Spectral analysis by correlation
International Nuclear Information System (INIS)
Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.
1969-01-01
The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr
SPECTRAL ANALYSIS OF EXCHANGE RATES
Directory of Open Access Journals (Sweden)
ALEŠA LOTRIČ DOLINAR
2013-06-01
Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates
Hansson, Sven Ove; Aven, Terje
2014-07-01
This article discusses to what extent risk analysis is scientific in view of a set of commonly used definitions and criteria. We consider scientific knowledge to be characterized by its subject matter, its success in developing the best available knowledge in its fields of study, and the epistemic norms and values that guide scientific investigations. We proceed to assess the field of risk analysis according to these criteria. For this purpose, we use a model for risk analysis in which science is used as a base for decision making on risks, which covers the five elements evidence, knowledge base, broad risk evaluation, managerial review and judgment, and the decision; and that relates these elements to the domains experts and decisionmakers, and to the domains fact-based or value-based. We conclude that risk analysis is a scientific field of study, when understood as consisting primarily of (i) knowledge about risk-related phenomena, processes, events, etc., and (ii) concepts, theories, frameworks, approaches, principles, methods and models to understand, assess, characterize, communicate, and manage risk, in general and for specific applications (the instrumental part). © 2014 Society for Risk Analysis.
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
Scientific stream pollution analysis
National Research Council Canada - National Science Library
Nemerow, Nelson Leonard
1974-01-01
A comprehensive description of the analysis of water pollution that presents a careful balance of the biological,hydrological, chemical and mathematical concepts involved in the evaluation of stream...
Spectral analysis of bedform dynamics
DEFF Research Database (Denmark)
Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko
Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...
Examination of Spectral Transformations on Spectral Mixture Analysis
Deng, Y.; Wu, C.
2018-04-01
While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis
2011-04-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis; Mouhot, Clé ment
2011-01-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different
Functional analysis, spectral theory, and applications
Einsiedler, Manfred
2017-01-01
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Particulate characterization by PIXE multivariate spectral analysis
International Nuclear Information System (INIS)
Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.
2007-01-01
Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Terahertz Josephson spectral analysis and its applications
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
Spectral analysis of Floating Car Data
Gössel, F.; Michler, E.; Wrase, B.
2003-01-01
Floating Car Data (FCD) are one important data source in traffic telematic systems. The original variable in these systems is the vehicle velocity. The paper analyses the measured value “vehicle velocity" by methods of information technology. Consequences for processing, transmission and storage of FCD under condition of limited resources are discussed. Starting point of the investigation is the analysis of spectral characteristics of velocity-time-profiles. The spectra are determined by...
Multitaper spectral analysis of atmospheric radar signals
Directory of Open Access Journals (Sweden)
V. K. Anandan
2004-11-01
Full Text Available Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.
Semiclassical analysis spectral correlations in mesoscopic systems
International Nuclear Information System (INIS)
Argaman, N.; Imry, Y.; Smilansky, U.
1991-07-01
We consider the recently developed semiclassical analysis of the quantum mechanical spectral form factor, which may be expressed in terms of classically defiable properties. When applied to electrons whose classical behaviour is diffusive, the results of earlier quantum mechanical perturbative derivations, which were developed under a different set of assumptions, are reproduced. The comparison between the two derivations shows that the results depends not on their specific details, but to a large extent on the principle of quantum coherent superposition, and on the generality of the notion of diffusion. The connection with classical properties facilitates application to many physical situations. (author)
Spectral analysis of allogeneic hydroxyapatite powders
Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.
2017-01-01
In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.
Spectral analysis of allogeneic hydroxyapatite powders
International Nuclear Information System (INIS)
Timchenko, P E; Timchenko, E V; Pisareva, E V; Vlasov, M Yu; Red’kin, N A; Frolov, O O
2017-01-01
In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm -1 ((PO 4 ) 3- (ν 1 ) vibration) and 1065-1075 cm -1 ((CO 3 ) 2- (ν 1 ) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy. (paper)
A spectral analysis of rice grains
International Nuclear Information System (INIS)
McIlvaine, M.S.; Cua, F.T.; Navarro, E.F.
1976-06-01
With the advent of extensive nuclear testing and the development and use of highly potent pesticides and fertilizers, the hazardous threats of radioactive contamination due to fallout and to the absorption of pesticide residues have been given due consideration. Among the many forms of life exposed to these threats are food crops and among these is rice. Several rice grain samples - Japanese rice samples ''A'' and ''B'' submitted by the National Grains Authority (NGA) for analysis, random samples of rice being sold to the public at local markets, and ''black rice'' which were picked from along the shores of a Mindoro town were subjected to spectral analysis. Results revealed the presence of trace elements normally found in plants, such as; K-42, I-124, Cl-38, Na-24, Br-82, and Mn-56. No mercury was detected in the sample specimen analyzed
Spectral analysis of major heart tones
Lejkowski, W.; Dobrowolski, A. P.; Majka, K.; Olszewski, R.
2018-04-01
The World Health Organization (WHO) figures clearly indicate that cardiovascular disease is the most common cause of death and disability in the world. Early detection of cardiovascular pathologies may contribute to reducing such a high mortality rate. Auscultatory examination is one of the first and most important step in cardiologic diagnostics. Unfortunately, proper diagnosis is closely related to long-term practice and medical experience. The article presents the author's system of recording phonocardiograms and the way of saving data, as well as the outline of the analysis algorithm, which will allow to assign a case to a patient with heart failure or healthy voluntaries' with a certain high probability. The results of a pilot study of phonocardiographic signals were also presented as an introduction to further research aimed at the development of an efficient diagnostic algorithm based on spectral analysis of the heart tone.
Spectral Analysis Methods of Social Networks
Directory of Open Access Journals (Sweden)
P. G. Klyucharev
2017-01-01
Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work
EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS
Energy Technology Data Exchange (ETDEWEB)
Agarwal, Sahil; Wettlaufer, John S. [Program in Applied Mathematics, Yale University, New Haven, CT (United States); Sordo, Fabio Del [Department of Astronomy, Yale University, New Haven, CT (United States)
2017-01-01
Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.
A practical guide to scientific data analysis
Livingstone, David J
2009-01-01
Inspired by the author's need for practical guidance in the processes of data analysis, A Practical Guide to Scientific Data Analysis has been written as a statistical companion for the working scientist. This handbook of data analysis with worked examples focuses on the application of mathematical and statistical techniques and the interpretation of their results. Covering the most common statistical methods for examining and exploring relationships in data, the text includes extensive examples from a variety of scientific disciplines. The chapters are organised logically, from pl
Topological data analysis for scientific visualization
Tierny, Julien
2017-01-01
Combining theoretical and practical aspects of topology, this book delivers a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a thorough but intuitive manner, with many high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in details, and their application is carefully illustrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis, for lecturers, students and researchers.
Advanced Excel for scientific data analysis
De Levie, Robert
2004-01-01
Excel is by far the most widely distributed data analysis software but few users are aware of its full powers. Advanced Excel For Scientific Data Analysis takes off from where most books dealing with scientific applications of Excel end. It focuses on three areas-least squares, Fourier transformation, and digital simulation-and illustrates these with extensive examples, often taken from the literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. These macros and functions are provided in uncompiled, computer-readable, easily
Spectral analysis and filter theory in applied geophysics
Buttkus, Burkhard
2000-01-01
This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval uated, and instructions provided for their practical application. Be sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob served data, maximum-entropy spectral analysis and maximum-like lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
Statistics and analysis of scientific data
Bonamente, Massimiliano
2013-01-01
Statistics and Analysis of Scientific Data covers the foundations of probability theory and statistics, and a number of numerical and analytical methods that are essential for the present-day analyst of scientific data. Topics covered include probability theory, distribution functions of statistics, fits to two-dimensional datasheets and parameter estimation, Monte Carlo methods and Markov chains. Equal attention is paid to the theory and its practical application, and results from classic experiments in various fields are used to illustrate the importance of statistics in the analysis of scientific data. The main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and proactive use of the material for practical applications. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is us...
Spectral analysis of noisy nonlinear maps
International Nuclear Information System (INIS)
Hirshman, S.P.; Whitson, J.C.
1982-01-01
A path integral equation formalism is developed to obtain the frequency spectrum of nonlinear mappings exhibiting chaotic behavior. The one-dimensional map, x/sub n+1/ = f(x/sub n/), where f is nonlinear and n is a discrete time variable, is analyzed in detail. This map is introduced as a paradigm of systems whose exact behavior is exceedingly complex, and therefore irretrievable, but which nevertheless possess smooth, well-behaved solutions in the presence of small sources of external noise. A Boltzmann integral equation is derived for the probability distribution function p(x,n). This equation is linear and is therefore amenable to spectral analysis. The nonlinear dynamics in f(x) appear as transition probability matrix elements, and the presence of noise appears simply as an overall multiplicative scattering amplitude. This formalism is used to investigate the band structure of the logistic equation and to analyze the effects of external noise on both the invariant measure and the frequency spectrum of x/sub n/ for several values of lambda epsilon [0,1
Spectral signature verification using statistical analysis and text mining
DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.
2016-05-01
In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is
Spectral Analysis of Large Particle Systems
DEFF Research Database (Denmark)
Dahlbæk, Jonas
2017-01-01
that Schur complements, Feshbach maps and Grushin problems are three sides of the same coin, it seems to be a new observation that the smooth Feshbach method can also be formulated as a Grushin problem. Based on this, an abstract account of the spectral renormalization group is given....
Spectral Analysis of Rich Network Topology in Social Networks
Wu, Leting
2013-01-01
Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…
Nonlinear physical systems spectral analysis, stability and bifurcations
Kirillov, Oleg N
2013-01-01
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam
SpectralNET – an application for spectral graph analysis and visualization
Directory of Open Access Journals (Sweden)
Schreiber Stuart L
2005-10-01
Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is
Spectral Analysis of Vector Magnetic Field Profiles
Parker, Robert L.; OBrien, Michael S.
1997-01-01
We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.
Evaluation of Fourier integral. Spectral analysis of seismic events
International Nuclear Information System (INIS)
Chitaru, Cristian; Enescu, Dumitru
2003-01-01
Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)
Alpha spectral analysis via artificial neural networks
International Nuclear Information System (INIS)
Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.
1994-10-01
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system
Spectral response analysis of PVDF capacitive sensors
Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.
2013-06-01
We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.
Spectral analysis of the turbulent mixing of two fluids
Energy Technology Data Exchange (ETDEWEB)
Steinkamp, M.J.
1996-02-01
The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.
Emissivity compensated spectral pyrometry—algorithm and sensitivity analysis
International Nuclear Information System (INIS)
Hagqvist, Petter; Sikström, Fredrik; Christiansson, Anna-Karin; Lennartson, Bengt
2014-01-01
In order to solve the problem of non-contact temperature measurements on an object with varying emissivity, a new method is herein described and evaluated. The method uses spectral radiance measurements and converts them to temperature readings. It proves to be resilient towards changes in spectral emissivity and tolerates noisy spectral measurements. It is based on an assumption of smooth changes in emissivity and uses historical values of spectral emissivity and temperature for estimating current spectral emissivity. The algorithm, its constituent steps and accompanying parameters are described and discussed. A thorough sensitivity analysis of the method is carried out through simulations. No rigorous instrument calibration is needed for the presented method and it is therefore industrially tractable. (paper)
The Scientific Image in Behavior Analysis.
Keenan, Mickey
2016-05-01
Throughout the history of science, the scientific image has played a significant role in communication. With recent developments in computing technology, there has been an increase in the kinds of opportunities now available for scientists to communicate in more sophisticated ways. Within behavior analysis, though, we are only just beginning to appreciate the importance of going beyond the printing press to elucidate basic principles of behavior. The aim of this manuscript is to stimulate appreciation of both the role of the scientific image and the opportunities provided by a quick response code (QR code) for enhancing the functionality of the printed page. I discuss the limitations of imagery in behavior analysis ("Introduction"), and I show examples of what can be done with animations and multimedia for teaching philosophical issues that arise when teaching about private events ("Private Events 1 and 2"). Animations are also useful for bypassing ethical issues when showing examples of challenging behavior ("Challenging Behavior"). Each of these topics can be accessed only by scanning the QR code provided. This contingency has been arranged to help the reader embrace this new technology. In so doing, I hope to show its potential for going beyond the limitations of the printing press.
Analysis of scientific production in spanish implantology.
Tarazona, Beatriz; Vidal-Infer, Antonio; Tarazona-Alvarez, Pablo; Alonso-Arroyo, Adolfo
2017-05-01
The aim of the study was to quantify the scientific productivity of researchers, organizations, and regions in Spain that publish articles on implantology in dental journals indexed in Journal Citation Reports. A search was conducted among the core collection of Thomson Reuters' Web of Science database, on the basis of its broad thematic and geographic coverage of health sciences. The search identified original articles - the main vehicle for the dissemination of research results. The search was conducted in July 2016, applying the truncated search term 'implant*' to locate original articles on implantology and its derivative forms. The search was conducted within the topic field (title, keywords and abstract) and two inclusion criteria were applied: documents denominated as articles were included; and articles categorized as Web of Science Medicine Dentistry and Oral Surgery. Finally only articles for which one of the participating organizations was located in Spain were selected. The final search identified a total of 774 records. The period 1988 to 2015 saw an exponential growth in scientific production, especially during the last 10 years. Clinical Oral Implants Research and Medicina Oral Patologia Oral y Cirugia Bucal (Oral Medicine, Oral Pathology, and Oral Surgery) were the most productive journals. Collaborative networks among authors and among institutions increased and this increase was related to the improving quality of the publications. Bibliometric analysis revealed a significant growth in the quantity and quality of Spanish implantology literature. Most key bibliometric indicators demonstrated upward trends. Key words: Bibliometric analysis, publication, keywords, implantology, implant.
A spectral analysis of ablating meteors
Bloxam, K.; Campbell-Brown, M.
2017-09-01
Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.
Statistics and analysis of scientific data
Bonamente, Massimiliano
2017-01-01
The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains. Features new to this edition include: • a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets. • a new chapter on the various measures of the mean including logarithmic averages. • new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors. • a new case study and additional worked examples. • mathematical derivations and theoretical background material have been appropriately marked,to improve the readabili...
Antepartum Fetal Monitoring and Spectral Analysis of Preterm Birth Risk
Păsăricără, Alexandru; Nemescu, Dragoş; Arotăriţei, Dragoş; Rotariu, Cristian
2017-11-01
The monitoring and analysis of antepartum fetal and maternal recordings is a research area of notable interest due to the relatively high value of preterm birth. The interest stems from the improvement of devices used for monitoring. The current paper presents the spectral analysis of antepartum heart rate recordings conducted during a study in Romania at the Cuza Voda Obstetrics and Gynecology Clinical Hospital from Iasi between 2010 and 2014. The study focuses on normal and preterm birth risk subjects in order to determine differences between these two types or recordings in terms of spectral analysis.
Hydrogen quasienergies from spectral analysis of wavepackets
International Nuclear Information System (INIS)
Dondera, M.; Muller, H.G.; Gavrila, M.
2002-01-01
Quasienergies (qe) are calculated traditionally by solving the time-independent Floquet system of differential equations. A number of such calculations have been carried out successfully in the past for atomic hydrogen, albeit not at the frequencies of operation of current super intense lasers. We now present a method for calculating qe based on the evolution of a wave packet of the Schroedinger equation with a time-periodic Hamiltonian, that is an extension of the well known 'spectral method' for obtaining (real) eigenenergies of a time-independent Hamiltonian. The present method is based on propagating a wave packet Ψ(t) with an appropriately chosen initial condition Ψ(0) in a periodic field of constant amplitude, and then Fourier analyzing the autocorrelation function A(t) = . The Fourier transform of the autocorrelation function displays a set of lines, whose location and widths are related to the complex qe of the Floquet states present in the expansion of the wave packet. When these lines are non-overlapping, standard fitting techniques allow the extraction of the real and imaginary parts of the qe. For the case of overlapping lines, we apply the more elaborate technique of 'filter diagonalization'. Our method was tested by comparison with qe obtained from other sources, e.g., the solution of the system of differential equations. We apply the method to 3D hydrogen in a laser field of linear polarization, at the frequently used photon energy ω = 1.55 eV (wavelength 800 nm). We consider Floquet states belonging to several symmetry manifolds m. The field amplitude is varied from zero to several a.u. We thus obtain a 'Floquet map' for the real part of the qe of the lower states, and separately, the imaginary parts (widths) of the qe. The Floquet map displays interesting pseudo-crossings. We interpret the results in terms of avoided crossings of trajectories of the qe in the complex energy plane, and discuss their physical significance. (authors)
SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different
Multi-spectral Image Analysis for Astaxanthin Coating Classification
DEFF Research Database (Denmark)
Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht
2011-01-01
Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...
Spectral analysis of the structure of ultradispersed diamonds
Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.
2008-07-01
The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.
Spectral Analysis of Moderately Charged Rare-Gas Atoms
Directory of Open Access Journals (Sweden)
Jorge Reyna Almandos
2017-03-01
Full Text Available This article presents a review concerning the spectral analysis of several ions of neon, argon, krypton and xenon, with impact on laser studies and astrophysics that were mainly carried out in our collaborative groups between Argentina and Brazil during many years. The spectra were recorded from the vacuum ultraviolet to infrared regions using pulsed discharges. Semi-empirical approaches with relativistic Hartree–Fock and Dirac-Fock calculations were also included in these investigations. The spectral analysis produced new classified lines and energy levels. Lifetimes and oscillator strengths were also calculated.
Spectral theory and nonlinear analysis with applications to spatial ecology
Cano-Casanova, S; Mora-Corral , C
2005-01-01
This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.
HYPERSPECTRAL HYPERION IMAGERY ANALYSIS AND ITS APPLICATION USING SPECTRAL ANALYSIS
Directory of Open Access Journals (Sweden)
W. Pervez
2015-03-01
Full Text Available Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more useful for its further processing/ application. Principal component (PC analysis applied to the hyperspectral calibrated bands reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998.
Automated spectral and timing analysis of AGNs
Munz, F.; Karas, V.; Guainazzi, M.
2006-12-01
% We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.
Analysis of errors in spectral reconstruction with a Laplace transform pair model
International Nuclear Information System (INIS)
Archer, B.R.; Bushong, S.C.
1985-01-01
The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)
[Infrared spectral analysis for calcined borax].
Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao
2011-08-01
To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.
PCLOOK: an interactive code for spectral analysis
International Nuclear Information System (INIS)
Macchiavelli, A.O.; Tomasi, D.
1993-01-01
The present work describes an interactive programme for the analysis of spectra developed to run in a PC platform. PCLOOK has a graphic interface that allows the user to get access to different functions using the mouse or directly typing commands. In this way one can switch to a suitable required environment to manage the histograms reassembling in this way a spectrum calculator.The PCLOOK programme was mainly developed to use in nuclear physics applications, but it is also possible to modify it with relative little effort to adapt it to other applications. It was written in Microsoft's BASIC 7.1 installed in a 33MHz 486 Everex PC. For a proper operation an ordinary VGA display and mouse are needed. The memory requirements depend on the size and number of the user defined spectra; for instance, for twenty 2048 channels spectra the available memory space must be 320 KBytes. (author). 5 figs
Analysis of wheezes using wavelet higher order spectral features.
Taplidou, Styliani A; Hadjileontiadis, Leontios J
2010-07-01
Wheezes are musical breath sounds, which usually imply an existing pulmonary obstruction, such as asthma and chronic obstructive pulmonary disease (COPD). Although many studies have addressed the problem of wheeze detection, a limited number of scientific works has focused in the analysis of wheeze characteristics, and in particular, their time-varying nonlinear characteristics. In this study, an effort is made to reveal and statistically analyze the nonlinear characteristics of wheezes and their evolution over time, as they are reflected in the quadratic phase coupling of their harmonics. To this end, the continuous wavelet transform (CWT) is used in combination with third-order spectra to define the analysis domain, where the nonlinear interactions of the harmonics of wheezes and their time variations are revealed by incorporating instantaneous wavelet bispectrum and bicoherence, which provide with the instantaneous biamplitude and biphase curves. Based on this nonlinear information pool, a set of 23 features is proposed for the nonlinear analysis of wheezes. Two complementary perspectives, i.e., general and detailed, related to average performance and to localities, respectively, were used in the construction of the feature set, in order to embed trends and local behaviors, respectively, seen in the nonlinear interaction of the harmonic elements of wheezes over time. The proposed feature set was evaluated on a dataset of wheezes, acquired from adult patients with diagnosed asthma and COPD from a lung sound database. The statistical evaluation of the feature set revealed discrimination ability between the two pathologies for all data subgroupings. In particular, when the total breathing cycle was examined, all 23 features, but one, showed statistically significant difference between the COPD and asthma pathologies, whereas for the subgroupings of inspiratory and expiratory phases, 18 out of 23 and 22 out of 23 features exhibited discrimination power, respectively
PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis
International Nuclear Information System (INIS)
Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.
2006-01-01
Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other
Euler deconvolution and spectral analysis of regional aeromagnetic ...
African Journals Online (AJOL)
Existing regional aeromagnetic data from the south-central Zimbabwe craton has been analysed using 3D Euler deconvolution and spectral analysis to obtain quantitative information on the geological units and structures for depth constraints on the geotectonic interpretation of the region. The Euler solution maps confirm ...
Spectral Depth Analysis of some Segments of the Bida Basin ...
African Journals Online (AJOL)
ADOWIE PERE
2017-12-16
Dec 16, 2017 ... ABSTRACT: Spectral depth analysis was carried out on ten (10) of the 2009 total magnetic field intensity data sheets covering some segments of the Bida basin, to determine the depth to magnetic basement within the basin. The data was ... groundwater lie concealed beneath the earth surface and the ...
Tomato sorting using independent component analysis on spectral images
Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.
2003-01-01
Independent Component Analysis is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the most important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components
Curie depth and geothermal gradient from spectral analysis of ...
African Journals Online (AJOL)
The resent (2009) aeromagnetic data covering lower part of Benue and upper part of Anambra basins was subjected to one dimensional spectral analysis with the aim of estimating the curie depth and subsequently evaluating both the geothermal gradient and heat flow for the area. Curie point depth estimate obtained were ...
Estimation and analysis of spectral solar radiation over Cairo
International Nuclear Information System (INIS)
Abdel Wahab, M.M.; Omran, M.
1994-05-01
This work presents a methodology to estimate spectral diffuse and global radiation on horizontal surface. This method is validated by comparing with measured direct and global spectral radiation in four bands. The results show a good performance in cloudless conditions. The analysis of the ratio of surface values to extraterrestrial ones revealed an over-all depletion in the summer months. Also there was no evidence for any tendency for conversion of radiational components through different bands. The model presents excellent agreement with the measured values for (UV/G) ratio. (author). 7 refs, 4 figs, 3 tabs
MEM spectral analysis for predicting influenza epidemics in Japan.
Sumi, Ayako; Kamo, Ken-ichi
2012-03-01
The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.
[Performance analysis of scientific researchers in biomedicine].
Gamba, Gerardo
2013-01-01
There is no data about the performance of scientific researchers in biomedicine in our environment that can be use by individual subjects to compare their execution with their pairs. Using the Scopus browser the following data from 115 scientific researchers in biomedicine were obtained: actual institution, number of articles published, place on each article within the author list as first, last or unique author, total number of citations, percentage of citations due to the most cited paper, and h-index. Results were analyzed with descriptive statistics and simple lineal regressions. Most of scientific researches in the sample are from the National Institutes of the Health Ministry or some of the research institutes or faculties at the Universidad Nacional Autónoma de México. Total number of publications was biomedicine in Mexico City, which can be used to compare the productivity of individual subjects with their pairs.
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
Computer-supported analysis of scientific measurements
de Jong, Hidde
1998-01-01
In the past decade, large-scale databases and knowledge bases have become available to researchers working in a range of scientific disciplines. In many cases these databases and knowledge bases contain measurements of properties of physical objects which have been obtained in experiments or at
Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis
Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.
2011-01-01
The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.
Power spectral analysis of heart rate in hyperthyroidism.
Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M
1996-08-01
The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P activity and, thus, a relative hypersympathetic tone.
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...
Spectral analysis of full field digital mammography data
International Nuclear Information System (INIS)
Heine, John J.; Velthuizen, Robert P.
2002-01-01
The spectral content of mammograms acquired from using a full field digital mammography (FFDM) system are analyzed. Fourier methods are used to show that the FFDM image power spectra obey an inverse power law; in an average sense, the images may be considered as 1/f fields. Two data representations are analyzed and compared (1) the raw data, and (2) the logarithm of the raw data. Two methods are employed to analyze the power spectra (1) a technique based on integrating the Fourier plane with octave ring sectioning developed previously, and (2) an approach based on integrating the Fourier plane using rings of constant width developed for this work. Both methods allow theoretical modeling. Numerical analysis indicates that the effects due to the transformation influence the power spectra measurements in a statistically significant manner in the high frequency range. However, this effect has little influence on the inverse power law estimation for a given image regardless of the data representation or the theoretical analysis approach. The analysis is presented from two points of view (1) each image is treated independently with the results presented as distributions, and (2) for a given representation, the entire image collection is treated as an ensemble with the results presented as expected values. In general, the constant ring width analysis forms the foundation for a spectral comparison method for finding spectral differences, from an image distribution sense, after applying a nonlinear transformation to the data. The work also shows that power law estimation may be influenced due to the presence of noise in the higher frequency range, which is consistent with the known attributes of the detector efficiency. The spectral modeling and inverse power law determinations obtained here are in agreement with that obtained from the analysis of digitized film-screen images presented previously. The form of the power spectrum for a given image is approximately 1/f 2
Multivariate spectral-analysis of movement-related EEG data
International Nuclear Information System (INIS)
Andrew, C. M.
1997-01-01
The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)
Spectral map-analysis: a method to analyze gene expression data
Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc
2004-01-01
bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis
Effective approach to spectroscopy and spectral analysis techniques using Matlab
Li, Xiang; Lv, Yong
2017-08-01
With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching
Leak detection in pipelines through spectral analysis of pressure signals
Directory of Open Access Journals (Sweden)
Souza A.L.
2000-01-01
Full Text Available The development and test of a technique for leak detection in pipelines is presented. The technique is based on the spectral analysis of pressure signals measured in pipeline sections where the formation of stationary waves is favoured, allowing leakage detection during the start/stop of pumps. Experimental tests were performed in a 1250 m long pipeline for various operational conditions of the pipeline (liquid flow rate and leakage configuration. Pressure transients were obtained by four transducers connected to a PC computer. The obtained results show that the spectral analysis of pressure transients, together with the knowledge of reflection points provide a simple and efficient way of identifying leaks during the start/stop of pumps in pipelines.
Outlier Detection with Space Transformation and Spectral Analysis
DEFF Research Database (Denmark)
Dang, Xuan-Hong; Micenková, Barbora; Assent, Ira
2013-01-01
which rely on notions of distances or densities, this approach introduces a novel concept based on local quadratic entropy for evaluating the similarity of a data object with its neighbors. This information theoretic quantity is used to regularize the closeness amongst data instances and subsequently......Detecting a small number of outliers from a set of data observations is always challenging. In this paper, we present an approach that exploits space transformation and uses spectral analysis in the newly transformed space for outlier detection. Unlike most existing techniques in the literature...... benefits the process of mapping data into a usually lower dimensional space. Outliers are then identified by spectral analysis of the eigenspace spanned by the set of leading eigenvectors derived from the mapping procedure. The proposed technique is purely data-driven and imposes no assumptions regarding...
Fast analysis of spectral data using neural networks
International Nuclear Information System (INIS)
Roach, C.M.
1992-01-01
Fast analysis techniques are highly desirable in experiments where measurements are recorded at high rates. In fusion experiments the processing required to obtain plasma parameters is usually orders of magnitude slower than the data acquisition. Spectroscopic diagnostics suffer greatly from this problem. The extraction of plasma parameters from a measured spectrum typically corresponds to a nonlinear mapping between distinct multi-dimensional spaces. Where no analytic expression for the mapping exists, conventional analysis methods (e.g. least squares) are usually iterative and therefore slow. With this concern in mind a fast spectral analysis method involving neural networks has been investigated. (author) 6 refs., 3 figs
Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing
2013-07-01
To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.
A tool for public analysis of scientific data
Directory of Open Access Journals (Sweden)
D Haglin
2006-01-01
Full Text Available The scientific method encourages sharing data with other researchers to independently verify conclusions. Currently, technical barriers impede such public scrutiny. A strategy for offering scientific data for public analysis is described. With this strategy, effectively no requirements of software installation (other than a web browser or data manipulation are imposed on other researchers to prepare for perusing the scientific data. A prototype showcasing this strategy is described.
Spectral Envelopes and Additive + Residual Analysis/Synthesis
Rodet, Xavier; Schwarz, Diemo
The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.
Parametric image reconstruction using spectral analysis of PET projection data
International Nuclear Information System (INIS)
Meikle, Steven R.; Matthews, Julian C.; Cunningham, Vincent J.; Bailey, Dale L.; Livieratos, Lefteris; Jones, Terry; Price, Pat
1998-01-01
Spectral analysis is a general modelling approach that enables calculation of parametric images from reconstructed tracer kinetic data independent of an assumed compartmental structure. We investigated the validity of applying spectral analysis directly to projection data motivated by the advantages that: (i) the number of reconstructions is reduced by an order of magnitude and (ii) iterative reconstruction becomes practical which may improve signal-to-noise ratio (SNR). A dynamic software phantom with typical 2-[ 11 C]thymidine kinetics was used to compare projection-based and image-based methods and to assess bias-variance trade-offs using iterative expectation maximization (EM) reconstruction. We found that the two approaches are not exactly equivalent due to properties of the non-negative least-squares algorithm. However, the differences are small ( 1 and, to a lesser extent, VD). The optimal number of EM iterations was 15-30 with up to a two-fold improvement in SNR over filtered back projection. We conclude that projection-based spectral analysis with EM reconstruction yields accurate parametric images with high SNR and has potential application to a wide range of positron emission tomography ligands. (author)
Spectral Analysis of Chinese Medicinal Herbs Based on Delayed Luminescence
Directory of Open Access Journals (Sweden)
Jingxiang Pang
2016-01-01
Full Text Available Traditional Chinese medicine (TCM plays a critical role in healthcare; however, it lacks scientific evidence to support the multidimensional therapeutic effects. These effects are based on experience, and, to date, there is no advanced tool to evaluate these experience based effects. In the current study, Chinese herbal materials classified with different cold and heat therapeutic properties, based on Chinese medicine principles, were investigated using spectral distribution, as well as the decay probability distribution based on delayed luminescence (DL. A detection system based on ultraweak biophoton emission was developed to determine the DL decay kinetics of the cold and heat properties of Chinese herbal materials. We constructed a mathematical model to fit the experimental data and characterize the properties of Chinese medicinal herbs with different parameters. The results demonstrated that this method has good reproducibility. Moreover, there is a significant difference (p<0.05 in the spectral distribution and the decay probability distribution of Chinese herbal materials with cold and heat properties. This approach takes advantage of the comprehensive nature of DL compared with more reductionist approaches and is more consistent with TCM principles, in which the core comprises holistic views.
Environmentalmarketing: An Analysis of National Scientific Production
Directory of Open Access Journals (Sweden)
Weslei Maique Oliveira Lopes
2016-09-01
Full Text Available This research aims to identify the trends and directions of environmental marketing in Brazil, from a survey of national scientific production, the last ten years period (2006-2015 in order to identify possible evolutionary changes in the orientation and implementation of marketing. As methodology, the research adopted an exploratory character with a qualitative approach and the literature as collection instrument. In scientific journals of Directors of Brazil (Qualis A1 to B3 were searched all items with the subject matter "marketing". The results showed that the green marketing publications correspond to 6.88% of articles over the last ten years. With existing publications may be noted that many companies make use of green marketing only as another business strategy to gain market share or practice environmental management only when necessary as in the case of regulatory laws. Thus, based on Brazilian studies, it appears that environmental marketing is a source of competitive advantage, but is not yet part of the organizational culture. Therefoen, it presents a research agenda with some propositions in the feeling of contributing to the advancement of environmental marketing practice in companies.
Noise analysis role in reactor safety, Spectral analysis (PSD)
International Nuclear Information System (INIS)
Jovanovic, S.; Velickovic, Lj.
1967-11-01
Spectral power density of a zero power reactor is frequency dependent and related to transfer function of the reactor and to spectral density of the input disturbance. Measurement of spectral power density of a critical system is used to obtain the ratio (β/l), β is the effective yield of delayed neutrons, and l is the effective mean neutron lifetime. When reactor is subcritical, if the effective yie ald of delayed neutrons, the effective mean neutron lifetime are known, the shutdown margin can be determined by relation α = (1 - k (1- β0)/l, k is the effective multiplication factor. Output neutron spectrum at the RB reactor in Vinca was measured for a few reactor core configurations and for a few levels of heavy water at subcritical state. Measured values were satisfactory when the reactor was critical, but the reactor noise of subcritical system was covered by the white noise of the detector and electronic equipment. The Ra-Be source was under the reactor vessel when measurements of subcritical system were done. More efficient detector or external random stimulus for increasing the intensity of neutron fluctuations would be needed to obtain results for subcritical system
Scientific periodical publications rating's calculation and analysis
Directory of Open Access Journals (Sweden)
B. E. Nikitin
2017-01-01
Full Text Available The article considers the constructing problem of the food industry journals aggregate ratings. The streamlines of the seventeen magazines on four bibliometric indexes (SCIENCE INDEX, five-year impact factor RISC given the translated version without self-citations, h-index over 10 years and Herfindahl index, which are used in the scientific electronic library elibrary.ru was used as initial data. The statement of the problem refers to multi-criteria decision-making problems. Ranking the journals in these indexes are different from each other because bibliometric indicators account different aspects of the journals. The classical approach to thisproblems solution is based on generalized criterion building in the form of an additive convolution. However, this approach requires adherence to a number of regular conditions that may not always be performed when the practical problems solution. The reductionspossibility of the considered formulation in the form of multi-criteria decision-making tasks to the problem of collective choice. The aggregated ratings of the reporting journals are calculated by using the three social choice rules – Board procedure, Copeland procedures and Kemeny median heuristic procedures. On the basis of Spearman's rank correlation determined the quantitative evaluation of the degree of intimacy built in magazines. In particular, calculated on the basis of procedure, Board and Kemeny median aggregate ratings reporting in the logs coincided. The results showed that the constructed ordering of journals on the basis of social choice rules are in good agreement with the scientific electronic library (eLIBRARY bibliometric indicators.
Analyzing availability using transfer function models and cross spectral analysis
International Nuclear Information System (INIS)
Singpurwalla, N.D.
1980-01-01
The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems
Spectral Analysis Of Business Cycles In The Visegrad Group Countries
Directory of Open Access Journals (Sweden)
Kijek Arkadiusz
2017-06-01
Full Text Available This paper examines the business cycle properties of Visegrad group countries. The main objective is to identify business cycles in these countries and to study the relationships between them. The author applies a modification of the Fourier analysis to estimate cycle amplitudes and frequencies. This allows for a more precise estimation of cycle characteristics than the traditional approach. The cross-spectral analysis of GDP cyclical components for the Czech Republic, Hungary, Poland and Slovakia makes it possible to assess the degree of business cycle synchronization between the countries.
Knowledge Management and Analysis of Scientific Biotechnology Trends in Venezuela
Directory of Open Access Journals (Sweden)
Maria Fatima Ebole Santana
2012-03-01
Full Text Available This paper presents a study on knowledge management and analysis of scientific Biotechnology trends in Venezuela, providing an overview of the science profile as well as regional development and its relation to issues of topics covered by Biotechnology based on the analysis of scientific publications for the period of 1995 to 2010. The survey was accomplished in database ISI/Web of Science using 60 terms selected by experts in Biotechnology and 803 register has been organized. Scientific indicators were produced using data/ text mining tools. It was possible to find a greater number of scientific publications in areas such as Ecology and Health, showing a greater frequency in these terms: DNA, PCR and Biodiversity. Results pointed out The United States of America as the main foreign partner-country of scientific publications followed by Spain and France. It was possible to verify cooperation network with others Latin American countries: Brazil, Colombia and Chile.
Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé
2017-10-01
The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Applications of spectral analysis technique to monitoring grasshoppers].
Lu, Hui; Han, Jian-guo; Zhang, Lu-da
2008-12-01
Grasshopper monitoring is of great significance in protecting environment and reducing economic loss. However, how to predict grasshoppers accurately and effectively is a difficult problem for a long time. In the present paper, the importance of forecasting grasshoppers and its habitat is expounded, and the development in monitoring grasshopper populations and the common arithmetic of spectral analysis technique are illustrated. Meanwhile, the traditional methods are compared with the spectral technology. Remote sensing has been applied in monitoring the living, growing and breeding habitats of grasshopper population, and can be used to develop a forecast model combined with GIS. The NDVI values can be analyzed throughout the remote sensing data and be used in grasshopper forecasting. Hyper-spectra remote sensing technique which can be used to monitor grasshoppers more exactly has advantages in measuring the damage degree and classifying damage areas of grasshoppers, so it can be adopted to monitor the spatial distribution dynamic of rangeland grasshopper population. Differentialsmoothing can be used to reflect the relations between the characteristic parameters of hyper-spectra and leaf area index (LAI), and indicate the intensity of grasshopper damage. The technology of near infrared reflectance spectroscopy has been employed in judging grasshopper species, examining species occurrences and monitoring hatching places by measuring humidity and nutrient of soil, and can be used to investigate and observe grasshoppers in sample research. According to this paper, it is concluded that the spectral analysis technique could be used as a quick and exact tool in monitoring and forecasting the infestation of grasshoppers, and will become an important means in such kind of research for their advantages in determining spatial orientation, information extracting and processing. With the rapid development of spectral analysis methodology, the goal of sustainable monitoring
The role of the computer in automated spectral analysis
International Nuclear Information System (INIS)
Rasmussen, S.E.
This report describes how a computer can be an extremely valuable tool for routine analysis of spectra, which is a time consuming process. A number of general-purpose algorithms that are available for the various phases of the analysis can be implemented, if these algorithms are designed to cope with all the variations that may occur. Since this is basically impossible, one must find a compromise between obscure error and program complexity. This is usually possible with human interaction at critical points. In spectral analysis this is possible if the user scans the data on an interactive graphics terminal, makes the necessary changes and then returns control to the computer for completion of the analysis
Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.
Directory of Open Access Journals (Sweden)
Muye Gan
Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.
Spectral analysis in thin tubes with axial heterogeneities
Ferreira, Rita; Mascarenhas, M. Luí sa; Piatnitski, Andrey
2015-01-01
In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral problem associated with an elliptic operator with axial periodic heterogeneities. We extend to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where the scale of thickness is much smaller than the scale of the heterogeneities and the planar coefficient has a unique global minimum in the periodic cell. These results are of great relevance in the comprehension of the wave propagation in nanowires showing axial heterogeneities (see [17]).
On asymptotic analysis of spectral problems in elasticity
Directory of Open Access Journals (Sweden)
S.A. Nazarov
Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.
Constructing Scientific Explanations: a System of Analysis for Students' Explanations
de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica
2017-08-01
This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.
Scientific & Intelligence Exascale Visualization Analysis System
Energy Technology Data Exchange (ETDEWEB)
2017-07-14
SIEVAS provides an immersive visualization framework for connecting multiple systems in real time for data science. SIEVAS provides the ability to connect multiple COTS and GOTS products in a seamless fashion for data fusion, data analysis, and viewing. It provides this capability by using a combination of micro services, real time messaging, and web service compliant back-end system.
Conceptual analysis of interdisciplinary scientific work
Beers , P.J.; Bots , P.W.G.
2007-01-01
The main advantage to interdisciplinary professional practice is that it can produce novel product designs and problem solutions. However, it requires knowledge sharing and integration to leverage this potential. This paper reports on a study with a method of conceptual analysis to elicit, analyse and compare conceptual models used by individual researchers, with the ultimate aim to facilitate researchers in sharing and integrating their conceptual notions. We build on an earlier study by ext...
Scientific analysis of satellite ranging data
Smith, David E.
1994-01-01
A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.
Overlapping communities detection based on spectral analysis of line graphs
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
Spectral analysis of underwater explosions in the Dead Sea
Gitterman, Y.; Ben-Avraham, Z.; Ginzburg, A.
1998-08-01
The present study utilizes the Israel Seismic Network (ISN) as a spatially distributed multichannel system for the discrimination of low-magnitude events (ML UWEs) and 16 earthquakes in the magnitude range ML = 1.6-2.8, within distances of 10-150 km, recorded by the ISN, were selected for the analysis. The analysis is based on a smoothed (0.5 Hz window) Fourier spectrum of the whole signal (defined by the signal-to-noise criterion), without picking separate wave phases. It was found that the classical discriminant of the seismic energy ratio between the relatively low-frequency (1-6 Hz) and high-frequency (6-11 Hz) bands, averaged over an ISN subnetwork, showed an overlap between UWEs and earthquakes and cannot itself provide reliable identification. We developed and tested a new multistation discriminant based on the low- frequency spectral modulation (LFSM) method. In our case the LFSM is associated with the bubbling effect in underwater explosions. The method demonstrates a distinct azimuth-invariant coherency of spectral shapes in the low-frequency range (1-12 Hz) of short-period seismometer systems. The coherency of the modulated spectra for different ISN stations was measured by semblance statistics commonly used in seismic prospecting for phase correlation in the time domain. The modified statistics provided an almost complete separation between earthquakes and underwater explosions.
Introduction to scientific computing and data analysis
Holmes, Mark H
2016-01-01
This textbook provides and introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The MATLAB codes used to produce most of the figures and data tables in the text are available on the author’s website and SpringerLink.
Evaluation of Remote Collaborative Manipulation for Scientific Data Analysis
Fleury , Cédric; Duval , Thierry; Gouranton , Valérie; Steed , Anthony
2012-01-01
International audience; In the context of scientific data analysis, we propose to compare a remote collaborative manipulation technique with a single user manipulation technique. The manipulation task consists in positioning a clipping plane in order to perform cross-sections of scientific data which show several points of interest located inside this data. For the remote collaborative manipulation, we have chosen to use the 3-hand manipulation technique proposed by Aguerreche et al. which is...
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Spectral analysis of mammographic images using a multitaper method
International Nuclear Information System (INIS)
Wu Gang; Mainprize, James G.; Yaffe, Martin J.
2012-01-01
Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.
GBTIDL: Reduction and Analysis of GBT Spectral Line Data
Marganian, P.; Garwood, R. W.; Braatz, J. A.; Radziwill, N. M.; Maddalena, R. J.
2013-03-01
GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.
ANALYSIS OF CAMOUFLAGE COVER SPECTRAL CHARACTERISTICS BY IMAGING SPECTROMETER
Directory of Open Access Journals (Sweden)
A. Y. Kouznetsov
2016-03-01
Full Text Available Subject of Research.The paper deals with the problems of detection and identification of objects in hyperspectral imagery. The possibility of object type determination by statistical methods is demonstrated. The possibility of spectral image application for its data type identification is considered. Method. Researching was done by means of videospectral equipment for objects detection at "Fregat" substrate. The postprocessing of hyperspectral information was done with the use of math model of pattern recognition system. The vegetation indexes TCHVI (Three-Channel Vegetation Index and NDVI (Normalized Difference Vegetation Index were applied for quality control of object recognition. Neumann-Pearson criterion was offered as a tool for determination of objects differences. Main Results. We have carried out analysis of the spectral characteristics of summer-typecamouflage cover (Germany. We have calculated the density distribution of vegetation indexes. We have obtained statistical characteristics needed for creation of mathematical model for pattern recognition system. We have shown the applicability of vegetation indices for detection of summer camouflage cover on averdure background. We have presented mathematical model of object recognition based on Neumann-Pearson criterion. Practical Relevance. The results may be useful for specialists in the field of hyperspectral data processing for surface state monitoring.
Spectral analysis of stellar light curves by means of neural networks
Tagliaferri, R.; Ciaramella, A.; Milano, L.; Barone, F.; Longo, G.
1999-06-01
Periodicity analysis of unevenly collected data is a relevant issue in several scientific fields. In astrophysics, for example, we have to find the fundamental period of light or radial velocity curves which are unevenly sampled observations of stars. Classical spectral analysis methods are unsatisfactory to solve the problem. In this paper we present a neural network based estimator system which performs well the frequency extraction in unevenly sampled signals. It uses an unsupervised Hebbian nonlinear neural algorithm to extract, from the interpolated signal, the principal components which, in turn, are used by the MUSIC frequency estimator algorithm to extract the frequencies. The neural network is tolerant to noise and works well also with few points in the sequence. We benchmark the system on synthetic and real signals with the Periodogram and with the Cramer-Rao lower bound. This work was been partially supported by IIASS, by MURST 40\\% and by the Italian Space Agency.
Spatially explicit spectral analysis of point clouds and geospatial data
Buscombe, Daniel D.
2015-01-01
The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is
Spatially explicit spectral analysis of point clouds and geospatial data
Buscombe, Daniel
2016-01-01
The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described
Trend Analysis of the Brazilian Scientific Production in Computer Science
Directory of Open Access Journals (Sweden)
TRUCOLO, C. C.
2014-12-01
Full Text Available The growth of scientific information volume and diversity brings new challenges in order to understand the reasons, the process and the real essence that propel this growth. This information can be used as the basis for the development of strategies and public politics to improve the education and innovation services. Trend analysis is one of the steps in this way. In this work, trend analysis of Brazilian scientific production of graduate programs in the computer science area is made to identify the main subjects being studied by these programs in general and individual ways.
Joint Spectral Analysis for Early Bright X-ray Flares of γ-Ray Bursts ...
Indian Academy of Sciences (India)
Abstract. A joint spectral analysis for early bright X-ray flares that were simultaneously observed with Swift BAT and XRT are present. Both BAT and XRT lightcurves of these flares are correlated. Our joint spectral anal- ysis shows that the radiations in the two energy bands are from the same spectral component, which can ...
IR spectral analysis for the diagnostics of crust earthquake precursors
Directory of Open Access Journals (Sweden)
R. M. Umarkhodgaev
2012-11-01
Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH_{4}, CO_{2}, N_{2}O, NO_{2}, NO, and O_{3}. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.
Spectral analysis methods for vehicle interior vibro-acoustics identification
Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal
2009-02-01
Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.
Czech Academy of Sciences Publication Activity Database
Barseghyan, Diana; Exner, Pavel; Khrabustovskyi, A.; Tater, Miloš
2016-01-01
Roč. 49, č. 16 (2016), s. 165302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operator * eigenvalue estimates * spectral transition Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016
Hayden, W. L.; Robinson, L. H.
1972-01-01
Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.
Analysis of cirrus cloud spectral signatures in the far infrared
International Nuclear Information System (INIS)
Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.
2014-01-01
This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820–960 cm −1 interval. The retrieved cloud parameters are the input data for simulations covering the 250–1100 cm −1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced. - Highlights: • We analyze down-welling spectral radiances in the far infrared (FIR) spectrum. • Discuss the scattering in the fir and the ice crystals phase function
Comprehensive spectral analysis of Cyg X-1 using RXTE data
International Nuclear Information System (INIS)
Shahid, Rizwan; Jaaffrey, S. N. A.; Misra, Ranjeev
2012-01-01
We analyze a large number (> 500) of pointed Rossi X-Ray Timing Explorer (RXTE) observations of Cyg X-1 and model the spectrum of each one. A subset of the observations for which there is a simultaneous reliable measure of the hardness ratio by the All Sky Monitor shows that the sample covers nearly all the spectral shapes of Cyg X-1. Each observation is fitted with a generic empirical model consisting of a disk black body spectrum, a Comptonized component whose input photon shape is the same as the disk emission, a Gaussian to represent the iron line and a reflection feature. The relative strength, width of the iron line and the reflection parameter are in general correlated with the high energy photon spectral index Γ. This is broadly consistent with a geometry where for the hard state (low Γ ∼ 1.7) there is a hot inner Comptonizing region surrounded by a truncated cold disk. The inner edge of the disk moves inwards as the source becomes softer till finally in the soft state (high Γ > 2.2) the disk fills the inner region and active regions above the disk produce the Comptonized component. However, the reflection parameter shows non-monotonic behavior near the transition region (Γ ∼ 2), which suggests a more complex geometry or physical state of the reflector. In addition, the inner disk temperature, during the hard state, is on average higher than in the soft one, albeit with large scatter. These inconsistencies could be due to limitations in the data and the empirical model used to fit them. The flux of each spectral component is well correlated with Γ, which shows that unlike some other black hole systems, Cyg X-1 does not show any hysteresis behavior. In the soft state, the flux of the Comptonized component is always similar to the disk one, which confirms that the ultra-soft state (seen in other brighter black hole systems) is not exhibited by Cyg X-1. The rapid variation of the Compton amplification factor with Γ naturally explains the absence of
A Principal Component Analysis of 39 Scientific Impact Measures
Bollen, Johan; Van de Sompel, Herbert
2009-01-01
Background The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. Methodology We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. Conclusions Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution. PMID:19562078
A principal component analysis of 39 scientific impact measures.
Directory of Open Access Journals (Sweden)
Johan Bollen
Full Text Available BACKGROUND: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. METHODOLOGY: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. CONCLUSIONS: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution.
Chebyshev super spectral viscosity method for water hammer analysis
Directory of Open Access Journals (Sweden)
Hongyu Chen
2013-09-01
Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.
Spectral analysis for evaluation of myocardial tracers for medical imaging
International Nuclear Information System (INIS)
Huesman, Ronald H.; Reutter, Bryan W.; Marshall, Robert C.
2000-01-01
Kinetic analysis of dynamic tracer data is performed with the goal of evaluating myocardial radiotracers for cardiac nuclear medicine imaging. Data from experiments utilizing the isolated rabbit heart model are acquired by sampling the venous blood after introduction of a tracer of interest and a reference tracer. We have taken the approach that the kinetics are properly characterized by an impulse response function which describes the difference between the reference molecule (which does not leave the vasculature) and the molecule of interest which is transported across the capillary boundary and is made available to the cell. Using this formalism we can model the appearance of the tracer of interest in the venous output of the heart as a convolution of the appearance of the reference tracer with the impulse response. In this work we parameterize the impulse response function as the sum of a large number of exponential functions whose predetermined decay constants form a spectrum, and each is required only to have a nonnegative coefficient. This approach, called spectral analysis, has the advantage that it allows conventional compartmental analysis without prior knowledge of the number of compartments which the physiology may require or which the data will support
Spectral Unmixing Analysis of Time Series Landsat 8 Images
Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.
2018-05-01
Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.
Investigating scientific literacy documents with linguistic network analysis
DEFF Research Database (Denmark)
Bruun, Jesper; Evans, Robert Harry; Dolin, Jens
2009-01-01
International discussions of scientific literacy (SL) are extensive and numerous sizeable documents on SL exist. Thus, comparing different conceptions of SL is methodologically challenging. We developed an analytical tool which couples the theory of complex networks with text analysis in order...
Spectral analysis, death and coronary anatomy following cardiac catheterisation.
Moore, Roger K G; Newall, Nick; Groves, David G; Barlow, Pauline E; Stables, Rodney H; Jackson, Mark; Ramsdale, David R
2007-05-16
To establish the associations and prognostic utility of angiographic, clinical and HRV parameters in a large cohort of patients undergoing diagnostic cardiac catheterisation (CC). Patients undergoing CC as elective day cases were enrolled at a single tertiary center from September 2001 to January 2003. Patient data, serum biochemistry, current drug therapy, catheter reports and five minute high resolution electrocardiograph (ECG) recordings were prospectively recorded and validated in an electronic archive. ECG recordings were used to generate time domain (SDNN (standard deviation of NN intervals)) and spectral HRV parameters (low frequency (LF) and high frequency (HF) power). Significant associations between dichotomized HRV variables and covariates were investigated using binary logistic regression. The independent prognostic ability of clinical markers was evaluated using the Cox proportional hazard model. 841 consecutive consenting patients of mean age 61+/-10 years were recruited into the study with a mean follow-up period of 690+/-436 days. In multivariate analysis decreasing LF spectral power was independently associated with proximal right coronary stenosis OR (odds ratio)=1.65 (95% CI=1.16-2.36), P=0.006 and to all cause mortality OR=5.01 (95% CI=1.47-17.01), P=0.010. Increasing LF power was also independently associated with normal coronary angiograms in patients investigated suspected coronary disease without a confirmed prior history of a coronary ischaemic event OR=2.16 (95% CI=1.26-3.73), P=0.002. Reduced LF power independently predicts all cause mortality in a large cohort of patients receiving medical therapy after elective CC. LF power was also independently associated with >75% proximal RCA stenosis.
Directory of Open Access Journals (Sweden)
Juri P. Kurhinen
2016-05-01
Full Text Available Provides information about the results of the international scienti fic seminar «Сhronicle of Nature – a common database for scientific analysis and joint planning of scientific publications», held at Findland-Russian project «Linking environmental change to biodiversity change: large scale analysis оf Eurasia ecosystem».
Spectral analysis of linear relations and degenerate operator semigroups
International Nuclear Information System (INIS)
Baskakov, A G; Chernyshov, K I
2002-01-01
Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups
Spectral Efficiency Analysis for Multicarrier Based 4G Systems
DEFF Research Database (Denmark)
Silva, Nuno; Rahman, Muhammad Imadur; Frederiksen, Flemming Bjerge
2006-01-01
In this paper, a spectral efficiency definition is proposed. Spectral efficiency for multicarrier based multiaccess techniques, such as OFDMA, MC-CDMA and OFDMA-CDM, is analyzed. Simulations for different indoor and outdoor scenarios are carried out. Based on the simulations, we have discussed ho...
Values and the Scientific Culture of Behavior Analysis
Ruiz, Maria R; Roche, Bryan
2007-01-01
As scientists and practitioners, behavior analysts must make frequent decisions that affect many lives. Scientific principles have been our guide as we work to promote effective action across a broad spectrum of cultural practices. Yet scientific principles alone may not be sufficient to guide our decision making in cases with potentially conflicting outcomes. In such cases, values function as guides to work through ethical conflicts. We will examine two ethical systems, radical behaviorism and functional contextualism, from which to consider the role of values in behavior analysis, and discuss potential concerns. Finally, we propose philosophical pragmatism, focusing on John Dewey's notions of community and dialogue, as a tradition that can help behavior analysts to integrate talk about values and scientific practices in ethical decision making. PMID:22478484
A Componential Analysis of Gender Differences in Scientific Creativity
Directory of Open Access Journals (Sweden)
N. Nazlı Ozdemir
2013-12-01
Full Text Available In this study, an investigation was carried out to explore if there were any gender differences in scientific creativity and its components. Par-ticipants included 704 sixth grade students who applied to the Education Programs for Talented Students (EPTS at Anadolu University in the City of Eskişehir in Turkey. Of the total sam-ple, 345 were female and 359 were male. Stu-dents’ scientific creativity was measured using the Creative Scientific Ability Test (C-SAT. It measures fluency, flexibility and creativity and hypothesis generation, hypothesis testing and evidence evaluation. The analysis showed that male students scored significantly higher on fluency and creativity and hypothesis genera-tion components of scientific creativity. Alt-hough male students had higher scores on flex-ibility, hypothesis testing and evidence evalua-tion components too, the differences between the groups were not significant. The findings shows that gender differences in scientific crea-tivity in childhood and adolescence might re-sult from differences in some particular pro-cesses.
Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques
Directory of Open Access Journals (Sweden)
D. Kozak
2012-01-01
Full Text Available Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using methods of the spectral analysis. Topographic data are acquired by means of the optical profilometr MicroProf®FRT. Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to the fine texture of the surface studied.
A Semantic Analysis Method for Scientific and Engineering Code
Stewart, Mark E. M.
1998-01-01
This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
Spectral analysis of the gravity and topography of Mars
Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.
1993-01-01
New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.
Spectral analysis of HIV seropositivity among migrant workers entering Kuwait
Directory of Open Access Journals (Sweden)
Mohammad Hameed GHH
2008-03-01
Full Text Available Abstract Background There is paucity of published data on human immunodeficiency virus (HIV seroprevalence among migrant workers entering Middle-East particularly Kuwait. We took advantage of the routine screening of migrants for HIV infection, upon arrival in Kuwait from the areas with high HIV prevalence, to 1 estimate the HIV seroprevalence among migrant workers entering Kuwait and to 2 ascertain if any significant time trend or changes had occurred in HIV seroprevalence among these migrants over the study period. Methods The monthly aggregates of daily number of migrant workers tested and number of HIV seropositive were used to generate the monthly series of proportions of HIV seropositive (per 100,000 migrants over a period of 120 months from January 1, 1997 to December 31, 2006. We carried out spectral analysis of these time series data on monthly proportions (per 100,000 of HIV seropositive migrants. Results Overall HIV seroprevalence (per 100,000 among the migrants was 21 (494/2328582 (95% CI: 19 -23, ranging from 11 (95% CI: 8 – 16 in 2003 to 31 (95% CI: 24 -41 in 1998. There was no discernable pattern in the year-specific proportions of HIV seropositive migrants up to 2003; in subsequent years there was a slight but consistent increase in the proportions of HIV seropositive migrants. However, the Mann-Kendall test showed non-significant (P = 0.741 trend in de-seasonalized data series of proportions of HIV seropositive migrants. The spectral density had a statistically significant (P = 0.03 peak located at a frequency (radians 2.4, which corresponds to a regular cycle of three-month duration in this study. Auto-correlation function did not show any significant seasonality (correlation coefficient at lag 12 = – 0.025, P = 0.575. Conclusion During the study period, overall a low HIV seroprevalence (0.021% was recorded. Towards the end of the study, a slight but non-significant upward trend in the proportions of HIV seropositive
Studying soil properties using visible and near infrared spectral analysis
Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.
2009-04-01
This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and
Directory of Open Access Journals (Sweden)
D. R. Bowdalo
2016-07-01
Full Text Available Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb–Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1–5 months. This spectral methodology can be applied to a range of model–measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs.
Bistable flow spectral analysis. Repercussions on jet pumps
International Nuclear Information System (INIS)
Gavilan Moreno, C.J.
2011-01-01
Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments
Spectral Analysis and Dirichlet Forms on Barlow-Evans Fractals
Steinhurst, Benjamin; Teplyaev, Alexander
2012-01-01
We show that if a Barlow-Evans Markov process on a vermiculated space is symmetric, then one can study the spectral properties of the corresponding Laplacian using projective limits. For some examples, such as the Laakso spaces and a Spierpinski P\\^ate \\`a Choux, one can develop a complete spectral theory, including the eigenfunction expansions that are analogous to Fourier series. Also, one can construct connected fractal spaces isospectral to the fractal strings of Lapidus and van Frankenhu...
Use of new spectral analysis methods in gamma spectra deconvolution
International Nuclear Information System (INIS)
Pinault, J.L.
1991-01-01
A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)
PIXEL ANALYSIS OF PHOTOSPHERIC SPECTRAL DATA. I. PLASMA DYNAMICS
Energy Technology Data Exchange (ETDEWEB)
Rasca, Anthony P.; Chen, James [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Pevtsov, Alexei A., E-mail: anthony.rasca.ctr@nrl.navy.mil [National Solar Observatory, Sunspot, NM 88349 (United States)
2016-11-20
Recent observations of the photosphere using high spatial and temporal resolution show small dynamic features at or below the current resolving limits. A new pixel dynamics method has been developed to analyze spectral profiles and quantify changes in line displacement, width, asymmetry, and peakedness of photospheric absorption lines. The algorithm evaluates variations of line profile properties in each pixel and determines the statistics of such fluctuations averaged over all pixels in a given region. The method has been used to derive statistical characteristics of pixel fluctuations in observed quiet-Sun regions, an active region with no eruption, and an active region with an ongoing eruption. Using Stokes I images from the Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope on 2012 March 13, variations in line width and peakedness of Fe i 6301.5 Å are shown to have a distinct spatial and temporal relationship with an M7.9 X-ray flare in NOAA 11429. This relationship is observed as stationary and contiguous patches of pixels adjacent to a sunspot exhibiting intense flattening in the line profile and line-center displacement as the X-ray flare approaches peak intensity, which is not present in area scans of the non-eruptive active region. The analysis of pixel dynamics allows one to extract quantitative information on differences in plasma dynamics on sub-pixel scales in these photospheric regions. The analysis can be extended to include the Stokes parameters and study signatures of vector components of magnetic fields and coupled plasma properties.
Aspects of scientific visualization for HEP analysis at Fermilab
International Nuclear Information System (INIS)
Kallenbach, Jeff; Lebrun, Paul
1996-01-01
Based on the workshop on scientific visualization held on Aug 7-9, 1995 at Fermilab, and practical experience with IRIS Explorer, we comment on the use of Open GL based for Event Displays and related HEP data analysis. WE wish to compare the pros and cons of such systems on technical grounds, case of use, and most of all, application interfaces, as the programmer and the user are often the same person. Costs and educational considerations will also be briefly discussed. (author)
Analysis of citations to biomedical articles affected by scientific misconduct.
Neale, Anne Victoria; Dailey, Rhonda K; Abrams, Judith
2010-06-01
We describe the ongoing citations to biomedical articles affected by scientific misconduct, and characterize the papers that cite these affected articles. The citations to 102 articles named in official findings of scientific misconduct during the period of 1993 and 2001 were identified through the Institute for Scientific Information Web of Science database. Using a stratified random sampling strategy, we performed a content analysis of 603 of the 5,393 citing papers to identify indications of awareness that the cited articles affected by scientific misconduct had validity issues, and to examine how the citing papers referred to the affected articles. Fewer than 5% of citing papers indicated any awareness that the cited article was retracted or named in a finding of misconduct. We also tested the hypothesis that affected articles would have fewer citations than a comparison sample; this was not supported. Most articles affected by misconduct were published in basic science journals, and we found little cause for concern that such articles may have affected clinical equipoise or clinical care.
Milanović, Vesna; Bučalina-Matić, Andrea; Golubović, Marina
2016-01-01
The aim of this paper is to provide an insight into restrictions of comparative analysis of investing in scientific research and scientific outcomes of the countries in nanotechnology, having in mind that it is a developing technology which is expected to give significant contribution to science, economy and society in the future. Using the methods of content analysis, comparative methods and relevant literature, certain restrictions of this comparative analysis have been established. They ar...
Hurricane coastal flood analysis using multispectral spectral images
Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.
2013-12-01
Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However
Dichotomous classification of black-colored metal using spectral analysis
Directory of Open Access Journals (Sweden)
Abramovich A.O.
2017-05-01
Full Text Available The task of detecting metal objects in different environments has always been important. To solve it metal detectors are used. They are designed to detect and identify objects that in their electric or magnetic properties different from the environment in which they are located. The most common among them are the metal detectors of the «detection of very low frequency» type (Very Low Frequency (VLF detectors. They use eddy current testing for detecting metal targets, which solves the problem of dichotomous distinction, that is a problem of splitting (or set into two parts (subsets: black or colored target. The target distinction is performed by a threshold level of the received signal. However, this approach does not allow to identify the type of target, if two samples of different metals are nearby. To overcome the above described limitations we propose another way of distinction based on the use of spectral analysis, which occurs in the metal detector antenna by Foucault current. We show that the problem of dichotomous distinction can be solved in just a measurement of width and area by the envelope of amplitude spectrum (hereinafter spectrum of the received signal. In this regard the laboratory model using eddy current metal detector will combat withdrawal from two samples – steel and copper, located along and calculate its range. The task of distinguishing between metal targets reduced to determining the hit spectra of reference samples obtained spectrum. The ratio between the areas is measured and reference spectra indicates the percentage of specific metals (e.g. two identical samples of different metals lying side by side. Signal processing is performed by specially designed program that compares two spectra along posted samples of black and colored metals with base.
Cui, Qian; Shi, Jiancheng; Xu, Yuanliu
2011-12-01
Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.
Rotating shadowband radiometer development and analysis of spectral shortwave data
Energy Technology Data Exchange (ETDEWEB)
Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others
1996-04-01
Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.
Two-body threshold spectral analysis, the critical case
DEFF Research Database (Denmark)
Skibsted, Erik; Wang, Xue Ping
We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma......>(l+d/2 -1)^2$. In each such sector the reduced Schrödinger operator has infinitely many negative eigenvalues accumulating at zero. We show that the resolvent has a non-trivial oscillatory behaviour as the spectral parameter approaches zero in cones bounded away from the negative half-axis, and we derive...
Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.
Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué
2015-10-01
In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%.
Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech
Přibil, J.; Přibilová, A.
2009-01-01
The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.
Convergence analysis of spectral element method for electromechanical devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2017-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the
Ultra-wideband spectral analysis using S2 technology
International Nuclear Information System (INIS)
Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.
2007-01-01
This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed
Detecting gallbladders in chicken livers using spectral analysis
DEFF Research Database (Denmark)
Jørgensen, Anders; Mølvig Jensen, Eigil; Moeslund, Thomas B.
2015-01-01
This paper presents a method for detecting gallbladders attached to chicken livers using spectral imaging. Gallbladders can contaminate good livers, making them unfit for human consumption. A data set consisting of chicken livers with and without gallbladders, has been captured using 33 wavelengths...
Ultra-wideband spectral analysis using S2 technology
Energy Technology Data Exchange (ETDEWEB)
Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)
2007-11-15
This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.
Analysis of visible spectral lines in LHD helium discharge
International Nuclear Information System (INIS)
Wan, B.N.; Goto, M.; Morita, S.
1999-06-01
In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)
Convergence analysis of spectral element method for magnetic devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2018-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with
Bibliometric analysis of scientific production about Linked Data
Directory of Open Access Journals (Sweden)
Leandro Dal Pizzol
2015-09-01
Full Text Available Introduction: Since Tim Berners-Lee coined the term Linked Data in 2006, many studies have emerged based on this initiative. Whether in the form of information access initiatives, whether in applications based on this data type, the interest in this new way to publish and consume information on the Web is increasingly in focus. Objective: In this paper, we present a bibliometric review with the aim of contributing to a better understanding and clarification of concepts and terms associated with the area of Linked Data. Methodology: We have used the Web of Science (WoS, Scopus, EBSCO and IEEE scientific databases, in order to find the existing studies about Linked Data until October 2012. Results: We have mapped 148 scientific papers that address the above issue, written by 409 authors from 160 institutions from 30 different countries. Through the analysis of the articles, it was found that researches about Linked Data are concentrated in a small authors group, suggesting future research opportunities. Conclusions: Synthesizing the information related to the scientific publications in a given area allows building a theoretical background that supports the development of future researches.
Bedload transport from spectral analysis of seismic noise near rivers
Hsu, L.; Finnegan, N. J.; Brodsky, E. E.
2010-12-01
Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or
Automated computation of autonomous spectral submanifolds for nonlinear modal analysis
Ponsioen, Sten; Pedergnana, Tiemo; Haller, George
2018-04-01
We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.
Expediting Scientific Data Analysis with Reorganization of Data
Energy Technology Data Exchange (ETDEWEB)
Byna, Surendra; Wu, Kesheng
2013-08-19
Data producers typically optimize the layout of data files to minimize the write time. In most cases, data analysis tasks read these files in access patterns different from the write patterns causing poor read performance. In this paper, we introduce Scientific Data Services (SDS), a framework for bridging the performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns of analysis tasks and enables transparent data reads from the reorganized data. We implemented a HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls to the reorganized data. To demonstrate the effectiveness of SDS, we applied two parallel data organization techniques: a sort-based organization on a plasma physics data and a transpose-based organization on mass spectrometry imaging data. We also extended the HDF5 data access API to allow selection of data based on their values through a query interface, called SDS Query. We evaluated the execution time in accessing various subsets of data through existing HDF5 Read API and SDS Query. We showed that reading the reorganized data using SDS is up to 55X faster than reading the original data.
Scientific data analysis on data-parallel platforms.
Energy Technology Data Exchange (ETDEWEB)
Ulmer, Craig D.; Bayer, Gregory W.; Choe, Yung Ryn; Roe, Diana C.
2010-09-01
As scientific computing users migrate to petaflop platforms that promise to generate multi-terabyte datasets, there is a growing need in the community to be able to embed sophisticated analysis algorithms in the computing platforms' storage systems. Data Warehouse Appliances (DWAs) are attractive for this work, due to their ability to store and process massive datasets efficiently. While DWAs have been utilized effectively in data-mining and informatics applications, they remain largely unproven in scientific workloads. In this paper we present our experiences in adapting two mesh analysis algorithms to function on five different DWA architectures: two Netezza database appliances, an XtremeData dbX database, a LexisNexis DAS, and multiple Hadoop MapReduce clusters. The main contribution of this work is insight into the differences between these DWAs from a user's perspective. In addition, we present performance measurements for ten DWA systems to help understand the impact of different architectural trade-offs in these systems.
Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry
Directory of Open Access Journals (Sweden)
Taghi Rajabi
2017-09-01
Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.
Trends in the production of scientific data analysis resources.
Hennessey, Jason; Georgescu, Constantin; Wren, Jonathan D
2014-01-01
As the amount of scientific data grows, peer-reviewed Scientific Data Analysis Resources (SDARs) such as published software programs, databases and web servers have had a strong impact on the productivity of scientific research. SDARs are typically linked to using an Internet URL, which have been shown to decay in a time-dependent fashion. What is less clear is whether or not SDAR-producing group size or prior experience in SDAR production correlates with SDAR persistence or whether certain institutions or regions account for a disproportionate number of peer-reviewed resources. We first quantified the current availability of over 26,000 unique URLs published in MEDLINE abstracts/titles over the past 20 years, then extracted authorship, institutional and ZIP code data. We estimated which URLs were SDARs by using keyword proximity analysis. We identified 23,820 non-archival URLs produced between 1996 and 2013, out of which 11,977 were classified as SDARs. Production of SDARs as measured with the Gini coefficient is more widely distributed among institutions (.62) and ZIP codes (.65) than scientific research in general, which tends to be disproportionately clustered within elite institutions (.91) and ZIPs (.96). An estimated one percent of institutions produced 68% of published research whereas the top 1% only accounted for 16% of SDARs. Some labs produced many SDARs (maximum detected = 64), but 74% of SDAR-producing authors have only published one SDAR. Interestingly, decayed SDARs have significantly fewer average authors (4.33 +/- 3.06), than available SDARs (4.88 +/- 3.59) (p production is less dependent upon institutional location and resources, and SDAR online persistence does not seem to be a function of infrastructure or expertise. Yet, SDAR team size correlates positively with SDAR accessibility, suggesting a possible sociological factor involved. While a detectable URL entry error rate of 3.4% is relatively low, it raises the question of whether or not this
Semiconductor detectors in current energy dispersive X-ray spectral analysis
Energy Technology Data Exchange (ETDEWEB)
Betin, J; Zhabin, E; Krampit, I; Smirnov, V
1980-04-01
A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc.
Spectral Analysis of the Background in Ground-based, Long-slit ...
Indian Academy of Sciences (India)
1996-12-08
Dec 8, 1996 ... Spectral Analysis of the Background in Ground-based,. Long-slit .... Figure 1 plots spectra from the 2-D array, after instrumental calibration and before correction for ..... which would merit attention and a better understanding.
High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy
Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin
2009-01-01
Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...
Spectral Analysis of Certain Schrödinger Operators
Directory of Open Access Journals (Sweden)
Mourad E.H. Ismail
2012-09-01
Full Text Available The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011, 353001, 47 pages].
ANALYSIS OF THE SCIENTIFIC LITERATURE ON SUSTAINABILITY IN ADMINISTRATION RESEARCH
Directory of Open Access Journals (Sweden)
Márcia Martins Mendes De Luca
2014-09-01
Full Text Available Sustainability has become an increasingly popular topic in administration research projects, with a great number of researchers trying to understand and apply it to the corporate world. The general objective of the present study consists of investigating the theoretical perspectives of scientific production on sustainability in administration present in the annals of the Anpad Meeting and in the “Revista de Gestão Social e Ambiental”, over an eight-year period. The research encompasses the characteristics of authorship, methodological procedures and theoretical groundwork, as well as the qualitative characteristics of the selected articles. It is a qualitative study, characterized as descriptive research, with the application of bibliometrics and content analysis. 103 articles, published in the Anpad Meeting (annual editions, from 2003 to 2010 and in the “Revista de Gestão Social e Ambiental” (published three times a year, from 2007 to 2010, were analyzed. The results revealed an increase in scientific production on sustainability, demonstrating this topic’s growing maturity. In a more punctual way, researchers identified a tendency towards co-authorship; methodological diversity, not limited to theories or pre-defined models; and a high incidence of proposals of models related to sustainability.
English Metafunction Analysis in Chemistry Text: Characterization of Scientific Text
Directory of Open Access Journals (Sweden)
Ahmad Amin Dalimunte, M.Hum
2013-09-01
Full Text Available The objectives of this research are to identify what Metafunctions are applied in chemistry text and how they characterize a scientific text. It was conducted by applying content analysis. The data for this research was a twelve-paragraph chemistry text. The data were collected by applying a documentary technique. The document was read and analyzed to find out the Metafunction. The data were analyzed by some procedures: identifying the types of process, counting up the number of the processes, categorizing and counting up the cohesion devices, classifying the types of modulation and determining modality value, finally counting up the number of sentences and clauses, then scoring the grammatical intricacy index. The findings of the research show that Material process (71of 100 is mostly used, circumstance of spatial location (26 of 56 is more dominant than the others. Modality (5 is less used in order to avoid from subjectivity. Impersonality is implied through less use of reference either pronouns (7 or demonstrative (7, conjunctions (60 are applied to develop ideas, and the total number of the clauses are found much more dominant (109 than the total number of the sentences (40 which results high grammatical intricacy index. The Metafunction found indicate that the chemistry text has fulfilled the characteristics of scientific or academic text which truly reflects it as a natural science.
Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra
International Nuclear Information System (INIS)
Shirley, T.E.; Laster, S.J.; Meek, R.A.
1987-01-01
The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis
An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks
Zhao, Peng-yuan; Huang, Xiao-ping
2018-03-01
Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.
Theoretical bases analysis of scientific prediction on marketing principles
A.S. Rosohata
2012-01-01
The article presents an overview categorical apparatus of scientific predictions and theoretical foundations results of scientific forecasting. They are integral part of effective management of economic activities. The approaches to the prediction of scientists in different fields of Social science and the categories modification of scientific prediction, based on principles of marketing are proposed.
Stellar and wind parameters of massive stars from spectral analysis
Araya, Ignacio; Curé, Michel
2017-11-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Embedded gamma spectrometry: new algorithms for spectral analysis
International Nuclear Information System (INIS)
Martin-Burtart, Nicolas
2012-01-01
Airborne gamma spectrometry was first used for mining prospecting. Three main families were looked for: K-40, U-238 and Th-232. The Chernobyl accident acted as a trigger and for the last fifteen years, a lot of new systems have been developed for intervention in case of nuclear accident or environmental purposes. Depending on their uses, new algorithms were developed, mainly for medium or high energy signal extraction. These spectral regions are characteristics of natural emissions (K-40, U-238 and Th-232 decay chains) and fissions products (mainly Cs-137 and Co-60). Below 400 keV, where special nuclear materials emit, these methods can still be used but are greatly imprecise. A new algorithm called 2-windows (extended to 3), was developed. It allows an accurate extraction, taking the flight altitude into account to minimize false detection. Watching radioactive materials traffic appeared with homeland security policy a few years ago. This particular use of dedicated sensors require a new type of algorithms. Before, one algorithm was very efficient for a particular nuclide or spectral region. Now, we need algorithm able to detect an anomaly wherever it is and whatever it is: industrial, medical or SNM. This work identified two families of methods working under these circumstances. Finally, anomalies have to be identified. IAEA recommend to watch around 30 radionuclides. A brand new identification algorithm was developed, using several rays per element and avoiding identifications conflicts. (author) [fr
The spectral analysis of cyclo-non-stationary signals
Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.
2016-06-01
Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.
Global spectral graph wavelet signature for surface analysis of carpal bones
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Comparison of modal spectral and non-linear time history analysis of a piping system
International Nuclear Information System (INIS)
Gerard, R.; Aelbrecht, D.; Lafaille, J.P.
1987-01-01
A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)
Spectral Karyotyping. An new method for chromosome analysis
International Nuclear Information System (INIS)
Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying
2006-01-01
Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
Spectral analysis of growing graphs a quantum probability point of view
Obata, Nobuaki
2017-01-01
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...
ANALYSIS OF SPECTRAL CHARACTERISTICS AMONG DIFFERENT SENSORS BY USE OF SIMULATED RS IMAGES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This research, by use of RS image-simulating method, simulated apparent reflectance images at sensor level and ground-reflectance images of SPOT-HRV,CBERS-CCD,Landsat-TM and NOAA14-AVHRR' s corresponding bands. These images were used to analyze sensor's differences caused by spectral sensitivity and atmospheric impacts. The differences were analyzed on Normalized Difference Vegetation Index(NDVI). The results showed that the differences of sensors' spectral characteristics cause changes of their NDVI and reflectance. When multiple sensors' data are applied to digital analysis, the error should be taken into account. Atmospheric effect makes NDVI smaller, and atn~pheric correction has the tendency of increasing NDVI values. The reflectance and their NDVIs of different sensors can be used to analyze the differences among sensor' s features. The spectral analysis method based on RS simulated images can provide a new way to design the spectral characteristics of new sensors.
Spatio-spectral analysis of ionization times in high-harmonic generation
Energy Technology Data Exchange (ETDEWEB)
Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)
2013-03-12
Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.
Standard gamma-ray spectra for the comparison of spectral analysis software
International Nuclear Information System (INIS)
Woods, S.; Hemingway, J.; Bowles, N.
1997-01-01
Three sets of standard γ-ray spectra have been produced for use in assessing the performance of spectral analysis software. The origin of and rationale behind the spectra are described. Nine representative analysis systems have been tested both in terms of component performance and in terms of overall performance and the problems encountered in the analysis are discussed. (author)
Standard gamma-ray spectra for the comparison of spectral analysis software
Energy Technology Data Exchange (ETDEWEB)
Woods, S.; Hemingway, J.; Bowles, N. [and others
1997-08-01
Three sets of standard {gamma}-ray spectra have been produced for use in assessing the performance of spectral analysis software. The origin of and rationale behind the spectra are described. Nine representative analysis systems have been tested both in terms of component performance and in terms of overall performance and the problems encountered in the analysis are discussed. (author)
Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis
Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué
2015-01-01
In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in can...
Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications
Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.
2003-01-01
The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.
Investigating cardiorespiratory interaction by cross-spectral analysis of event series
Schäfer, Carsten; Rosenblum, Michael G.; Pikovsky, Arkady S.; Kurths, Jürgen
2000-02-01
The human cardiovascular and respiratory systems interact with each other and show effects of modulation and synchronization. Here we present a cross-spectral technique that specifically considers the event-like character of the heartbeat and avoids typical restrictions of other spectral methods. Using models as well as experimental data, we demonstrate how modulation and synchronization can be distinguished. Finally, we compare the method to traditional techniques and to the analysis of instantaneous phases.
Abramovych, Anton; Poddubny, Volodymyr
2017-01-01
The authors theoretically and experimentally substantiated the use of the spectral method for processing a signal of the vortex-current metal detector for dichotomous differentiation between metals. Results of experimental research that prove the possibility of using spectral analysis for differentiation between metals were presented. The vortex-current method for detection of hidden metal objects was analyzed. It was indicated that amplitude of output VCD signal is determined by electric con...
Archives of Astronomical Spectral Observations and Atomic/Molecular Databases for their Analysis
Directory of Open Access Journals (Sweden)
Ryabchikova T.
2015-12-01
Full Text Available We present a review of open-source data for stellar spectroscopy investigations. It includes lists of the main archives of medium-to-high resolution spectroscopic observations, with brief characteristics of the archive data (spectral range, resolving power, flux units. We also review atomic and molecular databases that contain parameters of spectral lines, cross-sections and reaction rates needed for a detailed analysis of high resolution, high signal-to-noise ratio stellar spectra.
Robust and transferable quantification of NMR spectral quality using IROC analysis
Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.
2017-12-01
Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.
International Nuclear Information System (INIS)
Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.
2004-01-01
The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images
Energy Technology Data Exchange (ETDEWEB)
Comsa, D.C. E-mail: comsadc@mcmaster.ca; Prestwich, W.V.; McNeill, F.E.; Byun, S.H
2004-12-01
The toxic effects of aluminum are cumulative and result in painful forms of renal osteodystrophy, most notably adynamic bone disease and osteomalacia, but also other forms of disease. The Trace Element Group at McMaster University has developed an accelerator-based in vivo procedure for detecting aluminum body burden by neutron activation analysis (NAA). Further refining of the method was necessary for increasing its sensitivity. In this context, the present study proposes an improved algorithm for data analysis, based on spectral decomposition. A new minimum detectable limit (MDL) of (0.7{+-}0.1) mg Al was reached for a local dose of (20{+-}1) mSv. The study also addresses the feasibility of a new data acquisition technique, the electronic rejection of the coincident events detected by a NaI(Tl) system. It is expected that the application of this technique, together with spectral decomposition analysis, would provide an acceptable MDL for the method to be valuable in a clinical setting.
Directory of Open Access Journals (Sweden)
Sandra Miguel
2016-01-01
Full Text Available This research aims to diachronically analyze the worldwide scientific production on open access, in the academic and scientific context, in order to contribute to knowledge and visualization of its main actors. As a method, bibliographical, descriptive and analytical research was used, with the contribution of bibliometric studies, especially the production indicators, scientific collaboration and indicators of thematic co-occurrence. The Scopus database was used as a source to retrieve the articles on the subject, with a resulting corpus of 1179 articles. Using Bibexcel software, frequency tables were constructed for the variables, and Pajek software was used to visualize the collaboration network and VoSViewer for the construction of the keywords’ network. As for the results, the most productive researchers come from countries such as the United States, Canada, France and Spain. Journals with higher impact in the academic community have disseminated the new constructed knowledge. A collaborative network with a few subnets where co-authors are from different countries has been observed. As conclusions, this study allows identifying the themes of debates that mark the development of open access at the international level, and it is possible to state that open access is one of the new emerging and frontier fields of library and information science.
New development of neutron spectral modulation data analysis
International Nuclear Information System (INIS)
Ito, Y.
1988-01-01
A study is made on procedures for obtaining desired scattering function information. The neutron spectral modulation technique incorporates both the low (including DC) and high frequency Fourier components in its incident spectrum. Lake's procedure increases the Fourier components of the doconvoluted scattering function by using the existing Fourier components as nucleus, thereby bridges the Fourier gap and extends the Fourier region. Since the Lake's procedure takes care of the missing Fourier components, a single measurement using an appropriate NSM modulation suffices to recover the S(W) line shape. Deep modulation depth is not essential to reproduce the scattering function. This should be contrasted to the previous NSM treatment as well as to the neutron spin echo method, both of which require the several repeat of measurements with the varying modulation frequency under the high degree of beam polarization condition. Although the computer simulation of the present paper does not include the statistical fluctuation encountered in the experimental data, these analyses show a great promise of the NSM method, which can now be used with much flexibility in the field of both cold and ultracold neutron scattering experiment. (N.K.)
Power Spectral Density Specification and Analysis of Large Optical Surfaces
Sidick, Erkin
2009-01-01
The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.
Spectral analysis and markov switching model of Indonesia business cycle
Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum
2017-03-01
This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.
LDA measurements and turbulence spectral analysis in an agitated vessel
Directory of Open Access Journals (Sweden)
Chára Zdeněk
2013-04-01
Full Text Available During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique, methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.
LDA measurements and turbulence spectral analysis in an agitated vessel
Kysela, Bohuš; Konfršt, Jiří; Chára, Zdeněk
2013-04-01
During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA) has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique), methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number) were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.
Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A
Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E.
2001-06-01
We have designed an experiment in which students isolate and characterize thiarubrine A, a pseudo-antiaromatic 1,2-dithia-3,5-cyclohexadiene derivative. Thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications. They possess a distinctive red color and structure features that are particularly useful for demonstrating UV-vis, NMR, and IR spectral analyses. A crude mixture containing thiarubrine A is obtained by methanol (liquid-solid) extraction of the roots of short ragweed, Ambrosia artemisiifolia. Alternatively, these compounds can be isolated from numerous taxa within the family Asteraceae. Thiarubrine A possesses alkyl, alkenyl, and alkynyl functionality, which is useful in illustrating the utility of IR and NMR in the characterization of natural products. The long wavelength UV-vis absorption band of thiarubrine is indication of the nonplanarity of dithiin ring and provides an excellent opportunity to discuss the concepts of aromaticity, conjugation, and molecular orbital theory.
The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory
Brashear, Ronald
2018-01-01
This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.
Systematic wavelength selection for improved multivariate spectral analysis
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.
1995-01-01
Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.
International Nuclear Information System (INIS)
Sivia, D.S.; Hamilton, W.A.; Smith, G.S.
1991-01-01
The analysis of neutron reflectivity data to obtain nuclear scattering length density profiles is akin to the notorious phaseless Fourier problem, well known in many fields such as crystallography. Current methods of analysis culminate in the refinement of a few parameters of a functional model, and are often preceded by a long and laborious process of trial and error. We start by discussing the use of maximum entropy for obtained 'free-form' solutions of the density profile, as an alternative to the trial and error phase when a functional model is not available. Next we consider a Bayesian spectral analysis approach, which is appropriate for optimising the parameters of a simple (but adequate) type of model when the number of parameters is not known. Finally, we suggest a novel experimental procedure, the analogue of astronomical speckle holography, designed to alleviate the ambiguity problems inherent in traditional reflectivity measurements. (orig.)
Spectral analysis of an algebraic collapsing acceleration for the characteristics method
International Nuclear Information System (INIS)
Le Tellier, R.; Hebert, A.
2005-01-01
A spectral analysis of a diffusion synthetic acceleration called Algebraic Collapsing Acceleration (ACA) was carried out in the context of the characteristics method to solve the neutron transport equation. Two analysis were performed in order to assess the ACA performances. Both a standard Fourier analysis in a periodic and infinite slab-geometry and a direct spectral analysis for a finite slab-geometry were investigated. In order to evaluate its performance, ACA was compared with two competing techniques used to accelerate the convergence of the characteristics method, the Self-Collision Re-balancing technique and the Asymptotic Synthetic Acceleration. In the restricted framework of 1-dimensional slab-geometries, we conclude that ACA offers a good compromise between the reduction of the spectral radius of the iterative matrix and the resources to construct, store and solve the corrective system. A comparison on a monoenergetic 2-dimensional benchmark was performed and tends to confirm these conclusions. (authors)
Scientometric analysis and mapping of scientific articles on Behcet's disease.
Shahram, Farhad; Jamshidi, Ahmad-Reza; Hirbod-Mobarakeh, Armin; Habibi, Gholamreza; Mardani, Amir; Ghaemi, Marjan
2013-04-01
Behçet's disease (BD) is a systemic vasculitis disease with oral and genital aphthous ulceration, uveitis, skin manifestations, arthritis and neurological involvement. Many investigators have published articles on BD in the last two decades since introduction of diagnosis criteria by the International Study Group for Behçet's Disease in 1990. However, there is no scientometric analysis available for this increasing amount of literature. A scientometric analysis method was used to achieve a view of scientific articles about BD which were published between 1990 and 2010, by data retrieving from ISI Web of Science. The specific features such as publication year, language of article, geographical distribution, main journal in this field, institutional affiliation and citation characteristics were retrieved and analyzed. International collaboration was analyzed using Intcoll and Pajek softwares. There was a growing trend in the number of BD articles from 1990 to 2010. The number of citations to BD literature also increased around 5.5-fold in this period. The countries found to have the highest output were Turkey, Japan, the USA and England; the first two universities were from Turkey. Most of the top 10 journals publishing BD articles were in the field of rheumatology, consistent with the subject areas of the articles. There was a correlation between the citations per paper and the impact factor of the publishing journal. This is the first scientometric analysis of BD, showing the scientometric characteristics of ISI publications on BD. © 2013 The Authors International Journal of Rheumatic Diseases © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY
Directory of Open Access Journals (Sweden)
Belhadef RACHID
2016-01-01
Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.
Spectral characterization as a tool for parchment analysis
Radis, Michela; Iacomussi, Paola; Rossi, Giuseppe
2015-06-01
The paper presents an investigation on the correlation between spectral characteristics and conservation conditions of parchment to define a NON invasive methodology able to detect and monitor deterioration process in historical parchment without the need of taking small samples. To verify the feasibility and define the most appropriate measurement method, several samples of contemporary parchments, produced following ancient recipes and coming from different animal species, with different degrees of artificially induced damage, were analyzed. The SRF and STF of each sample were measured in the same point, before and after each step of the artificial ageing treatment. Having at disposal a parchment coming from a whole lamb leather, allowed also the study of the correlations between the variations of SRF - STF and the intrinsic factors of a parchment like the variability of animal skin anatomy and of manufacturing. Analyzing different samples allowed also the definition of the measuring method sensitivity and of reference spectrum for the different animal species parchments with accuracy limits. The definition of a reference spectrum of not damaged parchment with acceptability limits is a necessary step for understanding, through SRF - STF measurements, historical parchments conservation conditions: indeed it is necessary to know if deviations from the reference spectrum are ascribable to damage or only to parchment anatomic/production variability. As a case study, the method has been applied to two historical parchment scrolls stored at the Archivio di Stato di Torino (Italy). The SRF - STF of both scrolls was acquired in several points of the scroll, the average spectrum of each scroll was compared with the reference spectra with the relative tolerance limits, recognizing the animal species and damage alterations and demonstrating the feasibility of the method.
Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis
Directory of Open Access Journals (Sweden)
Qu Lijia
2009-03-01
Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases
Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.
Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin
2009-03-16
Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested
Spectral analysis of the fifth spectrum of indium: In V
International Nuclear Information System (INIS)
Swapnil; Tauheed, A.
2016-01-01
The fifth spectrum of indium (In V) has been investigated in the grazing and normal incidence wavelength regions. In"4"+ is a Rh-like ion with the ground configuration 4p"64d"9 and first excited configurations of the type 4p"64d"8nℓ (n≥4). The theoretical predications for this ion were made by Cowan's quasi-relativistic Hartree–Fock code with superposition of configurations involving 4p"64d"8(5p+6p+7p+4f+5f+6f), 4p"54d"1"0, 4p"64d"75s(5p+4f) for the odd parity matrix and 4p"64d"8 (5s+6s+7s+5d+6d), 4p"64d"7(5s"2+5p"2) for the even parity system. The spectra used for this work were recorded on 10.7 m grazing and normal incidence spectrographs at the National Institute of Standards and Technology, Gaithersburg, Maryland (USA) and also on a 3-m normal incidence vacuum spectrograph at Antigonish (Canada). The sources used were a sliding spark and a triggered spark respectively. Two hundred and thirty two energy levels based on the identification of 873 spectral lines have been established, forty six being new. Least squares fitted parametric calculations were used to interpret the observed level structure. The energy levels were optimized using a level optimization computer program (LOPT). Our wavelength accuracy for sharp and unblended lines is estimated to be within ±0.005 Å for λ below 400 Å and ±0.006 Å up to 1200 Å. - Highlights: • Indium spectra were recorded on both grazing and normal incidence spectrographs. • Calculations were made with Cowan's quasi-relativistic Hartree–Fock code. • New atomic transitions of In V were identified with newly found energy levels. • Uncertainties and Ritz wavelengths of all observed transitions were calculated. • Weighted transition probabilities (gA) were calculated.
IR spectral analysis for the diagnostics of crust earthquake precursors
Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju
2012-04-01
In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a
Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis
Directory of Open Access Journals (Sweden)
A. Ahmad
2012-06-01
Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.
Spectral Analysis of Traffic Functions in Urban Areas
Directory of Open Access Journals (Sweden)
Florin Nemtanu
2015-12-01
Full Text Available The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.
Multi spectral imaging analysis for meat spoilage discrimination
DEFF Research Database (Denmark)
Christiansen, Asger Nyman; Carstensen, Jens Michael; Papadopoulou, Olga
classification methods: Naive Bayes Classifier as a reference model, Canonical Discriminant Analysis (CDA) and Support Vector Classification (SVC). As the final step, generalization of the models was performed using k-fold validation (k=10). Results showed that image analysis provided good discrimination of meat......In the present study, fresh beef fillets were purchased from a local butcher shop and stored aerobically and in modified atmosphere packaging (MAP, CO2 40%/O2 30%/N2 30%) at six different temperatures (0, 4, 8, 12, 16 and 20°C). Microbiological analysis in terms of total viable counts (TVC......) was performed in parallel with videometer image snapshots and sensory analysis. Odour and colour characteristics of meat were determined by a test panel and attributed into three pre-characterized quality classes, namely Fresh; Semi Fresh and Spoiled during the days of its shelf life. So far, different...
An experiment with spectral analysis of emotional speech affected by orthodontic appliances
Přibil, Jiří; Přibilová, Anna; Ďuračková, Daniela
2012-11-01
The contribution describes the effect of the fixed and removable orthodontic appliances on spectral properties of emotional speech. Spectral changes were analyzed and evaluated by spectrograms and mean Welch’s periodograms. This alternative approach to the standard listening test enables to obtain objective comparison based on statistical analysis by ANOVA and hypothesis tests. Obtained results of analysis performed on short sentences of a female speaker in four emotional states (joyous, sad, angry, and neutral) show that, first of all, the removable orthodontic appliance affects the spectrograms of produced speech.
A Molecular Iodine Spectral Data Set for Rovibronic Analysis
Williamson, J. Charles; Kuntzleman, Thomas S.; Kafader, Rachael A.
2013-01-01
A data set of 7,381 molecular iodine vapor rovibronic transitions between the X and B electronic states has been prepared for an advanced undergraduate spectroscopic analysis project. Students apply standard theoretical techniques to these data and determine the values of three X-state constants (image omitted) and four B-state constants (image…
International Nuclear Information System (INIS)
Foltz Biegalski, K.M.; Biegalski, S.R.; Haas, D.A.
2008-01-01
The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. Spectral deconvolution spectroscopy is an analysis method that utilizes the entire signal deposited in a gamma-ray detector rather than the small portion of the signal that is present in one gamma-ray peak. This method shows promise to improve detection limits over classical gamma-ray spectroscopy analytical techniques; however, this hypothesis has not been tested. To address this issue, we performed three tests to compare the detection ability and variance of SDAT results to those of commercial off- the-shelf (COTS) software which utilizes a standard peak search algorithm. (author)
Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.
Basano, L; Canepa, F; Ottonello, P
1998-01-01
We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.
Directory of Open Access Journals (Sweden)
Fubiao Feng
2017-03-01
Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.
Processing of spectral X-ray data with principal components analysis
Butler, A P H; Cook, N J; Butzer, J; Schleich, N; Tlustos, L; Scott, N; Grasset, R; de Ruiter, N; Anderson, N G
2011-01-01
The goal of the work was to develop a general method for processing spectral x-ray image data. Principle component analysis (PCA) is a well understood technique for multivariate data analysis and so was investigated. To assess this method, spectral (multi-energy) computed tomography (CT) data was obtained using a Medipix2 detector in a MARS-CT (Medipix All Resolution System). PCA was able to separate bone (calcium) from two elements with k-edges in the X-ray spectrum used (iodine and barium) within a mouse. This has potential clinical application in dual-energy CT systems and future Medipix3 based spectral imaging where up to eight energies can be recorded simultaneously with excellent energy resolution. (c) 2010 Elsevier B.V. All rights reserved.
Analysis of spectral data with rare events statistics
International Nuclear Information System (INIS)
Ilyushchenko, V.I.; Chernov, N.I.
1990-01-01
The case is considered of analyzing experimental data, when the results of individual experimental runs cannot be summed due to large systematic errors. A statistical analysis of the hypothesis about the persistent peaks in the spectra has been performed by means of the Neyman-Pearson test. The computations demonstrate the confidence level for the hypothesis about the presence of a persistent peak in the spectrum is proportional to the square root of the number of independent experimental runs, K. 5 refs
Spectral analysis of optical emission of microplasma in sea water
Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu
2016-09-01
This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.
Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.
2009-05-01
Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral
Press, Craig A; Morgan, Lindsey; Mills, Michele; Stack, Cynthia V; Goldstein, Joshua L; Alonso, Estella M; Wainwright, Mark S
2017-01-01
Spectral electroencephalogram analysis is a method for automated analysis of electroencephalogram patterns, which can be performed at the bedside. We sought to determine the utility of spectral electroencephalogram for grading hepatic encephalopathy in children with acute liver failure. Retrospective cohort study. Tertiary care pediatric hospital. Patients between 0 and 18 years old who presented with acute liver failure and were admitted to the PICU. None. Electroencephalograms were analyzed by spectral analysis including total power, relative δ, relative θ, relative α, relative β, θ-to-Δ ratio, and α-to-Δ ratio. Normal values and ranges were first derived using normal electroencephalograms from 70 children of 0-18 years old. Age had a significant effect on each variable measured (p liver failure were available for spectral analysis. The median age was 4.3 years, 14 of 33 were male, and the majority had an indeterminate etiology of acute liver failure. Neuroimaging was performed in 26 cases and was normal in 20 cases (77%). The majority (64%) survived, and 82% had a good outcome with a score of 1-3 on the Pediatric Glasgow Outcome Scale-Extended at the time of discharge. Hepatic encephalopathy grade correlated with the qualitative visual electroencephalogram scores assigned by blinded neurophysiologists (rs = 0.493; p encephalopathy was correlated with a total power of less than or equal to 50% of normal for children 0-3 years old, and with a relative θ of less than or equal to 50% normal for children more than 3 years old (p > 0.05). Spectral electroencephalogram classification correlated with outcome (p encephalopathy and correlates with outcome. Spectral electroencephalogram may allow improved quantitative and reproducible assessment of hepatic encephalopathy grade in children with acute liver failure.
Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM
International Nuclear Information System (INIS)
Stamatikos, Michael; Sakamoto, Taka; Band, David L.
2008-01-01
We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT's spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.
Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM
International Nuclear Information System (INIS)
Stamatikos, Michael; Sakamoto, Takanori; Band, David L.
2008-01-01
We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade
Non destructive defect detection by spectral density analysis.
Krejcar, Ondrej; Frischer, Robert
2011-01-01
The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD).
Application of OLAM network in X-ray spectral analysis
International Nuclear Information System (INIS)
Liu Yinbing; Zhou Rongsheng
2001-01-01
The author describes a new approach to the automatic radioisotope identification problem based on the use of OLAM network. Different from the traditional methods, the OLAM network takes the spectrum as a whole comparing its shape with the patterns learned during the training period of the network. It is found that the OLAM network, once adequately trained, is quite suitable to identify a given isotope present in a mixture of elements as well as the relative proportions of each identified substance. Preliminary results are good enough to consider OLAM network as powerful and simple tools in the automatic spectrum analysis
Micro-Raman Imaging for Biology with Multivariate Spectral Analysis
Malvaso, Federica
2015-05-05
Raman spectroscopy is a noninvasive technique that can provide complex information on the vibrational state of the molecules. It defines the unique fingerprint that allow the identification of the various chemical components within a given sample. The aim of the following thesis work is to analyze Raman maps related to three pairs of different cells, highlighting differences and similarities through multivariate algorithms. The first pair of analyzed cells are human embryonic stem cells (hESCs), while the other two pairs are induced pluripotent stem cells (iPSCs) derived from T lymphocytes and keratinocytes, respectively. Although two different multivariate techniques were employed, ie Principal Component Analysis and Cluster Analysis, the same results were achieved: the iPSCs derived from T-lymphocytes show a higher content of genetic material both compared with the iPSCs derived from keratinocytes and the hESCs . On the other side, equally evident, was that iPS cells derived from keratinocytes assume a molecular distribution very similar to hESCs.
International Nuclear Information System (INIS)
Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.
1987-01-01
A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods
International Nuclear Information System (INIS)
Venancio Filho, F.; Joia, L.A.
1987-01-01
A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)
Spectral analysis of viscous static compressible fluid equilibria
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
2001-05-25
It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)
Selective laser ionization for mass-spectral isotopic analysis
International Nuclear Information System (INIS)
Miller, C.M.; Nogar, N.S.; Downey, S.W.
1983-01-01
Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios
Spectral analysis of musical sounds with emphasis on the piano
Koenig, David M
2014-01-01
There are three parts to this book which addresses the analysis of musical sounds from the viewpoint of someone at the intersection between physicists, engineers, piano technicians, and musicians. The reader is introduced to a variety of waves and a variety of ways of presenting, visualizing, and analyzing them in the first part. A tutorial on the tools used throughout the book accompanies this introduction. The mathematics behind the tools is left to the appendices. Part 2 is a graphical survey of the classical areas of acoustics that pertain to musical instruments: vibrating strings, bars, membranes, and plates. Part 3 is devoted almost exclusively to the piano. Several two- and three-dimensional graphical tools are introduced to study the following characteristics of pianos: individual notes and interactions among them, the missing fundamental, inharmonicity, tuning visualization, the different distribution of harmonic power for the various zones of the piano keyboard, and potential uses for quality contro...
Spectral Analysis of a Quantum System with a Double Line Singular Interaction
Czech Academy of Sciences Publication Activity Database
Kondej, S.; Krejčiřík, David
2013-01-01
Roč. 49, č. 4 (2013), s. 831-859 ISSN 0034-5318 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance Subject RIV: BE - Theoretical Physics Impact factor: 0.614, year: 2013
Semiconductor detectors in current energy dispersive X-ray spectral analysis
International Nuclear Information System (INIS)
Betin, J.; Zhabin, E.; Krampit, I.; Smirnov, V.
1980-01-01
A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc. (M.S.)
Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis
Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.
2013-06-01
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
Spectral analysis of K-shell X-ray emission of magnesium plasma
Indian Academy of Sciences (India)
2014-02-06
Feb 6, 2014 ... Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the ...
WINDOWS: a program for the analysis of spectral data foil activation measurements
International Nuclear Information System (INIS)
Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.
1978-12-01
The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references
WINDOWS: a program for the analysis of spectral data foil activation measurements
Energy Technology Data Exchange (ETDEWEB)
Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.
1978-12-01
The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)
Polder, G.; Heijden, van der G.W.A.M.
2003-01-01
Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components
Directory of Open Access Journals (Sweden)
Yuanyuan Ma
2016-01-01
Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.
Sex Differences in the Sleep EEG of Young Adults : Visual Scoring and Spectral Analysis
Dijk, Derk Jan; Beersma, Domien G.M.; Bloem, Gerda M.
1989-01-01
Baseline sleep of 13 men (mean age of 23.5 years) and 15 women (21.9 years) was analyzed. Visual scoring of the electroencephalograms (EEGs) revealed no significant differences between the sexes in the amounts of slow-wave sleep and rapid-eye-movement (REM) sleep. Spectral analysis, however,
Advances in spectral analysis using artificial neural networks
International Nuclear Information System (INIS)
Martinez, M.; Vigneron, V.
1995-01-01
Artificial Neural networks (ANNs) have a powerful representational capacity and ability to handle with any multi-input multi-output mapping problem, e.g. in clustering, pattern recognition and identification areas, particularly when combined with some a priori knowledge and statistical point of view. They can be useful in spectrometry for the uranium enrichment methods by examples, where numerous approaches like models fitting or experts analysis are limited. These depends on the radiation measured: the methods most widely used developed over the past 20 years were based on the counting of the 185.7-keV peak with a sodium iodide scintillation detector or the 163.4-keV peak of 235 U. But these methods depend critically of the source-detector geometry. A means of improving the above conventional methods is to reduce the region of interest: it is possible by focusing at the region called KαX where the three elementary components are present. The measurement of these components in mixtures leads to the isotope ratio 235 U / ( 235 U + 236 U + 238 U). In this paper we explore statistical orientations and their consequences on 'neural' parameters. We show this decisions are induced by a log-linear model, a special case of a GLIM (Generalized LInear Model) and correspond to a Maximum Likelihood Estimation problem. (authors). 15 refs., 7 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Wang, Qi, E-mail: wq20@hotmail.com; Shi, Gaofeng, E-mail: gaofengs62@sina.com; Qi, Xiaohui, E-mail: qixiaohui1984@163.com; Fan, Xueli, E-mail: 407849960@qq.com; Wang, Lijia, E-mail: 893197597@qq.com
2014-10-15
Highlights: • We establish a feasible method using the virtual spectral curves (VSC) to differentiate focal liver lesions using DECT. • Our study shows the slope of the VSC can be used to differentiate between hemangioma, HCC, metastasis and cyst. • Importantly, the diagnostic specificities associated with using the slope to diagnose both hemangioma and cysts were 100%. - Abstract: Objective: To assess the usefulness of the spectral curve slope of dual-energy CT (DECT) for differentiating between hepatocellular carcinoma (HCC), hepatic metastasis, hemangioma (HH) and cysts. Methods: In total, 121 patients were imaged in the portal venous phase using dual-energy mode. Of these patients, 23 patients had HH, 28 patients had HCC, 40 patients had metastases and 30 patients had simple cysts. The spectral curves of the hepatic lesions were derived from the 40–190 keV levels of virtual monochromatic spectral imaging. The spectral curve slopes were calculated from 40 to 110 keV. The slopes were compared using the Kruskal–Wallis test. Receiver operating characteristic curves (ROC) were used to determine the optimal cut-off value of the slope of the spectral curve to differentiate between the lesions. Results: The spectral curves of the four lesion types had different baseline levels. The HH baseline level was the highest followed by HCC, metastases and cysts. The slopes of the spectral curves of HH, HCC, metastases and cysts were 3.81 ± 1.19, 1.49 ± 0.57, 1.06 ± 0.76 and 0.13 ± 0.17, respectively. These values were significantly different (P < 0.008). Based on ROC analysis, the respective diagnostic sensitivity and specificity were 87% and 100% for hemangioma (cut-off value ≥ 2.988), 82.1% and 65.9% for HCC (cut-off value 1.167–2.998), 65.9% and 59% for metastasis (cut-off value 0.133–1.167) and 44.4% and 100% for cysts (cut-off value ≤ 0.133). Conclusion: Quantitative analysis of the DECT spectral curve in the portal venous phase can be used to
International Nuclear Information System (INIS)
Borgermans, P.
2002-01-01
The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material
International Nuclear Information System (INIS)
Castro, E.B.; Vilche, J.R.; Milocco, R.H.
1984-01-01
An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt
The analysis of toxic connections content in water by spectral methods
Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.
2017-08-01
The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.
Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA
Ringat, E.
2012-03-01
In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.
Monitoring PSR B1509–58 with RXTE: Spectral analysis 1996–2010
Directory of Open Access Journals (Sweden)
E. Litzinger
2011-01-01
Full Text Available We present an analysis of the X-ray spectra of the young, Crab-like pulsar PSR B1509–58 (pulse period P ~ 151ms observed by RXTE over 14 years since the beginning of the mission in 1996. The uniform dataset is especially well suited for studying the stability of the spectral parameters over time as well as for determining pulse phase resolved spectral parameters with high significance. The phase averaged spectra as well as the resolved spectra can be well described by an absorbed power law.
Ivanova, B. B.
2005-11-01
A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.
Spectral analysis of the geomagnetic activity index Ap during different IMF conditions (1947-1978)
International Nuclear Information System (INIS)
Francia, P.; Villante, U.
1986-01-01
The spectral analysis of the geomagnetic activity index Ap (1947-1978) has been conducted for intervals associated respectively with two and four sectors of the interplanetary magnetic fields per solar rotation. A recurrent 2-sector structure is typically associated with an emerging spectral peak close to T s (T s being the period of solar rotation as seen from Earth), while the T 2 /2 modulation becomes more important during intervals corresponding to four sectors per solar rotation. The recurrence tendency of two high-velocity streams per solar rotation seems to reinforce the relative importance of the T 2 /2 modulation
Scientometric Analysis and Mapping of Scientific Articles on Diabetic Retinopathy.
Ramin, Shahrokh; Gharebaghi, Reza; Heidary, Fatemeh
2015-01-01
Diabetic retinopathy (DR) is the major cause of blindness among the working-age population globally. No systematic research has been previously performed to analyze the research published on DR, despite the need for it. This study aimed to analyze the scientific production on DR to draw overall roadmap of future research strategic planning in this field. A bibliometric method was used to obtain a view on the scientific production about DR by the data extracted from the Institute for Scientific Information (ISI). Articles about DR published in 1993-2013 were analyzed to obtain a view of the topic's structure, history, and to document relationships. The trends in the most influential publications and authors were analyzed. Most highly cited articles addressed epidemiologic and translational research topics in this field. During the past 3 years, there has been a trend toward biomarker discovery and more molecular translational research. Areas such as gene therapy and micro-RNAs are also among the recent hot topics. Through analyzing the characteristics of papers and the trends in scientific production, we performed the first scientometric report on DR. Most influential articles have addressed epidemiology and translational research subjects in this field, which reflects that globally, the earlier diagnosis and treatment of this devastating disease still has the highest global priority.
Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters
Directory of Open Access Journals (Sweden)
Jung-Hee Kim
2014-06-01
Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.
Spectral analysis of highly aliased sea-level signals
Ray, Richard D.
1998-10-01
Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.
Gottesman, Alan J.; Hoskins, Sally G.
2013-01-01
The Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment (CREATE) strategy for teaching and learning uses intensive analysis of primary literature to improve students’ critical-thinking and content integration abilities, as well as their self-rated science attitudes, understanding, and confidence. CREATE also supports maturation of undergraduates’ epistemological beliefs about science. This approach, originally tested with upper-level students, has been adapted in Introduction to Scientific Thinking, a new course for freshmen. Results from this course's initial semesters indicate that freshmen in a one-semester introductory course that uses a narrowly focused set of readings to promote development of analytical skills made significant gains in critical-thinking and experimental design abilities. Students also reported significant gains in their ability to think scientifically and understand primary literature. Their perceptions and understanding of science improved, and multiple aspects of their epistemological beliefs about science gained sophistication. The course has no laboratory component, is relatively inexpensive to run, and could be adapted to any area of scientific study. PMID:23463229
Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments
Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas
2016-04-01
1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of
Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas
International Nuclear Information System (INIS)
Dong, Yue
2014-01-01
This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling
Modal spectral analysis of piping: Determination of the significant frequency range
International Nuclear Information System (INIS)
Geraets, L.H.
1981-01-01
This paper investigates the influence of the number of modes on the response of a piping system in a dynamic modal spectral analysis. It shows how the analysis can be limited to a specific frequency range of the pipe (independent of the frequency range of the response spectrum), allowing cost reduction without loss in accuracy. The 'missing mass' is taken into account through an original technique. (orig./HP)
Scientific production of Sports Science in Iran: A Scientometric Analysis.
Yaminfirooz, Mousa; Siamian, Hasan; Jahani, Mohammad Ali; Yaminifirouz, Masoud
2014-06-01
Physical education and sports science is one of the branches of humanities. The purpose of this study is determining the quantitative and qualitative rate of progress in scientific Production of Iran's researcher in Web of Science. Research Methods is Scientometric survey and Statistical Society Includes 233 Documents From 1993 to 2012 are indexed in ISI. Results showed that the time of this study, Iranian researchers' published 233 documents in this base during this period of time which has been cited 1106(4.76 times on average). The H- index has also been 17. Iran's most scientific productions in sports science realm was indexed in 2010 with 57 documents and the least in 2000. By considering the numbers of citations and the obtained H- index, it can be said that the quality of Iranian's articles is rather acceptable but in comparison to prestigious universities and large number of professors and university students in this field, the quantity of outputted articles is very low.
Social Network Analysis of Scientific Articles Published by Food Policy
Directory of Open Access Journals (Sweden)
József Popp
2018-02-01
Full Text Available The article analyses co-authorship and co-citation networks in Food Policy, which is the most important agricultural policy journal in the field of agricultural economics. The paper highlights the principal researchers in this field together with their authorship and citation networks on the basis of 714 articles written between 2006 and 2015. Results suggest that the majority of the articles were written by a small number of researchers, indicating that groups and central authors play an important role in scientific advances. It also turns out that the number of articles and the central role played in the network are not related, contrary to expectations. Results also suggest that groups cite themselves more often than average, thereby boosting the scientific advancement of their own members.
Spectral analysis of time series of events: effect of respiration on heart rate in neonates
International Nuclear Information System (INIS)
Van Drongelen, Wim; Williams, Amber L; Lasky, Robert E
2009-01-01
Certain types of biomedical processes such as the heart rate generator can be considered as signals that are sampled by the occurring events, i.e. QRS complexes. This sampling property generates problems for the evaluation of spectral parameters of such signals. First, the irregular occurrence of heart beats creates an unevenly sampled data set which must either be pre-processed (e.g. by using trace binning or interpolation) prior to spectral analysis, or analyzed with specialized methods (e.g. Lomb's algorithm). Second, the average occurrence of events determines the Nyquist limit for the sampled time series. Here we evaluate different types of spectral analysis of recordings of neonatal heart rate. Coupling between respiration and heart rate and the detection of heart rate itself are emphasized. We examine both standard and data adaptive frequency bands of heart rate signals generated by models of coupled oscillators and recorded data sets from neonates. We find that an important spectral artifact occurs due to a mirror effect around the Nyquist limit of half the average heart rate. Further we conclude that the presence of respiratory coupling can only be detected under low noise conditions and if a data-adaptive respiratory band is used
International Nuclear Information System (INIS)
Speetjens, M F M; Meleshko, V V; Van Heijst, G J F
2014-01-01
The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)
On the spectral analysis of iterative solutions of the discretized one-group transport equation
International Nuclear Information System (INIS)
Sanchez, Richard
2004-01-01
We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution
The spectral analysis of motion: An "open field" activity test example
Directory of Open Access Journals (Sweden)
Obradović Z.
2013-01-01
Full Text Available In this work we have described the new mathematical approach, with spectral analysis of the data to evaluate position and motion in the „„open field““ experiments. The aim of this work is to introduce several new parameters mathematically derived from experimental data by means of spectral analysis, and to quantitatively estimate the quality of the motion. Two original software packages (TRACKER and POSTPROC were used for transforming a video data to a log file, suitable for further computational analysis, and to perform analysis from the log file. As an example, results obtained from the experiments with Wistar rats in the „open field“ test are included. The test group of animals was treated with diazepam. Our results demonstrate that all the calculated parameters, such as movement variability, acceleration and deceleration, were significantly lower in the test group compared to the control group. We believe that the application of parameters obtained by spectral analysis could be of great significance in assessing the locomotion impairment in any kind of motion. [Projekat Ministarstva nauke Republike Srbije, br. III41007 i br. ON174028
Recipients of major scientific awards: A descriptive and predictive analysis
Barbee, Andrew Calvin
Recent trends demonstrate an increase of women in leadership roles, STEM fields, and participating in higher education including graduate and doctoral programs, which is a result of Title IX. This quantitative study considered major scientific awards awarded to females and examines demographic characteristics of awardees from the Nobel, National Academy of Sciences (NAS), and National Science Foundation (NSF). More specifically, the following awards were examined the Nobel Prize in Chemistry, the NAS Public Welfare Medal, and the NSF National Medal of Science within the discipline of Physical Science. Also, this study focused on equality to determine if a fair playing field and equal opportunity for women in academics has improved since Title IX. A limited amount of research has explored female award recipients. Specifically, existing research, has not examined the pinnacle of academic performance in the form of national and international awards. In the present study, I posed research questions relating to demographic characteristics of award recipients from the Nobel, NAS, and NSF between 1975 and 2015. Additionally, I examined if sex and age of the awardees could predict early career award obtainment. Through the frame of Social cognitive theory (Bandura, 1986, 1997, and 2005) I considered how perceptions of gender roles are a product of influence by society and the possible connection to performance. Results indicated a limited number of females have received these scientific awards and the awardees age could predict receiving an award early in their career. Additionally, the study provided insight into the progression of Title IX within the context of athletics and academics. It addressed the incremental and systematic increase in academics for women at high school, college, career, and scientific awards. Perhaps most importantly, it identified an observed pattern for female science award recipients reaching a critical mass and a tipping point.
Pan, C.; Rogers, D.
2012-12-01
Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through optically thin grains in the compacted mixture. Inclusion of loose powder (analysis of TES and Mini-TES data of lithified sedimentary deposits.
Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang
2012-03-01
Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.
Lang, Harold R.
1991-01-01
A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.
High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.
Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin
2009-05-28
Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.
Spectral analysis of bacanora (agave-derived liquor) by using FT-Raman spectroscopy
Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan
2016-04-01
The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm-1 to 3500 cm-1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.
Somers, B.; Asner, G. P.
2014-09-01
The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.
Hyperspectral imaging of polymer banknotes for building and analysis of spectral library
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-11-01
The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.
Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis
Zoran, M. A.; Savastru, R. S.; Savastru, D. M.
2013-08-01
During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.
Spectral decomposition in advection-diffusion analysis by finite element methods
International Nuclear Information System (INIS)
Nickell, R.E.; Gartling, D.K.; Strang, G.
1978-01-01
In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies
Spectral and correlation analysis of soft X-ray signals from the Joint European Torus tokamak
International Nuclear Information System (INIS)
Karlsson, J.; Pazsit, I.
1997-01-01
Tomographic methods applied to soft X-rays emitted from a fusion plasma have long been used to diagnose and interpret magnetohydrodynamic and other plasma activities. However, fluctuation analysis has recently been proposed as a complementary method to tomography. The novelty of the suggested method is that the various modes can be determined without tomographic inversion. This paper reports on the results of correlation and spectral analysis of soft X-ray data. The seven measurements analyzed were made by the Joint European Torus (JET) Joint Undertaking using their old soft X-ray measurement system. Auto power spectral densities and phase relations were evaluated from the measured signals as functions of the lines of sight. The fundamental mode m=n=1 was identified in several measurements. The corresponding frequency and toroidal rotation velocity were determined. Higher order modes were also observed and identified. Furthermore, simple model calculations were performed and the results compared with evaluated auto-spectra. (orig.)
Vo, T D; Dwyer, G; Szeto, H H
1986-04-01
A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.
High-Selectivity Filter Banks for Spectral Analysis of Music Signals
Directory of Open Access Journals (Sweden)
Luiz W. P. Biscainho
2007-01-01
Full Text Available This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT, the fast filter bank (FFB, the constant-Q transform (CQT, and the bounded-Q transform (BQT, previously known from the associated literature. Two new methods are then introduced, namely, the constant-Q fast filter bank (CQFFB and the bounded-Q fast filter bank (BQFFB, combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed BQFFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the CQT and BQT methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.
Spectral analysis of the He-enriched sdO-star HD 127493
Dorsch, Matti; Latour, Marilyn; Heber, Ulrich
2018-02-01
The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.
Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems
Directory of Open Access Journals (Sweden)
Johan Nijs
2007-01-01
Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.
Energy Technology Data Exchange (ETDEWEB)
Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)
1996-04-01
Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.
Spectral analysis of Jupiter kilometric radio emissions during the Ulysses flyby
Echer, M. P. D. S.; Echer, E.; Gonzalez, W.; Magalães, F. P.
2016-12-01
In this work we analyze Ulysses URAP kilometric radio data during Ulysses Jupiter flyby. The interval selected for analysis was from October 1991 to February 1992. URAP 10-min averages of auroral (bkom) and torus (nkom) radio data are used. The wavelet and iterative regression spectral analyses techniques are employed on both data set. The results obtained will enable us to determine the major frequencies present in the auroral and torus data and study their similar and different periodicities.
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo
2009-01-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...
Spectral Analysis Related to Bare-Metal and Drug-Eluting Coronary Stent Implantation
Energy Technology Data Exchange (ETDEWEB)
Silva, Rose Mary Ferreira Lisboa da, E-mail: roselisboa@cardiol.br [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Silva, Carlos Augusto Bueno [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Greco, Otaviano José [Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Moreira, Maria da Consolação Vieira [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil)
2014-08-15
The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.
Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)
International Nuclear Information System (INIS)
Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.
1988-01-01
In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr
Czech Academy of Sciences Publication Activity Database
Hovorka, Ondřej; Šubr, Vladimír; Větvička, David; Kovář, Lubomír; Strohalm, Jiří; Strohalm, Martin; Benda, Aleš; Hof, Martin; Ulbrich, Karel; Říhová, Blanka
2010-01-01
Roč. 76, č. 3 (2010), s. 514-524 ISSN 0939-6411 R&D Projects: GA AV ČR IAA400200702; GA AV ČR IAAX00500803; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : doxorubicin * spectral analysis * fluorescence Subject RIV: EC - Immunology Impact factor: 4.304, year: 2010
National and international scientific elites: an analysis of Chinese scholars
Energy Technology Data Exchange (ETDEWEB)
Shu, F.; Larivière, V.; Julien, C.A.
2016-07-01
The purpose of this study is to compare the WoS with a national Chinese bibliometric database at the level of individual authors and measure the extent of the overlap of the group of authors that are the most active in the two data sources. The results indicate that Chinese scholars do not have homogeneous publication patterns: some very productive scholars mostly publish in international (WoS) journals while others prefer to diffuse their research results in national Chinese journals. Disciplines that are most international in scope exhibit a much higher level of overlap than those of the social sciences and humanities. These results suggest that the WoS does not accurately represent Chinese research activities, especially in social science and humanities, but that it also has a relative overlap with the Chinese national scientific literature in the natural and medical sciences. (Author)
Directory of Open Access Journals (Sweden)
Z. Pashazadeh Atabakan
2013-01-01
Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.
Perner, Mónica Serena
2013-12-01
The aim of this study was to describe and analyze changes in the definition of diabetes as a disease and the relationship between these changes and subsequent modifications in the therapeutic management of the disease. A content analysis was performed using articles, guidelines, and consensuses published by the Argentina Diabetes Society and the Latin American Diabetes Association between 1980 and 2010. The different classifications, values used to define a person as diabetic, and treatments were assessed and the changes and modifications discovered were critically analyzed using categories such as medicalization, risk and lifestyles. As a result of the analysis we can observe how the growing process of medicalization, the dependence on the scientific knowledge of central countries, the interests of the pharmaceutical industry, and the crucial role played by pharmacological treatments are all inscribed within the management of diabetes, which can be made visible through the changes that have taken place over the last 30 years.
Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi
2013-01-01
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.
Directory of Open Access Journals (Sweden)
Qian Wang
2016-01-01
Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.
Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa
2017-12-01
Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.
An Excel‐based implementation of the spectral method of action potential alternans analysis
Pearman, Charles M.
2014-01-01
Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439
An Excel-based implementation of the spectral method of action potential alternans analysis.
Pearman, Charles M
2014-12-01
Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Analysis of scientific articles published in two general orthopaedic journals.
Holzer, Lukas A; Holzer, Gerold
2013-01-01
To give an overview of the behaviour and scientific contributions of the Journal of Bone and Joint Surgery American (JBJS-A) and British Volume (JBJS-B). 480 original articles published in 2009 were identified through a combined comprehensive computer and manual library search. Articles were assigned to 11 orthopaedic categories and by country, type and specialty of the institution. Possible grants and citations were analysed. USA led all countries in published articles (36,87%), followed by UK (20,62%) and South Korea (5,83%). Most studies published were performed at academic institutions (65,83 %), only 4,16% at private practices. Almost half of the articles (46,24%) were published in three categories: hip (19.16%), knee (13.75%) and trauma (13.33%). In both journals 47.15% articles had at least one funding source. A review of articles published in major journals allows to show how research in orthopaedics is distributed worldwide. This study shows that a variety of different journals is neccessary to reflect the broad spectrum of orthopaedics in depth. Level of Evidence III, Retrospective Comparative Study.
Monte-Carlo error analysis in x-ray spectral deconvolution
International Nuclear Information System (INIS)
Shirk, D.G.; Hoffman, N.M.
1985-01-01
The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels
Spectral methods for the detection of network community structure: a comparative analysis
International Nuclear Information System (INIS)
Shen, Hua-Wei; Cheng, Xue-Qi
2010-01-01
Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity
Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis
Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.
2016-02-01
We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.
Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations
Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana
2018-05-01
The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.
Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.
Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G
2016-02-05
We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Rubel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G.R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keranen, Soile V.E.; Knowles, David W.; Hendriks, Chris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng
2010-01-01
Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies 'such as efficient data management' supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.
Use of fast Fourier transform in gamma-ray spectral analysis
International Nuclear Information System (INIS)
Tominaga, Shoji; Nayatani, Yoshinobu; Nagata, Shojiro; Sasaki, Takashi; Ueda, Isamu.
1978-01-01
In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform has been devised. The validity of the method has been confirmed by computer simulation for spectra of a NaI detector. First, it is shown that spectral data can be represented by Fourier series with a reduced number of terms. Then the estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features of the method and a general problem to be solved in relation to a response matrix method are described. (author)
The quantum spectral analysis of the two-dimensional annular billiard system
International Nuclear Information System (INIS)
Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin
2009-01-01
Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
Energy Technology Data Exchange (ETDEWEB)
Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)
2013-07-01
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)
Use of the spectral analysis for estimating the intensity of a weak periodic source
International Nuclear Information System (INIS)
Marseguerra, M.
1989-01-01
This paper deals with the possibility of exploiting spectral methods for the analysis of counting experiments in which one has to estimate the intensity of a weak periodic source of particles buried in a high background. The general theoretical expressions here obtained for the auto- and cross-spectra are applied to three kinds of simulated experiments. In all cases it turns out that the source intensity can acutally be estimated with a standard deviation comparable with that obtained in classical experiments in which the source can be moved out. Thus the spectral methods represent an interesting technique nowadays easy to implement on low-cost computers which could also be used in many research fields by suitably redesigning classical experiments. The convenience of using these methods in the field of nuclear safeguards is presently investigated in our Institute. (orig.)
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
International Nuclear Information System (INIS)
Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.
2013-01-01
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)
Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam
Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa
2017-08-01
In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.
Energy Technology Data Exchange (ETDEWEB)
Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)
2016-01-18
Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.
Spectral Analysis of the sdO Standard Star Feige 34
Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.
2017-03-01
We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.
International Nuclear Information System (INIS)
Haaland, D.M.; Easterling, R.G.; Vopicka, D.A.
1985-01-01
In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures, The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectra baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentration was <1%
TOF plotter - a program to perform routine analysis time-of-flight mass spectral data
International Nuclear Information System (INIS)
Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth
2004-01-01
The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems
Communication system and spectral analysis for Ge-Li and GeHp detectors
International Nuclear Information System (INIS)
Fernandez, J.; Castano, P.; Bonino, A.D.; Righetti, M.A.
1990-01-01
An integral communication and spectral analysis system (SICADE) was developed and implemented to satisfy the need to optimize and automate the measurement system used in Atucha I nuclear power plant for the activity in the primary loop's water extracted by the TV system. The importance of these measurements is based on the fact that from the spectrometric analysis of the samples extracted, the Iodines-GN and Iodines-Iodines relations, which allow to detect the presence of deficient fuel elements, are calculated. The system developed is based on two modules integrated in a unique set commanded by the operators through the screen dialogue. (Author) [es
Analysis of the brazilian scientific production about information flows
Directory of Open Access Journals (Sweden)
Danielly Oliveira Inomata
2015-07-01
Full Text Available Objective. This paper presents and discuss the concepts, contexts and applications involving information flows in organizations. Method. Systematic review, followed by a bibliometric analysis and system analysis. The systematic review aimed to search for, evaluate and review evidence about the research topic. The systematic review process comprised the following steps: 1 definition of keywords, 2 systematic review, 3 exploration and analysis of articles and 4 comparison and consolidation of results. Results. A bibliometric analysis aimed to provide a statement of the relevance of articles where the authors, dates of publications, citation index, and periodic keywords with higher occurrence. Conclusions. As survey results confirms the emphasis on information featured in the knowledge management process, and advancing years, it seems that the emphasis is on networks, ie, studies are turning to the operationalization and analysis of flows information networks. The literature produced demonstrates the relationship of information flow with its management, applied to different organizational contexts, including showing new trends in information science as the study and analysis of information flow in networks.
A bibliometric analysis of scientific production in mesothelioma research.
Ugolini, Donatella; Neri, Monica; Casilli, Cristina; Ceppi, Marcello; Canessa, Pier Aldo; Ivaldi, Giovanni Paolo; Paganuzzi, Michela; Bonassi, Stefano
2010-11-01
This study aims at comparing scientific production in malignant mesothelioma (MM) among countries and evaluating publication trends and impact factor (IF). The PubMed database was searched with a strategy combining keywords listed in the Medical Subject Headings and free-text search. Publications numbers and IF were evaluated both as absolute values and after standardization by population and gross domestic product (GDP). 5240 citations were retrieved from the biennium 1951-1952 (n = 22) to 2005-2006 (n = 535). The 177% increase of MM publications from 1987 to 2006 exceeded by large the corresponding value of total cancer literature (123.5%). In these two decades, 2559 articles with IF were published: 46.4% came from the European Union (EU) (the UK, Italy and France ranking at the top), and 36.2% from the US. The highest mean IF was reported for the US (3.346), followed by Australia (3.318), and EU (2.415, with the UK, Belgium and the Netherlands first). Finland, Sweden and Australia had the best ratio between IF (sum) and resident population or GDP. The number of publications correlated with GDP (p = 0.001) and national MM mortality rates (p = 0.002). An association was found between a country commitment to MM research and the burden of disease (p = 0.04). Asbestos, survival, prognosis, occupational exposure, differential diagnosis, and immunohistochemistry were the most commonly used keywords. This report represents the first effort to explore the geographical and temporal distribution of MM research and its determinants. This is an essential step in understanding science priorities and developing disease control policies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Pardo-Igúzquiza, Eulogio; Rodríguez-Tovar, Francisco J.
2012-12-01
Many spectral analysis techniques have been designed assuming sequences taken with a constant sampling interval. However, there are empirical time series in the geosciences (sediment cores, fossil abundance data, isotope analysis, …) that do not follow regular sampling because of missing data, gapped data, random sampling or incomplete sequences, among other reasons. In general, interpolating an uneven series in order to obtain a succession with a constant sampling interval alters the spectral content of the series. In such cases it is preferable to follow an approach that works with the uneven data directly, avoiding the need for an explicit interpolation step. The Lomb-Scargle periodogram is a popular choice in such circumstances, as there are programs available in the public domain for its computation. One new computer program for spectral analysis improves the standard Lomb-Scargle periodogram approach in two ways: (1) It explicitly adjusts the statistical significance to any bias introduced by variance reduction smoothing, and (2) it uses a permutation test to evaluate confidence levels, which is better suited than parametric methods when neighbouring frequencies are highly correlated. Another novel program for cross-spectral analysis offers the advantage of estimating the Lomb-Scargle cross-periodogram of two uneven time series defined on the same interval, and it evaluates the confidence levels of the estimated cross-spectra by a non-parametric computer intensive permutation test. Thus, the cross-spectrum, the squared coherence spectrum, the phase spectrum, and the Monte Carlo statistical significance of the cross-spectrum and the squared-coherence spectrum can be obtained. Both of the programs are written in ANSI Fortran 77, in view of its simplicity and compatibility. The program code is of public domain, provided on the website of the journal (http://www.iamg.org/index.php/publisher/articleview/frmArticleID/112/). Different examples (with simulated and
MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format.
Ahmed, Zeeshan; Dandekar, Thomas
2015-01-01
Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool 'Mining Scientific Literature (MSL)', which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system's output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format.
Scientific Approach and Inquiry Learning Model in the Topic of Buffer Solution: A Content Analysis
Kusumaningrum, I. A.; Ashadi, A.; Indriyanti, N. Y.
2017-09-01
Many concepts in buffer solution cause student’s misconception. Understanding science concepts should apply the scientific approach. One of learning models which is suitable with this approach is inquiry. Content analysis was used to determine textbook compatibility with scientific approach and inquiry learning model in the concept of buffer solution. By using scientific indicator tools (SIT) and Inquiry indicator tools (IIT), we analyzed three chemistry textbooks grade 11 of senior high school labeled as P, Q, and R. We described how textbook compatibility with scientific approach and inquiry learning model in the concept of buffer solution. The results show that textbook P and Q were very poor and book R was sufficient because the textbook still in procedural level. Chemistry textbooks used at school are needed to be improved in term of scientific approach and inquiry learning model. The result of these analyses might be of interest in order to write future potential textbooks.
Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad
2015-01-01
Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.
Advancing data management and analysis in different scientific disciplines
Fischer, M.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Prabhune, A.; Rigoll, F.; Schwarz, K.; Streit, A.
2017-10-01
Over the past several years, rapid growth of data has affected many fields of science. This has often resulted in the need for overhauling or exchanging the tools and approaches in the disciplines’ data life cycles. However, this allows the application of new data analysis methods and facilitates improved data sharing. The project Large-Scale Data Management and Analysis (LSDMA) of the German Helmholtz Association has been addressing both specific and generic requirements in its data life cycle successfully since 2012. Its data scientists work together with researchers from the fields such as climatology, energy and neuroscience to improve the community-specific data life cycles, in several cases even all stages of the data life cycle, i.e. from data acquisition to data archival. LSDMA scientists also study methods and tools that are of importance to many communities, e.g. data repositories and authentication and authorization infrastructure.
TULEN, JHM; MULDER, G; PEPPLINKHUIZEN, L; INTVELD, AJM; VANSTEENIS, HG; MOLEMAN, P
Dose-dependent effects of intravenously administered lorazepam on haemodynamic fluctuations were studied by means of spectral analysis, in order to elucidate sympathetic and parasympathetic components in cardiovascular control during situations of rest and mental stress after benzodiazepine
J.H.M. Tulen (Joke); G. Mulder (G.); L. Pepplinkhuizen (Lolke); A.J. Man in't Veld (A.); H.G. van Steenis (H.); P. Moleman (Peter)
1994-01-01
textabstractDose-dependent effects of intravenously administered lorazepam on haemodynamic fluctuations were studied by means of spectral analysis, in order to elucidate sympathetic and parasympathetic components in cardiovascular control during situations of rest and mental stress after
Scientific Analysis of Data for the ISTP/SOLARMAX Programs
Lazarus, Alan J.
2001-01-01
This Grant supplemented our work on data analysis from the Wind spacecraft which was one of the ISTRIA fleet of spacecraft. It was targeted at observations related to the time of solar maximum in 2000. The work we proposed to do under this grant included comparison of solar wind parameters obtained from different spacecraft in order to establish correlation lengths appropriate to the solar wind and also to compare parameters to explore solar cycle effects.
Basualdo, Juan A; Grenóvero, María S; Bertucci, Evangelina; Molina, Nora B
2016-01-01
The study of scientific production is a good indicator of the progress in research and knowledge generation. Bibliometrics is a scientific discipline that uses a set of indicators to quantitatively express the bibliographic characteristics of scientific publications. The scientific literature on the epidemiology of intestinal parasites in Argentina is scattered in numerous sources, hindering access and visibility to the scientific community. Our purpose was to perform a quantitative, bibliometric study of the scientific literature on intestinal parasites in humans in Argentina published in the period 1985-2014. This bibliometric analysis showed an increase in the number of articles on intestinal parasites in humans in Argentina published over the past 30 years. Those articles showed a collaboration index similar to that of the literature, with a high index of institutionality for national institutions and a very low one for international collaboration. The original articles were published in scientific journals in the American Continent, Europe and Asia. The use of bibliometric indicators can provide a solid tool for the diagnosis and survey of the research on epidemiology of intestinal parasites and contributes to the dissemination and visibility of information on the scientific production developed in Argentina. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Spectacle and SpecViz: New Spectral Analysis and Visualization Tools
Earl, Nicholas; Peeples, Molly; JDADF Developers
2018-01-01
A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user
The Climate Data Analysis Tools (CDAT): Scientific Discovery Made Easy
Doutriaux, C. M.; Williams, D. N.; Drach, R. S.; McCoy, R. B.; Mlaker, V.
2008-12-01
In recent years, amount of data available to climate scientists has grown exponentially. Whether we're looking at the increasing number of organizations providing data, the finer resolutions of climate models, or the escalating number of experiments and realizations for those experiments, every aspect of climate research leads to an unprecedented growth of the volume of data to analyze. The recent success and visibility of the Intergovernmental Panel on Climate Change Annual Report 4 (IPCC AR4) is boosting the demand to unprecedented levels and keeping the numbers increasing. Meanwhile, technology available for scientists to analyze the data has remained largely unchanged since the early days. One tool, however, has proven itself flexible enough not only to follow the trend of escalating demand, but also to be ahead of the game: the Climate Data Analysis Tools (CDAT) from the Program for Climate Model Diagnosis and Comparison (PCMDI). While providing the cutting edge technology necessary to distribute the IPCC AR4 data via the Earth System Grid, PCMDI has continuously evolved CDAT to handle new grids and higher definitions, and provide new diagnostics. In the near future, in time for AR5, PCMDI will use CDAT for state-of-the-art remote data analysis in a grid computing environment.
The Y2K program for scientific-analysis computer programs at AECL
International Nuclear Information System (INIS)
Popovic, J.; Gaver, C.; Chapman, D.
1999-01-01
The evaluation of scientific-analysis computer programs for year-2000 compliance is part of AECL' s year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)
The Y2K program for scientific-analysis computer programs at AECL
International Nuclear Information System (INIS)
Popovic, J.; Gaver, C.; Chapman, D.
1999-01-01
The evaluation of scientific analysis computer programs for year-2000 compliance is part of AECL's year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)
Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA
Energy Technology Data Exchange (ETDEWEB)
Zanardo, Giovanna; Staveley-Smith, Lister [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, Crawley, WA 6009 (Australia); Indebetouw, Remy; Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Matsuura, Mikako; Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gaensler, Bryan M. [Australian Research Council, Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Fransson, Claes; Lundqvist, Peter [Department of Astronomy, Oskar Klein Center, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Manchester, Richard N. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Kamenetzky, Julia R. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Lakićević, Maša [Institute for the Environment, Physical Sciences and Applied Mathematics, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, Jon M. [Departamento de Astronomía, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Martí-Vidal, Ivan [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ng, C.-Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, Sangwook, E-mail: giovanna.zanardo@gmail.com [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); and others
2014-12-01
We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ 3.2 mm to 450 μm), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ν}∝ν{sup –0.73}) and the thermal component originating from dust grains at T ∼ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ≲ α ≲ –0.1 across the western regions, with α ∼ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.
Scientific aspects of urolithiasis: quantitative stone analysis and crystallization experiments
International Nuclear Information System (INIS)
Wandt, M.A.E.
1986-03-01
The theory, development and results of three quantitative analytical procedures are described and the crystallization experiments in a rotary evaporator are presented. Of the different methods of quantitative X-ray powder diffraction analyses, the 'internal standard method' and a microanalytical technique were identified as the two most useful procedures for the quantitative analysis of urinary calculi. 'Reference intensity ratios' for 6 major stone phases were determined and were used in the analysis of 20 calculi by the 'internal standard method'. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) methods were also investigated, developed and used in this study. Various procedures for the digestion of calculi were tested and a mixture of HNO 3 and HC1O 4 was eventually found to be the most successful. The major elements Ca, Mg, and P in 41 calculi were determined. For the determination of trace elements, a new microwave-assisted digestion procedure was developed and used for the digestion of 100 calculi. Fluoride concentrations in two stone collections were determined using a fluoride-ion sensitive electrode and the HNO 3 /HC1O 4 digestion prodecure used for the ICP study. A series of crystallization experiments involving a standard reference artificial urine was carried out in a rotary evaporator. The effect of pH and urine composition was studied by varying the former and by including uric acid, urea, creatinine, MgO, methylene blue, chondroitin sulphate A, and fluoride in the reference solution. Crystals formed in these experiments were subjected to qualitative and semi-quantitative X-ray powder diffraction analyses. Scanning electron microscopy of several deposits was also carried out. Similar deposits to those observed in calculi were obtained with the fast evaporator. The results presented suggest that this system provides a simple, yet very useful means for studying the crystallization characteristics of urine solutions
EZ and GOSSIP, two new VO compliant tools for spectral analysis
Franzetti, P.; Garill, B.; Fumana, M.; Paioro, L.; Scodeggio, M.; Paltani, S.; Scaramella, R.
2008-10-01
We present EZ and GOSSIP, two new VO compliant tools dedicated to spectral analysis. EZ is a tool to perform automatic redshift measurement; GOSSIP is a tool created to perform the SED fitting procedure in a simple, user friendly and efficient way. These two tools have been developed by the PANDORA Group at INAF-IASF (Milano); EZ has been developed in collaboration with Osservatorio Monte Porzio (Roma) and Integral Science Data Center (Geneve). EZ is released to the astronomical community; GOSSIP is currently in beta-testing.
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
International Nuclear Information System (INIS)
Eilek, J.A.
1989-01-01
Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs
Energy Technology Data Exchange (ETDEWEB)
Alchimov, A B; Drobot, S I; Drokov, V G; Zarubin, V P; Kazmirov, A D; Skodaev, Y D; Podrezov, A M [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)
1998-12-31
The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.
Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.
1985-01-01
Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.
Energy Technology Data Exchange (ETDEWEB)
Alchimov, A.B.; Drobot, S.I.; Drokov, V.G.; Zarubin, V.P.; Kazmirov, A.D.; Skodaev, Y.D.; Podrezov, A.M. [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)
1997-12-31
The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.
A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains
Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro
2018-04-01
In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy's walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.
On the 485-day Mode in the Atmospheric Angular Momentum: Spectral Analysis of IERS Data
Tsurkis, I. Ya.; Kuchai, M. S.
2018-05-01
The modification of spectral analysis especially intended for studying the disturbing functions of the atmosphere and ocean, as well as the observed polar motion (Wiener-Liouville spectrum), is used. The time series of the atmospheric disturbing functions obtained by the U.S. National Centers for Environmental Prediction (NCEP) of the International Earth Rotation and Reference Systems Service (IERS) for the period from January 1, 1980 to June 20, 2014 (http://www.iers.org/.cs1?pid=43-1100116) are analyzed. It is shown that the baric disturbing function contains a regular mode with a period of 16 months; the contribution of this mode in the polar motion is estimated.
Directory of Open Access Journals (Sweden)
Zhigao Zeng
2016-01-01
Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.
Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence
International Nuclear Information System (INIS)
Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y
2011-01-01
In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.
Gauss-Vanicek Spectral Analysis of the Sepkoski Compendium: No New Life Cycles
Omerbashich, M.
2006-01-01
New periods can emerge from data as a byproduct of incorrect processing or even the method applied. In one such recent instance, a new life cycle with a 62+-3 Myr period was reportedly found (about trend) in genus variations from the Sepkoski compendium, the world most complete fossil record. The approach that led to reporting this period was based on Fourier method of spectral analysis. I show here that no such period is found when the original data set is considered rigorously and processed...
On the detection of corrosion pit interactions using two-dimensional spectral analysis
International Nuclear Information System (INIS)
Jarrah, Adil; Nianga, Jean-Marie; Iost, Alain; Guillemot, Gildas; Najjar, Denis
2010-01-01
A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can be advanced as an alternative of classical methods based on distance. One of the major advantages of the spectral analysis approach over the use of classical methods is its ability to reveal more details about the spatial structure like the scale for which pits corrosion can be considered as independent. Furthermore, directional components of pattern can be investigated. The method is validated in a first time using numerical simulations on random, regular and aggregated structures. The density of pits, used in the numerical simulations, corresponds to that assessed from a corroded aluminium sheet. In a second time, this method is applied to verify the independence of the corrosion pits observed on the aforementioned aluminium sheet before applying the Gumbel theory to determine the maximum pit depth. Indeed, the property of independence is a prerequisite of the Gumbel theory which is one of the most frequently used in the field of safety and reliability.
Spectral analysis of coolant activity from a commercial nuclear generating station
International Nuclear Information System (INIS)
Swann, J.D.; Lewis, B.J.; Ip, M.
2008-01-01
In support of the development of a real-time on-line fuel failure monitoring system for the CANDU reactor, actual gamma spectroscopy data files from the gaseous fission product (GFP) monitoring system were acquired from almost four years of operation at a commercial Nuclear Generating Station (NGS). Several spectral analysis techniques were used to process the data files. Radioisotopic activity from the plant information (PI) system was compared to an in-house C++ code that was used to determine the photopeak area and to a separate analysis with commercial software from Canberra-Aptec. These various techniques provided for a calculation of the coolant activity concentration of the noble gas and iodine species in the primary heat transport system. These data were then used to benchmark the Visual DETECT code, a user friendly software tool which can be used to characterize the defective fuel state based on a coolant activity analysis. Acceptable agreement was found with the spectral techniques when compared to the known defective bundle history at the commercial reactor. A more generalized method of assessing the fission product release data was also considered with the development of a pre-processor to evaluate the radioisotopic release rate from mass balance considerations. The release rate provided a more efficient means to characterize the occurrence of a defect and was consistent with the actual defect situation at the power plant as determined from in-bay examination of discharged fuel bundles. (author)
Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings
International Nuclear Information System (INIS)
Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.
2017-01-01
This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)
Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation.
Sanahuja, Solange; Upadhyay, Rutuja; Briesen, Heiko; Chen, Jianshe
2017-08-01
"Oral" tribology has become a new paradigm in food texture studies to understand complex texture attributes, such as creaminess, oiliness, and astringency, which could not be successfully characterized by traditional texture analysis nor by rheology. Stick-slip effects resulting from intermittent sliding motion during kinetic friction of oral mucosa could constitute an additional determining factor of sensory perception where traditional friction coefficient values and their Stribeck regimes fail in predicting different lubricant (food bolus and saliva) behaviors. It was hypothesized that the observed jagged behavior of most sliding force curves are due to stick-slip effects and depend on test velocity, normal load, surface roughness as well as lubricant type. Therefore, different measurement set-ups were investigated: sliding velocities from 0.01 to 40 mm/s, loads of 0.5 and 2.5 N as well as a smooth and a textured silicone contact surface. Moreover, dry contact measurements were compared to model food systems, such as water, oil, and oil-in-water emulsions. Spectral analysis permitted to extract the distribution of stick-slip magnitudes for specific wave numbers, characterizing the occurrence of jagged force peaks per unit sliding distance, similar to frequencies per unit time. The spectral features were affected by all the above mentioned tested factors. Stick-slip created vibration frequencies in the range of those detected by oral mechanoreceptors (0.3-400 Hz). The study thus provides a new insight into the use of tribology in food psychophysics. Dynamic spectral analysis has been applied for the first time to the force-displacement curves in "oral" tribology. Analyzing the stick-slip phenomenon in the dynamic friction provides new information that is generally overlooked or confused with machine noise and which may help to understand friction-related sensory attributes. This approach allows us to differentiate samples that have similar friction coefficient
Energy Technology Data Exchange (ETDEWEB)
Wei, Peng; Luo, Ali; Li, Yinbi; Tu, Liangping; Wang, Fengfei; Zhang, Jiannan; Chen, Xiaoyan; Hou, Wen; Kong, Xiao; Wu, Yue; Zuo, Fang; Yi, Zhenping; Zhao, Yongheng; Chen, Jianjun; Du, Bing; Guo, Yanxin; Ren, Juanjuan [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Pan, Jingchang; Jiang, Bin; Liu, Jie, E-mail: lal@nao.cas.cn, E-mail: weipeng@nao.cas.cn [School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai 264209 (China); and others
2014-05-01
The LAMOST spectral analysis pipeline, called the 1D pipeline, aims to classify and measure the spectra observed in the LAMOST survey. Through this pipeline, the observed stellar spectra are classified into different subclasses by matching with template spectra. Consequently, the performance of the stellar classification greatly depends on the quality of the template spectra. In this paper, we construct a new LAMOST stellar spectral classification template library, which is supposed to improve the precision and credibility of the present LAMOST stellar classification. About one million spectra are selected from LAMOST Data Release One to construct the new stellar templates, and they are gathered in 233 groups by two criteria: (1) pseudo g – r colors obtained by convolving the LAMOST spectra with the Sloan Digital Sky Survey ugriz filter response curve, and (2) the stellar subclass given by the LAMOST pipeline. In each group, the template spectra are constructed using three steps. (1) Outliers are excluded using the Local Outlier Probabilities algorithm, and then the principal component analysis method is applied to the remaining spectra of each group. About 5% of the one million spectra are ruled out as outliers. (2) All remaining spectra are reconstructed using the first principal components of each group. (3) The weighted average spectrum is used as the template spectrum in each group. Using the previous 3 steps, we initially obtain 216 stellar template spectra. We visually inspect all template spectra, and 29 spectra are abandoned due to low spectral quality. Furthermore, the MK classification for the remaining 187 template spectra is manually determined by comparing with 3 template libraries. Meanwhile, 10 template spectra whose subclass is difficult to determine are abandoned. Finally, we obtain a new template library containing 183 LAMOST template spectra with 61 different MK classes by combining it with the current library.
Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011
Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.
2017-12-01
The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying
Spectral analysis of IGR J01572-7259 during its 2016 outburst
La Palombara, N.; Esposito, P.; Mereghetti, S.; Pintore, F.; Sidoli, L.; Tiengo, A.
2018-03-01
We report on the results of the XMM-Newton observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux f ˜ 10-10 erg cm-2 s-1, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period Pspin = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies, we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disc provides a reliable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.
Emission spectral analysis of nickel-base superalloys with fixed time intergration technique
International Nuclear Information System (INIS)
Okochi, Haruno; Takahashi, Katsuyuki; Suzuki, Shunichi; Sudo, Emiko
1980-01-01
Simultaneous determination of multielements (C, B, Mo, Ta, Co, Fe, Mn, Cr, Nb, Cu, Ti, Zr, and Al) in nickel-base superalloys (Ni: 68 -- 76%) was performed by emission spectral analysis. At first, samples which had various nickel contents (ni: 68 -- 76%) were prepared by using JAERI R9, nickel and other metals (Fe, Co, or Cr). It was confirmed that in the internal standard method (Ni II 227.73 nm), analytical values of all the elements examined decreased with a decrease of the integration time (ca. 3.9 -- 4.6 s), that is, an increase of the nickel content. On the other hand, according to the fixed time integration method, elements except for C, Mo, and Cr were not interfered within the range of nickel contents examined. A series of nickel-base binary alloys (Al, Si, Ti, Cr, Mn, Fe, Co, Nb, Mo, and W series) were prepared by high frequency induction melting and the centrifugal casting method and formulae for correcting interferences with near spectral lines were obtained. Various synthetic samples were prepared and analysed by this method. The equations of calibration curves were derived from the data for standard samples (JAERI R1 -- R6, NBS 1189, 1203 -- 1205, and B.S. 600B) by curve fitting with orthogonal polynomials using a computer. For the assessment of this method studied, the F-test was performed by comparison of variances of both analytical values of standard and synthetic samples. The surfaces of specimens were polished with a belt grinder using No. 80 of alumina or silicon carbide endless-paper. The preburn period and integration one were decided at 5 and 6 s respectively. A few standard samples which gave worse reproducibility in emission spectral analysis was investigated with an optical microscope and an electron probe X-ray microanalyser. (author)
Validation of spectral methods for the seismic analysis of multi-supported structures
International Nuclear Information System (INIS)
Viola, B.
1999-01-01
There are many methodologies for the seismic analysis of buildings. When a seism occurs, structures such piping systems in nuclear power plants are subjected to motions that may be different at each support point. Therefore it is necessary to develop methods that take into account the multi-supported effect. In a first time, a bibliography analysis on the different methods that exist has been carried out. The aim was to find a particular method applicable to the study of piping systems. The second step of this work consisted in developing a program that may be used to test and make comparisons on different selected methods. So spectral methods have the advantage to give an estimation of the maximum values for strain in the structure, in reduced calculation time. The time history analysis is used as the reference for the tests. (author)
A Comparative Analysis of PISA Scientific Literacy Framework in Finnish and Thai Science Curricula
Sothayapetch, Pavinee; Lavonen, Jari; Juuti, Kalle
2013-01-01
A curriculum is a master plan that regulates teaching and learning. This paper compares Finnish and Thai primary school level science curricula to the PISA 2006 Scientific Literacy Framework. Curriculum comparison was made following the procedure of deductive content analysis. In the analysis, there were four main categories adopted from PISA…
Two Step Procedure Using a 1-D Slab Spectral Geometry in a Pebble Bed Reactor Core Analysis
International Nuclear Information System (INIS)
Lee, Hyun Chul; Kim, Kang Seog; Noh, Jae Man; Joo, Hyung Kook
2005-01-01
A strong spectral interaction between the core and the reflector has been one of the main concerns in the analysis of pebble bed reactor cores. To resolve this problem, VSOP adopted iteration between the spectrum calculation in a spectral zone and the global core calculation. In VSOP, the whole problem domain is divided into many spectral zones in which the fine group spectrum is calculated using bucklings for fast groups and albedos for thermal groups from the global core calculation. The resulting spectrum in each spectral zone is used to generate broad group cross sections of the spectral zone for the global core calculation. In this paper, we demonstrate a two step procedure in a pebble bed reactor core analysis. In the first step, we generate equivalent cross sections from a 1-D slab spectral geometry model with the help of the equivalence theory. The equivalent cross sections generated in this way include the effect of the spectral interaction between the core and the reflector. In the second step, we perform a diffusion calculation using the equivalent cross sections generated in the first step. A simple benchmark problem derived from the PMBR-400 Reactor was introduced to verify this approach. We compared the two step solutions with the Monte Carlo (MC) solutions for the problem
In the maw of the Ouroboros: an analysis of scientific literacy and democracy
Bang, Lars
2017-10-01
This paper explores the concept of scientific literacy through its relation to democracy and citizenship. Scientific literacy has received international attention in the twenty-first century as demonstrated by the Programme for International Student Assessment survey of 2006. It is no longer just a concept but has become a stated and testable outcome in the science education research community. This paper problematizes the `marriage' between scientific literacy and democracy, particularly the idea that scientific literacy is a presupposed necessity to proper citizenship and awareness of the role of science in modern society. A perusal of the science education literature can provide a history of scientific literacy, as it exists as a research category. Through Gilles Deleuze's notion of the Dogmatic Image of Thought and its relation to a Spinozist understanding of individuation/Becoming, it is argued that scientific literacy is not a recent invention and is problematic in its relation to democracy. This article is thus intended to act more as vehicle to move, stimulate and dramatize thought and potentially reconceptualise scientific literacy, than a comprehensive historical analysis. The concept of scientific literacy has undergone specific transformations in the last two centuries and has been enacted in different manifestations throughout modernity. Here the analysis draws upon Deleuze's reading of Michel Foucault and the notion of the Diagram related to Foucault's oeuvre, and is specifically using Foucault's notion of rationalities as actualized threads or clusters of discourse. The obvious link between science and democracy is an effect of specific rationalities within the epistemological field of science, rather than intrinsic, essential characteristics of science or scientific literacy. There is nothing intrinsic in its function for democracy. Through a case study of the work of Charles W. Eliot and Herbert Spencer and the modern enactment of scientific
Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran
2017-10-01
Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.
Directory of Open Access Journals (Sweden)
M. Ern
2009-01-01
Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights. Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves. Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.
Directory of Open Access Journals (Sweden)
M. Ern
2009-01-01
Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights.
Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO_{2} emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves.
Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.
SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.
Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei
2017-03-03
Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.
Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.
Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J
2014-06-01
Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.
[Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].
Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han
2014-11-01
Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.
COMBINED ANALYSIS OF IMAGES AND SPECTRAL ENERGY DISTRIBUTIONS OF TAURUS PROTOSTARS
International Nuclear Information System (INIS)
Gramajo, Luciana V.; Gomez, Mercedes; Whitney, Barbara A.; Robitaille, Thomas P.
2010-01-01
We present an analysis of spectral energy distributions (SEDs), near- and mid-infrared images, and Spitzer spectra of eight embedded Class I/II objects in the Taurus-Auriga molecular cloud. The initial model for each source was chosen using the grid of young stellar objects (YSOs) and SED fitting tool of Robitaille et al. Then the models were refined using the radiative transfer code of Whitney et al. to fit both the spectra and the infrared images of these objects. In general, our models agree with previous published analyses. However, our combined models should provide more reliable determinations of the physical and geometrical parameters since they are derived from SEDs, including the Spitzer spectra, covering the complete spectral range; and high-resolution near-infrared and Spitzer IRAC images. The combination of SED and image modeling better constrains the different components (central source, disk, envelope) of the YSOs. Our derived luminosities are higher, on average, than previous estimates because we account for the viewing angles (usually nearly edge-on) of most of the sources. Our analysis suggests that the standard rotating collapsing protostar model with disks and bipolar cavities works well for the analyzed sample of objects in the Taurus molecular cloud.
Research on the strong optical feedback effects based on spectral analysis method
Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo
2018-01-01
The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.
Spectral analysis of epicardial 60-lead electrograms in dogs with 4-week-old myocardial infarction.
Hosoya, Y; Ikeda, K; Komatsu, T; Yamaki, M; Kubota, I
2001-01-01
There were few studies on the spectral analysis of multiple-lead epicardial electrograms in chronic myocardial infarction. Spectral analysis of multi-lead epicardial electrograms was performed in 6 sham-operated dogs (N group) and 8 dogs with 4-week-old myocardial infarction (MI group). Four weeks after the ligation of left anterior descending coronary artery, fast Fourier transform was performed on 60-lead epicardial electrograms, and then inverse transform was performed on 5 frequency ranges from 0 to 250 Hz. From the QRS onset to QRS offset, the time integration of unsigned value of reconstructed waveform was calculated and displayed as AQRS maps. On 0-25 Hz AQRS map, there was no significant difference between the 2 groups. In the frequency ranges of 25-250 Hz, MI group had significantly smaller AQRS values than N group solely in the infarct zone. It was shown that high frequency potentials (25-250 Hz) within QRS complex were reduced in the infarct zone.
SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals
Directory of Open Access Journals (Sweden)
Jiping Xiong
2017-03-01
Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.
International Nuclear Information System (INIS)
Ferri Anglada, S.; Cornejo Alvarez, J. M.
2014-01-01
The report presents an exploratory study on the impact of scientific dissemination, particularly a comparative analysis of two discourses on fusion energy as an alternative energy future. The report introduces a comparative analysis of the institutional discourse, as portrayed by the scientific jargon used in a European travelling exhibition on nuclear fusion Fusion Expo, and the social discourse, as illustrated by a citizen deliberation on this very same exhibition. Through textual analysis, the scientific discourse as deployed in the informative panels at the Fusion Expo is compared with the citizen discourse as developed in the discussions within the citizen groups. The ConText software was applied for such analysis. The purpose is to analyze how visitors assimilate, capture and understand highly technical information. Results suggest that, in despite of convergence points, the two discourses present certain differences, showing diverse levels of communication. The scientific discourse shows a great profusion of formalisms and technicalities of scientific jargon. The citizen discourse shows abundance of words associated with daily life and the more practical aspects (economy, efficiency), concerning institutional and evaluative references. In sum, the study shows that although there are a few common communicative spaces, there are still very few turning points. These data indicate that although exhibitions can be a good tool to disseminate advances in fusion energy in informal learning contexts, public feedback is a powerful tool for improving the quality of social dialogue. (Author)
Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua
Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or
West, A G; Goldsmith, G R; Matimati, I; Dawson, T E
2011-08-30
Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be
Directory of Open Access Journals (Sweden)
Daniel Sousa
2018-02-01
Full Text Available Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1 How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2 Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3 How much variability in rock and soil substrate endmembers (EMs present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.
Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona
Energy Technology Data Exchange (ETDEWEB)
Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)
2016-03-25
We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.
Digital signal processing and spectral analysis for scientists concepts and applications
Alessio, Silvia Maria
2016-01-01
This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the ne...
Flaw location and characterization in anisotropic materials by ultrasonic spectral analysis
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Simpson, W.A.; Lewis, D.K.
1978-01-01
A method of quantitatively determining size and location of flaws in anisotropic materials such as stainless steel welds is described. In previous work, it was shown that spectral analysis of a broad band ultrasonic pulse scattered from a defect can be used to determine size and orientation in isotropic materials if the velocity of sound in the material is known. In an anisotropic structural material (stainless steel weld, centrifugal cast pipe), the velocity (both shear and longitudinal) is direction-dependent. When anisotropy is not taken into account, defect location and defect size estimation is misjudged. It will be shown that the effect of this structural variation in materials must be considered to obtain the correct size and location of defects by frequency analysis. A theoretical calculation, including anisotropy, of the scattered field from defects will also be presented
Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D
1989-10-01
The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.
Statistical learning method in regression analysis of simulated positron spectral data
International Nuclear Information System (INIS)
Avdic, S. Dz.
2005-01-01
Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)
Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A
2011-09-26
The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America
Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R
2017-11-17
This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing
Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.
2014-01-01
Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral
Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of
Nass, A.; D'Amore, M.; Helbert, J.
2018-04-01
An archiving structure and reference level of derived and already published data supports the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within Information Science and Management.
Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.
2011-01-01
We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains
Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P
2014-03-01
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Osman, Abdalla; El-Sheimy, Naser; Nourledin, Aboelamgd; Theriault, Jim; Campbell, Scott
2009-01-01
The problem of target detection and tracking in the ocean environment has attracted considerable attention due to its importance in military and civilian applications. Sonobuoys are one of the capable passive sonar systems used in underwater target detection. Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The frequency resolution introduced by current techniques is limited which affects the accuracy of target detection and bearing estimation at a relatively low signal-to-noise ratio (SNR). This research investigates the development of a bearing estimation method using fast orthogonal search (FOS) for enhanced spectral estimation. FOS is employed in this research in order to improve both target detection and bearing estimation in the case of low SNR inputs. The proposed methods were tested using simulated data developed for two different scenarios under different underwater environmental conditions. The results show that the proposed method is capable of enhancing the accuracy for target detection as well as bearing estimation especially in cases of a very low SNR
McClanahan, T P; Nittler, L R; Boynton, W V; Bruckner, J; Squyres, S W; Evans, L G; Bhangoo, J S; Clark, P E; Floyd, S R; McCartney, E; Mikheeva, I; Starr, R D
2001-01-01
An X-ray and Gamma-Ray Spectrometer (XGRS) is on board the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433 Eros. The Eros asteroid is highly oblate and irregular in shape. As a result, analysis methodologies are in many ways a divergence from comparable techniques. Complex temporal, spatial and instrument performance relationships must be accounted for during the analysis process. Field of view and asteroid surface geometry measurements must be modeled and then combined with real measurements of solar, spectral and instrument calibration information to derive scientific results. NEAR is currently orbiting 433 Eros and is in the initial phases of its primary data integration and mapping phases. Initial results have been obtained and bulk chemistry assessments have been obtained through specialized background assessment and data reduction techniques.
Scientific Popularization in Brazil and in Russia: An Essay to a Comparative Analysis of Discourses
Directory of Open Access Journals (Sweden)
Sheila Vieira de Camargo Grillo
2016-03-01
Full Text Available The objective of this article is to conduct a comparative analysis of scientific popularization in Brazil and in Russia. The theoretical and methodological basis of this comparison was provided by combining Bakhtin's theory and comparative discourse analysis, present in the works of the Cediscor researchers. Based on it, we constructed a corpus of utterances of the Brazilian and Russian editions of the Scientific American magazine. As a result, we were able to observe, on the one hand, significant similarities in the genres "article" and "report of scientific popularization" in both ethno-linguistic communities, and, on the other hand, differences regarding their relation with reported speech and the use of verbal tenses and moods.
Directory of Open Access Journals (Sweden)
Peeyush Sahay
2009-10-01
Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.
International Nuclear Information System (INIS)
Becker, J.K.; Marschall, P.; Brunner, P.; Cholet, C.; Renard, P.; Buckley, S.; Kurz, T.
2012-01-01
, and are readily available as spectral libraries for use in software processing packages. Since rocks are composites of minerals, their spectra represent a mixture of spectra of the constituent minerals concerning the reflectance. In general, imaging spectrometry allows a semi-quantitative analysis of mineral abundances from rock spectra, for example by analysing the intensity of absorption bands. In many cases a mineral with a unique absorption signature can be correlated to a specific lithological unit, which can be used to trace and map the lithology. Additionally, abundance and spatial variation can be determined from the rock spectra. Common reflection features in sedimentary rocks are typically related to carbonate and clay minerals, hydroxyl, water or iron-bearing material and weathering products. A number of physical properties can influence the intensity of features in the spectral curves of minerals and rocks, such as particle size, angle of incidence, porosity and surface roughness, though the wavelength positions of the absorption features are not changed. Next to the obvious ability to use the hyper-spectral images to 'visually' correlate layers within a rock over a certain distance they can also be used for a more rigorous approach of geostatistical correlation. We have developed a work flow for this approach using the hyper-spectral image classifications: 1. In a first step, image reconstruction must be performed. During the scanning and possibly also later during classification, some areas of the hyper-spectral images may not be completely usable or some pixels may not have been classified. In this case, the 'holes' should be filled using multiple-point geostatistical techniques. 2. In the present example, images at three different resolutions have been taken. It is envisaged to use the high resolution images and simulate the high resolution over the entire rock face in a way that the high resolution simulations are guided by the low resolution images
Mapping the dengue scientific landscape worldwide: a bibliometric and network analysis.
Mota, Fabio Batista; Fonseca, Bruna de Paula Fonseca E; Galina, Andréia Cristina; Silva, Roseli Monteiro da
2017-05-01
Despite the current global trend of reduction in the morbidity and mortality of neglected diseases, dengue's incidence has increased and occurrence areas have expanded. Dengue also persists as a scientific and technological challenge since there is no effective treatment, vaccine, vector control or public health intervention. Combining bibliometrics and social network analysis methods can support the mapping of dengue research and development (R&D) activities worldwide. The aim of this paper is to map the scientific scenario related to dengue research worldwide. We use scientific publication data from Web of Science Core Collection - articles indexed in Science Citation Index Expanded (SCI-EXPANDED) - and combine bibliometrics and social network analysis techniques to identify the most relevant journals, scientific references, research areas, countries and research organisations in the dengue scientific landscape. Our results show a significant increase of dengue publications over time; tropical medicine and virology as the most frequent research areas and biochemistry and molecular biology as the most central area in the network; USA and Brazil as the most productive countries; and Mahidol University and Fundação Oswaldo Cruz as the main research organisations and the Centres for Disease Control and Prevention as the most central organisation in the collaboration network. Our findings can be used to strengthen a global knowledge platform guiding policy, planning and funding decisions as well as to providing directions to researchers and institutions. So that, by offering to the scientific community, policy makers and public health practitioners a mapping of the dengue scientific landscape, this paper has aimed to contribute to upcoming debates, decision-making and planning on dengue R&D and public health strategies worldwide.
Sarwi, S.; Fauziah, N.; Astuti, B.
2018-03-01
This research is setting by the condition of students who have difficulty in ideas delivery, written scientific communication, and still need the development of student character. The objectives of the research are to determine the improvement of concept understanding, to analyze scientific communication skills and to develop the character of the students through guided inquiry learning. The design in this research is quasi experimental control group preposttest, with research subject of two group of grade X Senior High School in Semarang. One group of controller uses non tutorial and treatment group using tutorial in guided inquiry. Based on result of gain test analysis, obtained = 0.71 for treatment and control group = 0.60. The t-test result of mean mastery of concept of quantity and unit using t-test of right side is t count = 2.37 (p=0.003) while t table = 1.67 (α = 5%), which means that the results of the study differed significantly. The results of the students' scientific communication skills analysis showed that the experimental group was higher than the control, with an average of 69% and 63% scientific communication skills. The character values are effective developed through guided inquiry learning. The conclusion of the study is guided inquiry learning tutorial better than guided inquiry non tutorial learning in aspect understanding concept, scientific communication skills; but the character development result is almost the same.
Directory of Open Access Journals (Sweden)
Quan Liu
2018-01-01
Full Text Available Important information about the state dynamics of the brain during anesthesia is unraveled by Electroencephalogram (EEG approaches. Patterns that are observed through EEG related to neural circuit mechanism under different molecular targets dependent anesthetics have recently attracted much attention. Propofol, a Gamma-amino butyric acid, is known with evidently increasing alpha oscillation. Desflurane shares the same receptor action and should be similar to propofol. To explore their dynamics, EEG under routine surgery level anesthetic depth is analyzed using multitaper spectral method from two groups: propofol (n = 28 and desflurane (n = 23. The time-varying spectrum comparison was undertaken to characterize their properties. Results show that both of the agents are dominated by slow and alpha waves. Especially, for increased alpha band feature, propofol unconsciousness shows maximum power at about 10 Hz (mean ± SD; frequency: 10.2 ± 1.4 Hz; peak power, −14.0 ± 1.6 dB, while it is approximate about 8 Hz (mean ± SD; frequency: 8.3 ± 1.3 Hz; peak power, −13.8 ± 1.6 dB for desflurane with significantly lower frequency-resolved spectra for this band. In addition, the mean power of propofol is much higher from alpha to gamma band, including slow oscillation than that of desflurane. The patterns might give us an EEG biomarker for specific anesthetic. This study suggests that both of the anesthetics exhibit similar spectral dynamics, which could provide insight into some common neural circuit mechanism. However, differences between them also indicate their uniqueness where relevant.
Olmeda-Gómez, Carlos; Ovalle-Perandones, María Antonia; de Moya-Anegón, Félix
2015-01-01
Introduction: The article presents the results of a study on scientific collaboration between Spanish universities and private enterprise, measured in terms of the co-authorship of papers published in international journals. Method: Bibliometric analysis of papers published in journals listed in Scopus in 2003-2011. Indicators were calculated for…
78 FR 33424 - Tobacco Product Analysis; Scientific Workshop; Request for Comments
2013-06-04
... different tobacco product types and strengths. 13. The specific method challenges and limitations when... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0212] Tobacco Product Analysis; Scientific Workshop; Request for Comments AGENCY: Food and Drug Administration...
Dega, Bekele Gashe; Govender, Nadaraj
2016-01-01
This study compares the scientific and alternative conceptions of energy and momentum of university first-year science students in Ethiopia and the US. Written data were collected using the Energy and Momentum Conceptual Survey developed by Singh and Rosengrant. The Concentration Analysis statistical method was used for analysing the Ethiopian…
Spectral data de-noising using semi-classical signal analysis: application to localized MRS
Laleg-Kirati, Taous-Meriem
2016-09-05
In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these \\'shaped like\\' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.
Account of spectral dependence of instrumental factor in quantitative X-ray fluorescence analysis
International Nuclear Information System (INIS)
Pershin, N.V.; Mosichev, V.I.
1990-01-01
A new method for calibration of X-ray fluorescence spectrometers using scanning spectrometric channel is proposed. The method is based on a separate account of matrix and instrumental effects and needs no calibration standards for the element analysed. For calibration in the whole spectral range of XRS (0.03-1.0 nm) it is sufficient to have from 10 to 15 pure element emitters made of most wide spread elements. The method provides rapid development of quantitative analysis for the elements which are not provided with standard samples and preparation of pure element emitters for which is impossible or problematic. The practical verification of the method was made by analysing a set of 146 standard samples covering a wide group of alloys. The mean relative error of the method was 3-5 % in an analytical range of 0.1-3.0 wt %
Spectral data de-noising using semi-classical signal analysis: application to localized MRS
Laleg-Kirati, Taous-Meriem; Zhang, Jiayu; Achten, Eric; Serrai, Hacene
2016-01-01
In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these 'shaped like' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.
Spectral analysis of the SN approximations in a slab with quadratically anisotropic scattering
International Nuclear Information System (INIS)
Ourique, L.E.; Pazos, R.P.; Vilhena, M.T.; Barros, R.C.
2003-01-01
The spectral analysis of the S N approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S N approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S N transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S N transport matrix has only real eigenvalues while for other values the S N relation between the eigenvalues of S N transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)
Self-adjoint extensions and spectral analysis in the Calogero problem
International Nuclear Information System (INIS)
Gitman, D M; Tyutin, I V; Voronov, B L
2010-01-01
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential αx -2 . Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some 'paradoxes' inherent in the 'naive' quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Spectral analysis of the S{sub N} approximations in a slab with quadratically anisotropic scattering
Energy Technology Data Exchange (ETDEWEB)
Ourique, L.E.; Pazos, R.P. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil)]. E-mail: ourique@pucrs.br; rpp@pucrs.br; Vilhena, M.T. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Escola de Engenharia); vilhena@cesup.ufrgs.br; Barros, R.C. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: dickbarros@uol.com.br
2003-07-01
The spectral analysis of the S{sub N} approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S{sub N} approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S{sub N} transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S{sub N} transport matrix has only real eigenvalues while for other values the S{sub N} relation between the eigenvalues of S{sub N} transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)
Energy Technology Data Exchange (ETDEWEB)
T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson
2011-12-31
GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.
Energy Technology Data Exchange (ETDEWEB)
Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)
2014-09-15
A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.
Frequency-dependant homogenized properties of composite using spectral analysis method
International Nuclear Information System (INIS)
Ben Amor, M; Ben Ghozlen, M H; Lanceleur, P
2010-01-01
An inverse procedure is proposed to determine the material constants of multilayered composites using a spectral analysis homogenization method. Recursive process gives interfacial displacement perpendicular to layers in term of deepness. A fast-Fourier transform (FFT) procedure has been used in order to extract the wave numbers propagating in the multilayer. The upper frequency bound of this homogenization domain is estimated. Inside the homogenization domain, we discover a maximum of three planes waves susceptible to propagate in the medium. A consistent algorithm is adopted to develop an inverse procedure for the determination of the materials constants of multidirectional composite. The extracted wave numbers are used as the inputs for the procedure. The outputs are the elastic constants of multidirectional composite. Using this method, the frequency dependent effective elastic constants are obtained and example for [0/90] composites is given.
International Nuclear Information System (INIS)
Bhade, Sonali P.D.; Reddy, P.J.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.
2014-01-01
The potential use of alpha LSC technique is nowadays recognized widely. However the energy resolution of α particle is poor with liquid scintillators. Moreover, α peak positions are influenced by the level of quenching in the samples. To overcome this problem, a thorough study of all concerned parameters that affect spectral information was carried out. The parameters such as peak's centroid, quenching, % resolution, energy of α particle were investigated and the correlation between them was evaluated. In the present work, the qualitative analysis of α spectrum was carried out. Correlations between the energy of α particle and various parameters affecting the peaks of the collected spectra with respect to quenching were established. These correlations will be useful for the deconvolution studies of composite samples containing different alpha radionuclides
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
International Nuclear Information System (INIS)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant
Al-Baarri, A. N.; Legowo, A. M.; Widayat
2018-01-01
D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.
Gamma-ray spectral analysis software designed for extreme ease of use or unattended operation
International Nuclear Information System (INIS)
Buckley, W.M.; Carlson, J.B.; Romine, W.A.
1993-07-01
We are developing isotopic analysis software in the Safeguards Technology Program that advances usability in two complimentary directions. The first direction is towards Graphical User Interfaces (GUIs) for very easy. to use applications. The second is toward a minimal user interface, but with additional features for unattended or fully automatic applications. We are developing a GUI-based spectral viewing engine that is currently running in the MS-Windows environment. We intend to use this core application to provide the common user interface for our data analysis, and subsequently data acquisition and instrument control applications. We are also investigating sets of cases where the MGA methodology produces reduced accuracy results, incorrect errors, or incorrect results. We try to determine the root cause for the problem and extend the methodology or replace portions of the Methodology so that MGA will function over a wider domain of analysis without requiring intervention and analysis by a spectroscopist. This effort is necessary for applications where such intervention is inconvenient or impractical
Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal
2015-04-01
computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.
CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.
Kartasalo, Kimmo; Pölönen, Risto-Pekka; Ojala, Marisa; Rasku, Jyrki; Lekkala, Jukka; Aalto-Setälä, Katriina; Kallio, Pasi
2015-10-26
Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CytoSpectre, a versatile, easy
2013-01-01
Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524
Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C
2018-01-01
Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Disciplined Architectural Approach to Scaling Data Analysis for Massive, Scientific Data
Crichton, D. J.; Braverman, A. J.; Cinquini, L.; Turmon, M.; Lee, H.; Law, E.
2014-12-01
Data collections across remote sensing and ground-based instruments in astronomy, Earth science, and planetary science are outpacing scientists' ability to analyze them. Furthermore, the distribution, structure, and heterogeneity of the measurements themselves pose challenges that limit the scalability of data analysis using traditional approaches. Methods for developing science data processing pipelines, distribution of scientific datasets, and performing analysis will require innovative approaches that integrate cyber-infrastructure, algorithms, and data into more systematic approaches that can more efficiently compute and reduce data, particularly distributed data. This requires the integration of computer science, machine learning, statistics and domain expertise to identify scalable architectures for data analysis. The size of data returned from Earth Science observing satellites and the magnitude of data from climate model output, is predicted to grow into the tens of petabytes challenging current data analysis paradigms. This same kind of growth is present in astronomy and planetary science data. One of the major challenges in data science and related disciplines defining new approaches to scaling systems and analysis in order to increase scientific productivity and yield. Specific needs include: 1) identification of optimized system architectures for analyzing massive, distributed data sets; 2) algorithms for systematic analysis of massive data sets in distributed environments; and 3) the development of software infrastructures that are capable of performing massive, distributed data analysis across a comprehensive data science framework. NASA/JPL has begun an initiative in data science to address these challenges. Our goal is to evaluate how scientific productivity can be improved through optimized architectural topologies that identify how to deploy and manage the access, distribution, computation, and reduction of massive, distributed data, while
Analysis of the Spectral Efficiency of Frequency-Encoded OCDMA Systems With Incoherent Sources
Rochette, Martin; Ayotte, Simon; Rusch, Leslie A.
2005-04-01
This paper presents the spectral efficiency of frequency-encoded (FE) optical code-division multiple-access (OCDMA) systems with incoherent sources. The spectral efficiency of five code families compatible with FE-OCDMA is calculated as a function of the number of users. Analytical equations valid in the limiting case of Gaussian noise are also developed for the bit-error rate and the spectral efficiency. Among the code families considered, the modified quadratic congruence code leads to the maximum achievable spectral efficiency.
Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept
Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium
2016-07-01
FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.
Directory of Open Access Journals (Sweden)
Ben Beheshti
2001-01-01
Full Text Available The way in which cytogenetic aberrations develop in prostate cancer (Cap is poorly understood. Spectral karyotype (SKY analysis of Cap cell lines has shown that they have unstable karyotypes and also have features associated with chromosomal instability (CIN. To accurately determine the incidence of de novo structural and numerical aberrations in vitro in Cap, we performed SKY analysis of three independent clones derived from one representative cell line, DU145. The frequent generation of new chromosomal rearrangements and a wide variation in the number of structural aberrations within two to five passages suggested that this cell line exhibited some of the features associated with a CIN phenotype. To study numerical cell-to-cell variation, chromosome 8 aneusomy was assessed in the LNCaP, DU145, and PC-3 cell lines and a patient cohort of 15 Cap primary tumors by interphase fluorescence in situ hybridization (FISH. This analysis showed that a high frequency of numerical alteration affecting chromosome 8 was present in both in vitro and in Cap tissues. In comparison to normal controls, the patient cohort had a statistically significant (P<.05, greater frequency of cells with one and three centromere 8 copies. These data suggest that a CIN-like process may be contributing towards the generation of de novo numerical and structural chromosome abnormalities in Cap.
Veronese, Mattia; Rizzo, Gaia; Bertoldo, Alessandra; Turkheimer, Federico E
2016-01-01
In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion whereas the measured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating that it is a very flexible and robust method for PET data analysis. Differently from the most common PET quantification approaches that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without defining any specific model configuration and has demonstrated very good sensitivity to the underlying kinetics. This characteristic makes it useful as an investigative tool especially for the analysis of novel PET tracers. The purpose of this work is to offer an overview of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field.
Schulze, J; Troeger, C
2010-02-01
The complex regional pain syndrome type I (CRPS I) is a painful neuropathic disorder with an antecedent disproportionate trauma leading to spontaneous pain, hyperalgesia, impaired motor function, swelling, changes in sweating and vascular abnormalities without nerve injury. Whether this syndrome is the result of central or peripheral autonomic dysfunction is still a matter of debate. The purpose of this study was to determine the activity of the sympathetic nervous system in patients with CRPS I by power spectral analysis of heart rate variability. This is a pilot study on 6 patients (mean age 50 years; 4 female, 2 male) diagnosed as suffering from CRPS I and 6 age-matched healthy controls. In the pain-free interval and after taking rest for 5 min, 512 subsequent heart beats were obtained with an ECG standard lead II in the supine and then sitting position. Using an autoregressive model, power spectral densities were calculated for the following frequency bands: CRPS I compared to the healthy controls in the supine position (LF/HF=4.01 vs. LF/HF=1.27; p=0.041). The application of stress by changing to the sitting position even increased that difference (6.72 vs. 1.93). Our results support the hypothesis that the pathogenesis of the early stage CRPS I might be related to an increased sympathetic activity. By assessing the autonomic influence on the heart rate variability in CRPS I patients we could also conclude that this disturbance occurs rather at a central level. Georg Thieme Verlag KG Stuttgart, New York.
Lang, H. R.; Conel, J. E.; Paylor, E. D.
1984-01-01
A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.
Ye, Zhou; Liu, Li; Wei, Chuan-xin; Gu, Qun; An, Ping-ao; Zhao, Yue-jiao; Yin, Da-yi
2015-06-01
In order to analysis the oil spill situation based on the obtained data in airborne aerial work, it's needed to get the spectral reflectance characteristics of the oil film of different oils and thickness as support and to select the appropriate operating band. An experiment is set up to measure the reflectance spectroscopy from ultraviolet to near-infrared for the film of five target samples, which means petrol, diesel, lubricating oil, kerosene and fossil, using spectral measurement device. The result is compared with the reflectance spectra of water in the same experimental environment, which shows that the spectral reflection characteristics of the oil film are related to the thickness and the type of the oil film. In case of the same thickness, the spectral reflectance curve of different types of film is far different, and for the same type of film, the spectral reflectance curve changes accordingly with the change of film thickness, therefore in terms of the single film, different film thickness can be distinguished by reflectance curves. It also shows that in terms of the same film thickness, the reflectance of diesel, kerosene, lubricants reaches peak around 380 nm wavelength, obviously different from the reflectance of water, and that the reflectance of crude oil is far less than that of water in more than 340 nm wavelength, and the obtained reflection spectrum can be used to distinguish between different types of oil film to some extent. The experiment covers main types of spilled oil, with data comprehensively covering commonly used detect spectral bands, and quantitative description of the spectral reflectance properties of film. It provides comprehensive theoretical and data support for the selection of airborne oil spill detection working band and the detection and analysis of water-surface oil spill.
Socio-epistemic analysis of scientific knowledge production in little science research
Directory of Open Access Journals (Sweden)
Alberto Pepe
2008-12-01
Full Text Available The processes that drive knowledge production and dissemination in scientific environments are embedded within the social, technical, cultural and epistemic practices of the constituent research communities. This article presents a methodology to unpack specific social and epistemic dimensions of scientific knowledge production using, as a case study, the Center for Embedded Networked Sensing (CENS, a National Science Foundation “little science” research center involved in theoretical and applied work in the field of wireless communication and sensor networks. By analysis of its scholarly record, I construct a social network of coauthorship, linking individuals that have coauthored scholarly artifacts (journal articles and conference papers, and an epistemic network of topic co-occurrence, linking concepts and knowledge constructs in the same scholarly artifacts. This article reports on ongoing work directed at the study of the emergence and evolution of these networks of scientific interaction. I present some preliminary results and introduce a socio-epistemic method for an historical analysis of network co-evolution. I outline a research design to support further investigations of knowledge production in scientific circles.
International Nuclear Information System (INIS)
Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene.
1975-01-01
The present invention relates to a method of chemical and elementary analysis of samples through a spectral analysis of secondary electrons (Auger electrons) emitted from said sample under a primary monokinetic electron beam concentrated on its surface. Said method is characterized in that the intensity of the primary monokinetic electron beam emitted from an electron gun is modulated at a frequency ω; and in that the secondary electrons of energy E emitted from the sample are then collected. A reference voltage corresponding to the modulation in intensity of the primary electron beam is applied at the input of a phase sensitive detector together with a voltage proportional to the intensity of the flux of said collected secondary electrons to obtain at the output of said detector a voltage proportional to the number of the secondary electrons of energy E. The secondary emission energy spectrum of the sample is then plotted [fr
Torres-Perez, J. L.; Guild, L. S.; Armstrong, R.; Corredor, J. E.; Polanco, R.; Zuluaga-Montero, A. B.
2013-05-01
Coral reefs are highly heterogenic ecosystems with a plethora of photosynthetic organisms forming most of the benthic communities. Usually coral reef benthos is a composite of reef corals, different groups of algae, seagrasses, sandy bottoms, dead rubble, and even mangrove forests living in a relatively small area. The remote characterization of these important tropical ecosystems represents a challenge to scientists, particularly due to the similarity of the spectral signatures among some of these components. As such, we examined the similarities and differences between nine Scleractinian Caribbean shallow-water reef corals' spectral reflectance curves. Samples were also collected from each species for pigment analysis using High Performance Liquid Chromatography (HPLC). Reflectance curves were obtained with the aid of a GER-1500 hand-held field spectroradiometer enclosed in an underwater housing. Our findings showed that even though most of the pigmentation was directly related to the relationship of corals with their symbiotic dinoflagellates (zooxanthellae), the presence of other endolithic photosynthetic organisms can also contribute to the light absorption of corals and, hence, the reflectance spectra of each species. Also, the relative contribution of chlorophylls vs. carotenes or xanthophylls depends on the coral species with some species relying more on Chlorophyll a and other species relying on Chlorophyl c2 and Peridinin with a small Chlorophyll a component. Pigments associated with the xanthophyll cycle of dinoflagellates (Diadinoxanthin and Diatoxanthin) were detected in most species. Pigments typical of endolithic organisms such as Zeaxanthin, Fucoxanthin, Violaxanthin and Siphonaxanthin were also detected in some coral species. The influence of major pigments on the reflectance curve was evidenced with a 2nd derivative analysis. This could be used to discriminate among most species. Further, an analysis of the integration of the area under the
Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.
2011-08-01
Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims: While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high mass protostars, very little exists on low mass protostars, which are believed to resemble our own Sun's progenitor. To help fill up this gap in our understanding, we carried out a complete spectral survey of the bands at 3, 2, 1, and 0.9 mm towards the solar type protostar IRAS 16293-2422. Methods: The observations covered a range of about 200 GHz and were obtained with the IRAM-30 m and JCMT-15 m telescopes during about 300 h of observations. Particular attention was devoted to the inter-calibration of the acquired spectra with previous observations. All the lines detected with more than 3σ confidence-interval certainty and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Results: More than 4000 lines were detected (with σ ≥ 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (about two-thirds) of the lines are weak and produced by complex organic molecules. The analysis of the profiles of more than 1000 lines belonging to 70 species firmly establishes the presence of two distinct velocity components associated with the two objects, A and B, forming the IRAS 16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 M⊙ object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 M⊙. The difference in the rest velocities
Enkephalins: Raman spectral analysis and comparison as function of pH 1-13
DEFF Research Database (Denmark)
Abdali, Salim; Refstrup, Pia; Nielsen, O.F.
2003-01-01
Raman spectral studies are carried out on Leu- and Met-enkephalin as a function of the pH value in the range of 1-13. The molecules are dissolved in KCI solvent and the pH is controlled at each value. Spectral analyses reveal the dependence of the structural conformation on the pH, and a comparis...
Czech Academy of Sciences Publication Activity Database
Vojtíšek, Petr; Květoň, M.; Richter, I.
2016-01-01
Roč. 11, February (2016), č. článku 16009. ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Photopolymers * diffraction gratings * angular-spectral maps * spectral selectivity * angular selectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.975, year: 2016
Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo
2017-01-01
Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples
An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA
2009-01-01
Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.
[Analysis of spectral features based on water content of desert vegetation].
Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin
2010-09-01
By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.
Multi-wavelength Spectral Analysis of Ellerman Bombs Observed by FISS and IRIS
Energy Technology Data Exchange (ETDEWEB)
Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: dmd@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)
2017-04-01
Ellerman bombs (EBs) are a kind of solar activity that is suggested to occur in the lower solar atmosphere. Recent observations using the Interface Region Imaging Spectrograph (IRIS) show connections between EBs and IRIS bombs (IBs), which imply that EBs might be heated to a much higher temperature (8 × 10{sup 4} K) than previous results. Here we perform a spectral analysis of EBs simultaneously observed by the Fast Imaging Solar Spectrograph and IRIS. The observational results show clear evidence of heating in the lower atmosphere, indicated by the wing enhancement in H α , Ca ii 8542 Å, and Mg ii triplet lines and also by brightenings in images of the 1700 Å and 2832 Å ultraviolet continuum channels. Additionally, the intensity of the Mg ii triplet line is correlated with that of H α when an EB occurs, suggesting the possibility of using the triplet as an alternative way to identify EBs. However, we do not find any signal in IRIS hotter lines (C ii and Si iv). For further analysis, we employ a two-cloud model to fit the two chromospheric lines (H α and Ca ii 8542 Å) simultaneously, and obtain a temperature enhancement of 2300 K for a strong EB. This temperature is among the highest of previous modeling results, albeit still insufficient to produce IB signatures at ultraviolet wavelengths.
Directory of Open Access Journals (Sweden)
Julia Gasch
Full Text Available BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary and under pharmacological stimulation (non-stationary using the algorithm of trigonometric regressive spectral analysis (TRS. Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system.
Design and Analysis of Self-Healing Tree-Based Hybrid Spectral Amplitude Coding OCDMA System
Directory of Open Access Journals (Sweden)
Waqas A. Imtiaz
2017-01-01
Full Text Available This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON. Enhanced multidiagonal (EMD code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.
De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.
2017-08-01
The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.
Night sleep electroencephalogram power spectral analysis in excessive daytime sleepiness disorders
Directory of Open Access Journals (Sweden)
Rubens Reimão
1991-06-01
Full Text Available A group of 53 patients (40 míales, 13 females with mean age of 49 years, ranging from 30 to 70 years, was evaluated in the. following excessive daytime sleepiness (EDS disorders : obstructive sleep apnea syndrome (B4a, periodic movements in sleep (B5a, affective disorder (B2a, functional psychiatric non affective disorder (B2b. We considered all adult patients referred to the Center sequentially with no other distinctions but these three criteria: (a EDS was the main complaint; (b right handed ; (c not using psychotropic drugs for two weeks prior to the all-night polysomnography. EEG (C3/A1, C4/A2 samples from 2 to 10 minutes of each stage of the first REM cycle were chosen. The data was recorded simultaneously in magnetic tape and then fed into a computer for power spectral analysis. The percentage of power (PP in each band calculated in relation to the total EEG power was determined of subsequent sections of 20.4 s for the following frequency bands: delta, theta, alpha and beta. The PP in all EOS patients sample had a tendency to decrease progressively from the slowest to the fastest frequency bands, in every sleep stage. PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were close to stage 2 levels. In an EDS patients interhemispheric coherence was high in every band and sleep stage. B4a patients sample PP had a tendency to decrease progressively from the slowest to the fastest frequency bands, in¡ every sleep stage; PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were between stage 1 and stage 2 levels. B2a patients sample PP had a tendency to decrease progressively from the slowest to the fastest frequency bands, in every sleep stage; PP distribution in the delta range increased progressively from stage 1 to stage 4; stage REM levels were close to stage 2 levels. B2b patients sample PP had a tendency to decrease progressively from the
Room temperature mid-IR single photon spectral imaging
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian
2012-01-01
Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....
EEG spectral analysis of attention in ADHD: implications for neurofeedback training?
Directory of Open Access Journals (Sweden)
Hartmut eHeinrich
2014-08-01
Full Text Available Objective: In children with attention-deficit/hyperactivity disorder (ADHD, an increased theta/beta ratio in the resting EEG typically serves as a rationale to conduct theta/beta neurofeedback training. However, this finding is increasingly challenged. As neurofeedback may rather target an active than a passive state, we studied the EEG in a condition that requires attention.Methods: In children with ADHD of the DSM-IV combined type (ADHD-C; N=15 and of the predominantly inattentive type (ADHD-I; N=9 and in typically developing children (N=19, EEG spectral analysis was conducted for segments during the attention network test without processing of stimuli and overt behavior. Frontal (F3, Fz, F4, central (C3, Cz, C4 and parietal (P3, Pz, P4 electrodes were included in the statistical analysis. To investigate if EEG spectral parameters are related to performance measures, correlation coefficients were calculated.Results: Particularly in the ADHD-C group, higher theta and alpha activity was found with the most prominent effect in the upper-theta/lower-alpha (5.5-10.5 Hz range. In the ADHD-I group, a significantly higher theta/beta ratio was observed at single electrodes (F3, Fz and a tendency for a higher theta/beta ratio when considering all electrodes (large effect size. Higher 5.5-10.5 Hz activity was associated with higher reaction time variability with the effect most prominent in the ADHD-C group. A higher theta/beta ratio was associated with higher reaction times, particularly in the ADHD-I group.Conclusions: 1. In an attention demanding period, children with ADHD are characterized by an underactivated state in the EEG with subtype-specific differences. 2. The functional relevance of related EEG parameters is indicated by associations with performance (reaction time measures. 3. Findings provide a rationale for applying NF protocols targeting theta (and alpha activity and the theta/beta ratio in subgroups of children with ADHD.
Chirvi, Sajal
Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi
International Nuclear Information System (INIS)
Behringer, K.; Spiekerman, G.
1984-01-01
Piety (1977) proposed an automated signature analysis of power spectral density data. Eight statistical decision discriminants are introduced. For nearly all the discriminants, improved confidence statements can be made. The statistical characteristics of the last three discriminants, which are applications of non-parametric tests, are considered. (author)
Bonte, M.H.A.; de Boer, Andries; Liebregts, R.
This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the
XMM-Newton observation of the NLS1 galaxy Ark 564. I. Spectral analysis of the time-average spectrum
Papadakis, I.E.; Brinkmann, W.; Page, M.J.; McHardy, I.; Uttley, P.
2007-01-01
Context: .We present the results from the spectral analysis of the time-average spectrum of the Narrow Line Seyfert 1 (NLS1) galaxy Ark 564 from a ~100 ks XMM-Newton observation. Aims: .Our aim is to characterize accurately the shape of the time-average, X-ray continuum spectrum of the source and
Eshghi, Marziye; Zajac, David J.; Bijankhan, Mahmood; Shirazi, Mohsen
2013-01-01
Spectral moment analysis (SMA) was used to describe voiceless alveolar and velar stop-plosive production in Persian-speaking children with repaired cleft lip and palate (CLP). Participants included 11 children with bilateral CLP who were undergoing maxillary expansion and 20 children without any type of orofacial clefts. Four of the children with…
International Nuclear Information System (INIS)
Melent'ev, M.I.; Velikanov, A.E.
2003-01-01
The article describes the results of the work of study of the influence underground nucleus blasts (UNB) on condition of the day surface of the site Balapan on the territory of Semipalatinsk Test Site using materials of remote space sensing. The estimation of the cosmic spectral analysis information density is given for revealing the post-explosive geo- dynamic processes. (author)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
Directory of Open Access Journals (Sweden)
J. R. Santillan
2018-04-01
Full Text Available We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345–1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2. Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino
2014-05-01
The quantitative interpretation of (1)H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters. Copyright © 2014 Elsevier Inc. All rights reserved.
Zyoud, Sa’ed H.; Al-Jabi, Samah W.; Sweileh, Waleed M.
2015-01-01
Background Bibliometric analysis is increasingly employed as a useful tool to assess the quantity and quality of research performance. The specific goal of the current study was to evaluate the performance of research output originating from Arab world and published in international Integrative and Complementary Medicine (ICM) journals. Methods Original scientific publications and reviews from the 22 Arab countries that were published in 22 international peer-reviewed ICM journals during all ...
Directory of Open Access Journals (Sweden)
Norbert Nagel
2017-07-01
Full Text Available The authors present the development and statistical analysis, conducted under the auspices of the German Transactional Analysis Association (DGTA, of an online evaluation system of transactional analysis training. The understanding of evaluation research is clarified, and the data-entry form and its grounding in the theory of transactional analysis are presented. Emphasis is placed on the development of the competence concept, the definition of competence categories, and the representation of the foundations of a transactional-analytic educational theory. The scientific examination of the validity and reliability of the scales, the research process with pre-test and re-test, and the evaluation of the data in the system of online evaluation are extensively documented. In conclusion, it is claimed that this online-based DGTA evaluation is one of the few result-oriented teaching evaluation instruments in the German-speaking countries which meets scientific control criteria and is published. Citation - APA format: Nagel, N., König, J., Ottmann, S., & Hahnle, A. (2017. The development by the German Transactional Analysis Association of a scientifically-based online evaluation system of transactional analysis training. International Journal of Transactional Analysis Research & Practice, 8(2, 3-23.
Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray
International Nuclear Information System (INIS)
Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji
1995-01-01
We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity
Hsieh, Sheng-Hsun; Wang, Wei; Tien, Chung-Hao
2018-01-01
In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme. PMID:29509692
Hsieh, Sheng-Hsun; Li, Yung-Hui; Wang, Wei; Tien, Chung-Hao
2018-03-06
In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme.
Directory of Open Access Journals (Sweden)
Sheng-Hsun Hsieh
2018-03-01
Full Text Available In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
1990-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Meta-analysis of scientific publications hei with brazilian environmental management system
Directory of Open Access Journals (Sweden)
Alexandre André Feil
2015-02-01
Full Text Available The Higher Education Institutions (HEIs are being pressured by changes towards sustainability and thus awakening to environmental management, they are considered as a leader in promoting sustainability through actions and environmental management practices. Following this logic, this study aims to identify the environmental management practices used in Brazilian HEIs and correlations exist that influence the implementation of Environmental Management Systems (EMS. The quantitative approach is applied through documentary research with secondary data published in proceedings, journals, books and portal Scientific Electronic Library (SciELO. The data analysis occurred through meta-analysis using descriptive statistics and Spearman correlation. The results of 34 scientific studies 23 IES referencing models and practices of waste management published from 2001 to 2012 were identified. The Spearman correlation analysis expressed that HEIs with programs in environmental education performed better ranking General Index of Courses. It is recommended that HEIs that have a waste management deployed, share your experience through scientific publications to disseminate their adaptation practices regarding the SGA.
Co-word analysis for the non-scientific information example of Reuters Business Briefings
Directory of Open Access Journals (Sweden)
B Delecroix
2006-01-01
Full Text Available Co-word analysis is based on a sociological theory developed by the CSI and the SERPIA (Callon, Courtial, Turner, 1991 in the mid eighties. This method, originally dedicated to scientific fields, measures the association strength between terms in documents to reveal and visualise the evolution of scientific fields through the construction of clusters and strategic diagram. This method has since been successfully applied to investigate the structure of many scientific areas. Nowadays it occurs in many software systems which are used by companies to improve their business, and define their strategy but its relevance to this kind of application has not been proved yet. Using the example of economic and marketing information on DSL technologies from Reuters Business Briefing, this presentation gives an interpretation of co-word analysis for this kind of information. After an overview of the software we used (Sampler and after an outline of the experimental protocol, we investigate and explain each step of the co-word analysis process: terminological extraction, computation of clusters and the strategic diagram. In particular, we explain the meaning of each parameter of the method: the choice of variables and similarity measures is discussed. Finally we try to give a global interpretation of the method in an economic context. Further studies will be added to this work in order to allow a generalisation of these results.
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wucherl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koo, Michelle [Univ. of California, Berkeley, CA (United States); Cao, Yu [California Inst. of Technology (CalTech), Pasadena, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nugent, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2016-09-17
Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe- art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.
Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng
2009-12-01
A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.
International Nuclear Information System (INIS)
Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B
2015-01-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)
Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.
2015-08-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.
Tuter, N V; Gnezditskiĭ, V V
2008-01-01
Panic disorders (PD) which develop in the context of different psychiatric diseases (neurotic, personality disorder and schizotypal disorders) have their own clinical and neurophysiological features. The results of compressive-spectral analysis of EEG (CSA EEG) in patients with panic attack were different depending on the specifics of initial psychiatric status. EEG parameters in patients differed from those in controls. The common feature for all PD patients was the lower spectral density of theta-, alpha- and beta-bands as well as total spectral density without any alterations of region distribution. The decrease of electrical activity of activation systems was found in the groups with neurotic and schizotypal disorders and that of inhibition systems - in the group with schizotypal disorders. The EEG results did not suggest any depression of activation systems in patients with specific personality disorders. The data obtained with CSA EEG mirror the integrative brain activity which determinad of the appearance of PA as well as of nosology of psychiatre disease.
International Nuclear Information System (INIS)
Birge, Jonathan R.; Kaertner, Franz X.
2008-01-01
We derive an analytical approximation for the measured pulse width error in spectral shearing methods, such as spectral phase interferometry for direct electric-field reconstruction (SPIDER), caused by an anomalous delay between the two sheared pulse components. This analysis suggests that, as pulses approach the single-cycle limit, the resulting requirements on the calibration and stability of this delay become significant, requiring precision orders of magnitude higher than the scale of a wavelength. This is demonstrated by numerical simulations of SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We briefly propose methods to minimize the effects of this sensitivity in SPIDER and review variants of spectral shearing that attempt to avoid this difficulty
Hahn, P; Dullweber, F; Unglaub, F; Spies, C K
2014-06-01
Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.
SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features
Harwit, M.
2010-03-01
We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.
Spectral Analysis of Polynomial Nonlinearity with Applications to RF Power Amplifiers
Directory of Open Access Journals (Sweden)
G. Tong Zhou
2004-09-01
Full Text Available The majority of the nonlinearity in a communication system is attributed to the power amplifier (PA present at the final stage of the transmitter chain. In this paper, we consider Gaussian distributed input signals (such as OFDM, and PAs that can be modeled by memoryless or memory polynomials. We derive closed-form expressions of the PA output power spectral density, for an arbitrary nonlinear order, based on the so-called Leonov-Shiryaev formula. We then apply these results to answer practical questions such as the contribution of AM/PM conversion to spectral regrowth and the relationship between memory effects and spectral asymmetry.
Crist, E. P. (Principal Investigator)
1982-01-01
An overall approach to crop spectral understanding is presented which serves to maintain a strong link between actual plant responses and characteristics and spectral observations from ground based and spaceborne sensors. A specific technique for evaluating field reflectance data, as a part of the overall approach, is also described. Results of the application of this technique to corn and soybeans reflectance data collected by and at Purdue/LARS indicate that a number of common cultural and environmental factors can significantly affect the temporal spectral development patterns of these crops in tasseled cap greenness (a transformed variable of LANDSAT MSS signals).
Cummings, Kristina M.
The omnipresence of science and technology in our society require the development of a critical and scientifically literate citizenry. However, the inclusion of socioscientific issues, which are open-ended controversial issues informed by both science and societal factors such as politics, economics, and ethics, do not guarantee the development of these skills. The purpose of this critical discourse analysis is to identify and analyze the discursive strategies used in intermediate science texts and curricula that address socioscientific topics and the extent to which the discourses are designed to promote or suppress the development of scientific literacy and a critical pedagogy. Three curricula that address the issue of energy and climate change were analyzed using Gee's (2011) building tasks and inquiry tools. The curricula were written by an education organization entitled PreSEES, a corporate-sponsored group called NEED, and a non-profit organization named Oxfam. The analysis found that the PreSEES and Oxfam curricula elevated the significance of climate change and the NEED curriculum deemphasized the issue. The PreSEES and Oxfam curricula promoted the development of scientific literacy while the NEED curricula suppressed its development. The PreSEES and Oxfam curricula both promoted the development of the critical pedagogy; however, only the Oxfam curricula provided authentic opportunities to enact sociopolitical change. The NEED curricula suppressed the development of critical pedagogy. From these findings, the following conclusions were drawn. When socioscientific issues are presented with the development of scientific literacy and critical pedagogy, the curricula allow students to develop fact-based opinions about the issue. However, curricula that address socioscientific issues without the inclusion of these skills minimize the significance of the issue and normalize the hegemonic worldview promoted by the curricula's authors. Based on these findings
Fast fourier algorithms in spectral computation and analysis of vibrating machines
International Nuclear Information System (INIS)
Farooq, U.; Hafeez, T.; Khan, M.Z.; Amir, M.
2001-01-01
In this work we have discussed Fourier and its history series, relationships among various Fourier mappings, Fourier coefficients, transforms, inverse transforms, integrals, analyses, discrete and fast algorithms for data processing and analysis of vibrating systems. The evaluation of magnitude of the source signal at transmission time, related coefficient matrix, intensity, and magnitude at the receiving end (stations). Matrix computation of Fourier transform has been explained, and applications are presented. The fast Fourier transforms, new computational scheme. have been tested with an example. The work also includes digital programs for obtaining the frequency contents of time function. It has been explained that how the fast Fourier algorithms (FFT) has decreased computational work by several order of magnitudes and split the spectrum of a signal into two (even and odd modes) at every successive step. That fast quantitative processing for discrete Fourier transforms' computations as well as signal splitting and combination provides an efficient. and reliable tool for spectral analyses. Fourier series decompose the given variable into a sum of oscillatory functions each having a specific frequency. These frequencies, with their corresponding amplitude and phase angles, constitute the frequency contents of the original time functions. These fast processing achievements, signals decomposition and combination may be carried out by the principle of superposition and convolution for, even, signals of different frequencies. Considerable information about a machine or a structure can be derived from variable speed and frequency tests. (author)
Self-adjoint extensions and spectral analysis in the Calogero problem
Energy Technology Data Exchange (ETDEWEB)
Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L [Lebedev Physical Institute, Moscow (Russian Federation)], E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru
2010-04-09
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential {alpha}x{sup -2}. Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some 'paradoxes' inherent in the 'naive' quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Analysis of global water vapour trends from satellite measurements in the visible spectral range
Directory of Open Access Journals (Sweden)
S. Mieruch
2008-02-01
Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.
Using linear and non-linear methods from time series analysis and standard statistics the trends of H_{2}O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.
Energy Technology Data Exchange (ETDEWEB)
Thompson, Aidan P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Multiscale Science Dept.; Swiler, Laura P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Optimization and Uncertainty Quantification Dept.; Trott, Christian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Scalable Algorithms Dept.; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Tucker, Garritt J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering
2015-03-15
Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Energy Technology Data Exchange (ETDEWEB)
Thompson, A.P., E-mail: athomps@sandia.gov [Multiscale Science Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Swiler, L.P., E-mail: lpswile@sandia.gov [Optimization and Uncertainty Quantification Department, Sandia National Laboratories, PO Box 5800, MS 1318, Albuquerque, NM 87185 (United States); Trott, C.R., E-mail: crtrott@sandia.gov [Scalable Algorithms Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Foiles, S.M., E-mail: foiles@sandia.gov [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Tucker, G.J., E-mail: gtucker@coe.drexel.edu [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States)
2015-03-15
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Vanel, Florence O.; Baysal, Oktay
1995-01-01
Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.
Analysis of China's real estate prices and macroeconomy based on evolutionary co-spectral method
Directory of Open Access Journals (Sweden)
Juan Li
2015-04-01
Full Text Available Purpose: This paper investigates the dynamic interaction between the real estate market and the macroeconomic environment of China by use of dynamic coherence function based on co-spectral analysis. Design/methodology/approach: Through a theoretical perspective, the dynamic interrelationship among economic variables at different time intervals (both long and short terms is analyzed. Findings: The empirical results show that China’s real estate market features a high coherence with the change of the long-term interest rate, employment rate and money supply, while there is a moderate coherence between the real estate market and the inflation rate and economic growth rate, and the coherence between the short-term rate of interest and the real estate market is the lowest. Research implications: Previous researches have some shortcomings. They do not consider the dependence between nonlinear series, but the latter is crucial to avoid the deviation of results. In this paper, we proposed a new method of experience to overcome these shortcomings. Originality/value: The paper provides a reasonable explanation accordingly to different coherences between the real estate market and the macroeconomic variables.
Analysis of the in vivo confocal Raman spectral variability in human skin
Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.
2015-06-01
Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.
International Nuclear Information System (INIS)
Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.
2015-01-01
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum
International Nuclear Information System (INIS)
Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung Soon; Kim, Jung-Soo; Yoon, Wan-Ki
2008-01-01
In these days, the threats relating to nuclear or radioactive materials have become a matter of internationally increased grave concern. A plastic scintillation detector in radiation portal monitoring (RPM) application has been used to detect radioactive sources in steel scrap entering reprocessing facilities, and to detect illicit transport of radioactive material across border ports-of-entry. The detection systems for RPM application usually are large and can not easily be moved to a different location. For some situations, an inconspicuous and mobile system for the radioactive or nuclear material during road transport is needed. The mobile radiation detection system has employed a NaI- based radiation detector to detect and identify the material hidden in vehicle. There are some operational constraints - short measuring time, weak activity due to heavy shield of illegal source, long distance - of inspection system in such nuclear security applications. Due to these constraints, large area sensor is required to maximize its sensitivity. Large NaI material, however, is extremely expensive. In designing a radiation detector for prevention of illicit trafficking of nuclear or radioactive materials, the trade-off should be carefully optimized between performance and cost in order to achieve cost-effective inspection system. For the cost-effective mobile radiation detection system, this paper describes new spectral analysis method to use the crude spectroscopic information available from a plastic detector to discriminate other man-made radiation source from NORM
International Nuclear Information System (INIS)
Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J
2003-01-01
Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies
[The value of spectral frequency analysis by Doppler examination (author's transl)].
Boccalon, H; Reggi, M; Lozes, A; Canal, C; Jausseran, J M; Courbier, R; Puel, P; Enjalbert, A
1981-01-01
Arterial stenoses of moderate extent may involve modifications of the blood flow. Arterial shading is not always examined at the best incident angle to assess the extent of the stenosis. Spectral frequency analysis by Doppler examination is a good means of evaluating the effect of moderate arterial lesions. The present study was carried out with a Doppler effect having an acoustic spectrum, which is shown in a histogram having 16 frequency bands. The values were recorded on the two femoral arteries. A study was also made of 49 normal subjects so as to establish a normal envelope histogram, taking into account the following parameters: maximum peak (800 Hz), low cut-off frequency (420 Hz), high cut-off frequency (2,600 Hz); the first peak was found to be present in 81 % of the subjects (at 375 Hz) and the second peak in 75 % of the subjects (2,020 Hz). Thirteen patients with iliac lesions of different extent were included in the study; details of these lesions were established in all cases by aortography. None of the recorded frequency histograms were located within the normal envelope. Two cases of moderate iliac stenoses were noted ( Less Than 50 % of the diameter) which interfered with the histogram, even though the femoral velocity signal was normal.
[Design of plant leaf bionic camouflage materials based on spectral analysis].
Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian
2011-06-01
The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping
2014-02-28
Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.
Spectral analysis of the binary nucleus of the planetary nebula Hen 2-428 - first results
Finch, Nicolle L.; Reindl, Nicole; Barstow, Martin A.; Casewell, Sarah L.; Geier, Stephan; Bertolami, Marcelo M. Miller; Taubenberger, Stefan
2018-04-01
Identifying progenitor systems for the double-degenerate scenario is crucial to check the reliability of type Ia supernovae as cosmological standard candles. Santander-Garcia et al. (2015) claimed that Hen 2-428 has a doubledegenerate core whose combined mass significantly exceeds the Chandrasekhar limit. Together with the short orbital period (4.2 hours), the authors concluded that the system should merge within a Hubble time triggering a type Ia supernova event. Garcia-Berro et al. (2016) explored alternative scenarios to explain the observational evidence, as the high mass conclusion is highly unlikely within predictions from stellar evolution theory. They conclude that the evidence supporting the supernova progenitor status of the system is premature. Here we present the first quantitative spectral analysis of Hen 2-428which allows us to derive the effective temperatures, surface gravities and helium abundance of the two CSPNe based on state-of-the-art, non-LTE model atmospheres. These results provide constrains for further studies of this particularly interesting system.
Tian, Jialin; Smith, William L.; Gazarik, Michael J.
2008-10-01
The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is
Application of Rader transforms to the analysis of nuclear spectral data
International Nuclear Information System (INIS)
Kekre, H.B.; Madan, V.K.; Bairi, B.R.
1988-01-01
This paper describes a Rader transform method using a special arithmetic for the processing of nuclear spectral data. Rader transforms offer impressive computational savings vis-a-vis Fourier transform methods. Rader transforms require only integer additions and word shifts but no multiplications while Fourier transforms require complex arithmetic operations. Moreover, use of Rader transforms gives exact computations without any roundoff errors and does not require storage of basis functions. They are 'the best transforms' for computer processing of nuclear spectral data. Rader transforms using a Fermat prime 65 537 have been applied to deconvolve observed spectral data using a special filter function. A uniform improvement in resolution of 45% has been observed both in single and double spectrallines. A FORTRAN program GAMRAD is written to deconvolve spectral data using the special filter function. (orig.)
Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert and Amorphous Silica
McDowell, M. L.; Hamilton, V. E.; Cady, S. L.; Knauth, P.
2009-03-01
We look in detail at the thermal infrared and visible to near-infrared spectra of various forms of chert and amorphous silica and compare the spectral variations between samples with variations in physical and chemical characteristics.
Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations
Energy Technology Data Exchange (ETDEWEB)
Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.
2013-05-01
Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.
Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer
Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun
2018-05-01
Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.
Spectral and energy efficiency analysis of uplink heterogeneous networks with small-cells on edge
Shakir, Muhammad Zeeshan; Tabassum, Hina; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim
2014-01-01
by considering fast power control where the mobile users transmit with adaptive power to compensate the path loss, shadowing and fading. In particular, we develop a moment generating function (MGF) based approach to derive analytical bounds on the area spectral
Uehara, Mayuko; Takagi, Nobuyuki; Muraki, Satoshi; Yanase, Yosuke; Tabuchi, Masaki; Tachibana, Kazutoshi; Miyaki, Yasuko; Ito, Toshiro; Higami, Tetsuya
2015-12-01
Transit-time flow measurement (TTFM) parameters such as mean graft flow (MGF, ml/min), pulsatility index (PI) and diastolic filling (DF, %) have been extensively researched for internal mammary arterial or saphenous vein grafts. In our experience of using the right gastroepiploic arterial (GEA) graft for right coronary artery (RCA) grafting, we observed unique GEA graft flow waveforms. We analysed the GEA graft flow waveforms for their effectiveness in determining GEA graft patency by power spectral analysis. Forty-five patients underwent off-pump coronary artery bypass using the GEA graft for RCA grafting individually. The means of intraoperative MGF, PI and DF were compared between patent and non-patent grafts, postoperatively. Furthermore, the GEA flow data were output and analysed using power spectral analysis. Forty grafts were 'patent' and five were 'non-patent'. There were no significant differences in the mean TTFM parameters between the patent and non-patent grafts (MGF: 22 vs 8 ml/min, respectively, P = 0.068; PI: 3.5 vs 6.5, respectively, P = 0.155; DF: 63 vs 53%, respectively, P = 0.237). Results of the power spectral analysis presented clear differences; the power spectral density (PSD) of patent grafts presented high peaks at frequency levels of 1, 2 and 3 Hz, and the non-patent graft PSD presented high peaks that were not limited to these frequencies. The PSD had a sensitivity and specificity of 80 and 87.5%, respectively. Power spectral analysis of the GEA graft flow is useful to distinguish between non-patent and patent grafts intraoperatively. This should be used as a fourth parameter along with MGF, PI and DF. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Silva, Marlos Rockenbach da; Alarcon, Walter Demetrio Gonzalez; Echer, Ezequiel; Lago, Alisson dal; Lucas, Aline de [National Institute for Space Research - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Vieira, Luis Eduardo Antunes; Guarnieri, Fernando Luis [Universidade do Vale do Paraiba - UNIVAP, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge [Southern Regional Space Research Center - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Munakata, Kazuoki, E-mail: marlos@dge.inpe.br, E-mail: gonzalez@dge.inpe.br, E-mail: eecher@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: delucas@dge.inpe.br, E-mail: levieira@univap.br, E-mail: guarnieri@univap.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: kmuna00@gipac.shinshu-u.ac.jp [Physics Department, Shinshu University, Matsumoto (Japan)
2007-07-01
In this work we present an analysis on the correction efficiency of atmospheric effects on cosmic ray Sao Martinho da Serra's muon telescope and Newark's neutron monitor data. We use a Multitaper spectral analysis of cosmic rays time series to show the main periodicities present in the corrected and uncorrected data for the atmospheric effects. This kind of correction is very important when intends to study cosmic rays variations of extra-terrestrial origin. (author)
Mphahlele, Ramatsemela
A methodology is developed for the determination of the optimum spectral zones in Pebble Bed Reactors (PBR). In this work a spectral zone is defined as a zone made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. In other words the spectral zones are the regions over which the few-group diffusion parameters are generated. The identification of spectral boundaries is treated as an optimization problem. It is solved by systematically and simultaneously repositioning all zone boundaries to achieve the global minimum error between the reference transport solution (MCNP) and the diffusion code solution (NEM). The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates error in each zone. An iterative determination of group-dependent bucklings is incorporated into the methodology to properly account for spectral effects of neighboring zones. A preferred energy group structure has also been chosen. This optimization approach with the reference transport solution has proved to be accurate and consistent, however the computational effort required to complete the optimization process is significant. Thus a more practical methodology is also developed for the determination of the spectral zones in PBRs. The reactor physics characteristics of the spectral zones have been studied to understand the nature of the spectral zone boundaries. The practical tool involves the use of spectral indices based on few-group diffusion theory whole core calculations. With this methodology, there is no need to first have a reference transport solution. It is shown that the diffusion-theory coarse group fluxes and the effective multiplication factor computed using zones based on the practical index agrees within a narrow tolerance with those of the reference approach. Therefore the "practical" index
Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.
2017-06-01
In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.
Directory of Open Access Journals (Sweden)
Denis Fisseler
2017-12-01
Full Text Available The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.
A Combined Ethical and Scientific Analysis of Large-scale Tests of Solar Climate Engineering
Ackerman, T. P.
2017-12-01
Our research group recently published an analysis of the combined ethical and scientific issues surrounding large-scale testing of stratospheric aerosol injection (SAI; Lenferna et al., 2017, Earth's Future). We are expanding this study in two directions. The first is extending this same analysis to other geoengineering techniques, particularly marine cloud brightening (MCB). MCB has substantial differences to SAI in this context because MCB can be tested over significantly smaller areas of the planet and, following injection, has a much shorter lifetime of weeks as opposed to years for SAI. We examine issues such as the role of intent, the lesser of two evils, and the nature of consent. In addition, several groups are currently considering climate engineering governance tools such as a code of ethics and a registry. We examine how these tools might influence climate engineering research programs and, specifically, large-scale testing. The second direction of expansion is asking whether ethical and scientific issues associated with large-scale testing are so significant that they effectively preclude moving ahead with climate engineering research and testing. Some previous authors have suggested that no research should take place until these issues are resolved. We think this position is too draconian and consider a more nuanced version of this argument. We note, however, that there are serious questions regarding the ability of the scientific research community to move to the point of carrying out large-scale tests.
Salyuk, P. A.; Nagorny, I. G.
The paper presents the method for processing of excitation-emission matrix of sea water and the allocation of the spectral characteristics of different types of colored dissolved organic matter (CDOM) and phytoplankton cells in seawater. The method consists of identification of regularly observed fluorescence peaks of CDOM in marine waters of different type and definition of the spectral ranges, where the predominant influence of these peaks are observed.
Institute of Scientific and Technical Information of China (English)
汤浩
2014-01-01
Objective To explore the discrepancies of individualized frequency and band power between major depressive disorder(MDD)and controls in resting state,and the association of abnormal spectral power with clinical severity of MDD.Methods Whole-head MEG recordings were collected in 19 patients with MDD and 19 non-depressed controls in eye-closed resting state.Individual spectral power of each subject was calculated based on
Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS
Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.
2015-12-01
This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.
En face spectral domain optical coherence tomography analysis of lamellar macular holes.
Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J
2014-07-01
To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.
Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal
2018-03-01
A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.
Continental Spatio-Temporal Data Analysis with Linear Spectral Mixture Model Using FOSS
Kumar, Uttam; Nemani, Ramakrishna; Ganguly, Sangram; Milesi, Cristina; Raja, Kumar; Wang, Weile; Votava, Petr; Michaelis, Andrew
2015-01-01
This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global end members of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.
Dybus, W.; Benoit, M. H.; Ebinger, C. J.
2011-12-01
The crustal thickness beneath much of the eastern half of the US is largely unconstrained. Though there have been several controlled source seismic surveys of the region, many of these studies suffer from rays that turn in the crust above the Moho, resulting in somewhat ambiguous crustal thickness values. Furthermore, the broadband seismic station coverage east of the Mississippi has been limited, and most of the region remains largely understudied. In this study, we estimated the depth to the Moho using both spectral analysis and inversion of Bouguer gravity anomalies. We systematically estimated depths to lithospheric density contrasts from radial power spectra of Bouguer gravity within 100 km X 100 km windows eastward from the Mississippi River to the Atlantic Coast, and northward from North Carolina to Maine. The slopes and slope breaks in the radial power spectra were computed using an automated algorithm. The slope values for each window were visually inspected and then used to estimate the depth to the Moho and other lithospheric density contrasts beneath each windowed region. Additionally, we performed a standard Oldenburg-Parker inversion for lithospheric density contrasts using various reference depths and density contrasts that are realistic for the different physiographic provinces in the Eastern US. Our preliminary results suggest that the gravity-derived Moho depths are similar to those found using seismic data, and that the crust is relatively thinner (~28-33 km) than expected in beneath the Piedmont region (~35-40 km). Given the relative paucity of seismic data in the eastern US, analysis of onshore gravity data is a valuable tool for interpolating between seismic stations.
The Infrared Astronomical Satellite /IRAS/ Scientific Data Analysis System /SDAS/ sky flux subsystem
Stagner, J. R.; Girard, M. A.
1980-01-01
The sky flux subsystem of the Infrared Astronomical Satellite Scientific Data Analysis System is described. Its major output capabilities are (1) the all-sky lune maps (8-arcminute pixel size), (2) galactic plane maps (2-arcminute pixel size) and (3) regional maps of small areas such as extended sources greater than 1-degree in extent. The major processing functions are to (1) merge the CRDD and pointing data, (2) phase the detector streams, (3) compress the detector streams in the in-scan and cross-scan directions, and (4) extract data. Functional diagrams of the various capabilities of the subsystem are given. Although this device is inherently nonimaging, various calibrated and geometrically controlled imaging products are created, suitable for quantitative and qualitative scientific interpretation.
Near Real-time Scientific Data Analysis and Visualization with the ArcGIS Platform
Shrestha, S. R.; Viswambharan, V.; Doshi, A.
2017-12-01
Scientific multidimensional data are generated from a variety of sources and platforms. These datasets are mostly produced by earth observation and/or modeling systems. Agencies like NASA, NOAA, USGS, and ESA produce large volumes of near real-time observation, forecast, and historical data that drives fundamental research and its applications in larger aspects of humanity from basic decision making to disaster response. A common big data challenge for organizations working with multidimensional scientific data and imagery collections is the time and resources required to manage and process such large volumes and varieties of data. The challenge of adopting data driven real-time visualization and analysis, as well as the need to share these large datasets, workflows, and information products to wider and more diverse communities, brings an opportunity to use the ArcGIS platform to handle such demand. In recent years, a significant effort has put in expanding the capabilities of ArcGIS to support multidimensional scientific data across the platform. New capabilities in ArcGIS to support scientific data management, processing, and analysis as well as creating information products from large volumes of data using the image server technology are becoming widely used in earth science and across other domains. We will discuss and share the challenges associated with big data by the geospatial science community and how we have addressed these challenges in the ArcGIS platform. We will share few use cases, such as NOAA High Resolution Refresh Radar (HRRR) data, that demonstrate how we access large collections of near real-time data (that are stored on-premise or on the cloud), disseminate them dynamically, process and analyze them on-the-fly, and serve them to a variety of geospatial applications. We will also share how on-the-fly processing using raster functions capabilities, can be extended to create persisted data and information products using raster analytics
International Nuclear Information System (INIS)
Pant, Amar D.; Verma, Amit K.; Narayani, K.; Anilkumar, S.; Singh, Rajvir
2016-01-01
NaI(Tl) is commonly used for the gamma spectrometry analysis in laboratories. It continues to be the first choice for gamma spectrometry in many applications even today. Many gamma spectrometric methods are developed to experimentally determine activity of radionuclides in samples. Detectors used worldwide for gamma radiation monitoring are either GM based or scintillator based detector based on count rate. For radiation early warning systems radionuclide specific radiation monitoring methodology is required i.e. gamma ray spectrometry based environmental monitoring system. A computer program has been developed for gamma spectral monitoring by the use of full spectrum analysis (FSA). In this measured spectra are fitted using individual spectral components by least square fitting (LSF). The method is found very useful in situations, where radionuclide specific environmental radiation monitoring is required. The paper describes the details of the FSA procedure for the on line acquisition and analysis of gamma ray spectra from Nal(Tl) detectors