia, did a spectral monitoring during 2014 and 2015 to AB Aurigae, the brightest Herbig Ae/be star in the northern hemisphere. The aim of this project is applying spectral techniques, in order to identify specific features that could help us not only to understand how this star is forming, but also to establish a pattern to explain general star formation processes. We have recorded 19 legible spectra with a resolving power of R = 11,0000, using a 40 cm Meade telescope with an eShel spectrograph, coupled by a 50-micron optical fiber. We looked for the prominent absorption lines, the Sodium doublet at 5890Å and 5896Å, respectively and Magnesium II at 4481Å; to measure radial velocities of the star, but, we did not find a constant value. Instead, it ranges from 15 km/s to 32 km/s. This variability could be explained by means of an oscillation or pulsation of the external layers of the star. Other variabilities are observed in some emission lines: Hα, Hβ, He I at 5876Å and Fe II at 5018Å. It seems this phenomenon could be typical in stars that are forming and have a circumstellar disk around themselves. This variability is associated with the nonhomogeneous surface of the star and the interaction that it has with its disk. Results of this interaction could be seen also in the stellar wind ejected by the star. More data are required in order to look for a possible period in the changes of radial velocity of the star, the same for the variability of He I and Fe II, and phenomena present in Hα. We plan to take new data in January of 2017.

  1. Achieving maximum baryon densities

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1984-01-01

    In continuing work on nuclear stopping power in the energy range E/sub lab/ approx. 10 GeV/nucleon, calculations were made of the energy and baryon densities that could be achieved in uranium-uranium collisions. Results are shown. The energy density reached could exceed 2 GeV/fm 3 and baryon densities could reach as high as ten times normal nuclear densities

  2. Buckling feedback of the spectral calculations

    International Nuclear Information System (INIS)

    Jing Xingqing; Shan Wenzhi; Luo Jingyu

    1992-01-01

    This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module

  3. Fluorescent Fe K Emission from High Density Accretion Disks

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  4. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  5. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  6. Spacetime Discontinuous Galerkin FEM: Spectral Response

    International Nuclear Information System (INIS)

    Abedi, R; Omidi, O; Clarke, P L

    2014-01-01

    Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials

  7. Spectral features in the cosmic ray fluxes

    Science.gov (United States)

    Lipari, Paolo

    2018-01-01

    The cosmic ray energy distributions contain spectral features, that is narrow energy regions where the slope of the spectrum changes rapidly. The identification and study of these features is of great importance to understand the astrophysical mechanisms of acceleration and propagation that form the spectra. In first approximation a spectral feature is often described as a discontinuous change in slope, however very valuable information is also contained in its width, that is the length of the energy interval where the change in spectral index develops. In this work we discuss the best way to define and parameterize the width a spectral feature, and for illustration discuss some of the most prominent known structures.

  8. Smoothness of density of states for random decaying interaction

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    to the book of Carmona and Lacroix [1], Figotin–Pastur [3] for the results and ... We however take a definition of the integrated density of states, based on the spectral ...... Schrödinger operators with unbounded potentials, Commun. Math. Phys.

  9. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  10. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    Science.gov (United States)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  11. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    Science.gov (United States)

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  12. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  13. The measurement and interpretation of Ne VII spectral line intensity ratios

    International Nuclear Information System (INIS)

    Lang, J.

    1983-03-01

    Results are presented for the measurement, using the branching ratios calibration method, of the spectral intensities of Ne VII lines emitted from a theta-pinch plasma whose electron temperature and density have been found by laser scattering and alternate techniques. (author)

  14. Spectrally adapted red flare tracers with superior spectral performance

    Directory of Open Access Journals (Sweden)

    Ramy Sadek

    2017-12-01

    Full Text Available The production of bright light, with vivid color, is the primary purpose of signaling, illuminating devices, and fire control purposes. This study, reports on the development of red flame compositions with enhanced performance in terms of luminous intensity, and color quality. The light intensity and the imprint spectra of developed red flame compositions to standard NATO red tracer (R-284 NATO were measured using digital luxmeter, and UV–Vis. spectrometer. The main giving of this study is that the light intensity of standard NATO red tracer was increased by 72%, the color quality was also improved by 60% (over the red band from 650 to 780 nm. This enhanced spectral performance was achieved by means of deriving the combustion process to maximize the formation of red color emitting species in the combustion flame. Thanks to the optimum ratio of color source to color intensifier using aluminum metal fuel; this approach offered the highest intensity and color quality. Upon combustion, aluminum was found to maximize the formation SrCL (the main reactive red color emitting species and to minimize the interfering incandescent emission resulted from MgO and SrO. Quantification of active red color emitting species in the combustion flame was conducted using chemical equilibrium thermodynamic code named ICT. The improvement in red flare performance, established the rule that the color intensifier should be in the range from 10 to 15 Wt % of the total composition.

  15. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  16. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  17. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  18. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  19. Total spectral distributions from Hawking radiation

    Energy Technology Data Exchange (ETDEWEB)

    Broda, Boguslaw [University of Lodz, Department of Theoretical Physics, Faculty of Physics and Applied Informatics, Lodz (Poland)

    2017-11-15

    Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances). (orig.)

  20. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  1. The X-Shooter spectral library

    NARCIS (Netherlands)

    Chen, Y. P.; Trager, S. C.; Peletier, R. F.; Lançon, A.; Prugniel, Ph.; Koleva, M.

    2012-01-01

    We are building a new spectral library with the X-Shooter instrument on ESO's VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R˜10000. As of now we have collected spectra for

  2. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) ...

  3. A Spectral Emissivity Library of Spoil Substrates

    Czech Academy of Sciences Publication Activity Database

    Pivovarník, Marek; Pikl, Miroslav; Frouz, J.; Zemek, František; Kopačková, V.; Notesco, G.; Ben Dor, E.

    2016-01-01

    Roč. 1, č. 2 (2016) E-ISSN 2306-5729 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : post-mining sites * spectral emissivity * spectral library * spoil substrates Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  4. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  5. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  6. Spectral concentration in the nonrelativistic limit

    International Nuclear Information System (INIS)

    Gesztesy, F.; Grosse, H.; Thaller, B.

    1982-01-01

    First order relativistic corrections to the Schroedinger operator according to Foldy and Wouthuysen are rigorously discussed in the framework of singular perturbation theory. For Coulomb plus short-range interactions we investigate the corresponding spectral properties and prove spectral concentration and existence of first order pseudoeigenvalues in the nonrelativistic limit. (Author)

  7. Spectral functions of hadrons in lattice QCD

    International Nuclear Information System (INIS)

    Nakahara, Y.; Asakawa, M.; Hatsuda, T.

    2000-01-01

    Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)

  8. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  9. Spectral statistics in chiral-orthogonal disordered systems

    International Nuclear Information System (INIS)

    Evangelou, S N; Katsanos, D E

    2003-01-01

    We describe the singularities in the averaged density of states and the corresponding statistics of the energy levels in two- (2D) and three-dimensional (3D) chiral symmetric and time-reversal invariant disordered systems, realized in bipartite lattices with real off-diagonal disorder. For off-diagonal disorder of zero mean, we obtain a singular density of states in 2D which becomes much less pronounced in 3D, while the level-statistics can be described by a semi-Poisson distribution with mostly critical fractal states in 2D and Wigner surmise with mostly delocalized states in 3D. For logarithmic off-diagonal disorder of large strength, we find behaviour indistinguishable from ordinary disorder with strong localization in any dimension but in addition one-dimensional 1/ vertical bar E vertical bar Dyson-like asymptotic spectral singularities. The off-diagonal disorder is also shown to enhance the propagation of two interacting particles similarly to systems with diagonal disorder. Although disordered models with chiral symmetry differ from non-chiral ones due to the presence of spectral singularities, both share the same qualitative localization properties except at the chiral symmetry point E=0 which is critical

  10. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...

  11. Spectral statistics of 'cellular' billiards

    International Nuclear Information System (INIS)

    Gutkin, Boris

    2011-01-01

    For a bounded domain Ω 0 subset of R 2 whose boundary contains a number of flat pieces Γ i , i = 1, ..., l we consider a family of non-symmetric billiards Ω constructed by patching several copies of Ω 0 along Γ i s. It is demonstrated that the length spectrum of the periodic orbits in Ω is degenerate with the multiplicities determined by a matrix group G. We study the energy spectrum of the corresponding quantum billiard problem in Ω and show that it can be split into a number of uncorrelated subspectra corresponding to a set of irreducible representations α of G. Assuming that the classical dynamics in Ω 0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard random matrix ensembles. Depending on whether α is real, pseudo-real or complex, the spectrum has either Gaussian orthogonal, Gaussian symplectic or Gaussian unitary types of statistics, respectively

  12. Spectral Interferometry with Electron Microscopes

    Science.gov (United States)

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  13. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  14. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2002-01-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature

  15. Extracting attosecond delays from spectrally overlapping interferograms

    Science.gov (United States)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  16. Light distribution system comprising spectral conversion means

    DEFF Research Database (Denmark)

    2012-01-01

    , longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral......System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... of providing a light distribution system and a method of correcting the spectral transmission characteristics of a light distribution system are disclosed....

  17. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S

    2002-03-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.

  18. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  19. Opacity of expanding media: The effect of spectral lines

    International Nuclear Information System (INIS)

    Karp, A.H.; Lasher, G.; Chan, K.L.; Salpeter, E.E.

    1977-01-01

    Spectral lines are more effective in slowing the transport of radiation in expanding (or contracting) objects than in static ones. The velocity gradient associated with the expansion causes the frequency of the photons to be continuously redshifted relative to the rest frame of the gas through which they travel. Those photons which are redshifted to the frequency of a sufficiently strong line will be absorbed by the corresponding bound-bound transition, and the net effect will be to increase the effective opacity of the gas. In certain cases the effect can be taken into account by using an effective opacity, the expansion opacity, which is a function not only of the temperature and density but also of the velocity gradient.Practical formulae for computing the expansion opacity and its Rosseland mean in terms of sums over spectral lines are derived. It is shown that the cumulative effect of many weak lines can be important, implying that a large list of spectral lines is required to obtain results of even modest accuracy. Numerical computations using the 260,000-entry line list of Kurucz and Peytremann have been completed and some samples of the result are given. The general effect may be important in many astronomical objects, but only in some of these will be detailed approach of this paper be appropriate. In optically thick supernova shells, the effect is important both in maintaining the radiation in thermal equilibrium as it diffuses out of the shell and in increasing the value of the total opacity. The enhancement of the opacity ranges from less than 1% to more than an order of magnitude, depending on the temperature, density, and velocity gradient

  20. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  1. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  2. Nuclear Level Densities

    International Nuclear Information System (INIS)

    Grimes, S.M.

    2005-01-01

    Recent research in the area of nuclear level densities is reviewed. The current interest in nuclear astrophysics and in structure of nuclei off of the line of stability has led to the development of radioactive beam facilities with larger machines currently being planned. Nuclear level densities for the systems used to produce the radioactive beams influence substantially the production rates of these beams. The modification of level-density parameters near the drip lines would also affect nucleosynthesis rates and abundances

  3. Measurement of true density

    International Nuclear Information System (INIS)

    Carr-Brion, K.G.; Keen, E.F.

    1982-01-01

    System for determining the true density of a fluent mixture such as a liquid slurry, containing entrained gas, such as air comprises a restriction in pipe through which at least a part of the mixture is passed. Density measuring means such as gamma-ray detectors and source measure the apparent density of the mixture before and after its passage through the restriction. Solid-state pressure measuring devices are arranged to measure the pressure in the mixture before and after its passage through the restriction. Calculating means, such as a programmed microprocessor, determine the true density from these measurements using relationships given in the description. (author)

  4. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    Science.gov (United States)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  5. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  6. Modified Spectral Fatigue Methods for S-N Curves With MIL-HDBK-5J Coefficients

    Science.gov (United States)

    Irvine, Tom; Larsen, Curtis

    2016-01-01

    The rainflow method is used for counting fatigue cycles from a stress response time history, where the fatigue cycles are stress-reversals. The rainflow method allows the application of Palmgren-Miner's rule in order to assess the fatigue life of a structure subject to complex loading. The fatigue damage may also be calculated from a stress response power spectral density (PSD) using the semi-empirical Dirlik, Single Moment, Zhao-Baker and other spectral methods. These methods effectively assume that the PSD has a corresponding time history which is stationary with a normal distribution. This paper shows how the probability density function for rainflow stress cycles can be extracted from each of the spectral methods. This extraction allows for the application of the MIL-HDBK-5J fatigue coefficients in the cumulative damage summation. A numerical example is given in this paper for the stress response of a beam undergoing random base excitation, where the excitation is applied separately by a time history and by its corresponding PSD. The fatigue calculation is performed in the time domain, as well as in the frequency domain via the modified spectral methods. The result comparison shows that the modified spectral methods give comparable results to the time domain rainflow counting method.

  7. Spectral quality requirements for effluent identification

    Science.gov (United States)

    Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.

    2005-11-01

    We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.

  8. [Modeling and Simulation of Spectral Polarimetric BRDF].

    Science.gov (United States)

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  9. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  10. Spectral functions from hadronic τ decays

    International Nuclear Information System (INIS)

    Davier, Michel

    2002-01-01

    Hadronic decays of the τ lepton provide a clean environment to study hadron dynamics in an energy regime dominated by romances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonpertubative contributions. the τ vector spectral functions for the 2π and 4π final states are used together with e p+ e p- data in order to compute vacuum polarization integrals occurring in the calculations of the anomalous magnetic moment of the muon and the running of the electromagnetic coupling

  11. Angle of arrival estimation using spectral interferometry

    International Nuclear Information System (INIS)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.

    2010-01-01

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  12. Angle of arrival estimation using spectral interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  13. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  14. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success...

  15. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  16. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  17. Spectral properties of the Google matrix of the World Wide Web and other directed networks.

    Science.gov (United States)

    Georgeot, Bertrand; Giraud, Olivier; Shepelyansky, Dima L

    2010-05-01

    We study numerically the spectrum and eigenstate properties of the Google matrix of various examples of directed networks such as vocabulary networks of dictionaries and university World Wide Web networks. The spectra have gapless structure in the vicinity of the maximal eigenvalue for Google damping parameter α equal to unity. The vocabulary networks have relatively homogeneous spectral density, while university networks have pronounced spectral structures which change from one university to another, reflecting specific properties of the networks. We also determine specific properties of eigenstates of the Google matrix, including the PageRank. The fidelity of the PageRank is proposed as a characterization of its stability.

  18. Remote sensing of St. Augustine Decline (SAD) disease. [spectral reflectance of healthy and diseased grass

    Science.gov (United States)

    Odle, W. C.

    1976-01-01

    Laboratory and field spectral reflectance measurements of healthy and infected St. Augustine grass were made using several different instruments. Spectral differences between healthy and infected grass occured in the visible and near infrared regions. Multiband and color infrared photographs were taken of healthy and diseased turf from ground-based platforms and low altitude aircraft. Qualitative (density slicing) and quantitative (transmission densitometry) analyses revealed distinct tonal differences between healthy and St. Augustine disease (SAD) infected grass. Similar experiments are described for determining if healthy and diseased grass can be distinguished from waterstressed grass and grass deficient in either nitrogen or iron.

  19. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  20. The analysis of toxic connections content in water by spectral methods

    Science.gov (United States)

    Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.

    2017-08-01

    The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.

  1. Multi-Configuration Matched Spectral Filter Core, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTRA proposes an open-architecture spectral gas sensor based on compressive sensing concepts employed for both spatial and spectral domains. Our matched spectral...

  2. LNG pool fire spectral data and calculation of emissive power

    International Nuclear Information System (INIS)

    Raj, Phani K.

    2007-01-01

    burning in the LNG fire. The paper discusses the procedure by which the fire spectral data are used to predict the thermal emission from large LNG fires. Unfortunately, no direct measurements of the soot density or smoke characteristics were made in the tests. These parameters have significant effect on the thermal emission from large LNG fires

  3. Computer-assisted spectral design and synthesis

    Science.gov (United States)

    Vadakkumpadan, Fijoy; Wang, Qiqi; Sun, Yinlong

    2005-01-01

    In this paper, we propose a computer-assisted approach for spectral design and synthesis. This approach starts with some initial spectrum, modifies it interactively, evaluates the change, and decides the optimal spectrum. Given a requested change as function of wavelength, we model the change function using a Gaussian function. When there is the metameric constraint, from the Gaussian function of request change, we propose a method to generate the change function such that the result spectrum has the same color as the initial spectrum. We have tested the proposed method with different initial spectra and change functions, and implemented an interactive graphics environment for spectral design and synthesis. The proposed approach and graphics implementation for spectral design and synthesis can be helpful for a number of applications such as lighting of building interiors, textile coloration, and pigment development of automobile paints, and spectral computer graphics.

  4. Spectral Shifting in Nondestructive Assay Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nettleton, Anthony Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tutt, James Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaFleur, Adrienne Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This project involves spectrum tailoring research that endeavors to better distinguish energies of gamma rays using different spectral material thicknesses and determine neutron energies by coating detectors with various materials.

  5. Spectral properties of supersymmetric shape invariant potentials

    Indian Academy of Sciences (India)

    Keywords. Supersymmetry; shape invariant potential; spectral statistics. ... Pramana – J. Phys., Vol. 70, No. ... the fluctuation properties of different systems whose average behaviours are not the same. ... coefficient c defined as [15] c = ∑.

  6. Algorithms for Spectral Decomposition with Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main...

  7. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  8. Spectral properties of almost-periodic Hamiltonians

    International Nuclear Information System (INIS)

    Lima, R.

    1983-12-01

    We give a description of some spectral properties of almost-periodic hamiltonians. We put the stress on some particular points of the proofs of the existence of absolutely continuous or pure point spectrum [fr

  9. GALILEO NIMS SPECTRAL IMAGE CUBES: JUPITER OPERATIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...

  10. GALILEO NIMS SPECTRAL IMAGE TUBES: JUPITER OPERATIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...

  11. Intermediate spectral theory and quantum dynamics

    CERN Document Server

    de Oliveira, Cesar R

    2008-01-01

    The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...

  12. Camouflage in thermal IR: spectral design

    Science.gov (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  13. Salinity and spectral reflectance of soils

    Science.gov (United States)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  14. On the spectral composition of global radiation

    Energy Technology Data Exchange (ETDEWEB)

    Major, G

    1983-01-01

    The global radiation is recorded at several stations on the Earth. The information about its spectral composition is poor. In this paper the spectral composition means the ratio of spectral global radiation measured by coloured glass filter domes to the total global radiation. From the measuements made by Klein and Goldberg it follows that the monthly ratios vary significantly from place to place, while the variations from month to month at one place are significant only at the station which lies near to the North Pole. The Budapest data proved the dominant effect of cloudiness on the spectral composition of global radiation. This effect is in good statistical relationship with the relative global radiation. The regression constant tabulated in this paper do not contain the error of zero point elevation which is due to the overheating of glass filters by the absorbed solar radiation.

  15. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  16. The spectral dimension of random trees

    International Nuclear Information System (INIS)

    Destri, Claudio; Donetti, Luca

    2002-01-01

    We present a simple yet rigorous approach to the determination of the spectral dimension of random trees, based on the study of the massless limit of the Gaussian model on such trees. As a by-product, we obtain evidence in favour of a new scaling hypothesis for the Gaussian model on generic bounded graphs and in favour of a previously conjectured exact relation between spectral and connectivity dimensions on more general tree-like structures

  17. Spectral evolution of galaxies: current views

    International Nuclear Information System (INIS)

    Bruzual, A.G.

    1985-01-01

    A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)

  18. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  19. Deconvolution of spectral line profile by FTS

    International Nuclear Information System (INIS)

    Lego, J.

    1977-01-01

    The possibility is studied of determining the components of the spectral line profile using Fourier transformation. The different types of the spectral line profiles are described and the conditions for their generation discussed. The main result is the discovery of the possibility to obtain the parameters of the different components directly from the interferogram without using the Fourier transformation. The method under discussion strongly simplifies evaluation while preserving or increasing accuracy. (author)

  20. Chemical exchange effects in spectral line shapes

    International Nuclear Information System (INIS)

    Diaz, M.A.; Veguillas, J.

    1990-01-01

    A theory of spectral-line shapes has been extended to the case in which relaxation broadening may be influenced by reactive interactions. This extension is valid for gaseous systems in the same way it is valid for condensed media, and particularly, for such chemical mechanisms as isomerizations. The dependence of the spectral rate on the chemical exchange rate is clarified. Finally, a discussion concerning the above aspects and their applications has been included. (author)

  1. Normal form theory and spectral sequences

    OpenAIRE

    Sanders, Jan A.

    2003-01-01

    The concept of unique normal form is formulated in terms of a spectral sequence. As an illustration of this technique some results of Baider and Churchill concerning the normal form of the anharmonic oscillator are reproduced. The aim of this paper is to show that spectral sequences give us a natural framework in which to formulate normal form theory. © 2003 Elsevier Science (USA). All rights reserved.

  2. Improved water density feedback model for pressurized water reactors

    International Nuclear Information System (INIS)

    Casadei, A.L.

    1976-01-01

    An improved water density feedback model has been developed for neutron diffusion calculations of PWR cores. This work addresses spectral effects on few-group cross sections due to water density changes, and water density predictions considering open channel and subcooled boiling effects. An homogenized spectral model was also derived using the unit assembly diffusion method for employment in a coarse mesh 3D diffusion computer program. The spectral and water density evaluation models described were incorporated in a 3D diffusion code, and neutronic calculations for a typical PWR were completed for both nominal and accident conditions. Comparison of neutronic calculations employing the open versus the closed channel model for accident conditions indicates that significant safety margin increases can be obtained if subcooled boiling and open channel effects are considered in accident calculations. This is attributed to effects on both core reactivity and power distribution, which result in increased margin to fuel degradation limits. For nominal operating conditions, negligible differences in core reactivity and power distribution exist since flow redistribution and subcooled voids are not significant at such conditions. The results serve to confirm the conservatism of currently employed closed channel feedback methods in accident analysis, and indicate that the model developed in this work can contribute to show increased safety margins for certain accidents

  3. The Pale Orange Dot: Spectral Effects of a Hazy Early Earth

    Science.gov (United States)

    Arney, G. N.; Meadows, V. S.; Domagal-Goldman, S. D.; Claire, M.; Schwieterman, E.

    2014-12-01

    Increasing evidence suggests Archean Earth had a photochemical hydrocarbon haze similar to Titan's (Zerkle et al. 2012), with important climate implications (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Domagal-Goldman et al. 2008, Wolf and Toon 2012). Observations also suggest hazy exoplanets are common (Sing et al. 2011, Kreidberg et al 2014), so hazy planet spectra will be relevant to future exoplanet spectral characterization missions. Here, we consider the implications of hydrocarbon aerosols on the spectrum of Archean Earth, examining the effect of a haze layer on the detectability of spectral features from putative biosignatures and the Rayleigh scattering slope. We also examine haze's impact on the spectral energy distribution at the planetary surface, which may be important to the co-evolution of life with its environment. Because the atmospheric pressure and haze particle composition of the Archean Earth are poorly constrained, we test the impact of atmospheric pressure and particle density on haze formation. Our study uses a modified version of the 1-D photochemical code developed originally by Kasting et al. (1979) to generate a fractal haze in the model Archean atmosphere. The 1-D line-by-line fully multiple scattering Spectral Mapping Atmospheric Radiative Transfer Model (SMART) (Meadows and Crisp 1996) is then used to generate synthetic spectra of early Earth with haze. We find (Fig 1) that haze scattering significantly depletes the radiation at short wavelengths, strongly affecting the spectral region of the Rayleigh slope, a broadband change in spectral shape detectable at low spectral resolution. At the surface, the spectral energy distribution is shifted towards longer wavelengths, which may be important to photosynthetic life. Thus, the haze may have significant effects on biology, which in turn produces the methane that leads to haze formation, creating feedback loops between biology and the planet.

  4. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  5. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  6. Density functional theory

    International Nuclear Information System (INIS)

    Das, M.P.

    1984-07-01

    The state of the art of the density functional formalism (DFT) is reviewed. The theory is quantum statistical in nature; its simplest version is the well-known Thomas-Fermi theory. The DFT is a powerful formalism in which one can treat the effect of interactions in inhomogeneous systems. After some introductory material, the DFT is outlined from the two basic theorems, and various generalizations of the theorems appropriate to several physical situations are pointed out. Next, various approximations to the density functionals are presented and some practical schemes, discussed; the approximations include an electron gas of almost constant density and an electron gas of slowly varying density. Then applications of DFT in various diverse areas of physics (atomic systems, plasmas, liquids, nuclear matter) are mentioned, and its strengths and weaknesses are pointed out. In conclusion, more recent developments of DFT are indicated

  7. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  8. density functional theory approach

    Indian Academy of Sciences (India)

    YOGESH ERANDE

    2017-07-27

    Jul 27, 2017 ... a key role in all optical switching devices, since their optical properties can be .... optimized in the gas phase using Density Functional Theory. (DFT).39 The ...... The Mediation of Electrostatic Effects by Sol- vents J. Am. Chem.

  9. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... need to undress. This scan is the best test to predict your risk of fractures, especially of ...

  10. Density scaling for multiplets

    International Nuclear Information System (INIS)

    Nagy, A

    2011-01-01

    Generalized Kohn-Sham equations are presented for lowest-lying multiplets. The way of treating non-integer particle numbers is coupled with an earlier method of the author. The fundamental quantity of the theory is the subspace density. The Kohn-Sham equations are similar to the conventional Kohn-Sham equations. The difference is that the subspace density is used instead of the density and the Kohn-Sham potential is different for different subspaces. The exchange-correlation functional is studied using density scaling. It is shown that there exists a value of the scaling factor ζ for which the correlation energy disappears. Generalized OPM and Krieger-Li-Iafrate (KLI) methods incorporating correlation are presented. The ζKLI method, being as simple as the original KLI method, is proposed for multiplets.

  11. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  12. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  13. Density of liquid Ytterbium

    International Nuclear Information System (INIS)

    Stankus, S.V.; Basin, A.S.

    1983-01-01

    Results are presented for measurements of the density of metallic ytterbium in the liquid state and at the liquid-solid phase transition. Based on the numerical data obtained, the coefficient of thermal expansion βZ of the liquid and the density discontinuity on melting deltarho/sub m/ are calculated. The magnitudes of βZ and deltarho/sub m/ for the heavy lanthanides are compared

  14. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  15. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  16. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  17. USGS Digital Spectral Library splib06a

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b

  18. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  19. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  20. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    Science.gov (United States)

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  1. Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics

    CERN Document Server

    Shizgal, Bernard

    2015-01-01

    This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...

  2. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  3. Fast Spectral Velocity Estimation Using Adaptive Techniques: In-Vivo Results

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Udesen, Jesper

    2007-01-01

    Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window(OW) is very sbort. In this paper two adaptive techniques are tested and compared to the averaged perlodogram (Welch) for blood velocity estimation. The Blood Power...... the blood process over slow-time and averaging over depth to find the power spectral density estimate. In this paper, the two adaptive methods are explained, and performance Is assessed in controlled steady How experiments and in-vivo measurements. The three methods were tested on a circulating How rig...... with a blood mimicking fluid flowing in the tube. The scanning section is submerged in water to allow ultrasound data acquisition. Data was recorded using a BK8804 linear array transducer and the RASMUS ultrasound scanner. The controlled experiments showed that the OW could be significantly reduced when...

  4. Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model

    Directory of Open Access Journals (Sweden)

    Lotter Thomas

    2005-01-01

    Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.

  5. Overlapping communities detection based on spectral analysis of line graphs

    Science.gov (United States)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  6. Spectral diagnostic of plasma in the coaxial gun

    International Nuclear Information System (INIS)

    Bacilek, J.; Hruska, J.; Kubes, P.

    1975-01-01

    Plasma ejected from a coaxial plasma gun was investigated spectroscopically. The coaxial gun consisted of two copper coaxial electrodes 57 and 100 mm in diameter, the length of the central electrode being 67 mm. The gun was fed by a 11 μF capacitor bank of 16 kV operating voltage. Hydrogen, helium and air were used as working gases. The emission spectra were recorded with spectrograph ISP-51 and with a monochromator-photomultiplier system. The plasma density reached its maximum of 4x10 15 cm -3 with the ejecting voltage applied some 20 to 30 μs after the gas injection. At this moment also the spectral lines of electrode material were most intensive. The electron temperature calculated from the presence of spectral lines of OII, CII and NII was about 2 eV. The velocity of fast hydrogen ions was 4x10 7 cmsec -1 calculated from the Hsub(β) line. (J.U.)

  7. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  8. ANALYSIS OF CAMOUFLAGE COVER SPECTRAL CHARACTERISTICS BY IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    A. Y. Kouznetsov

    2016-03-01

    Full Text Available Subject of Research.The paper deals with the problems of detection and identification of objects in hyperspectral imagery. The possibility of object type determination by statistical methods is demonstrated. The possibility of spectral image application for its data type identification is considered. Method. Researching was done by means of videospectral equipment for objects detection at "Fregat" substrate. The postprocessing of hyperspectral information was done with the use of math model of pattern recognition system. The vegetation indexes TCHVI (Three-Channel Vegetation Index and NDVI (Normalized Difference Vegetation Index were applied for quality control of object recognition. Neumann-Pearson criterion was offered as a tool for determination of objects differences. Main Results. We have carried out analysis of the spectral characteristics of summer-typecamouflage cover (Germany. We have calculated the density distribution of vegetation indexes. We have obtained statistical characteristics needed for creation of mathematical model for pattern recognition system. We have shown the applicability of vegetation indices for detection of summer camouflage cover on averdure background. We have presented mathematical model of object recognition based on Neumann-Pearson criterion. Practical Relevance. The results may be useful for specialists in the field of hyperspectral data processing for surface state monitoring.

  9. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  10. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    Science.gov (United States)

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.; Paris, Mark W.

    2017-03-01

    We calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energy spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. We analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.

  11. Establishing a method to measure bone structure using spectral CT

    Science.gov (United States)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  12. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    Science.gov (United States)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  13. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  14. Information-efficient spectral imaging sensor

    Science.gov (United States)

    Sweatt, William C.; Gentry, Stephen M.; Boye, Clinton A.; Grotbeck, Carter L.; Stallard, Brian R.; Descour, Michael R.

    2003-01-01

    A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  15. THE SPECTRAL INDEX PROPERTIES OF FERMI BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J. H.; Yang, J. H.; Yuan, Y. H.; Wang, J.; Gao, Y., E-mail: jhfan_cn@yahoo.com.cn [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China)

    2012-12-20

    In this paper, a sample of 451 blazars (193 flat spectrum radio quasars (FSRQs), 258 BL Lacertae objects) with corresponding X-ray and Fermi {gamma}-ray data is compiled to investigate the correlation both between the X-ray spectral index and the {gamma}-ray spectral index and between the spectral index and the luminosity, and to compare the spectral indexes {alpha}{sub X}, {alpha}{sub {gamma}}, {alpha}{sub X{gamma}}, and {alpha}{sub {gamma}X{gamma}} for different subclasses. We also investigated the correlation between the X-ray and the {gamma}-ray luminosity. The following results have been obtained. Our analysis indicates that an anti-correlation exists between the X-ray and the {gamma}-ray spectral indexes for the whole sample. However, when we considered the subclasses of blazars (FSRQs, the low-peaked BL Lacertae objects (LBLs) and the high-peaked BL Lacertae objects (HBLs)) separately, there is not a clear relationship for each subclass. Based on the Fermi-detected sources, we can say that the HBLs are different from FSRQs, while the LBLs are similar to FSRQs.

  16. Cochlear implant users' spectral ripple resolution.

    Science.gov (United States)

    Jeon, Eun Kyung; Turner, Christopher W; Karsten, Sue A; Henry, Belinda A; Gantz, Bruce J

    2015-10-01

    This study revisits the issue of the spectral ripple resolution abilities of cochlear implant (CI) users. The spectral ripple resolution of recently implanted CI recipients (implanted during the last 10 years) were compared to those of CI recipients implanted 15 to 20 years ago, as well as those of normal-hearing and hearing-impaired listeners from previously published data from Henry, Turner, and Behrens [J. Acoust. Soc. Am. 118, 1111-1121 (2005)]. More recently, implanted CI recipients showed significantly better spectral ripple resolution. There is no significant difference in spectral ripple resolution for these recently implanted subjects compared to hearing-impaired (acoustic) listeners. The more recently implanted CI users had significantly better pre-operative speech perception than previously reported CI users. These better pre-operative speech perception scores in CI users from the current study may be related to better performance on the spectral ripple discrimination task; however, other possible factors such as improvements in internal and external devices cannot be excluded.

  17. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  18. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  19. The Sturm-Liouville inverse spectral problem with boundary conditions depending on the spectral parameter

    Directory of Open Access Journals (Sweden)

    Cornelis van der Mee

    2005-01-01

    Full Text Available We present the complete version including proofs of the results announced in [van der Mee C., Pivovarchik V.: A Sturm-Liouville spectral problem with boundary conditions depending on the spectral parameter. Funct. Anal. Appl. 36 (2002, 315–317 [Funkts. Anal. Prilozh. 36 (2002, 74–77 (Russian

  20. The spectral density of the QCD Dirac operator and patterns of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Toublan, D.; Verbaarschot, J.J.M.

    1999-01-01

    We study the spectrum of the QCD Dirac operator for two colors with fermions in the fundamental representation and for two or more colors with adjoint fermions. For N f flavors, the chiral flavor symmetry of these theories is spontaneously broken according to SU (2N f → Sp (2N f ) and SU (N f → O (N f ), respectively, rather than the symmetry breaking pattern SU (N f ) x SU (N f ) → SU (N f ) for QCD with three or more colors and fundamental fermions. In this paper we study the Dirac spectrum for the first two symmetry breaking patterns. Following previous work for the third case we find the Dirac spectrum in the domain λ QCD by means of partially quenched chiral perturbation theory. In particular, this result allows us to calculate the slope of the Dirac spectrum at λ = 0. We also show that for λ 2 Λ QCD (wing L the linear size of the system) the Dirac spectrum is given by a chiral Random Matrix Theory with the symmetries of the Dirac operator

  1. Spectral density mapping at multiple magnetic fields suitable for C-13 NMR relaxation studies

    Czech Academy of Sciences Publication Activity Database

    Kaderavek, Pavel; Zapletal, V.; Fiala, R.; Srb, P.; Padrta, P.; Přecechtělová, J.; Šoltésová, M.; Kowalewski, J.; Widmalm, G.; Chmelík, Josef; Sklenář, V.; Žídek, L.

    2016-01-01

    Roč. 266, MAY2016 (2016), s. 23-40 ISSN 1064-1858 Institutional support: RVO:68081707 ; RVO:61388971 Keywords : molecular-orbital methods * protein backbone dynamics Subject RIV: BO - Biophysics; EE - Microbiology, Virology (MBU-M)

  2. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    Czech Academy of Sciences Publication Activity Database

    Emmanoulopoulos, D.; Papadakis, I.E.; Epitropakis, A.; Pecháček, Tomáš; Dovčiak, Michal; McHardy, I.M.

    2016-01-01

    Roč. 461, č. 2 (2016), s. 1642-1655 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : black hole physics * galaxies * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  3. Spectral density mapping protocols for analysis of molecular motions in disordered proteins

    Czech Academy of Sciences Publication Activity Database

    Kadeřávek, P.; Zapletal, V.; Rabatinová, Alžběta; Krásný, Libor; Sklenář, V.; Žídek, L.

    2014-01-01

    Roč. 58, č. 12 (2014), s. 193-207 ISSN 0925-2738 R&D Projects: GA ČR GA13-16842S Institutional support: RVO:61388971 Keywords : NMR * CROSS-CORRELATED RELAXATION * N-15 NMR RELAXATION * RNA-POLYMERASE Subject RIV: EC - Immunology; EE - Microbiology, Virology (MBU-M) Impact factor: 3.141, year: 2014

  4. Social Demand of New Generation Information Network: Introduction to High Spectral Density Optical Communication Technology

    Science.gov (United States)

    Kamiya, Takeshi; Miyazaki, Tetsuya; Kubota, Fumito

    In this section, first, current situation of traffic growth and penetration of broadband services are described. Then social demand, technical issues, and research trend for future information network in the United States, Europe, and Japan are described. Finally, a detailed construction of this book is introduced.

  5. X-ray spectral line shapes for the excimer-laser-produced high density plasma diagnostics

    International Nuclear Information System (INIS)

    Magunov, A.; Faenov, A.; Skobelev, I.; Pikuz, T.; Batani, D.; Milani, M.; Conti, A.; Masini, A.; Costato, M.; Pozzi, A.; Turcu, E.; Allot, R.; Lisi, N.; Koenig, M.; Benuzzi, A.; Flora, F.; Letardi, T.; Palladino, L.; Reale, A.

    1997-01-01

    The time and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (I L =(4-10)·10 12 W/cm 2 , τ=10 ns) and by 248 nm wavelength KrF laser pulse train radiation (I L =5·10 15 W/cm 2 , τ=7 ps, 16 pulses in train) on CF n plane target. The lines' shapes and intensities modeling of Lyman series and He-like ion resonance series of fluorine up to n=7 by fitting experimental data shows the considerable difference of plasma formation features for these two sets of the laser pulse parameters

  6. Identification of melanoma cells: a method based in mean variance of signatures via spectral densities.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Angulo-Molina, Aracely

    2017-04-01

    In this paper a new methodology to detect and differentiate melanoma cells from normal cells through 1D-signatures averaged variances calculated with a binary mask is presented. The sample images were obtained from histological sections of mice melanoma tumor of 4 [Formula: see text] in thickness and contrasted with normal cells. The results show that melanoma cells present a well-defined range of averaged variances values obtained from the signatures in the four conditions used.

  7. Spectral response of spider mite infested cotton: Mite density and miticide rate study

    Science.gov (United States)

    Two-spotted spider mites are important pests in many agricultural systems. Spider mites (Acari: Tetranychidae) have been found to cause economic damage in corn, cotton, and sorghum. Adult glass vial bioassays indicate that Temprano™ (abamectin) is the most toxic technical miticide for adult two-spot...

  8. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    Science.gov (United States)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  9. Role of noise in the diode-laser spectroscopy of the spectral line profile

    International Nuclear Information System (INIS)

    Nadezhdinskii, Aleksandr I; Plotnichenko, V V; Ponurovskii, Ya Ya; Spiridonov, Maksim V

    2000-01-01

    Questions concerning precise measurements of the spectral-line-profile parameters by diode-laser spectroscopic methods were examined. The instrumental function of a distributed-feedback diode laser (λ =1.53 μm), consisting of the additive contributions of the noise due to spontaneous emission, frequency fluctuations, and intensity fluctuations, was investigated. An analytical formula was obtained for the spectrum of the diode-laser field formed by frequency fluctuations. The spectral density g 0 of the frequency fluctuations, determining the width of the central part of the emission line profile of a diode laser, was found by two independent methods (by fitting to a Doppler-broadened absorption line profile and by finding the intensity of the residual radiation and the saturated-absorption line width). The parameters Ω and Γ of the spectral density of the frequency fluctuations, coupled to the relaxation oscillations and determining the wing of the diode-laser emission line profile, were determined experimentally. By taking into account the instrumental function of the diode laser, involving successive convolution with the recorded emission spectra, it was possible to reproduce correctly the spectral line profile and to solve accurately the problem of the 'optical zero'. The role of the correlation between the intensity noise and the diode-laser frequency was considered. (laser applications and other topics in quantum electronics)

  10. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  11. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  12. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  13. Diagnostic spectral characteristics of damouritization in granite type uranium deposit

    International Nuclear Information System (INIS)

    He Jianguo; Mao Yuxian; Li Jianzhong; Wang Changliang; Feng Mingyue; Rong Jiashu; Zhu Minqiang; Rao Minghui

    2008-01-01

    Spectral characteristics of different alteration type in uranium deposit are the prerequisite of selecting remote sensing spectral bands for uranium reconnaissance and exploration. It is also a basis for mapping alteration zone using imaging spectral data. Taking the No. 201 uranium deposit as example, the paper is focused on the spectral characteristics researching of damouritization in granite type uranium deposite. Through extracting diagnostic spectral feature of damourite and analyzing the reason causing absorption valley, it was found that spectral characteristics of damouritization in Chinese uranium deposit is different from that of illite in the spectral library published abroad. (authors)

  14. Diagnostic spectral characteristics of damouritization in granite type uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Jianguo, He; Yuxian, Mao; Jianzhong, Li; Changliang, Wang; Mingyue, Feng; Jiashu, Rong [Beijing Research Inst. of Uranium Geology, Beijing (China); Minqiang, Zhu; Minghui, Rao [East China Univ. of Technology, Fuzhou (China)

    2008-07-15

    Spectral characteristics of different alteration type in uranium deposit are the prerequisite of selecting remote sensing spectral bands for uranium reconnaissance and exploration. It is also a basis for mapping alteration zone using imaging spectral data. Taking the No. 201 uranium deposit as example, the paper is focused on the spectral characteristics researching of damouritization in granite type uranium deposite. Through extracting diagnostic spectral feature of damourite and analyzing the reason causing absorption valley, it was found that spectral characteristics of damouritization in Chinese uranium deposit is different from that of illite in the spectral library published abroad. (authors)

  15. The development of a modified spectral ripple test.

    Science.gov (United States)

    Aronoff, Justin M; Landsberger, David M

    2013-08-01

    Poor spectral resolution can be a limiting factor for hearing impaired listeners, particularly for complex listening tasks such as speech understanding in noise. Spectral ripple tests are commonly used to measure spectral resolution, but these tests contain a number of potential confounds that can make interpretation of the results difficult. To measure spectral resolution while avoiding those confounds, a modified spectral ripple test with dynamically changing ripples was created, referred to as the spectral-temporally modulated ripple test (SMRT). This paper describes the SMRT and provides evidence that it is sensitive to changes in spectral resolution.

  16. Spectral Collection of Polyethylene Pellets at nearly Cryogenic Temperature to Improve Selectivity of Raman Measurement

    International Nuclear Information System (INIS)

    Kim, Saetbyeol; Lee, Sanguk; Hwang, Jinyoung; Chung, Hoeil

    2010-01-01

    Raman spectroscopy has been extensively used for analysis of diverse polymer samples. Normally, Raman spectral collection of samples is routinely performed at room temperature for convenience. However, the feasibility of improving spectral selectivity and the resulting quantitative accuracy, when samples are measured at nearly cryogenic temperature, has not been investigated. For this purpose, we attempted to measure the density of polyethylene (PE) pellets at cryogenic temperatures and the resulting accuracies were compared with that from room temperature measurement. Initially, each of 25 PE sample was allowed to cool down to cryogenic temperature and the corresponding Raman spectra were continuously collected while the temperature of sample increased. When the temperature of sample was at cryogenic temperature, the resulting band widths were narrower compared to those at room temperature, thereby improving the accuracy of density measurement. In overall, the proposed Raman scheme is simple and efficient; therefore, it could be further applied for analysis of other polymers.

  17. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  18. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  19. Multi spectral scaling data acquisition system

    International Nuclear Information System (INIS)

    Behere, Anita; Patil, R.D.; Ghodgaonkar, M.D.; Gopalakrishnan, K.R.

    1997-01-01

    In nuclear spectroscopy applications, it is often desired to acquire data at high rate with high resolution. With the availability of low cost computers, it is possible to make a powerful data acquisition system with minimum hardware and software development, by designing a PC plug-in acquisition board. But in using the PC processor for data acquisition, the PC can not be used as a multitasking node. Keeping this in view, PC plug-in acquisition boards with on-board processor find tremendous applications. Transputer based data acquisition board has been designed which can be configured as a high count rate pulse height MCA or as a Multi Spectral Scaler. Multi Spectral Scaling (MSS) is a new technique, in which multiple spectra are acquired in small time frames and are then analyzed. This paper describes the details of this multi spectral scaling data acquisition system. 2 figs

  20. Spectral/hp element methods for CFD

    CERN Document Server

    Karniadakis, George Em

    1999-01-01

    Traditionally spectral methods in fluid dynamics were used in direct and large eddy simulations of turbulent flow in simply connected computational domains. The methods are now being applied to more complex geometries, and the spectral/hp element method, which incorporates both multi-domain spectral methods and high-order finite element methods, has been particularly successful. This book provides a comprehensive introduction to these methods. Written by leaders in the field, the book begins with a full explanation of fundamental concepts and implementation issues. It then illustrates how these methods can be applied to advection-diffusion and to incompressible and compressible Navier-Stokes equations. Drawing on both published and unpublished material, the book is an important resource for experienced researchers and for those new to the field.

  1. Characterization of the titanium Kβ spectral profile

    International Nuclear Information System (INIS)

    Chantler, C T; Smale, L F; Kinnane, M N; Illig, A J; Kimpton, J A; Crosby, D N

    2013-01-01

    Transition metals have Kα and Kβ characteristic radiation possessing complex asymmetric spectral profiles. Instrumental broadening normally encountered in x-ray experiments shifts features of profiles used for calibration, such as peak energy, by many times the quoted accuracies. We measure and characterize the titanium Kβ spectral profile. The peak energy of the titanium Kβ spectral profile is found to be 4931.966 ± 0.022 eV prior to instrumental broadening. This 4.5 ppm result decreases the uncertainty over the past literature by a factor of 2.6 and is 2.4 standard deviations from the previous standard. The spectrum is analysed and the resolution-free lineshape is extracted and listed for use in other experiments. We also incorporate improvement in analysis applied to earlier results for V Kβ. (paper)

  2. Spectrally selective paint coatings. Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Crnjak Orel, Z.C.; Klanjsek Gunde, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2001-06-01

    Preparation and characterization of spectrally selective paint coating for photothermal solar energy conversion are discussed. The applied methods for preparation of paints with described measurements and calculations of black-pigmented coatings were reviewed. The article represents not only possible future applications but also past and current applications of spectrally selective paint coating which are used all over the world since the 1980s. Spectrally selective paint coatings based on combinations of two types of resins, various types of pigments and three types of silica, were prepared. The influence of pigment type and pigment volume concentration (PVC) was studied by applying the Kubelka-Munk (K-M) theory. The relation between the degrees of dispersion and distribution of pigment particles across the paint layer is discussed in terms of K-M coefficients.

  3. Gap and density theorems

    CERN Document Server

    Levinson, N

    1940-01-01

    A typical gap theorem of the type discussed in the book deals with a set of exponential functions { \\{e^{{{i\\lambda}_n} x}\\} } on an interval of the real line and explores the conditions under which this set generates the entire L_2 space on this interval. A typical gap theorem deals with functions f on the real line such that many Fourier coefficients of f vanish. The main goal of this book is to investigate relations between density and gap theorems and to study various cases where these theorems hold. The author also shows that density- and gap-type theorems are related to various propertie

  4. Nuclear level density

    International Nuclear Information System (INIS)

    Cardoso Junior, J.L.

    1982-10-01

    Experimental data show that the number of nuclear states increases rapidly with increasing excitation energy. The properties of highly excited nuclei are important for many nuclear reactions, mainly those that go via processes of the compound nucleus type. In this case, it is sufficient to know the statistical properties of the nuclear levels. First of them is the function of nuclear levels density. Several theoretical models which describe the level density are presented. The statistical mechanics and a quantum mechanics formalisms as well as semi-empirical results are analysed and discussed. (Author) [pt

  5. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  6. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  7. [Study on spectral detection of green plant target].

    Science.gov (United States)

    Deng, Wei; Zhao, Chun-jiang; He, Xiong-kui; Chen, Li-ping; Zhang, Lu-da; Wu, Guang-wei; Mueller, J; Zhai, Chang-yuan

    2010-08-01

    Weeds grow scatteredly in fields, where many insentient objects exist, for example, withered grasses, dry twig and barriers. In order to improve the precision level of spraying, it is important to study green plant detecting technology. The present paper discussed detecting method of green plant by using spectral recognizing technology, because of the real-time feature of spectral recognition. By analyzing the reflectivity difference between each of the two sides of the "red edge" of the spectrum from plants and surrounding environment, green plant discriminat index (GPDI) is defined as the value which equals the reflectivity ratio at the wavelength of 850 nm divided by the reflectivity ratio at the wavelength of 650 nm. The original spectral data of green plants and the background were measured by using the handhold FieldSpec 3 Spectroradiometer manufactured by ASD Inc. in USA. The spectral data were processed to get the reflectivity of each measured objects and to work out the GPDI thereof as well. The classification model of green plant and its background was built up using decision tree method in order to obtain the threshold of GPDI to distinguish green plants and the background. The threshold of GPDI was chosen as 5.54. The detected object was recognized as green plant when it is GPDI>GPDITH, and vice versa. Through another test, the accuracy rate was verified which was 100% by using the threshold. The authors designed and developed the green plant detector based on single chip microcomputer (SCM) "AT89S51" and photodiode "OPT101" to realize detecting green plants from the background. After passing through two optical filters, the center wavelengths of which are 650 and 850 nm respectively, the reflected light from measured targets was detected by two photodiodes and converted into electrical signals. These analog signals were then converted to digital signals via an analog-to-digital converter (ADS7813) after being amplified by a signal amplifier (OP400

  8. Isospectral Flows for the Inhomogeneous String Density Problem

    Science.gov (United States)

    Górski, Andrzej Z.; Szmigielski, Jacek

    2018-02-01

    We derive isospectral flows of the mass density in the string boundary value problem corresponding to general boundary conditions. In particular, we show that certain class of rational flows produces in a suitable limit all flows generated by polynomials in negative powers of the spectral parameter. We illustrate the theory with concrete examples of isospectral flows of discrete mass densities which we prove to be Hamiltonian and for which we provide explicit solutions of equations of motion in terms of Stieltjes continued fractions and Hankel determinants.

  9. Stark broadening of several Bi IV spectral lines of astrophysical interest

    Science.gov (United States)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  10. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  11. Towards Operational Definition of Postictal Stage: Spectral Entropy as a Marker of Seizure Ending

    Directory of Open Access Journals (Sweden)

    Ancor Sanz-García

    2017-02-01

    Full Text Available The postictal period is characterized by several neurological alterations, but its exact limits are clinically or even electroencephalographically hard to determine in most cases. We aim to provide quantitative functions or conditions with a clearly distinguishable behavior during the ictal-postictal transition. Spectral methods were used to analyze foramen ovale electrodes (FOE recordings during the ictal/postictal transition in 31 seizures of 15 patients with strictly unilateral drug resistant temporal lobe epilepsy. In particular, density of links, spectral entropy, and relative spectral power were analyzed. Partial simple seizures are accompanied by an ipsilateral increase in the relative Delta power and a decrease in synchronization in a 66% and 91% of the cases, respectively, after seizures offset. Complex partial seizures showed a decrease in the spectral entropy in 94% of cases, both ipsilateral and contralateral sides (100% and 73%, respectively mainly due to an increase of relative Delta activity. Seizure offset is defined as the moment at which the “seizure termination mechanisms” actually end, which is quantified in the spectral entropy value. We propose as a definition for the postictal start the time when the ipsilateral SE reaches the first global minimum.

  12. Spectral history correction of microscopic cross sections for the PBR using the slowing down balance

    International Nuclear Information System (INIS)

    Hudson, N.; Rahnema, F.; Ougouag, A. M.; Gougar, H. D.

    2006-01-01

    A method has been formulated to account for depletion effects on microscopic cross sections within a Pebble Bed Reactor (PBR) spectral zone without resorting to calls to the spectrum (cross section generation) code or relying upon table interpolation between data at different values of burnup. In this method, infinite medium microscopic cross sections, fine group fission spectra, and modulation factors are pre-computed at selected isotopic states. This fine group information is used with the local spectral zone nuclide densities to generate new cross sections for each spectral zone. The local spectrum used to generate these microscopic cross sections is estimated through the solution to the cell-homogenized, infinite medium slowing down balance equation during the flux calculation. This technique is known as Spectral History Correction (SHC), and it is formulated to specifically account for burnup within a spectral zone. It was found that the SHC technique accurately calculates local broad group microscopic cross sections with local burnup information. Good agreement is obtained with cross sections generated directly by the cross section generator. Encouraging results include improvement in the converged fuel cycle eigenvalue, the power peaking factor, and the flux. It was also found that the method compared favorably to the benchmark problem in terms of the computational speed. (authors)

  13. Applications of cost-effective spectral imaging microscopy in cancer research

    International Nuclear Information System (INIS)

    Barber, P R; Vojnovic, B; Atkin, G; Daley, F M; Everett, S A; Wilson, G D; Gilbey, J D

    2003-01-01

    The application of a cost-effective spectral imager to spatially segmenting absorptive and fluorescent chemical probes on the basis of their spectral characteristics has been demonstrated. The imager comprises a computer-controlled spectrally selective element that allows random access to a bandwidth of 15 nm between 400 and 700 nm. Further, the use of linear un-mixing of the spectral response of a sample at a single pixel has been facilitated using non-negative least squares fitting. Examples are given showing the separation of dye distributions, such as immunohistochemical markers for tumour hypoxia, from multiply stained thin tissue sections, imaged by trans-illumination microscopy. A quantitative study is also presented that shows a correlation between staining intensity and normal versus tumour tissue, and the advantage of reducing the amount of data captured for a particular study is also demonstrated. An example of the application to fluorescence microscopy is also given, showing the separation of green fluorescent protein, Cy3 and Cy5 at a single pixel. The system has been validated against samples of known optical density and of known overlapping combinations of coloured filters. These results confirm the ability of this technique to separate spectral responses that cannot be resolved with conventional colour imaging

  14. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  15. Glue Film Thickness Measurements by Spectral Reflectance

    International Nuclear Information System (INIS)

    Marshall, B.R.

    2010-01-01

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 (micro)m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  16. Spectral methods in numerical plasma simulation

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)

  17. Spectral asymmetry for bag boundary conditions

    International Nuclear Information System (INIS)

    Beneventano, C G; Santangelo, E M; Wipf, A

    2002-01-01

    We give an expression, in terms of boundary spectral functions, for the spectral asymmetry of the Euclidean Dirac operator in two dimensions, when its domain is determined by local boundary conditions and the manifold is of product type. As an application, we explicitly evaluate the asymmetry in the case of a finite-length cylinder and check that the outcome is consistent with our general result. Finally, we study the asymmetry in a disc, which is a non-product case, and propose an interpretation

  18. Quantum BCH Codes Based on Spectral Techniques

    International Nuclear Information System (INIS)

    Guo Ying; Zeng Guihua

    2006-01-01

    When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F 2 , which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.

  19. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.

    2016-09-01

    With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).

  20. Glue Film Thickness Measurements by Spectral Reflectance

    Energy Technology Data Exchange (ETDEWEB)

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  1. Reducing the spectral index in supernatural inflation

    International Nuclear Information System (INIS)

    Lin, C.-M.; Cheung, Kingman

    2009-01-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is n s > or approx. 1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to n s =0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  2. Reducing the spectral index in supernatural inflation

    Science.gov (United States)

    Lin, Chia-Min; Cheung, Kingman

    2009-04-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is ns≳1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to ns=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  3. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  4. Spectral Theory of Operators on Hilbert Spaces

    CERN Document Server

    Kubrusly, Carlos S

    2012-01-01

    This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat

  5. Bordism, stable homotopy and adams spectral sequences

    CERN Document Server

    Kochman, Stanley O

    1996-01-01

    This book is a compilation of lecture notes that were prepared for the graduate course "Adams Spectral Sequences and Stable Homotopy Theory" given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peter

  6. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  7. Logarithmic compression methods for spectral data

    Science.gov (United States)

    Dunham, Mark E.

    2003-01-01

    A method is provided for logarithmic compression, transmission, and expansion of spectral data. A log Gabor transformation is made of incoming time series data to output spectral phase and logarithmic magnitude values. The output phase and logarithmic magnitude values are compressed by selecting only magnitude values above a selected threshold and corresponding phase values to transmit compressed phase and logarithmic magnitude values. A reverse log Gabor transformation is then performed on the transmitted phase and logarithmic magnitude values to output transmitted time series data to a user.

  8. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  9. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  10. Application of the spectral-correlation method for diagnostics of cellulose paper

    Science.gov (United States)

    Kiesewetter, D.; Malyugin, V.; Reznik, A.; Yudin, A.; Zhuravleva, N.

    2017-11-01

    The spectral-correlation method was described for diagnostics of optically inhomogeneous biological objects and materials of natural origin. The interrelation between parameters of the studied objects and parameters of the cross correlation function of speckle patterns produced by scattering of coherent light at different wavelengths is shown for thickness, optical density and internal structure of the material. A detailed study was performed for cellulose electric insulating paper with different parameters.

  11. A Tryst With Density

    Indian Academy of Sciences (India)

    best known for developing the density functional theory (DFT). This is an extremely ... lem that has become famous in popular culture is that of the planet. Tatooine. Fans of ... the Schrödinger equation (or, if relativistic effects are important, the Dirac .... it supplies a moral justification for one's subsequent endeav- ours along ...

  12. Density in Liquids.

    Science.gov (United States)

    Nesin, Gert; Barrow, Lloyd H.

    1984-01-01

    Describes a fourth-grade unit on density which introduces a concept useful in the study of chemistry and procedures appropriate to the chemistry laboratory. The hands-on activities, which use simple equipment and household substances, are at the level of thinking Piaget describes as concrete operational. (BC)

  13. Destiny from density

    OpenAIRE

    Seewaldt, Victoria L.

    2012-01-01

    The identification of a signalling protein that regulates the accumulation of fat and connective tissue in breasts may help to explain why high mammographic density is linked to breast-cancer risk and may provide a marker for predicting this risk.

  14. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  15. Using Fe XXII to Determine the Electron Density of Stellar Coronae

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Gu, M. F.

    2010-03-01

    Lines from Fe XXII, both in the EUV and X-ray region, are known to be sensitive to the electron density and have in recent years been used as diagnostics of stellar coronae, such as AB Dor and Ex Hya. We have recently obtained spectral data from laboratory sources in which the electron density is known either from non-spectroscopic means or from K-shell density diagnostics. The densities of the laboratory sources range from 5x1011 cm-3 to 5x1014 cm-3. The measurements have been used to test the spectral models underlying the Fe XXII density diagnostic line ratios. This work was supported by the NASA APRA program and the DOE General Plasma Science program.

  16. Electronic and Spectral Properties of RRhSn (R = Gd, Tb) Intermetallic Compounds

    Science.gov (United States)

    Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gupta, S.; Suresh, K. G.

    2018-02-01

    The investigations of electronic structure and optical properties of GdRhSn and TbRhSn were carried out. The calculations of band spectrum, taking into account the spin polarization, were performed in a local electron density approximation with a correction for strong correlation effects in 4f shell of rare earth metal (LSDA + U method). The optical studies were done by ellipsometry in a wide range of wavelengths, and the set of spectral and electronic characteristics was determined. It was shown that optical absorption in a region of interband transitions has a satisfactory explanation within a scope of calculations of density of electronic states carried out.

  17. [Compressive-spectral analysis of EEG in patients with panic attacks in the context of different psychiatric diseases].

    Science.gov (United States)

    Tuter, N V; Gnezditskiĭ, V V

    2008-01-01

    Panic disorders (PD) which develop in the context of different psychiatric diseases (neurotic, personality disorder and schizotypal disorders) have their own clinical and neurophysiological features. The results of compressive-spectral analysis of EEG (CSA EEG) in patients with panic attack were different depending on the specifics of initial psychiatric status. EEG parameters in patients differed from those in controls. The common feature for all PD patients was the lower spectral density of theta-, alpha- and beta-bands as well as total spectral density without any alterations of region distribution. The decrease of electrical activity of activation systems was found in the groups with neurotic and schizotypal disorders and that of inhibition systems - in the group with schizotypal disorders. The EEG results did not suggest any depression of activation systems in patients with specific personality disorders. The data obtained with CSA EEG mirror the integrative brain activity which determinad of the appearance of PA as well as of nosology of psychiatre disease.

  18. Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2014-07-01

    Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.

  19. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao; Kroll, Jay A.; Rad, Mary L.; Hays, Brian M.; Sanders, James L.; Cross, Trevor N.; Wehres, Nadine; McGuire, Brett A. [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Lis, Dariusz C.; Sumner, Matthew C., E-mail: susanna.widicus.weaver@emory.edu [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States)

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature, density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.

  20. Neutron density fluctuations in point reactor systems with dichotomic reactivity noise

    International Nuclear Information System (INIS)

    Sako, Okitsugu

    1984-01-01

    The exactly solvable stochastic point reactor model systems are analyzed through the stochastic Liouville equation. Three kinds of model systems are treated: (1) linear system without delayed neutrons, (2) linear system with one-group of delayed neutrons, and (3) nonlinear system with direct power feedback. The exact expressions for the fluctuations of neutron density, such as the moments, autocorrelation function and power spectral density, are derived in the case where the colored reactivity noise is described by the dichotomic, or two state, Markov process with arbitrary correlation time and intensity, and the effects of the finite correlation time and intensity of the noise on the neutron density fluctuations are investigated. The influence of presence of delayed neutrons and the effect of nonlinearity of system on the neutron density fluctuations are also elucidated. When the reactivity correlation time is very short, the correlation time has almost no effect on the power spectral density, and the relative fluctuation of neutron density in the stationary state is not affected very much by the presence of delayed neutrons and also by the nonlinearity of system. On the other hand, if the reactivity correlation time is very long, the effect of the reactivity noise on the power spectral density appears at very low frequency, and the presence of delayed neutrons has an effect of reducing the neutron density fluctuations. (author)

  1. Spectral Variations of T Tauri stars

    Science.gov (United States)

    Guenther, E.

    1994-02-01

    Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling

  2. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  3. Capability of space-spectral analysis used for studying underground nuclear explosions effect on ground surface condition

    International Nuclear Information System (INIS)

    Melent'ev, M.I.; Velikanov, A.E.

    2003-01-01

    The article describes the results of the work of study of the influence underground nucleus blasts (UNB) on condition of the day surface of the site Balapan on the territory of Semipalatinsk Test Site using materials of remote space sensing. The estimation of the cosmic spectral analysis information density is given for revealing the post-explosive geo- dynamic processes. (author)

  4. Inter-annual variations in wave spectral characteristics at a location off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Nair, M.A.

    of maximum spectral energy density in a calendar year during 2009–2012. data were provided by the NOAA-CIRES Climate Diagnos- tics Center, Boulder, Colorado at http://www.cdc.noaa.gov/. The frequency bins over which the wave spectrum was es- timated every...

  5. Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons

    Science.gov (United States)

    K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose

    2013-01-01

    A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...

  6. Sparsity and spectral properties of dual frames

    DEFF Research Database (Denmark)

    Krahmer, Felix; Kutyniok, Gitta; Lemvig, Jakob

    2013-01-01

    We study sparsity and spectral properties of dual frames of a given finite frame. We show that any finite frame has a dual with no more than $n^2$ non-vanishing entries, where $n$ denotes the ambient dimension, and that for most frames no sparser dual is possible. Moreover, we derive an expressio...

  7. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  8. Holonomy loops, spectral triples and quantum gravity

    DEFF Research Database (Denmark)

    Johannes, Aastrup; Grimstrup, Jesper Møller; Nest, Ryszard

    2009-01-01

    We review the motivation, construction and physical interpretation of a semi-finite spectral triple obtained through a rearrangement of central elements of loop quantum gravity. The triple is based on a countable set of oriented graphs and the algebra consists of generalized holonomy loops...

  9. Spectral Analysis of Large Particle Systems

    DEFF Research Database (Denmark)

    Dahlbæk, Jonas

    2017-01-01

    that Schur complements, Feshbach maps and Grushin problems are three sides of the same coin, it seems to be a new observation that the smooth Feshbach method can also be formulated as a Grushin problem. Based on this, an abstract account of the spectral renormalization group is given....

  10. Spectral Purity Enhancement via Polyphase Multipath Circuits

    NARCIS (Netherlands)

    Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits by using polyphase multipath circuits? The basic idea behind polyphase multipath circuits is to split the nonlinear circuits into two or more paths and exploit phase differences between these paths to

  11. Temporal and spectral interaction in loudness perception

    DEFF Research Database (Denmark)

    Pedersen, Benjamin; Ellermeier, Wolfgang

    An experiment was conducted to investigate how changes in spectral content influence loudness judgments. Six listeners were asked to discriminate sounds, which were of one second duration and changing in level every 0.1 s. In one condition the first half of the sound was low-pass filtered and the...

  12. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  13. Spectral triples and the geometry of fractals

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina; Schroe, Elmar

    2012-01-01

    It is shown that one can construct a spectral triple for the Sierpinski gasket such that it represents any given K-homology class, On the other hand if the geodesic distance and the dimension has to be part of the data from the triple, there are certain restriction....

  14. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.; MacKinnon, A.; Schwingenschlö gl, Udo

    2014-01-01

    of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate

  15. Electrophysiological measurements of spectral sensitivities: a review

    Directory of Open Access Journals (Sweden)

    R.D. DeVoe

    1997-02-01

    Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

  16. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  17. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  18. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...

  19. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  20. YGFP: a spectral variant of GFP

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Atlung, Tove

    2011-01-01

    We describe YGFP, a slow bleaching green fluorescent protein (GFP) with unique spectral properties. YGFP is derived from an Escherichia coli codon-optimized synthetic gfp, mutant 2 derivative. In addition to the GFP-mut 2 changes, it also carries S202F and T203I substitutions. YGFP can be used...