WorldWideScience

Sample records for spectra unfolding method

  1. The criteria for selecting a method for unfolding neutron spectra based on the information entropy theory

    International Nuclear Information System (INIS)

    Zhu, Qingjun; Song, Fengquan; Ren, Jie; Chen, Xueyong; Zhou, Bin

    2014-01-01

    To further expand the application of an artificial neural network in the field of neutron spectrometry, the criteria for choosing between an artificial neural network and the maximum entropy method for the purpose of unfolding neutron spectra was presented. The counts of the Bonner spheres for IAEA neutron spectra were used as a database, and the artificial neural network and the maximum entropy method were used to unfold neutron spectra; the mean squares of the spectra were defined as the differences between the desired and unfolded spectra. After the information entropy of each spectrum was calculated using information entropy theory, the relationship between the mean squares of the spectra and the information entropy was acquired. Useful information from the information entropy guided the selection of unfolding methods. Due to the importance of the information entropy, the method for predicting the information entropy using the Bonner spheres' counts was established. The criteria based on the information entropy theory can be used to choose between the artificial neural network and the maximum entropy method unfolding methods. The application of an artificial neural network to unfold neutron spectra was expanded. - Highlights: • Two neutron spectra unfolding methods, ANN and MEM, were compared. • The spectrum's entropy offers useful information for selecting unfolding methods. • For the spectrum with low entropy, the ANN was generally better than MEM. • The spectrum's entropy was predicted based on the Bonner spheres' counts

  2. A high-resolution neutron spectra unfolding method using the Genetic Algorithm technique

    CERN Document Server

    Mukherjee, B

    2002-01-01

    The Bonner sphere spectrometers (BSS) are commonly used to determine the neutron spectra within various nuclear facilities. Sophisticated mathematical tools are used to unfold the neutron energy distribution from the output data of the BSS. This paper highlights a novel high-resolution neutron spectra-unfolding method using the Genetic Algorithm (GA) technique. The GA imitates the biological evolution process prevailing in the nature to solve complex optimisation problems. The GA method was utilised to evaluate the neutron energy distribution, average energy, fluence and equivalent dose rates at important work places of a DIDO class research reactor and a high-energy superconducting heavy ion cyclotron. The spectrometer was calibrated with a sup 2 sup 4 sup 1 Am/Be (alpha,n) neutron standard source. The results of the GA method agreed satisfactorily with the results obtained by using the well-known BUNKI neutron spectra unfolding code.

  3. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  4. Neutron spectra unfolding in Bonner spheres spectrometry using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Setayeshi, S.; Koohi-Fayegh, R.; Ghiassi-Nejad, M.

    2003-01-01

    The neural network method has been used for the unfolding of neutron spectra in neutron spectrometry by Bonner spheres. A back propagation algorithm was used for training of neural networks 4mm x 4 mm bare LiI(Eu) and in a polyethylene sphere set: 2, 3, 4, 5, 6, 7, 8, 10, 12, 18 inch diameter have been used for unfolding of neutron spectra. Neural networks were trained by 199 sets of neutron spectra, which were subdivided into 6, 8, 10, 12, 15 and 20 energy bins and for each of them an appropriate neural network was designed and trained. The validation was performed by the 21 sets of neutron spectra. A neural network with 10 energy bins which had a mean value of error of 6% for dose equivalent estimation of spectra in the validation set showed the best results. The obtained results show that neural networks can be applied as an effective method for unfolding neutron spectra especially when the main target is neutron dosimetry. (author)

  5. A genetic algorithm based method for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2013-03-01

    An approach to neutron spectrum unfolding based on a stochastic evolutionary search mechanism - Genetic Algorithm (GA) is presented. It is tested to unfold a set of simulated spectra, the unfolded spectra is compared to the output of a standard code FERDOR. The method was then applied to a set of measured pulse height spectrum of neutrons from the AmBe source as well as of emitted neutrons from Li(p,n) and Ag(C,n) nuclear reactions carried out in the accelerator environment. The unfolded spectra compared to the output of FERDOR show good agreement in the case of AmBe spectra and Li(p,n) spectra. In the case of Ag(C,n) spectra GA method results in some fluctuations. Necessity of carrying out smoothening of the obtained solution is also studied, which leads to approximation of the solution yielding an appropriate solution finally. Few smoothing techniques like second difference smoothing, Monte Carlo averaging, combination of both and gaussian based smoothing methods are also studied. Unfolded results obtained after inclusion of the smoothening criteria are in close agreement with the output obtained from the FERDOR code. The present method is also tested on a set of underdetermined problems, the outputs of which is compared to the unfolded spectra obtained from the FERDOR applied to a completely determined problem, shows a good match. The distribution of the unfolded spectra is also studied. Uncertainty propagation in the unfolded spectra due to the errors present in the measurement as well as the response function is also carried out. The method appears to be promising for unfolding the completely determined as well as underdetermined problems. It also has provisions to carry out the uncertainty analysis. (author)

  6. DANTE, Activation Analysis Neutron Spectra Unfolding by Covariance Matrix Method

    International Nuclear Information System (INIS)

    Petilli, M.

    1981-01-01

    1 - Description of problem or function: The program evaluates activation measurements of reactor neutron spectra and unfolds the results for dosimetry purposes. Different evaluation options are foreseen: absolute or relative fluxes and different iteration algorithms. 2 - Method of solution: A least-square fit method is used. A correlation between available data and their uncertainties has been introduced by means of flux and activity variance-covariance matrices. Cross sections are assumed to be constant, i.e. with variance-covariance matrix equal to zero. The Lagrange multipliers method has been used for calculating the solution. 3 - Restrictions on the complexity of the problem: 9 activation experiments can be analyzed. 75 energy groups are accepted

  7. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  8. Dante-unfolding code for energy spectra evaluation

    International Nuclear Information System (INIS)

    Petilli, M.

    1979-01-01

    The code DANTE, using the last square method in unfolding for dosimetry purpose, solves the neutron spectra evaluation problem starting by activity measurements. The code DANTE introduced for the first time the correlation between available data by mean of flux and activity variance-covariance matrices and the error propagation. In the present report the solution method is detailed described

  9. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfazl, E-mail: sahosseini@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Tehran 8639-11365 (Iran, Islamic Republic of); Afrakoti, Iman Esmaili Paeen [Faculty of Engineering & Technology, University of Mazandaran, Pasdaran Street, P.O. Box: 416, Babolsar 47415 (Iran, Islamic Republic of)

    2017-04-11

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The {sup 241}Am-{sup 9}Be and {sup 252}Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions. - Highlights: • The neutron pulse height distribution was simulated using MCNPX-ESUT. • The energy spectrum of the neutron source was unfolded using GMDH. • The energy spectrum of the neutron source was

  10. Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination

    International Nuclear Information System (INIS)

    Marinkovic, P.

    1991-01-01

    Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)

  11. RDANN a new methodology to solve the neutron spectra unfolding problem

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    The optimization processes known as Taguchi method and DOE methodology are applied to the design, training and testing of Artificial Neural Networks in the neutron spectrometry field, which offer potential benefits in the evaluation of the behavior of the net as well as the ability to examine the interaction of the weights and neurons inside the same one. In this work, the Robust Design of Artificial Neural Networks methodology is used to solve the neutron spectra unfolding problem, designing, training and testing an ANN using a set of 187 neutron spectra compiled by the International Atomic Energy Agency, to obtain the better neutron spectra unfolded from the Bonner spheres spectrometer's count rates. (Author)

  12. RDANN a new methodology to solve the neutron spectra unfolding problem

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2006-01-01

    The optimization processes known as Taguchi method and DOE methodology are applied to the design, training and testing of Artificial Neural Networks in the neutron spectrometry field, which offer potential benefits in the evaluation of the behavior of the net as well as the ability to examine the interaction of the weights and neurons inside the same one. In this work, the Robust Design of Artificial Neural Networks methodology is used to solve the neutron spectra unfolding problem, designing, training and testing an ANN using a set of 187 neutron spectra compiled by the International Atomic Energy Agency, to obtain the better neutron spectra unfolded from the Bonner spheres spectrometer's count rates. (Author)

  13. Unfolding neutron spectra obtained from BS–TLD system using genetic algorithm

    International Nuclear Information System (INIS)

    Santos, J.A.L.; Silva, E.R.; Ferreira, T.A.E; Vilela, E.C.

    2012-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as a function of energy should be characterized. The precise information allows radiological quantities establishment related to that spectrum, but it is necessary that a spectrometric system covers a large interval of energy and an unfolding process is appropriate. This paper proposes use of a technique of Artificial Intelligence (AI) called genetic algorithm (GA), which uses bio-inspired mathematical models with the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a BS system to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enabling this technique to unfold neutron spectra with the BS–TLD system. - Highlights: ► The unfolding code used the artificial intelligence technique called genetic algorithms. ► A response matrix specific to the unfolding data obtained with the BS–TLD system is used by the AGLN. ► The observed results demonstrate the potential use of genetic algorithms in solving complex nuclear problems.

  14. Influence of cross-section structure on unfolded neutron spectra

    International Nuclear Information System (INIS)

    Ertek, C.; Vlasov, M.F.; Cross, B.; Smith, P.M.

    1979-01-01

    The influence of cross-section structure on neutron spectra unfolded by multiple foil activation technique, SAND-II case, has been studied. For three reactions with evident structure in neutron cross-section above threshold: 27Al(n,α)24Na, 31P(n,p)31Si and 32S(n,p)32P, two remarkably different sets of evaluated data were selected from the available evaluations; one set of data was ''smooth'', the structure having been averaged over by a smooth curve; the other set was ''sharp'' with structure given in detail. These data were used in unfolding procedure together with other reactions, the same in both cases (as well as input spectra and measured reaction rates). It was found that during unfolding calculations less iteration steps were needed to unfold the neutron flux spectrum with the set of ''sharp'' data. In case of ''smooth'' data it was difficult to obtain an agreement between measured and calculated activity values even by increasing the number of iteration steps. Contrary to expectations, considerable deformation of unfolded neutron flux spectrum has been observed in the case of the ''smooth'' data set. (author)

  15. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  16. Unfolding neutron spectra with BS-TLD system using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joelan A.L., E-mail: jasantos@cnen.gov.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Silva, Everton R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Informatica; Ferreira, Tiago A.E. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Estatistica e Informatica; Fonseca, Evaldo S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Vilela, Eudice C., E-mail: ecvilela@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as function of energy to be characterized. To perform this task, the neutron spectrometer has a primary role in determining the neutron flux ({Phi}{sub E}(E)). Precise information allows radiological quantities establishment related to that spectrum but it is necessary, however, a series of steps with a spectrometric system that can cover a large interval of energy and whose answer is isotropic. The most widely used for accomplishing this task is the spectrometric Bonner spheres system. One of the biggest problems related to neutron spectrometry is the process of data analysis, known as unfolding. Most of the work undertaken to implement new techniques of this process, using data obtained with the scintillator {sup 6}LiI(I). However, characteristics related to the dead time make it not be so effective when used in high flow neutron fields. An alternative to this problem is the use of thermoluminescent detectors (TLD), but the codes used do not provide a more specific response matrix to unfolding the information obtained through these materials, which makes the development of a specific response matrix important to adequately characterize the response obtained by them. This paper proposes using a technique of artificial intelligence called genetic algorithm, which uses bio-inspired mathematical models and through the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a system of Bonner spheres, such as thermal neutron detectors, to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enables of this technique to unfolding neutrons spectra with BS-TLD system. (author)

  17. Unfolding neutron spectra with BS-TLD system using genetic algorithms

    International Nuclear Information System (INIS)

    Santos, Joelan A.L.; Silva, Everton R.; Vilela, Eudice C.

    2011-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as function of energy to be characterized. To perform this task, the neutron spectrometer has a primary role in determining the neutron flux (Φ E (E)). Precise information allows radiological quantities establishment related to that spectrum but it is necessary, however, a series of steps with a spectrometric system that can cover a large interval of energy and whose answer is isotropic. The most widely used for accomplishing this task is the spectrometric Bonner spheres system. One of the biggest problems related to neutron spectrometry is the process of data analysis, known as unfolding. Most of the work undertaken to implement new techniques of this process, using data obtained with the scintillator 6 LiI(I). However, characteristics related to the dead time make it not be so effective when used in high flow neutron fields. An alternative to this problem is the use of thermoluminescent detectors (TLD), but the codes used do not provide a more specific response matrix to unfolding the information obtained through these materials, which makes the development of a specific response matrix important to adequately characterize the response obtained by them. This paper proposes using a technique of artificial intelligence called genetic algorithm, which uses bio-inspired mathematical models and through the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a system of Bonner spheres, such as thermal neutron detectors, to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enables of this technique to unfolding neutrons spectra with BS-TLD system. (author)

  18. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  19. First results of Minimum Fisher Regularisation as unfolding method for JET NE213 liquid scintillator neutron spectrometry

    International Nuclear Information System (INIS)

    Mlynar, Jan; Adams, John M.; Bertalot, Luciano; Conroy, Sean

    2005-01-01

    At JET, the NE213 liquid scintillator is being validated as a diagnostic tool for spectral measurements of neutrons emitted from the plasma. Neutron spectra have to be unfolded from the measured pulse-height spectra, which is an ill-conditioned problem. Therefore, use of two independent unfolding methods allows for less ambiguity on the interpretation of the data. In parallel to the routine algorithm MAXED based on the Maximum Entropy method, the Minimum Fisher Regularisation (MFR) method has been introduced at JET. The MFR method, known from two-dimensional tomography applications, has proved to provide a new transparent tool to validate the JET neutron spectra measured with the NE213 liquid scintillators. In this article, the MFR method applicable to spectra unfolding is briefly explained. After a mention of MFR tests on phantom spectra experimental neutron spectra are presented that were obtained by applying MFR to NE213 data in selected JET experiments. The results tend to confirm MAXED observations

  20. Catalogue to select the initial guess spectrum during unfolding

    CERN Document Server

    Vega-Carrillo, H R

    2002-01-01

    A new method to select the initial guess spectrum is presented. Neutron spectra unfolded from Bonner sphere data are dependent on the initial guess spectrum used in the unfolding code. The method is based on a catalogue of detector count rates calculated from a set of reported neutron spectra. The spectra of three isotopic neutron sources sup 2 sup 5 sup 2 Cf, sup 2 sup 3 sup 9 PuBe and sup 2 sup 5 sup 2 Cf/D sub 2 O, were measured to test the method. The unfolding was carried out using the three initial guess options included in the BUNKIUT code. Neutron spectra were also calculated using MCNP code. Unfolded spectra were compared with those calculated; in all the cases our method gives the best results.

  1. NEUPAC, Experimental Neutron Spectra Unfolding with Sensitivities

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Nakazawa, Masaharu

    1986-01-01

    1 - Description of problem or function: The code is able to determine the integral quantities and their sensitivities, together with an estimate of the unfolded spectrum and integral quantities. The code also performs a chi-square test of the input/output data, and contains many options for the calculational routines. 2 - Method of solution: The code is based on the J1-type unfolding method, and the estimated neutron flux spectrum is obtained as its solution. 3 - Restrictions on the complexity of the problem: The maximum number of energy groups used for unfolding is 620. The maximum number of reaction rates and the window functions given as input is 20. The total storage requirement depends on the amount of input data

  2. Unfolding of neutron spectra from Godiva type critical assemblies

    International Nuclear Information System (INIS)

    Harvey, J.T.; Meason, J.L.; Wright, H.L.

    1976-01-01

    The results from three experiments conducted at the White Sands Missile Range Fast Burst Reactor Facility are discussed. The experiments were designed to measure the ''free-field'' neutron leakage spectrum and the neutron spectra from mildly perturbed environments. SAND-II was used to calculate the neutron spectrum utilizing several different trial input spectra for each experiment. Comparisons are made between the unfolded neutron spectrum for each trial input on the basis of the following parameters: average neutron energy (above 10 KeV), integral fluence (above 10 KeV), spectral index and the hardness parameter, phi/sub eq//phi

  3. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  4. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    Science.gov (United States)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  5. An Expansion Method to Unfold Proton Recoil Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kockum, J

    1970-07-01

    A method is given to obtain a good estimate of the input neutron spectrum from a pulse-height distribution measured with proportional counters filled with a hydrogenous gas. The method consists of expanding the sought estimate as a product of two functions where one is obtained by differentiating the pulse-height distribution and the other is a power series of the neutron energy. The coefficients of this series are determined by a least-squares fit of the calculated pulse-height distribution to the measured one. The method has been tested on pulse-height distributions obtained by calculations from a realistic neutron spectrum and response functions for a spherical counter 3. 94 cm in diameter and filled with 7 atm. of methane and 1 atm. of hydrogen, respectively. In the former case it is possible with the method described, to unfold pulse-height distributions up to a neutron energy of about 3 MeV to within 10 % of the input spectrum. The differentiating procedure included in the method ensures that all spectral details not smoothed out by the finite resolution of the counter, are kept in the spectrum estimate. A realistic estimate of the statistical uncertainty of each neutron spectrum value is given. Some of the possible systematical errors caused by uncertainties in input data have been investigated.

  6. Fast neutron spectra unfolding with SAND-11 and maximum likelihoed methods

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1980-01-01

    Mutual comparison of the methods SAND-II and maximal likeness for neutron spectra determination are represented. Spectra were restored according to the measures reaction rate of ten activation detectors using the device B-2 of the reactor BR-5 behind two thicknesses of steel-graphite shielding: Z=6.5 cm and Z=42.5 cm. The influence of earlier information on the results of neutron spectra determination was studied. Differential and integral energy dependences of neutron flux density for three initial spectra and two cross section libraries (BGS-1 and ZACRSS) are presented. The both methods yield close differential spectra (discrepancies < 10 %) when identical cross section libraries and reference spectra are used

  7. BUMS--Bonner sphere Unfolding Made Simple an HTML based multisphere neutron spectrometer unfolding package

    CERN Document Server

    Sweezy, J; Veinot, K

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at h...

  8. BUMS--Bonner sphere Unfolding Made Simple: an HTML based multisphere neutron spectrometer unfolding package

    International Nuclear Information System (INIS)

    Sweezy, Jeremy; Hertel, Nolan; Veinot, Ken

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at http://nukeisit.gatech.edu/bums

  9. NEWSPEC: A computer code to unfold neutron spectra from Bonner sphere data

    International Nuclear Information System (INIS)

    Lemley, E.C.; West, L.

    1996-01-01

    A new computer code, NEWSPEC, is in development at the University of Arkansas. The NEWSPEC code allows a user to unfold, fold, rebin, display, and manipulate neutron spectra as applied to Bonner sphere measurements. The SPUNIT unfolding algorithm, a new rebinning algorithm, and the graphical capabilities of Microsoft (MS) Windows and MS Excel are utilized to perform these operations. The computer platform for NEWSPEC is a personal computer (PC) running MS Windows 3.x or Win95, while the code is written in MS Visual Basic (VB) and MS VB for Applications (VBA) under Excel. One of the most useful attributes of the NEWSPEC software is the link to Excel allowing additional manipulation of program output or creation of program input

  10. Many channel spectrum unfolding

    International Nuclear Information System (INIS)

    Najzer, M.; Glumac, B.; Pauko, M.

    1980-01-01

    The principle of the ITER unfolding code as used for the many channel spectrum unfolding is described. Its unfolding ability is tested on seven typical neutron spectra. The effect of the initial spectrum approximation upon the solution is discussed

  11. Foil activation detectors - some remarks on the choice of detectors, the adjustment of cross-sections and the unfolding of flux spectra

    International Nuclear Information System (INIS)

    McCracken, A.K.; Packwood, A.

    1978-01-01

    Neutron spectroscopy in a favourable environment can yield without supporting calculations a wealth of spectral detail which cannot be approached by the multiple foil analysis (MFA) method. On the other hand in hostile environments only MFA methods are available and they require validation and/or improvement by exposing them to comparison with other types of measurement and definitive calculation in tightly controlled test neutron spectra. This paper considers some problems related to MFA unfolding of flux spectra, systematic and random errors in detector measurements and the choice of detectors which will be of maximum use in all environments of current interest

  12. Studying the applicability of densities mixture unfolding for heavy ion jet spectra in the ALICE experiment

    CERN Document Server

    Hackstock, Philip

    2016-01-01

    The results of a three months summer project from July 4th 2016 to September 23rd are presented in this summer student report.\\\\ The method presented in the paper\\footnote{\\url{http://www.sciencedirect.com/science/article/pii/S0168900215000406}} on densities mixture unfolding by Nikolay Gagunashvili and its software implementation were studied. A mind map flowchart, plotting macros and documentation were produced and while an 18 fold performance boost trough parallelization could be achieved, the verdict on the applicability of this method for heavy ion jet spectra in the ALICE experiment remains inconclusive. This is mainly due to a lack of time and complexity of the method and its implementation.

  13. An approach to unfold the response of a multi-element system using an artificial neural network

    International Nuclear Information System (INIS)

    Cordes, E.; Fehrenbacher, G.; Schuetz, R.; Sprunck, M.; Hahn, K.; Hofmann, R.; Wahl, W.

    1998-01-01

    An unfolding procedure is proposed which aims at obtaining spectral information of a neutron radiation field by the analysis of the response of a multi-element system consisting of converter type semiconductors. For the unfolding procedure an artificial neural network (feed forward network), trained by the back-propagation method, was used. The response functions of the single elements to neutron radiation were calculated by application of a computational model for an energy range from 10 -2 eV to 10 MeV. The training of the artificial neural network was based on the computation of responses of a six-element system for a set of 300 neutron spectra and the application of the back-propagation method. The validation was performed by the unfolding of 100 computed responses. Two unfolding examples were pointed out for the determination of the neutron spectra. The spectra resulting from the unfolding procedure agree well with the original spectra used for the response computation

  14. FERDO/FERD, Unfolding of Pulse-Height Spectrometer Spectra

    International Nuclear Information System (INIS)

    Rust, B.W.; Ingersoll, D.T.; Burrus, W.R.

    1985-01-01

    1 - Description of problem or function: FERDO and FERD are unfolding codes which can be used to correct observed pulse-height distributions for the non-ideal response of a pulse-height spectrometer or to solve poorly conditioned linear equations. 2 - Method of solution: It is assumed that the response of the spectrometer is given by Ax = b, where A is the spectrometer response function matrix, x is the unknown spectrum, and b is the pulse-height distribution. FERDO does not resolve directly for x but instead solves for p = Wx, where W is a 'window function matrix'. Typically, W is the resolution function of an ideal spectrometer which has a single Gaussian response. The effective resolution of the unfolding solution may be varied by the choice of W. Confidence intervals are found for each element of the solution p

  15. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Zavaljevski, N.

    1992-01-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (orig.)

  16. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Avdic, S.; Pesic, M.; Zavaljevski, N

    1992-09-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (author)

  17. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1985-01-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  18. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1984-12-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  19. Review of unfolding methods for neutron flux dosimetry

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.

    1975-01-01

    The primary method in reactor dosimetry is the foil activation technique. To translate the activation measurements into neutron fluxes, a special data processing technique called unfolding is needed. Some general observations about the problems and the reliability of this approach to reactor dosimetry are presented. Current unfolding methods are reviewed. 12 references. (auth)

  20. Catalogue of response spectra for unfolding in situ gamma-ray pulse-height distributions

    International Nuclear Information System (INIS)

    Dymke, N.

    1982-01-01

    To unfold in situ gamma-ray pulse-height distributions by means of a response matrix technique, the matrix must be in keeping with the measurement geometry, detector size, and energy range to be covered by the measurements. A methodology has been described for determination of standard gamma-ray spectra needed in deriving response matrices and a spectrum catalogue compiled containing graphs and data for the 0-3 MeV (4 x 4 in. NaI(Tl)) and 0-8 MeV (1.5 x 1.5 in. NaI(Tl)) ranges. (author)

  1. Characteristic Investigation of Unfolded Neutron Spectra with Different Priori Information and Gamma Radiation Interference

    International Nuclear Information System (INIS)

    Kim, Bong Hwan

    2006-01-01

    Neutron field spectrometry using multi spheres such as Bonner Spheres (BS) has been almost essential in radiation protection dosimetry for a long time at workplace in spite of poor energy resolution because it is not asking the fine energy resolution but requiring easy operation and measurement performance over a wide range of energy interested. KAERI has developed and used extended BS system based on a LiI(Eu) scintillator as the representative neutron spectrometry system for workplace monitoring as well as for the quantification of neutron calibration fields such as those recommended by ISO 8529. Major topics in using BS are how close the unfolded spectra is the real one and to minimize the interference of gamma radiation in neutron/gamma mixed fields in case of active instrument such as a BS with a LiI(Eu) scintillator. The former is related with choosing a priori information when unfolding the measured data and the latter is depend on how to discriminate it in intense gamma radiation fields. Influence of a priori information in unfolding and effect of counting loss due to pile-up of signals for the KAERI BS system were investigated analyzing the spectral measurement results of Scattered Neutron Calibration Fields (SNCF)

  2. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  3. BONDI-97 A novel neutron energy spectrum unfolding tool using a genetic algorithm

    CERN Document Server

    Mukherjee, B

    1999-01-01

    The neutron spectrum unfolding procedure using the count rate data obtained from a set of Bonner sphere neutron detectors requires the solution of the Fredholm integral equation of the first kind by using complex mathematical methods. This paper reports a new approach for the unfolding of neutron spectra using the Genetic Algorithm tool BONDI-97 (BOnner sphere Neutron DIfferentiation). The BONDI-97 was used as the input for Genetic Algorithm engine EVOLVER to search for a globally optimised solution vector from a population of randomly generated solutions. This solution vector corresponds to the unfolded neutron energy spectrum. The Genetic Algorithm engine emulates the Darwinian 'Survival of the Fittest' strategy, the key ingredient of the 'Theory of Evolution'. The spectra of sup 2 sup 4 sup 1 Am/Be (alpha,n) and sup 2 sup 3 sup 9 Pu/Be (alpha,n) neutron sources were unfolded using the BONDI-97 tool. (author)

  4. An unfolding method for high energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    2002-06-01

    Finite detector resolution and limited acceptance require one to apply unfolding methods in high energy physics experiments. Information on the detector resolution is usually given by a set of Monte Carlo events. Based on the experience with a widely used unfolding program (RUN) a modified method has been developed. The first step of the method is a maximum likelihood fit of the Monte Carlo distributions to the measured distribution in one, two or three dimensions; the finite statistics of the Monte Carlo events is taken into account by the use of Barlow's method with a new method of solution. A clustering method is used before combining bins in sparsely populated areas. In the second step a regularization is applied to the solution, which introduces only a small bias. The regularization parameter is determined from the data after a diagonalization and rotation procedure. (orig.)

  5. On unfolding counting-rate spectra of recoil-proton neutron detectors

    International Nuclear Information System (INIS)

    Yeivin, Yehuda

    1983-01-01

    This note proposes a possible scheme for unfolding recoil-proton neutron detector data, in which at first the undistorted proton source spectrum is derived. The main argument in favour of this scheme is that, compared with the conventional scheme, it necessitates somewhat weaker assumptions with respect to the unknown spectrum above the detector's upper energy cutoff, and would therefore be more reliable. We also demonstrate a simple, elementary proof of the wall effect correction for spherical detectors, and, in order to gain insight of the potential merits of the proposed unfolding scheme, illustrate our main argument by considering a hypothetic linear range-energy relation, in which case complete unfolding becomes possible with no assumptions at all on the proton spectrum above the cutoff energy. (author)

  6. JADSPE, Multi-Channel Gamma Spectra Unfolding Program

    International Nuclear Information System (INIS)

    Rikovska, J.; Stejskalova, E.

    2005-01-01

    1 - Description of program or function: JADSPE is a package of eight programs to process multi-channel gamma-ray spectra. The programs can be used to: - locate automatically spectral peaks and calculate their positions, areas, and full widths at half maximum (FWHM); - plot the spectra on a CALCOMP plotter, TEKTRONIX terminal or a line printer; - add or subtract several spectra with the possibility of adjusting either their start and end channels or the maxima of the chosen corresponding peaks. The JADSPE package comprises the following programs: - SPECTF: automatic location of peaks and calculation of their positions, areas and FWHMS. The standard deviations of peak parameters are also determined, and each evaluated region is plotted on the line printer. - SPECT1: The areas and FWHMs are calculated for peaks whose positions are known beforehand. The standard deviations of calculated parameters are also determined, and each evaluated region is plotted on the line printer. - PLOCHA: The peak net area is calculated by summing the channel contents in specified regions and by subtracting a linear background. - GRAPH: Spectrum plotting on the line printer. - PLTNEW: Spectrum plotting on CALCOMP plotter or on TEKTRONIX terminal. - SUMDIF: The channel contents of several gamma-ray spectra are added or subtracted. - SSPFP: The channel contents of several gamma-ray spectra are added with adjustment of the maxima of specified peaks. - SOUCET: The channel contents of several gamma-ray spectra are added with the adjustment of start and end channels of the spectra. 2 - Method of solution: Non-linear least-square fit. 3 - Restrictions on the complexity of the problem: The full energy peaks are approximated by a symmetrical Gaussian function and the underlying background is approximated by a first-order polynomial. A fixed spectrum length of 4096 channels is assumed. Maxima of: - number of peaks in one multiplet: 9; - number of peaks identified by the automatic search procedure

  7. Neutron spectrum unfolding using computer code SAIPS

    International Nuclear Information System (INIS)

    Karim, S.

    1999-01-01

    The main objective of this project was to study the neutron energy spectrum at rabbit station-1 in Pakistan Research Reactor (PARR-I). To do so, multiple foils activation method was used to get the saturated activities. The computer code SAIPS was used to unfold the neutron spectra from the measured reaction rates. Of the three built in codes in SAIPS, only SANDI and WINDOWS were used. Contribution of thermal part of the spectra was observed to be higher than the fast one. It was found that the WINDOWS gave smooth spectra while SANDII spectra have violet oscillations in the resonance region. The uncertainties in the WINDOWS results are higher than those of SANDII. The results show reasonable agreement with the published results. (author)

  8. Use of the foil activation method with arbitrary trial functions to determine neutron energy spectra

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-01-01

    Neutron Spectra have been measured by the foil activation method in thirteen different environments in and around the Sandia Pulsed Reactor (SPR-III), the White Sands Missile Range FBR, and the Annular Core Research Reactor (ACRR). The unfolded spectra were obtained by using the SANDII code in a manner which was not dependent on the initial trial. This altered technique is, therefore, better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial functions

  9. GRETEL, Ge(Li) Gamma Spectra Unfolding

    International Nuclear Information System (INIS)

    1975-01-01

    1 - Nature of physical problem solved: The program performs the quantitative analysis of gamma-ray spectra obtained by Ge(Li) detectors, using special libraries which are prepared for each particular problem. 2 - Method of solution: The computer routines which detect and evaluate peak areas perform the following operations: - local smoothing of the spectrum; - first derivative of the smoothed spectrum, - peak location according to the change of sign of the first derivative; - computation of the net area of each peak found

  10. The unfolding effects of transfer functions and processing of the pulse height distributions

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2010-01-01

    Full Text Available This paper deals with the improvements of the linear artificial neural network unfolding approach aimed at accurately determining the incident neutron spectrum. The effects of the transfer functions and pre-processing of the simulated pulse height distributions from liquid scintillation detectors on the artificial neural networks performance have been studied. A better energy resolution and higher reliability of the linear artificial neural network technique have been achieved after implementation of the results of this study. The optimized structure of the network was used to unfold both monoenergetic and continuous neutron energy spectra, such as the spectra of 252Cf and 241Am-Be sources, traditionally used in the nuclear safeguards experiments. We have demonstrated that the artificial neural network energy resolution of 0.1 MeV is comparable with the one obtained by the reference maximum likelihood expectation-maximization method which was implemented by using the one step late algorithm. Although the maximum likelihood algorithm provides the unfolded results of higher accuracy, especially for continuous neutron sources, the artificial neural network approach with the improved performances is more suitable for fast and robust determination of the neutron spectra with sufficient accuracy.

  11. Iterative nonlinear unfolding code: TWOGO

    International Nuclear Information System (INIS)

    Hajnal, F.

    1981-03-01

    a new iterative unfolding code, TWOGO, was developed to analyze Bonner sphere neutron measurements. The code includes two different unfolding schemes which alternate on successive iterations. The iterative process can be terminated either when the ratio of the coefficient of variations in terms of the measured and calculated responses is unity, or when the percentage difference between the measured and evaluated sphere responses is less than the average measurement error. The code was extensively tested with various known spectra and real multisphere neutron measurements which were performed inside the containments of pressurized water reactors

  12. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Vitisha [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sarkar, P.K., E-mail: pksarkar02@gmail.com [Manipal Centre for Natural Sciences, Manipal University, Manipal 576104 (India)

    2014-02-11

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra.

  13. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2014-01-01

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra

  14. Spectrum unfolding from activation measurements in a CTR-model blanket experiment

    International Nuclear Information System (INIS)

    Kuijpers, L.J.M.

    1977-07-01

    Neutron spectra in a lithium fusion reactor model blanket are determined experimentally by performing SAND II unfolding runs from measured activities. The principles of the iterative SAND II method are given and characteristics of the output are described. The spectra are calculated from available data with the aid of a Monte Carlo program, of which procedure numerical results are given. Both kinds of spectra are compared; when number of input data is varied or different cross section data sets are chosen, inconsistencies in activities or cross section data may be detected. (orig./WL) [de

  15. ZZ DOSCROS, Neutron Cross-Section Library for Spectra Unfolding and Integral Parameter Evaluation

    International Nuclear Information System (INIS)

    Zijp, Willem L.; Nolthenius, Henk J.; Rieffe, Henk Ch.

    1987-01-01

    1 - Description of problem or function: Format: SAND-II; Number of groups: 640 fine group cross section values; Nuclides: Li, B, F, Na, Mg, Al, S, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Nb, Mo, Rh, Pd, Ag, In, Sb, I, Cs, La, Eu, Sm, Dy, Lu, Ta, W, Re, Au, Th, U, Np, Pu. Origin: ENDF/B-V mainly, ENDF/B-IV, INDL/V. This library forms in combination with the DAMSIG81 library a convenient source of evaluated energy dependent cross section sets which may be used in the determination of neutron spectra by means of adjustment (or unfolding) procedures or which can be used for the determination of integral parameters (such as damage-to-activation ratio) useful in characterising the neutron spectra. The energy dependent fine group cross section data are presented in a 640 group structure of the SAND-II type. This group structure has 45 energy groups per energy decade below 1 MeV and a group width of 100 KeV above 1 MeV. The total energy span of this group structure is from 10 -10 MeV to 20 MeV. The library has the SAND-II format, which implies that a special part of the library has to contain cover cross section data sets. These cross section data sets are required in the SAND-II program for taking into account the influence of special detector surroundings which may be used during an irradiation. 2 - Method of solution: The selection of the reactions from the evaluated nuclear data libraries was determined by various properties of the reactions for neutron metrology. For this reason all the well- known reactions of the ENDF/B-V dosimetry file are included but these data are supplemented with cross section sets for less well known metrology reactions which may become of interest

  16. A linear iterative unfolding method

    International Nuclear Information System (INIS)

    László, András

    2012-01-01

    A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing, due to the well-known numerical ill behavior of this task. Various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the unfolding problem. Most of these methods definitely introduce bias into the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration, which can be used to choose the best compromise between the introduced bias and the propagated statistical and systematic errors. The method is consistent: 'binwise' convergence to the initial probability distribution is proved in absence of measurement errors under a quite general condition on the response function. This condition holds for practical applications such as convolutions, calorimeter response functions, momentum reconstruction response functions based on tracking in magnetic field etc. In presence of measurement errors, explicit formulae for the propagation of the three important error terms is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a finite iteration order), statistical error, and systematic error. A trade-off between these three error terms can be used to define an optimal iteration stopping criterion, and the errors can be estimated there. We provide a numerical C library for the implementation of the method, which incorporates automatic

  17. Spectrum unfolding by the least-squares methods

    International Nuclear Information System (INIS)

    Perey, F.G.

    1977-01-01

    The method of least squares is briefly reviewed, and the conditions under which it may be used are stated. From this analysis, a least-squares approach to the solution of the dosimetry neutron spectrum unfolding problem is introduced. The mathematical solution to this least-squares problem is derived from the general solution. The existence of this solution is analyzed in some detail. A chi 2 -test is derived for the consistency of the input data which does not require the solution to be obtained first. The fact that the problem is technically nonlinear, but should be treated in general as a linear one, is argued. Therefore, the solution should not be obtained by iteration. Two interpretations are made for the solution of the code STAY'SL, which solves this least-squares problem. The relationship of the solution to this least-squares problem to those obtained currently by other methods of solving the dosimetry neutron spectrum unfolding problem is extensively discussed. It is shown that the least-squares method does not require more input information than would be needed by current methods in order to estimate the uncertainties in their solutions. From this discussion it is concluded that the proposed least-squares method does provide the best complete solution, with uncertainties, to the problem as it is understood now. Finally, some implications of this method are mentioned regarding future work required in order to exploit its potential fully

  18. Genetic algorithms - A new technique for solving the neutron spectrum unfolding problem

    International Nuclear Information System (INIS)

    Freeman, David W.; Edwards, D. Ray; Bolon, Albert E.

    1999-01-01

    A new technique utilizing genetic algorithms has been applied to the Bonner sphere neutron spectrum unfolding problem. Genetic algorithms are part of a relatively new field of 'evolutionary' solution techniques that mimic living systems with computer-simulated 'chromosome' solutions. Solutions mate and mutate to create better solutions. Several benchmark problems, considered representative of radiation protection environments, have been evaluated using the newly developed UMRGA code which implements the genetic algorithm unfolding technique. The results are compared with results from other well-established unfolding codes. The genetic algorithm technique works remarkably well and produces solutions with relatively high spectral qualities. UMRGA appears to be a superior technique in the absence of a priori data - it does not rely on 'lucky' guesses of input spectra. Calculated personnel doses associated with the unfolded spectra match benchmark values within a few percent

  19. Verification of unfold error estimates in the unfold operator code

    International Nuclear Information System (INIS)

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. copyright 1997 American Institute of Physics

  20. Unfolding and smoothing applied to the quality enhancement of neutron tomographic images

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Silvani, Maria I.; Lopes, Ricardo T.

    2008-01-01

    Resolution and contrast are the major parameters defining the quality of a computer-aided tomographic image. These parameters depend upon several features of the image acquisition system, such as detector resolution, geometrical arrangement of the source-object-detector, beam divergence, source strength, detector efficiency and counting time. Roughly, the detector finite resolution is the main source of systematic errors affecting the separation power of the image acquisition system, while the electronic noise and statistical fluctuation are responsible for the data dispersion, which spoils the contrast. An algorithm has been developed in this work aiming at the improvement of the image quality through the minimization of both types of errors. The systematic ones are reduced by a mathematical unfolding of the position spectra - used as projections to reconstruct the 2D-images - using the Line Spread Function - LSF of the neutron tomographic system. The principle behind this technique is that every single channel contains information about all channels of the spectrum, but it is concealed due to the automatic integration carried out by the detector. Therefore, knowing the shape of this curve, it is possible to retrieve the original spectra. These spectra are unfortunately corrupted by the unavoidable statistical fluctuation, and by oscillations arising from the unfolding process, which strongly affects the quality of the final unfolded image. In order to reduce this impact, the spectra have been filtered by a Fourier transform technique or smoothed with a least square fitting procedure. The algorithm has been applied to spectra of some test-bodies generated by an earlier developed tomographic simulator, which reproduces the spectra furnished by a thermal neutron tomographic system employing a position sensitive detector. The obtained results have shown that the unfolded spectra produce final images capable to resolve features otherwise not achievable with the

  1. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  2. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-01-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤ 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum

  3. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time endash history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. copyright 1997 American Institute of Physics

  4. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    Directory of Open Access Journals (Sweden)

    D. L. Fehl

    2010-12-01

    Full Text Available An algorithm for spectral reconstructions (unfolds and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA, and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction S_{unfold}(E,t—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300  eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux F_{unfold} is estimated as ∫S_{unfold}(E,tdE. (b Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra S_{bb}(E,T (25≤T≤250  eV, from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250  eV and typical responses, the binwise unfold values S_{j} and the corresponding binwise averages ⟨S_{bb}⟩_{j} agreed to ∼20%, except where S_{bb}≪max⁡{S_{bb}}. Occasionally, unfold values S_{j}≲0 (artifacts were encountered. The algorithm recovered ≳90% of the x

  5. Method for improving the gamma-transition cascade spectra amplitude resolution during coincidence code computerized processing

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1984-01-01

    A method of unfolding the differential γ-cascade spectra during radiation capture of slow neutrons based on the computeri-- zed processing of the results of measurements performed, by means of a spectrometer with two Ge(Li) detectors is suggested. The efficiency of the method is illustrated using as an example the spectrum of 35 Cl(n, γ) reaction corresponding to the 8580 keV peak. It is shown that the above approach permits to improve the resolution by 1.2-2.6 times without decrease in registration efficiency within the framework of the method of coincidence pulse amplitude summation

  6. Protein unfolding with a steric trap.

    Science.gov (United States)

    Blois, Tracy M; Hong, Heedeok; Kim, Tae H; Bowie, James U

    2009-10-07

    The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.

  7. Spectrum unfolding in X-ray spectrometry using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernandez, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2014-01-01

    The solution of the unfolding problem is an ever-present issue in X-ray spectrometry. The maximum entropy technique solves this problem by taking advantage of some known a priori physical information and by ensuring an outcome with only positive values. This method is implemented in MAXED (MAXimum Entropy Deconvolution), a software code contained in the package UMG (Unfolding with MAXED and GRAVEL) developed at PTB and distributed by NEA Data Bank. This package contains also the code GRAVEL (used to estimate the precision of the solution). This article introduces the new code UMESTRAT (Unfolding Maximum Entropy STRATegy) which applies a semi-automatic strategy to solve the unfolding problem by using a suitable combination of MAXED and GRAVEL for applications in X-ray spectrometry. Some examples of the use of UMESTRAT are shown, demonstrating its capability to remove detector artifacts from the measured spectrum consistently with the model used for the detector response function (DRF). - Highlights: ► A new strategy to solve the unfolding problem in X-ray spectrometry is presented. ► The presented strategy uses a suitable combination of the codes MAXED and GRAVEL. ► The applied strategy provides additional information on the Detector Response Function. ► The code UMESTRAT is developed to apply this new strategy in a semi-automatic mode

  8. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  9. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were

  10. A novel neutron energy spectrum unfolding code using particle swarm optimization

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-01-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code. - Highlights: • Introducing a novel method for neutron spectrum unfolding. • Implementation of a particle swarm optimization code for neutron unfolding. • Comparing results of the PSO code with those of recently published TGASU code. • Match results of the PSO code with those of TGASU code. • Greater convergence rate of implemented PSO code than TGASU code.

  11. Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED

    CERN Document Server

    Reginatto, M; Neumann, S

    2002-01-01

    MAXED was developed to apply the maximum entropy principle to the unfolding of neutron spectrometric measurements. The approach followed in MAXED has several features that make it attractive: it permits inclusion of a priori information in a well-defined and mathematically consistent way, the algorithm used to derive the solution spectrum is not ad hoc (it can be justified on the basis of arguments that originate in information theory), and the solution spectrum is a non-negative function that can be written in closed form. This last feature permits the use of standard methods for the sensitivity analysis and propagation of uncertainties of MAXED solution spectra. We illustrate its use with unfoldings of NE 213 scintillation detector measurements of photon calibration spectra, and of multisphere neutron spectrometer measurements of cosmic-ray induced neutrons at high altitude (approx 20 km) in the atmosphere.

  12. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. II. Error analysis and generalization

    Directory of Open Access Journals (Sweden)

    D. L. Fehl

    2010-12-01

    Full Text Available A five-channel, filtered-x-ray-detector (XRD array has been used to measure time-dependent, soft-x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA. The preceding, companion paper [D. L. Fehl et al., Phys. Rev. ST Accel. Beams 13, 120402 (2010PRABFM1098-4402] describes an algorithm for spectral reconstructions (unfolds and spectrally integrated flux estimates from data obtained by this instrument. The unfolded spectrum S_{unfold}(E,t is based on (N=5 first-order B-splines (histograms in contiguous unfold bins j=1,…,N; the recovered x-ray flux F_{unfold}(t is estimated as ∫S_{unfold}(E,tdE, where E is x-ray energy and t is time. This paper adds two major improvements to the preceding unfold analysis: (a Error analysis.—Both data noise and response-function uncertainties are propagated into S_{unfold}(E,t and F_{unfold}(t. Noise factors ν are derived from simulations to quantify algorithm-induced changes in the noise-to-signal ratio (NSR for S_{unfold} in each unfold bin j and for F_{unfold} (ν≡NSR_{output}/NSR_{input}: for S_{unfold}, 1≲ν_{j}≲30, an outcome that is strongly spectrally dependent; for F_{unfold}, 0.6≲ν_{F}≲1, a result that is less spectrally sensitive and corroborated independently. For nominal z-pinch experiments, the combined uncertainty (noise and calibrations in F_{unfold}(t at peak is estimated to be ∼15%. (b Generalization of the unfold method.—Spectral sensitivities (called here passband functions are constructed for S_{unfold} and F_{unfold}. Predicting how the unfold algorithm reconstructs arbitrary spectra is thereby reduced to quadratures. These tools allow one to understand and quantitatively predict algorithmic distortions (including negative artifacts, to identify potentially troublesome spectra, and to design more useful response functions.

  13. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    Science.gov (United States)

    Fehl, D. L.; Chandler, G. A.; Stygar, W. A.; Olson, R. E.; Ruiz, C. L.; Hohlfelder, J. J.; Mix, L. P.; Biggs, F.; Berninger, M.; Frederickson, P. O.; Frederickson, R.

    2010-12-01

    An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a) Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction Sunfold(E,t)—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux Funfold is estimated as ∫Sunfold(E,t)dE. (b) Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra Sbb(E,T) (25≤T≤250eV), from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250eV and typical responses, the binwise unfold values Sj and the corresponding binwise averages ⟨Sbb⟩j agreed to ˜20%, except where Sbb≪max⁡{Sbb}. Occasionally, unfold values Sj≲0 (artifacts) were encountered. The algorithm recovered ≳90% of the x-ray flux over the wider range, 75≤T≤250eV. For lower T, the

  14. Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2015-01-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-...

  15. Influence of the initial guess spectrum in the unfolding of Bss data obtained inside a bunker of a PET cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Benavente C, J. A.; Lacerda, M. A. S.; Guimaraes, A. M.; Da Silva, T. A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2015-10-15

    In a cyclotron facility is strongly advised the use of spectrometry techniques to support workplace neutron dosimetry. Bonner sphere spectrometer (Bss) is the most used for radiation protection applications. Bss data must be unfolded to determine the spectral particle fluence. Some computer codes have been utilized for this purpose. These codes allow unfolding the spectrum from the Bss count rates through different algorithms. Some iterative routines need an initial guess spectrum to start the unfolding. The adequate choice of this initial spectrum is a critical part of the process and can affect the final solution. In this work, we evaluate the influence of the initial guess spectrum in the unfolding of Bss data obtained in four points inside the bunker of a PET cyclotron. The measurements were done utilizing a modified Bss system with thermoluminescent detectors (TLDs). Codes BUNKIUT and NSDUAZ were utilized to unfold the Bss data. For the NSDUAZ the starting spectrum is automatically obtained from a library initial guess spectra. For the BUNKIUT code were utilized two different initial guess spectra: (a) a Maxwellian spectrum with temperature of 1.4 MeV and shape factor of 0.1, created with the MAXIET algorithm and; (b) the spectra obtained through simulation with the MCNPX code version 2.7. Spectra obtained with both unfold codes and with the different initial guess spectra presented epithermal and thermal neutrons due to room-return effects. However, the contribution of the fast neutron to the total fluence were quite different for the different cases studied. These differences highlight the importance of an appropriate choice of an initial guess spectra for the quality of the results. (Author)

  16. Influence of the initial guess spectrum in the unfolding of Bss data obtained inside a bunker of a PET cyclotron

    International Nuclear Information System (INIS)

    Benavente C, J. A.; Lacerda, M. A. S.; Guimaraes, A. M.; Da Silva, T. A.; Vega C, H. R.

    2015-10-01

    In a cyclotron facility is strongly advised the use of spectrometry techniques to support workplace neutron dosimetry. Bonner sphere spectrometer (Bss) is the most used for radiation protection applications. Bss data must be unfolded to determine the spectral particle fluence. Some computer codes have been utilized for this purpose. These codes allow unfolding the spectrum from the Bss count rates through different algorithms. Some iterative routines need an initial guess spectrum to start the unfolding. The adequate choice of this initial spectrum is a critical part of the process and can affect the final solution. In this work, we evaluate the influence of the initial guess spectrum in the unfolding of Bss data obtained in four points inside the bunker of a PET cyclotron. The measurements were done utilizing a modified Bss system with thermoluminescent detectors (TLDs). Codes BUNKIUT and NSDUAZ were utilized to unfold the Bss data. For the NSDUAZ the starting spectrum is automatically obtained from a library initial guess spectra. For the BUNKIUT code were utilized two different initial guess spectra: (a) a Maxwellian spectrum with temperature of 1.4 MeV and shape factor of 0.1, created with the MAXIET algorithm and; (b) the spectra obtained through simulation with the MCNPX code version 2.7. Spectra obtained with both unfold codes and with the different initial guess spectra presented epithermal and thermal neutrons due to room-return effects. However, the contribution of the fast neutron to the total fluence were quite different for the different cases studied. These differences highlight the importance of an appropriate choice of an initial guess spectra for the quality of the results. (Author)

  17. RICKI, Interactive Gamma Spectra Unfolding with Isotope Identification

    International Nuclear Information System (INIS)

    Proctor, A.E.

    1990-01-01

    1 - Description of program or function: RICKI is an interactive program for analysis of gamma spectra containing one or more peaks with possible multiplets. Algorithms are incorporated for peak fitting, analysis, and nuclide identification. Comprehensive output keeps the user informed of the analysis as it proceeds and presents the results. User-selectable options for plotting and neutron activation analysis are available to control this analysis. RICKI was developed to analyze spectra from examinations of severe fuel damage specimens. Two features included to streamline the analysis of Three Mile Island (TMI) core bore data are the edit of averaged activities and the output file created for generating a spreadsheet. Activity editing allows the user to select which gamma lines are used for a specific nuclide in average activity calculations. Contributions from peak areas which result from overlapping lines of two or more nuclides may be removed. For each averaged activity an edited activity file record is written containing the nuclide name, averaged activity, activity standard deviation, scan start position, and scan end position. 2 - Method of solution: The peak search algorithm utilizes an optimized second derivative filter for efficient and reliable determination of peak location. A linear Gaussian fitting technique, which is a modified version of Mukoyama's linear least squares fitting method in which the centroid, sigma, and peak height are free parameters, is used to calculate peak areas. An estimated background is computed for each peak using Gunnink's method. Nuclide activities are computed by matching centroids with nuclide library entries and averaging the activity calculated for each matching peak. 3 - Restrictions on the complexity of the problem - Maxima of: 500 gamma library entries, 80 peaks/spectrum

  18. Simulation study on unfolding methods for diagnostic X-rays and mixed gamma rays

    International Nuclear Information System (INIS)

    Hashimoto, Makoto; Ohtaka, Masahiko; Ara, Kuniaki; Kanno, Ikuo; Imamura, Ryo; Mikami, Kenta; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    A photon detector operating in current mode that can sense X-ray energy distribution has been reported. This detector consists of a row of several segment detectors. The energy distribution is derived using an unfolding technique. In this paper, comparisons of the unfolding techniques among error reduction, spectrum surveillance, and neural network methods are discussed through simulation studies on the detection of diagnostic X-rays and gamma rays emitted by a mixture of 137 Cs and 60 Co. For diagnostic X-ray measurement, the spectrum surveillance and neural network methods appeared promising, while the error reduction method yielded poor results. However, in the case of measuring mixtures of gamma rays, the error reduction method was both sufficient and effective. (author)

  19. Unfolding study of a trimeric membrane protein AcrB.

    Science.gov (United States)

    Ye, Cui; Wang, Zhaoshuai; Lu, Wei; Wei, Yinan

    2014-07-01

    The folding of a multi-domain trimeric α-helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two-state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter-subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate-limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop , from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re-association of the trimer might be the limiting factor to obtain folded wild-type AcrB. © 2014 The Protein Society.

  20. Benchmark of the non-parametric Bayesian deconvolution method implemented in the SINBAD code for X/γ rays spectra processing

    Energy Technology Data Exchange (ETDEWEB)

    Rohée, E. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Coulon, R., E-mail: romain.coulon@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire de Modélisation et Simulation des Systèmes, F-91191 Gif-sur-Yvette (France); Normand, S. [CEA, DAM, Le Ponant, DPN/STXN, F-75015 Paris (France); Jammes, C. [CEA, DEN, Cadarache, DER/SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-11

    Radionuclide identification and quantification are a serious concern for many applications as for in situ monitoring at nuclear facilities, laboratory analysis, special nuclear materials detection, environmental monitoring, and waste measurements. High resolution gamma-ray spectrometry based on high purity germanium diode detectors is the best solution available for isotopic identification. Over the last decades, methods have been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when full energy peaks are folded together with high ratio between their amplitudes, and when the Compton background is much larger compared to the signal of a single peak. In this context, this study deals with the comparison between a conventional analysis based on “iterative peak fitting deconvolution” method and a “nonparametric Bayesian deconvolution” approach developed by the CEA LIST and implemented into the SINBAD code. The iterative peak fit deconvolution is used in this study as a reference method largely validated by industrial standards to unfold complex spectra from HPGe detectors. Complex cases of spectra are studied from IAEA benchmark protocol tests and with measured spectra. The SINBAD code shows promising deconvolution capabilities compared to the conventional method without any expert parameter fine tuning.

  1. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.

    Science.gov (United States)

    Li, Xianchan; Zheng, Wei; Zhang, Limin; Yu, Ping; Lin, Yuqing; Su, Lei; Mao, Lanqun

    2009-10-15

    This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.

  2. Development of unfolding method to obtain pin-wise source strength distribution from PWR spent fuel assembly measurement

    International Nuclear Information System (INIS)

    Sitompul, Yos Panagaman; Shin, Hee-Sung; Park, Se-Hwan; Oh, Jong Myeong; Seo, Hee; Kim, Ho Dong

    2013-01-01

    An unfolding method has been developed to obtain a pin-wise source strength distribution of a 14 × 14 pressurized water reactor (PWR) spent fuel assembly. Sixteen measured gamma dose rates at 16 control rod guide tubes of an assembly are unfolded to 179 pin-wise source strengths of the assembly. The method calculates and optimizes five coefficients of the quadratic fitting function for X-Y source strength distribution, iteratively. The pin-wise source strengths are obtained at the sixth iteration, with a maximum difference between two sequential iterations of about 0.2%. The relative distribution of pin-wise source strength from the unfolding is checked using a comparison with the design code (Westinghouse APA code). The result shows that the relative distribution from the unfolding and design code is consistent within a 5% difference. The absolute value of the pin-wise source strength is also checked by reproducing the dose rates at the measurement points. The result shows that the pin-wise source strengths from the unfolding reproduce the dose rates within a 2% difference. (author)

  3. Evaluation of spectral unfolding techniques for neutron spectroscopy

    International Nuclear Information System (INIS)

    Sunden, Erik Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Tardocchi, M.

    2008-01-01

    The precision of the JET installations of MAXED, GRAVEL and the L-curve version of MAXED has been evaluated by using synthetic neutron spectra. We have determined the number of counts needed for the detector systems NE213 and MPR to get an error below 10% of the MAXED unfolded neutron spectra is determined to be ∼10 6 and ∼10 4 , respectively. For GRAVEL the same number is ∼10 7 and ∼3·10 4 for NE213 and MPR, respectively

  4. UMG 3.3, Analysis of data measured with spectrometers using unfolding techniques

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Wiegel, Burkhard; Zimbal, Andreas; Langner, Frank

    2004-01-01

    1 - Description of program or function: UMG (Unfolding with MAXED and GRAVEL) is a package of seven programs written for the analysis of data measured with spectrometers that require the use of unfolding techniques. The program MAXED applies the maximum entropy principle to the unfolding problem, and the program GRAVEL uses a modified SAND-II algorithm to do the unfolding. There are two versions of each: MXD F C33 and GRV F C33 for 'few-channel' unfolding (e.g., Bonner sphere spectrometers) and MXD M C33 and GRV M C33 for 'multi-channel' unfolding (e.g., NE-213). The program IQU can be used to calculate integral quantities for both MAXED and GRAVEL solution spectra and, in the case of MAXED solutions, it can also be used to calculate the uncertainty in these values as well as the uncertainty in the solution spectrum. The uncertainty calculation is handled in the following way: given a solution spectrum generated by MAXED, the program IQU considers variations in the measured data and in the default spectrum and uses standard Methods to do sensitivity analysis and uncertainty propagation. There are two versions: IQU F C33 for 'few-channel' unfolding and IQU M C33 for 'multi-channel' unfolding. The program UMGPlot can be used to display the results from the unfolding programs MAXED and GRAVEL in graphical form in a quick and easy way. 2 - Methods: MAXED is based on the maximum entropy principle. The solution to the unfolding problem is obtained by maximisation of the relative entropy (used here in the form due to Skilling, which is a generalisation of the usual expression to distributions that are not necessarily normalized) subject to constraints imposed by the measurements. This approach permits the inclusion of prior information in a well-defined and mathematically consistent way, and it leads to a solution spectrum that is a non-negative function which can be written in closed form. This last feature permits the use of standard Methods for sensitivity analysis and

  5. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2016-01-01

    In ATLAS, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  6. Neutron spectrum unfolding using neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2004-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  7. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407321; The ATLAS collaboration

    2016-01-01

    In the ATLAS experiment, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  8. A method for interpolating asymmetric peak shapes in multiplet γ-ray spectra

    International Nuclear Information System (INIS)

    Wang Siguang; Mao Yajun; Zhu Bo; Liang Yutie; Tang Peijia

    2009-01-01

    The peak shapes of γ-rays at various energies must be known before unfolding the multiplet spectra obtained by using semiconductor or scintillation detectors. Traditional methods describe isolated peaks with multi-parameter fitting functions, and assume that most of these parameters do not vary with energy because it is rare to find a spectrum with enough isolated peaks to constrain their dependence. We present an algorithm for interpolating the γ-ray profile at any intermediate energy given a pair of isolated γ-ray peaks from the spectrum under consideration. The algorithm is tested on experimental data and leads to a good agreement between the interpolated profile and the fitting function. This method is more accurate than the traditional approach, since all aspects of the peak shape are allowed to vary with energy. New definitions of Left-Half Width at Half Maximum, and Right-Half Width at Half Maximum for peak shape description are introduced in this paper. (authors)

  9. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  10. Moessbauer spectroscopic evidence on the heme binding to the proximal histidine in unfolded carbonmonoxy myoglobin by guanidine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan, E-mail: harami.taikan@jaea.go.jp [Japan Atomic Energy Agency (Japan); Kitao, Shinji; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Mitsui, Takaya [Japan Atomic Energy Agency (Japan)

    2008-01-15

    The unfolded heme structure in myoglobin is controversial because of no chance of direct X-ray structure analyses. The unfolding of carbonmonoxy myoglobin (MbCO) by guanidine hydrochloride (GdnHCl) was studied by the Moessbauer spectroscopy. The spectra show the presence of a sort of spectrum in the unfolded MbCO, independent on the concentration of GdnHCl from 1 to 6 M and the increase of the fraction of unfolded MbCO, depending on the GdnHCl concentration. The isomer shift of the iron of heme in the unfolded MbCO was identified to be different from that of the native MbCO as the globin structure in Mb collapses under the unfolded conditions. This result and the existing related Moessbauer data proved that the heme in the unfolded MbCO may remain coordinated to the proximal histidine.

  11. The covariance matrix of neutron spectra used in the REAL 84 exercise

    International Nuclear Information System (INIS)

    Matzke, M.

    1986-08-01

    Covariance matrices of continuous functions are discussed. It is pointed out that the number of non-vanishing eigenvalues corresponds to the number of random variables (parameters) involved in the construction of the continuous functions. The covariance matrices used in the REAL 84 international intercomparison of unfolding methods of neutron spectra are investigated. It is shown that a small rank of these covariance matrices leads to a restriction of the possible solution spectra. (orig.) [de

  12. Applied multidimensional scaling and unfolding

    CERN Document Server

    Borg, Ingwer; Mair, Patrick

    2018-01-01

    This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfoldin...

  13. Defining a methodology for benchmarking spectrum unfolding codes

    International Nuclear Information System (INIS)

    Meyer, W.; Kirmser, P.G.; Miller, W.H.; Hu, K.K.

    1976-01-01

    It has long been recognized that different neutron spectrum unfolding codes will produce significantly different results when unfolding the same measured data. In reviewing the results of such analyses it has been difficult to determine which result if any is the best representation of what was measured by the spectrometer detector. A proposal to develop a benchmarking procedure for spectrum unfolding codes is presented. The objective of the procedure will be to begin to develop a methodology and a set of data with a well established and documented result that could be used to benchmark and standardize the various unfolding methods and codes. It is further recognized that development of such a benchmark must involve a consensus of the technical community interested in neutron spectrum unfolding

  14. History, rare, and multiple events of mechanical unfolding of repeat proteins

    Science.gov (United States)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  15. Attempt to separate the fluorescence spectra of adrenaline and noradrenaline using chemometrics

    DEFF Research Database (Denmark)

    Nikolajsen, Rikke P; Hansen, Åse Marie; Bro, R

    2000-01-01

    An investigation was conducted on whether the fluorescence spectra of the very similar catecholamines adrenaline and noradrenaline could be separated using chemometric methods. The fluorescence landscapes (several excitation and emission spectra were measured) of two data sets with respectively 16...... regression (Unfold-PLSR) on the larger data set and parallel factor analysis (PARAFAC) of the six samples of the smaller set showed that there was no difference between the fluorescence landscapes of adrenaline and noradrenaline. It can be concluded that chemometric separation of adrenaline and noradrenaline...

  16. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  17. Unfolding Participation

    DEFF Research Database (Denmark)

    Saad-Sulonen, Joanna; Halskov, Kim; Eriksson, Eva

    2015-01-01

    The aim of the Unfolding Participation workshop is to outline an agenda for the next 10 years of participatory design (PD) and participatory human computer interaction (HCI) research. We will do that through a double strategy: 1) by critically interrogating the concept of participation (unfolding...... the concept itself), while at the same time, 2) reflecting on the way that participation unfolds across different participatory configurations. We invite researchers and practitioners from PD and HCI and fields in which information technology mediated participation is embedded (e.g. in political studies......, urban planning, participatory arts, business, science and technology studies) to bring a plurality of perspectives and expertise related to participation....

  18. Acceptable solutions obtained by unfolding noisy data with a conjugate gradient technique

    International Nuclear Information System (INIS)

    Lang, D.W.

    1976-01-01

    A linear resolution function in a physical measurement leads to data values and standard deviations at, say, N points. It is noted that the associated resolution functions may require that a number n of particular linear combinations of the data values be each not significantly different from zero. One is left with at most N-n parameters to evaluate. If the resolution functions are reasonably behaved, one can show that one sensible way to describe the underlying spectrum treats it as a linear combination of the given resolution functions and includes all the significant information from the data. An iterative search for the best component available to minimize the chi-square of the next fit to the data leads to a conjugate gradient technique. Programs based on the technique have been successfully used to obtain neutron spectra as a function of energy; in raw data from a pulse height analysis of proton recoils in a proportional counter, and where the raw data are time of flight spectra from a time dependent pulse of known form. It is planned to incorporate these, together with working programs respectively for photonuclear analysis and to explore the impurity concentration profile in a surface, into a single ''work-bench'' type program. A suitably difficult model unfolding problem has been developed and used to show the strengths and weaknesses of a number of other methods that have been used for unfolding

  19. Accuracy of unfolded map method for determining the left ventricular border. Evaluation of the cut-off value from autopsy finding

    International Nuclear Information System (INIS)

    Sugibayashi, Keiichi; Abe, Yoshiteru; Suga, Yutaka

    1996-01-01

    To improve the quantification of the left ventricular surface area (LVSA) by unfolded map method, we evaluated the cut-off value for determining the left ventricular border. The LVSA measured by unfolded map was compared with those measured using myocardial phantom and autopsy findings. The relative error (RE) was calculated as difference between LVSA in phantom and area of unfolded map. In phantom study, the cut-off value was calculated as 73.3±0.5% when the RE was zero. In autopsy study, the cut-off value was 74.0±7.2%. The area of unfolded map had good correlation with LVSA at autopsy when the cut-off value was 74% (r=0.83, p<0.003). The diameter of left ventricle at autopsy was compared with that of beating heart obtained by two-dimensional echocardiography, because the area of unfolded map was greater than LVSA at autopsy. The ratio of LVSA at autopsy to beating heart was calculated as 1.37. The suitable cut-off value was evaluated as 55.6% when the unfolded map area obtained by autopsy was increased 1.37 magnifications. There was a good correlation between LVSA of unfolded map (cut-off=56%) and the LVSA at autopsy (r=0.90, p<0.001). These results suggest that the cut-off value for determining the left ventricular border in vivo is 56%. (author)

  20. SAMPO80, Ge(Li) Detector Gamma Spectra Unfolding with Isotope Identification

    International Nuclear Information System (INIS)

    Koskelo, M.J.; Aarnio, P.A.; Routti, J.T.

    1998-01-01

    1 - Description of problem or function: Analysis of gamma spectra measured with Ge(Li) or HPGe detectors. 2 - Method of solution: - Shape calibration using a non-linear least squares algorithm with a variable metric method. - Peak location with a smoothed second difference method. - Peak area calculation with a linear least squares fit to predefined peak shapes. - Nuclide identification with a linear least squares fit based on associated lines. 3 - Restrictions on the complexity of the problem: Number of shape calibration points allowed: 20; Number of energy calibration points allowed: 20; Number of efficiency calibration points allowed: 20; Maximum number of found peaks: 100; Maximum number of fitted peaks: 100; Maximum number of peaks in a multiplet: 5; Maximum number of channels in a fitting interval: 50; Maximum number of peaks for nuclide identification: 80; Maximum number of identified nuclides: 30; Maximum number of lines per nuclide: 30

  1. Characteristics of SiC neutron sensor spectrum unfolding process based on Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Cetnar, Jerzy; Krolikowski, Igor [Faculty of Energy and Fuels AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Ottaviani, L. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    This paper deals with SiC detector signal interpretation in neutron radiation measurements in mixed neutron gamma radiation fields, which is called the detector inverse problem or the spectrum unfolding, and it aims in finding a representation of the primary radiation, based on the measured detector signals. In our novel methodology we resort to Bayesian inference approach. In the developed procedure the resultant spectra is unfolded form detector channels reading, where the estimated neutron fluence in a group structure is obtained with its statistical characteristic comprising of standard deviation and correlation matrix. In the paper we present results of unfolding process for case of D-T neutron source in neutron moderating environment. Discussions of statistical properties of obtained results are presented as well as of the physical meaning of obtained correlation matrix of estimated group fluence. The presented works has been carried out within the I-SMART project, which is part of the KIC InnoEnergy R and D program. (authors)

  2. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    Science.gov (United States)

    Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.

    2016-08-01

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.

  3. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  4. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  5. Enthalpy-entropy compensation in protein unfolding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Enthalpy-entropy compensation was found to be a universal law in protein unfolding based on over 3 000 experimental data. Water molecular reorganization accompanying the protein unfolding was suggested as the origin of the enthalpy-entropy compensation in protein unfolding. It is indicated that the enthalpy-entropy compensation constitutes the physical foundation that satisfies the biological need of the small free energy changes in protein unfolding, without the sacrifice of the bio-diversity of proteins. The enthalpy-entropy compensation theory proposed herein also provides valuable insights into the Privalov's puzzle of enthalpy and entropy convergence in protein unfolding.

  6. Analysis of the experimental positron lifetime spectra by neural networks

    International Nuclear Information System (INIS)

    Avdic, S.; Chakarova, R.; Pazsit, I.

    2003-01-01

    This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pazsit et al., Applied Surface Science, 149 (1998), 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposition of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved. (author)

  7. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  8. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  9. Determination of neutron spectra using the programs GNSR and SPECTRIX

    International Nuclear Information System (INIS)

    Weyrauch, M.; Dietz, E.; Matzke, M.

    2002-01-01

    We describe the capabilities and the application of two computer programs, which have been developed in order to facilitate common tasks in neutron spectrometry: GNSR (calculation of response matrices) and SPECTRIX (unfolding). Gas-filled Neutron Spectrometer Response calculates response functions and response matrices of various gas-filled neutron detectors. It can be configured to accommodate the appropriate gas-fillings and supports a number of different neutron beam configurations with a possibility to input calculated or measured neutron beam spectra. The program includes graphical capabilities as well as a context-sensitive help system. SPECTRIX implements several unfolding algorithms as well as support algorithms for unfolding and includes graphics capabilities and context-sensitive help. We apply both programs to a specific example: calculation of the response matrix of a 3 He detector and unfolding of the neutron spectrum of a thick accelerator target using the calculated response matrix

  10. Quantitative assessment of the infarct size with the unfolded map method of sup 201 Tl myocardial SPECT in patient with acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Masahiro (Sapporo Medical Coll. (Japan))

    1992-03-01

    The unfolded map method of {sup 201}Tl single photon emission computed tomography (SPECT) was evaluated as to the ability to quantify and the clinical reliability in estimation of infarct size. The following results were obtained from basic experiments using a thoracic phantom. The defect area estimated by the unfolded map method was well correlated with the real defect area, in spite of overestimation of the defect area, when the defect area was determined by an isocount method (below 80% of maximum count) (y=1.941 + 2.292x, r=0.971). The defect volume estimated by short-axis images of {sup 201}Tl SPECT was closely correlated with real defect volume in spite of overestimation of defect volume (y=0.762 + 2.156x, r=0.982). When the defect area was estimated by division of the defect volume by the mean myocardial compartment thickness, it was closely correlated with real defect area (y=0.946 + 1.232x, r=0.990). When the volume was calculated from the summation of voxels in the regions districted by isocount threshold level at each section of the {sup 99m}Tc SPECT, the optimal isocount threshold level (percentage to maximum count) was 55%. Then, the clinical reliability of the unfolded map method as infarct sizing was evaluated in 26 patients with acute myocardial infarction by comparing it with enzymatic method, Bull's eye method, and {sup 99m}Tc pyrophosphate (PYP) SPECT method. In 14 first attack patients without right ventricular infarction, infarct area (IA) of the unfolded map method correlated most closely with the accumulated creatine kinase MB isoenzyme release (CK-MBr) (r=0.897), compared with the extent score (ES) (r=0.853) and the severity score (SS) (r=0.871) of Bull's eye method and the infarct volume (IV) (r=0.595) of {sup 99m}Tc PYP SPECT. In conclusion, although the unfolded map method of {sup 201}Tl SPECT has the tendency for overestimating infarct size, it is accurate and clinically reliable in estimating infarct size. (author).

  11. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

    Science.gov (United States)

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S

    2017-05-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

  12. Development of the unfolding procedures in fast neutron scintillation spectrometry; Razvoj unfolding procedura u scintilacionoj spektrometriji brzih neutrona

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, P [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1988-07-01

    Two unfolding procedures have been developed for obtaining fast neutron spectrum from proton-recoil spectrum assigned for spectrometry with organic scintillators. First is the method of differentiation of proton-recoil spectrum, and the second is the method based on solution of integral equation of Fredholm of first kind. (author)

  13. A statistical approach to the estimation of mechanical unfolding parameters from the unfolding patterns of protein heteropolymers

    International Nuclear Information System (INIS)

    Beddard, G S; Brockwell, D J

    2010-01-01

    A statistical calculation is described with which the saw-tooth-like unfolding patterns of concatenated heteropolymeric proteins can be used to estimate the forced unfolding parameters of a previously uncharacterized protein. The chance of observing the various sequences of unfolding events, such as ABAABBB or BBAAABB etc, for two proteins of types A and B is calculated using proteins with various ratios of A and B and at different values of effective unfolding rate constants. If the experimental rate constant for forced unfolding, k 0 , and distance to the transition state x u are known for one protein, then the calculation allows an estimation of values for the other. The predictions are compared with Monte Carlo simulations and experimental data. (communication)

  14. The construction of periodic unfolding operators on some compact Riemannian manifolds

    DEFF Research Database (Denmark)

    Dobberschütz, Sören; Böhm, Michael

    2014-01-01

    The notion of periodic unfolding has become a standard tool in the theory of periodic homogenization. However, all the results obtained so far are only applicable to the "flat" Euclidean space R n. In this paper, we present a generalization of the method of periodic unfolding applicable to struct...

  15. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  16. A neutron spectrum unfolding code based on iterative procedures

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    In this work, the version 3.0 of the neutron spectrum unfolding code called Neutron Spectrometry and Dosimetry from Universidad Autonoma de Zacatecas (NSDUAZ), is presented. This code was designed in a graphical interface under the LabVIEW programming environment and it is based on the iterative SPUNIT iterative algorithm, using as entrance data, only the rate counts obtained with 7 Bonner spheres based on a 6 Lil(Eu) neutron detector. The main features of the code are: it is intuitive and friendly to the user; it has a programming routine which automatically selects the initial guess spectrum by using a set of neutron spectra compiled by the International Atomic Energy Agency. Besides the neutron spectrum, this code calculates the total flux, the mean energy, H(10), h(10), 15 dosimetric quantities for radiation protection porpoises and 7 survey meter responses, in four energy grids, based on the International Atomic Energy Agency compilation. This code generates a full report in html format with all relevant information. In this work, the neutron spectrum of a 241 AmBe neutron source on air, located at 150 cm from detector, is unfolded. (Author)

  17. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    International Nuclear Information System (INIS)

    David W. Freeman

    2000-01-01

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community

  18. In-situ spectrometry of 137Cs in the soil by unfolding method

    International Nuclear Information System (INIS)

    Fueloep, M.; Ragan, P.; Krnac, S.

    1995-01-01

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of 137 Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl 137 Cs at present, as well. The depth distribution of 137 Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The 137 Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs

  19. Using lattice tools and unfolding methods for hpge detector efficiency simulation with the Monte Carlo code MCNP5

    International Nuclear Information System (INIS)

    Querol, A.; Gallardo, S.; Ródenas, J.; Verdú, G.

    2015-01-01

    In environmental radioactivity measurements, High Purity Germanium (HPGe) detectors are commonly used due to their excellent resolution. Efficiency calibration of detectors is essential to determine activity of radionuclides. The Monte Carlo method has been proved to be a powerful tool to complement efficiency calculations. In aged detectors, efficiency is partially deteriorated due to the dead layer increasing and consequently, the active volume decreasing. The characterization of the radiation transport in the dead layer is essential for a realistic HPGe simulation. In this work, the MCNP5 code is used to calculate the detector efficiency. The F4MESH tally is used to determine the photon and electron fluence in the dead layer and the active volume. The energy deposited in the Ge has been analyzed using the ⁎F8 tally. The F8 tally is used to obtain spectra and to calculate the detector efficiency. When the photon fluence and the energy deposition in the crystal are known, some unfolding methods can be used to estimate the activity of a given source. In this way, the efficiency is obtained and serves to verify the value obtained by other methods. - Highlights: • The MCNP5 code is used to estimate the dead layer thickness of an HPGe detector. • The F4MESH tally is applied to verify where interactions occur into the Ge crystal. • PHD and the energy deposited are obtained with F8 and ⁎F8 tallies, respectively. • An average dead layer between 70 and 80 µm is obtained for the HPGe studied. • The efficiency is calculated applying the TSVD method to the response matrix.

  20. Characterization of the Caliban and Prospero Critical Assemblies Neutron Spectra for Integral Measurements Experiments

    Science.gov (United States)

    Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.

    2014-04-01

    Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.

  1. Neutron spectra determination methods using the measured reaction rates in SAPIS

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1980-01-01

    Mathematical basis of algorithms is given for methods of neutron spectra restoration in accordance with the measured reaction rates of the activation detectors included into the information-determination system SAIPS aimed at generalization of the most popular home and foreign neutron spectra determination methods as well as the establishment of their mutual relations. The following neutron spectra determination methods are described: SAND-II, CRYSTAL BALL, WINDOWS, SPECTRA, RESP, JUL; polynominal and directed divergence methods. The algorithms have been realized on the ES computer

  2. Envelope method for background elimination from X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Monakhov, V.V.; Naumenko, P.A.; Chashinskaya, O.A.

    2006-01-01

    The influence of the background noise caused by Bremsstrahlung on the accuracy of the envelope method at x-ray fluorescence spectra processing is studied. This is carried out by the example of model spectra at different forms of Bremsstrahlung noise as well as at the presence of background noise in spectra. The interpolation by parabolic splines is used for the estimation of the error of the envelope method for the elimination of continuos background noise. It is found out that the error of the proposed method constitutes decimal parts of percent. It is shown that the envelope method is the effective technique for the elimination of the continuous Bremsstrahlung from x-ray fluorescence spectra of the first order [ru

  3. Mechanics of collective unfolding

    Science.gov (United States)

    Caruel, M.; Allain, J.-M.; Truskinovsky, L.

    2015-03-01

    Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and the structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.

  4. Thermal unfolding of barstar and the properties of interfacial water around the unfolded forms

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Somedatta; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India)

    2013-12-21

    Identification of the intermediates along the folding-unfolding pathways and probing their interactions with surrounding solvent are two important but relatively unexplored issues in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to study the thermal unfolding of barstar in aqueous solution from its folded native form at two different temperatures (400 K and 450 K). The calculations at 400 K reveal partial unfolding of two α-helices (helix-1 and helix-2) and their interconnecting loop. At 450 K, on the other hand, the entire protein attains an expanded flexible conformation due to disruption of a large fraction of tertiary contacts and breaking of almost all the secondary structures. These two disordered structures obtained at such high temperatures are then studied around room temperature to probe their influence on the properties of surrounding solvent. It is found that though the unfolding of the protein in general leads to increasingly hydrated interface, but new structural motifs with locally dehydrated interface may also form during the structural transition. Additionally, independent of the conformational state of the protein, its influence on surrounding solvent has been found to be restricted to the first hydration layer.

  5. Application of long-range order to predict unfolding rates of two-state proteins.

    Science.gov (United States)

    Harihar, B; Selvaraj, S

    2011-03-01

    Predicting the experimental unfolding rates of two-state proteins and models describing the unfolding rates of these proteins is quite limited because of the complexity present in the unfolding mechanism and the lack of experimental unfolding data compared with folding data. In this work, 25 two-state proteins characterized by Maxwell et al. (Protein Sci 2005;14:602–616) using a consensus set of experimental conditions were taken, and the parameter long-range order (LRO) derived from their three-dimensional structures were related with their experimental unfolding rates ln(k(u)). From the total data set of 30 proteins used by Maxwell et al. (Protein Sci 2005;14:602–616), five slow-unfolding proteins with very low unfolding rates were considered to be outliers and were not included in our data set. Except all beta structural class, LRO of both the all-alpha and mixed-class proteins showed a strong inverse correlation of r = -0.99 and -0.88, respectively, with experimental ln(k(u)). LRO shows a correlation of -0.62 with experimental ln(k(u)) for all-beta proteins. For predicting the unfolding rates, a simple statistical method has been used and linear regression equations were developed for individual structural classes of proteins using LRO, and the results obtained showed a better agreement with experimental results. Copyright © 2010 Wiley-Liss, Inc.

  6. Thermal dissociation and unfolding of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2005-01-01

    The thermal stability of human insulin was studied by differential scanning microcalorimetry and near-UV circular dichroism as a function of zinc/protein ratio, to elucidate the dissociation and unfolding processes of insulin in different association states. Zinc-free insulin, which is primarily...... dimeric at room temperature, unfolded at approximately 70 degrees C. The two monomeric insulin mutants Asp(B28) and Asp(B9),Glu(B27) unfolded at higher temperatures, but with enthalpies of unfolding that were approximately 30% smaller. Small amounts of zinc caused a biphasic thermal denaturation pattern...... of insulin. The biphasic denaturation is caused by a redistribution of zinc ions during the heating process and results in two distinct transitions with T(m)'s of approximately 70 and approximately 87 degrees C corresponding to monomer/dimer and hexamer, respectively. At high zinc concentrations (>or=5 Zn(2...

  7. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation.

    Science.gov (United States)

    Eckhardt, D; Li-Blatter, X; Schönfeld, H-J; Heerklotz, H; Seelig, J

    2018-05-25

    Apolipoprotein A-1 (Apo A-1) plays an important role in lipid transfer and obesity. Chemical unfolding of α-helical Apo A-1 is induced with guanidineHCl and monitored with differential scanning calorimetry (DSC) and CD spectroscopy. The unfolding enthalpy and the midpoint temperature of unfolding decrease linearly with increasing guanidineHCl concentration, caused by the weak binding of denaturant. At room temperature, binding of 50-60 molecules guanidineHCl leads to a complete Apo A-1 unfolding. The entropy of unfolding decreases to a lesser extent than the unfolding enthalpy. Apo A-1 chemical unfolding is a dynamic multi-state equilibrium that is analysed with the Zimm-Bragg theory modified for chemical unfolding. The chemical Zimm-Bragg theory predicts the denaturant binding constant K D and the protein cooperativity σ. Chemical unfolding of Apo A-1 is two orders of magnitude less cooperative than thermal unfolding. The free energy of thermal unfolding is ~0.2 kcal/mol per amino acid residue and ~1.0 kcal/mol for chemical unfolding at room temperature. The Zimm-Bragg theory calculates conformational probabilities and the chemical Zimm-Bragg theory predicts stretches of α-helical segments in dynamic equilibrium, unfolding and refolding independently and fast. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Analysis of coincidence {gamma}-ray spectra using advanced background elimination, unfolding and fitting algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, M. E-mail: fyzimiro@savba.skfyzimiro@flnr.jinr.ru; Matousek, V. E-mail: matousek@savba.sk; Kliman, J.; Krupa, L.L.; Jandel, M

    2003-04-21

    The efficient algorithms to analyze multiparameter {gamma}-ray spectra are presented. They allow to search for peaks, to separate peaks from background, to improve the resolution and to fit 1-, 2-, 3-parameter {gamma}-ray spectra.

  9. Decomposition of spectra in EPR dosimetry using the matrix method

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.

    2003-01-01

    The matrix method of EPR spectra decomposition is developed and adapted for routine application in retrospective EPR dosimetry with teeth. According to this method, the initial EPR spectra are decomposed (using methods of matrix algebra) into several reference components (reference matrices) that are specific for each material. Proposed procedure has been tested on the example of tooth enamel. Reference spectra were a spectrum of an empty sample tube and three standard signals of enamel (two at g=2.0045, both for the native signal and one at g perpendicular =2.0018, g parallel =1.9973 for the dosimetric signal). Values of dosimetric signals obtained using the given method have been compared with data obtained by manual manipulation of spectra, and good coincidence was observed. This allows considering the proposed method as potent for application in routine EPR dosimetry

  10. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method

  11. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    Science.gov (United States)

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  12. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  13. An adaptive method for γ spectra smoothing

    International Nuclear Information System (INIS)

    Xiao Gang; Zhou Chunlin; Li Tiantuo; Han Feng; Di Yuming

    2001-01-01

    Adaptive wavelet method and multinomial fitting gliding method are used for smoothing γ spectra, respectively, and then FWHM of 1332 keV peak of 60 Co and activities of 238 U standard specimen are calculated. Calculated results show that adaptive wavelet method is better than the other

  14. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response.

    LENUS (Irish Health Repository)

    Samali, Afshin

    2010-01-01

    The endoplasmic reticulum (ER) is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR). The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  15. Methods for Monitoring Endoplasmic Reticulum Stress and the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Afshin Samali

    2010-01-01

    Full Text Available The endoplasmic reticulum (ER is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR. The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  16. Folding and unfolding pathway of chaperonin GroEL monomer and elucidation of thermodynamic parameters.

    Science.gov (United States)

    Puri, Sarita; Chaudhuri, Tapan K

    2017-03-01

    The conformation and thermodynamic stability of monomeric GroEL were studied by CD and fluorescence spectroscopy. GroEL denaturation with urea and dilution in buffer leads to formation of a folded GroEL monomer. The monomeric nature of this protein was verified by size-exclusion chromatography and native PAGE. It has a well-defined secondary and tertiary structure, folding activity (prevention of aggregation) for substrate protein and is resistant to proteolysis. Being a properly folded and reversibly refoldable, monomeric GroEL is amenable for the study of thermodynamic stability by unfolding transition methods. We present the equilibrium unfolding of monomeric GroEL as studied by urea and heat mediated unfolding processes. The urea mediated unfolding shows two transitions and a single transition in the heat mediated unfolding process. In the case of thermal unfolding, some residual structure unfolds at a higher temperature (70-75°C). The process of folding/unfolding is reversible in both cases. Analysis of folding/unfolding data provides a measure of ΔG NU H 2 O , T m , ΔH van and ΔS van of monomeric GroEL. The thermodynamic stability parameter ΔG NU H 2 O is similar with both CD and intrinsic fluorescence i.e. 7.10±1.0kcal/mol. The calculated T m , ΔH van and ΔS van from the thermal unfolding transition is 46±0.5°C, 43.3±0.1kcal/mol and 143.9±0.1cal/mol/k respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernández, Jorge E.; Scot, Viviana; Giulio, Eugenio Di; Sabbatucci, Lorenzo

    2015-01-01

    In every X-ray spectroscopy measurement the influence of the detection system causes loss of information. Different mechanisms contribute to form the so-called detector response function (DRF): the detector efficiency, the escape of photons as a consequence of photoelectric or scattering interactions, the spectrum smearing due to the energy resolution, and, in solid states detectors (SSD), the charge collection artifacts. To recover the original spectrum, it is necessary to remove the detector influence by solving the so-called inverse problem. The maximum entropy unfolding technique solves this problem by imposing a set of constraints, taking advantage of the known a priori information and preserving the positive-defined character of the X-ray spectrum. This method has been included in the tool UMESTRAT (Unfolding Maximum Entropy STRATegy), which adopts a semi-automatic strategy to solve the unfolding problem based on a suitable combination of the codes MAXED and GRAVEL, developed at PTB. In the past UMESTRAT proved the capability to resolve characteristic peaks which were revealed as overlapped by a Si SSD, giving good qualitative results. In order to obtain quantitative results, UMESTRAT has been modified to include the additional constraint of the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix. The features of the improved code are illustrated with some examples of unfolding from three commonly used SSD like Si, Ge, and CdTe. The quantitative unfolding can be considered as a software improvement of the detector resolution. - Highlights: • Radiation detection introduces distortions in X- and Gamma-ray spectrum measurements. • UMESTRAT is a graphical tool to unfold X- and Gamma-ray spectra. • UMESTRAT uses the maximum entropy method. • UMESTRAT’s new version produces unfolded spectra with quantitative meaning. • UMESTRAT is a software tool to improve the detector resolution.

  18. Evaluation of methods used for the direct generation of response spectra

    International Nuclear Information System (INIS)

    Mayers, R.L.; Muraki, T.; Jones, L.R.; Donikian, R.

    1983-01-01

    The paper presents an alternate methodology by which seismic in-structure response spectra may be generated directly from either ground or floor excitation spectra. The method is based upon stochastic concepts and utilizes the modal superposition solution. The philosophy of the method is based upon the notion that the evaluation of 'peak' response in uncertain excitation environments is only meaningful in a probabilistic sense. This interpretation of response spectra facilitates the generation of in-structure spectra for any non-exceedance probability (NEP). The method is validated by comparisons with a set of deterministic time-history analyses with three example models: an eleven-story building model, a containment structure stick model, and a floor mounted control panel, subjected to ten input spectrum compatible acceleration time-histories. A significant finding resulting from these examples is that the time-history method portrayed substantial variation in the resulting in-structure spectra, and therefore is unreliable for the generation of spectra. It is shown that the average of the time-history generated spectra can be estimated by the direct generation procedure, and reliable spectra may be generated for 85 NEP levels. The methodology presented herein is shown to be valid for both primary and secondary systems. Also included in the paper, is a review of the stochastic methods proposed by Singh and Der Kiureghian et. al., and the Fourier transform method proposed by Scanlan et al. (orig./HP)

  19. A digital processing method for the analysis of complex nuclear spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Abani, M.C.; Bairi, B.R.

    1994-01-01

    This paper describes a digital processing method using frequency power spectra for the analysis of complex nuclear spectra. The power spectra were estimated by employing modified discrete Fourier transform. The method was applied to observed spectral envelopes. The results for separating closely-spaced doublets in nuclear spectra of low statistical precision compared favorably with those obtained by using a popular peak fitting program SAMPO. The paper also describes limitations of the peak fitting methods. It describes the advantages of digital processing techniques for type II digital signals including nuclear spectra. A compact computer program occupying less than 2.5 kByte of memory space was written in BASIC for the processing of observed spectral envelopes. (orig.)

  20. The structural basis of urea-induced protein unfolding in β-catenin

    Science.gov (United States)

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A.; Kutateladze, Tatinna G.; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-01-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic inter­actions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation. PMID:25372676

  1. Gamma-ray spectra deconvolution by maximum-entropy methods

    International Nuclear Information System (INIS)

    Los Arcos, J.M.

    1996-01-01

    A maximum-entropy method which includes the response of detectors and the statistical fluctuations of spectra is described and applied to the deconvolution of γ-ray spectra. Resolution enhancement of 25% can be reached for experimental peaks and up to 50% for simulated ones, while the intensities are conserved within 1-2%. (orig.)

  2. Uncertainty analysis of dosimetry spectrum unfolding

    International Nuclear Information System (INIS)

    Perey, F.G.

    1977-01-01

    The propagation of uncertainties in the input data is analyzed for the usual dosimetry unfolding solution. A new formulation of the dosimetry unfolding problem is proposed in which the most likely value of the spectrum is obtained. The relationship of this solution to the usual one is discussed

  3. In-situ spectrometry of {sup 137}Cs in the soil by unfolding method

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Ragan, P [Inst. of Preventive and Clinical Medicine, 833301 Bratislava (Slovakia); Krnac, S [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of {sup 137}Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl {sup 137}Cs at present, as well. The depth distribution of {sup 137}Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The {sup 137}Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs.

  4. Unfolding four-helix bundles

    Science.gov (United States)

    Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-03-01

    A geometrical model has been developed to describe the early stages of unfolding of cytochromes c‧ and c-b562 . Calculations are based on a step-wise extension of the polypeptide chain subject to the constraint that the spatial relationship among the residues of each triplet is fixed by the native-state crystallographic data. The response of each protein to these structural perturbations allows the evolution of each of the four helices in these two proteins to be differentiated. It is found that the two external helices in c‧ unfold before its two internal helices, whereas exactly the opposite behaviour is demonstrated by c-b562 . Each of these cytochromes has an extended, internal, non-helical ('turning') region that initially lags behind the most labile helix but then, at a certain stage (identified for each cytochrome), unravels before any of the four helices present in the native structure. It is believed that these predictions will be useful in guiding future experimental studies on the unfolding of these two cytochromes.

  5. UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA

    Directory of Open Access Journals (Sweden)

    IONIŢĂ Elena

    2015-06-01

    Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.

  6. Unfolding Simulations of Holomyoglobin from Four Mammals: Identification of Intermediates and β-Sheet Formation from Partially Unfolded States

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2013-01-01

    simulations of holoMb and the first comparative study of unfolding of protein orthologs from different species (sperm whale, pig, horse, and harbor seal). We also provide new interpretations of experimental mean molecular ellipticities of myoglobin intermediates, notably correcting for random coil and number...... of helices in intermediates. The simulated holoproteins at 310 K displayed structures and dynamics in agreement with crystal structures (Rg ,1.48–1.51 nm, helicity ,75%). At 400 K, heme was not lost, but some helix loss was observed in pig and horse, suggesting that these helices are less stable......Myoglobin (Mb) is a centrally important, widely studied mammalian protein. While much work has investigated multi-step unfolding of apoMb using acid or denaturant, holomyoglobin unfolding is poorly understood despite its biological relevance. We present here the first systematic unfolding...

  7. A method to enhance the resolution of broadened spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Jimenez D, H.; Torres V, M.; Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.R.; Lopez E, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Fuentes Z, G.A.; Cordoba, A. [UAM-I, 09340 Mexico D.F. (Mexico)

    1992-02-15

    A deconvolution method to analyze line overlapping broadened spectra is presented. Two approximation expressions from which the user can remove, either a Lorentzian or a Gaussian line from observed spectra are utilized. Moessbauer spectra, EPR and Thermoluminescence spectroscopies are analyzed. It is shown that in each case, the de convolved spectrum may provide valuable data to get a much closer characterization of a substance. (Author)

  8. A method to enhance the resolution of broadened spectra

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez D, H.; Torres V, M.; Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.R.; Lopez E, J.; Fuentes Z, G.A.; Cordoba, A.

    1992-02-01

    A deconvolution method to analyze line overlapping broadened spectra is presented. Two approximation expressions from which the user can remove, either a Lorentzian or a Gaussian line from observed spectra are utilized. Moessbauer spectra, EPR and Thermoluminescence spectroscopies are analyzed. It is shown that in each case, the de convolved spectrum may provide valuable data to get a much closer characterization of a substance. (Author)

  9. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  10. Background elimination methods for multidimensional coincidence γ-ray spectra

    International Nuclear Information System (INIS)

    Morhac, M.

    1997-01-01

    In the paper new methods to separate useful information from background in one, two, three and multidimensional spectra (histograms) measured in large multidetector γ-ray arrays are derived. The sensitive nonlinear peak clipping algorithm is the basis of the methods for estimation of the background in multidimensional spectra. The derived procedures are simple and therefore have a very low cost in terms of computing time. (orig.)

  11. Salt bridge as a gatekeeper against partial unfolding.

    Science.gov (United States)

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.

  12. Osmolyte Effects on the Unfolding Pathway of β-Lactoglobulin

    International Nuclear Information System (INIS)

    Meng Wei; Pan Hai; Qin Meng; Cao Yi; Wang Wei

    2013-01-01

    There are large amounts of osmolytes inside cells, which impact many physiological processes by complicated mechanisms. The osmolyte effects on the stability and folding of proteins have been studied in detail using simple two-state folding proteins. However, many important functional proteins fold in complex pathways involving various intermediates. Little is known about the osmolyte effects on the folding and unfolding of these proteins. It is noted that β-lactoglobulin (BLG) is an example of such proteins, whose unfolding involves an obvious intermediate state. Using equilibrium chemical denaturation and stopped-flow kinetics, we investigate the unfolding of BLG in the presence of different osmolytes, e.g., glycerol, ethylene glycol (EG) and poly(ethylene glycol)400 (PEG400). It is found that all these osmolytes can stabilize the unfolding intermediate by modulating the relative unfolding kinetics of the native and the intermediate states. The stabilization effects are similar for EG and PEG400 but distinct for glycerol. Since the unfolding intermediates of many proteins are directly related to protein misfolding diseases, evaluation of the osmolyte effects for the unfolding of these proteins in vitro should be beneficial for the understanding of the occurrence of the related diseases in vivo

  13. A neutron spectrum unfolding computer code based on artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J.M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J.M.; Vega-Carrillo, H.R.

    2014-01-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding

  14. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Pappas, D.S.; Wysocki, F.J.; Furnstahl, R.J.

    1982-08-01

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 10 14 cm -3 ) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  15. Neutron spectrum unfolding: Pt. 2

    International Nuclear Information System (INIS)

    Matiullah; Wiyaja, D.S.; Berzonis, M.A.; Bondars, H.; Lapenas, A.A.; Kudo, K.; Majeed, A.; Durrani, S.A.

    1991-01-01

    In Part I of this paper, we described the use of the computer code SAIPS in neutron spectrum unfolding. Here in Part II, we present our experimental work carried out to study the shape of the neutron spectrum in different experimental channels of a 5 MW light-water cooled and moderated research reactor. The spectral neutron flux was determined using various fission foils (placed in close contact with mica track detectors) and activation detectors. From the measured activities, the neutron spectrum was unfolded by SAIPS. (author)

  16. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation.

    Science.gov (United States)

    Li, Jiahuang; Chen, Yuan; Yang, Jie; Hua, Zichun

    2015-05-01

    The Schistosoma juponicum 26 kDa glutathione S-transferase (sj26GST) consists of the N-terminal domain (N-domain), containing three alpha-helices (named H1-H3) and four anti-parallel beta-strands (S1-S4), and the C-terminal domain (C-domain), comprising five alpha-helices (named H4-H8). In present work, molecular dynamics simulations and fluorescence spectroscopic were used to gain insights into the unfolding process of sj26GST. The molecular dynamics simulations on sj26GST subunit both in water and in 8 M urea were carried out at 300 K, 400 K and 500 K, respectively. Spectroscopic measurements were employed to monitor structural changes. Molecular dynamics simulations of sj26GST subunit induced by urea and temperature showed that the initial unfolding step of sj26GST both in water and urea occurred on N-domain, involving the disruption of helices H2, H3 and strands S3 and S4, whereas H6 was the last region exposed to solution and was the last helix to unfold. Moreover, simulations analyses combining with fluorescence and circular dichroism spectra indicated that N-domain could not fold independent, suggesting that correct folding of N-domain depended on its interactions with C-domain. We further proposed that the folding of GSTs could begin with the hydrophobic collapse of C-domain whose H4, H5, H6 and H7 could move close to each other and form a hydrophobic core, especially H6 wrapped in the hydrophobic center and beginning spontaneous formation of the helix. S3, S4, H3, and H2 could form in the wake of the interaction between C-domain and N-domain. The paper can offer insights into the molecular mechanism of GSTs unfolding. © 2014 Wiley Periodicals, Inc.

  17. A neutron spectrum unfolding computer code based on artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  18. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  19. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  20. Qualitative and quantitative validation of the SINBAD code on complex HPGe gamma-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rohee, E.; Coulon, R.; Normand, S.; Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures electroniques, F-91191 Gif-sur-Yvette, (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire Modelisation, Simulation et Systemes, F-91191 Gif-sur-Yvette, (France); Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance, (France)

    2015-07-01

    Radionuclides identification and quantification is a serious concern for many applications as safety or security of nuclear power plant or fuel cycle facility, CBRN risk identification, environmental radioprotection and waste measurements. High resolution gamma-ray spectrometry based on HPGe detectors is a performing solution for all these topics. During last decades, a great number of software has been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when photoelectric peaks are folded together with a high ratio between theirs amplitudes, when the Compton background is much larger compared to the signal of a single peak and when spectra are composed of a great number of peaks. This study deals with the comparison between conventional methods in radionuclides identification and quantification and the code called SINBAD ('Spectrometrie par Inference Non parametrique Bayesienne Deconvolutive'). For many years, SINBAD has been developed by CEA LIST for unfolding complex spectra from HPGe detectors. Contrary to conventional methods using fitting procedures, SINBAD uses a probabilistic approach with Bayesian inference to describe spectrum data. This conventional fitting method founded for example in Genie 2000 is compared with the nonparametric SINBAD approach regarding some key figures of merit as the peak centroid evaluation (identification) and peak surface evaluation (quantification). Unfriendly cases are studied for nuclides detection with closed gamma-rays energies and high photoelectric peak intensity differences. Tests are performed with spectra from the International Atomic Energy Agency (IAEA) for gamma spectra analysis software benchmark and with spectra acquired at the laboratory. Results show that SINBAD and Genie 2000 performances are quite similar with sometimes best results for SINBAD with the important difference that to achieve same performances the nonparametric method is user-friendly compared

  1. Joint mapping of genes and conditions via multidimensional unfolding analysis

    Directory of Open Access Journals (Sweden)

    Engelen Kristof

    2007-06-01

    Full Text Available Abstract Background Microarray compendia profile the expression of genes in a number of experimental conditions. Such data compendia are useful not only to group genes and conditions based on their similarity in overall expression over profiles but also to gain information on more subtle relations between genes and conditions. Getting a clear visual overview of all these patterns in a single easy-to-grasp representation is a useful preliminary analysis step: We propose to use for this purpose an advanced exploratory method, called multidimensional unfolding. Results We present a novel algorithm for multidimensional unfolding that overcomes both general problems and problems that are specific for the analysis of gene expression data sets. Applying the algorithm to two publicly available microarray compendia illustrates its power as a tool for exploratory data analysis: The unfolding analysis of a first data set resulted in a two-dimensional representation which clearly reveals temporal regulation patterns for the genes and a meaningful structure for the time points, while the analysis of a second data set showed the algorithm's ability to go beyond a mere identification of those genes that discriminate between different patient or tissue types. Conclusion Multidimensional unfolding offers a useful tool for preliminary explorations of microarray data: By relying on an easy-to-grasp low-dimensional geometric framework, relations among genes, among conditions and between genes and conditions are simultaneously represented in an accessible way which may reveal interesting patterns in the data. An additional advantage of the method is that it can be applied to the raw data without necessitating the choice of suitable genewise transformations of the data.

  2. Branches of Triangulated Origami Near the Unfolded State

    Directory of Open Access Journals (Sweden)

    Bryan Gin-ge Chen

    2018-02-01

    Full Text Available Origami structures are characterized by a network of folds and vertices joining unbendable plates. For applications to mechanical design and self-folding structures, it is essential to understand the interplay between the set of folds in the unfolded origami and the possible 3D folded configurations. When deforming a structure that has been folded, one can often linearize the geometric constraints, but the degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this set consists of a number of distinct “branches” which intersect at the unfolded state, and that the number of these branches is exponential in the number of vertices. We find numerical and analytical evidence that suggests that the branches are characterized by choosing each internal vertex to either “pop up” or “pop down.” The large number of pathways along which one can fold an initially unfolded origami structure strongly indicates that a generic structure is likely to become trapped in a “misfolded” state. Thus, new techniques for creating self-folding origami are likely necessary; controlling the popping state of the vertices may be one possibility.

  3. Branches of Triangulated Origami Near the Unfolded State

    Science.gov (United States)

    Chen, Bryan Gin-ge; Santangelo, Christian D.

    2018-01-01

    Origami structures are characterized by a network of folds and vertices joining unbendable plates. For applications to mechanical design and self-folding structures, it is essential to understand the interplay between the set of folds in the unfolded origami and the possible 3D folded configurations. When deforming a structure that has been folded, one can often linearize the geometric constraints, but the degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this set consists of a number of distinct "branches" which intersect at the unfolded state, and that the number of these branches is exponential in the number of vertices. We find numerical and analytical evidence that suggests that the branches are characterized by choosing each internal vertex to either "pop up" or "pop down." The large number of pathways along which one can fold an initially unfolded origami structure strongly indicates that a generic structure is likely to become trapped in a "misfolded" state. Thus, new techniques for creating self-folding origami are likely necessary; controlling the popping state of the vertices may be one possibility.

  4. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  5. Proposal of a New Method for Neutron Dosimetry Based on Spectral Information Obtained by Application of Artificial Neural Networks

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Schuetz, R.; Hahn, K.; Sprunck, M.; Cordes, E.; Biersack, J.P.; Wahl, W.

    1999-01-01

    A new method for the monitoring of neutron radiation is proposed. It is based on the determination of spectral information on the neutron field in order to derive dose quantities like the ambient dose equivalent, the dose equivalent, or other dose quantities which depend on the neutron energy. The method uses a multi-element system consisting of converter type silicon detectors. The unfolding procedure is based on an artificial neural network (ANN). The response function of each element is determined by a computational model considering the neutron interaction with the dosemeter layers and the subsequent transport of produced ions. An example is given for a multi-element system. The ANN is trained by a given set of neutron spectra and then applied to count responses obtained in neutron fields. Four examples of spectra unfolded using the ANN are presented. (author)

  6. Methods of neutron spectrum calculation from measured reaction rates in SAIPS. Part 2: Software and data input

    International Nuclear Information System (INIS)

    Berzonis, M.A.; Bondars, H.Ya.

    1981-08-01

    A brief description of the SAIPS software and the basic principles of its application is given. SAIPS contains programs needed to unfold spectra, libraries of neutron cross sections and reference spectra, and software for automatic calculation and for system maintenance. SAIPS offers the possibility of determining the reliability of an unfolded neutron spectrum and of planning measurements and calculations by varying different factors: the errors in the reaction rates, the errors in the cross sections used, the detector assembly, the unfolding programs, etc. SAIPS runs on the ES 1022 computer

  7. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins

    Directory of Open Access Journals (Sweden)

    Koga Yuichi

    2010-07-01

    Full Text Available Abstract Background The unfolding speed of some hyperthermophilic proteins is dramatically lower than that of their mesostable homologs. Ribonuclease HII from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-RNase HII is stabilized by its remarkably slow unfolding rate, whereas RNase HI from the thermophilic bacterium Thermus thermophilus (Tt-RNase HI unfolds rapidly, comparable with to that of RNase HI from Escherichia coli (Ec-RNase HI. Results To clarify whether the difference in the unfolding rate is due to differences in the types of RNase H or differences in proteins from archaea and bacteria, we examined the equilibrium stability and unfolding reaction of RNases HII from the hyperthermophilic bacteria Thermotoga maritima (Tm-RNase HII and Aquifex aeolicus (Aa-RNase HII and RNase HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI. These proteins from hyperthermophiles are more stable than Ec-RNase HI over all the temperature ranges examined. The observed unfolding speeds of all hyperstable proteins at the different denaturant concentrations studied are much lower than those of Ec-RNase HI, which is in accordance with the familiar slow unfolding of hyperstable proteins. However, the unfolding rate constants of these RNases H in water are dispersed, and the unfolding rate constant of thermophilic archaeal proteins is lower than that of thermophilic bacterial proteins. Conclusions These results suggest that the nature of slow unfolding of thermophilic proteins is determined by the evolutionary history of the organisms involved. The unfolding rate constants in water are related to the amount of buried hydrophobic residues in the tertiary structure.

  8. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  9. Inclusive neutral current ep cross sections with HERA II and two-dimensional unfolding

    International Nuclear Information System (INIS)

    Fischer, David-Johannes

    2011-06-01

    In this thesis, the inclusive neutral current ep → eX cross section at small e - scattering angles has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1 detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the scattered electron with high resolution in both energy and polar angle. The analysis comprises the kinematic range of 0.06 e 2 e 2 2 for the squared momentum exchange. The data sample consists of positron proton collisions of the years 2006 and 2007, adding up to an integrated luminosity of ∝141 pb -1 . Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data statistics but rather by the detector resolution and systematics. The migration becomes increasingly influential; an effect which leads to distortions of the measured distribution as well as to statistical correlations between adjacent data points. At this stage, the correction of detector effects as well as the precise determination of statistical correlations become important features of a rigorous error treatment. In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1 inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction (bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a linear transformation (''response matrix'') which is used to correct any distortion of the data. The inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin method can be viewed as an approximation based on a diagonal response matrix. In a scenario of limited detector resolution, the unfolded data distributions will typically exhibit strong fluctuations and correlations between the data points. This issue can be addressed by smoothing

  10. Inclusive neutral current ep cross sections with HERA II and two-dimensional unfolding

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, David-Johannes

    2011-06-15

    In this thesis, the inclusive neutral current ep {yields} eX cross section at small e{sup -} scattering angles has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1 detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the scattered electron with high resolution in both energy and polar angle. The analysis comprises the kinematic range of 0.06 < y{sub e} < 0.6 for the inelasticity and 14 GeV{sup 2} < Q{sub e}{sup 2} < 110 GeV{sup 2} for the squared momentum exchange. The data sample consists of positron proton collisions of the years 2006 and 2007, adding up to an integrated luminosity of {proportional_to}141 pb{sup -1}. Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data statistics but rather by the detector resolution and systematics. The migration becomes increasingly influential; an effect which leads to distortions of the measured distribution as well as to statistical correlations between adjacent data points. At this stage, the correction of detector effects as well as the precise determination of statistical correlations become important features of a rigorous error treatment. In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1 inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction (bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a linear transformation (''response matrix'') which is used to correct any distortion of the data. The inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin method can be viewed as an approximation based on a diagonal response matrix. In a scenario of limited detector resolution, the unfolded data distributions will

  11. UNFOLDINGS OF THE CYLINDRICA L SURFACES USED IN THE INDUSTRIAL INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    VASILE GHEORGHITA

    2013-02-01

    Full Text Available The connections in the construction of the various industrial installations: pipes, boilers, joints elements and fittings have a cylindrical configuration, or similar cylindrical shape. The execution and their installation require knowledge of the unfolding and intersection curves, which compose them. The graphical solving of the problems of tech nical representation has enabled the formation of abstract geometric of the pieces forms and the ability to see into space. The paper proposes to establish the unfolding of a connection, used in the industrial equipments, by the classical method of the des criptive geometry and mathematics, using appropriate software

  12. Measurement of positron spectra after heavy ion collisions with special weighting of the data processing

    International Nuclear Information System (INIS)

    Weik, F.

    1981-01-01

    The measurement of positron spectra of the supercritical 238 U - 238 U system is described, at which the 1ssub(sigma)-level should dip into the negative energy continuum. For the comparison the measurement of the subcritical 238 U - 208 Pb and the nuclear system 238 U - 108 Pd are used. All measurements were performed at 5.9 MeV/A. For the detection of the positrons a solenoid transport system with 2 Si(Li) diodes as energy determining elements and with 4 NaI crystals for the identification by the 511 keV annihilation radiation in coincidence were used. The electronics, the data acquisition on the base of a process computer with coupling to an IBM computer and the analysis are extensively described. To this belongs also an unfolding procedure of a model response function for positron and gamma spectra. The unfolded positron spectra were corrected under assumption of E1-Conversion coefficients to the nuclear contribution which were fitted to the 238 U - 108 Pd system. The positron spectrum of the supercritical 238 U - 238 U shows no evident indication which may lead to the conclusion of a dipping of the 1ssub(sigma) level. (orig.) [de

  13. Measurement of charged particle spectra at the LHC at 13 TeV

    CERN Document Server

    AUTHOR|(CDS)2094899

    The measurement of charged particle spectra is performed for centre-of-mass energy \\sqrt(s) = 13 TeV in experiment ATLAS. It is an inclusive measurement aiming at fast comparison of particle activity between data and theoretical model. Data are acquired with minimal model dependence avoiding unnecessary bias. Various efficiencies and fractions are determined in order to correct reconstructed spectra of tracks in the Inner Detector to distributions of primary particles. Correction of certain distributions involves more sophisticated methods, such as Bayesian unfolding. The corrected distributions are compared to Monte Carlo generators - Pythia 8 (A2 and Monash tunes), Herwig++, EPOS and QGSJET. Though no generator describes measured data perfectly, in many cases the differences are within few percent. The measured average number of charged particles per unit of pseudorapidity is 2.876 ± 0.001922(stat.) ± 0.03526(syst.) and is found to be in a good agreement with EPOS generator. Apart from the analysis, an in...

  14. Complete all-atom hydrodynamics of protein unfolding in uniform flow

    International Nuclear Information System (INIS)

    Wang, Guan M; Sandberg, William C

    2010-01-01

    The unfolding dynamics of a protein, ubiquitin, pinned in several uniform flows, was studied at low and high flow rates in an all-atom style through a non-equilibrium molecular dynamics approach with explicit water molecules included. Atomic hydrodynamic force components on individual amino acids, as a function of time, due to the collisional interactions with the flowing water molecules were calculated explicitly. The protein conformational change in response to those time-varying forces was computed completely at the high flow rate up to nanosecond until the fully stretched state was reached. The end-to-end length of the single ubiquitin protein molecule at high flow rate is smoothly increasing. The step-like jumps between metastable states that describe the μm ms -1 scale force pulling experiments conducted on polyubiquitins at low flow rates, are not seen at the high flow speeds necessary to computationally probe the ns nm -1 scale regime. No unfolding was observed in the low flow rate atomic computations at nanosecond scale while partial and complete unfolding was observed in the coarse-grained low flow rate computations at microsecond scale. Examination of the all-atom computation of the time variation of the hydrodynamic forces on, and the velocity components of, the protein molecule unveiled to some extent the details of the complexity of the hydrodynamic friction variation in the nm ns -1 regime of high rate flow-driven protein unfolding. This demonstrates quantitatively that all-atom computations are more suitable than the Langevin equation or Brownian dynamics methods for probing the interaction dynamics and resulting conformational dynamics of protein unfolding in strong flows on nm ns -1 time/length scales while the reverse is true for investigation of slow, diffusively driven systems.

  15. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  16. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  17. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions.

    Science.gov (United States)

    Žoldák, Gabriel; Jancura, Daniel; Sedlák, Erik

    2017-06-01

    Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady-state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high-throughput drug screening campaigns. © 2017 The Protein Society.

  18. Method for the deconvolution of incompletely resolved CARS spectra in chemical dynamics experiments

    International Nuclear Information System (INIS)

    Anda, A.A.; Phillips, D.L.; Valentini, J.J.

    1986-01-01

    We describe a method for deconvoluting incompletely resolved CARS spectra to obtain quantum state population distributions. No particular form for the rotational and vibrational state distribution is assumed, the population of each quantum state is treated as an independent quantity. This method of analysis differs from previously developed approaches for the deconvolution of CARS spectra, all of which assume that the population distribution is Boltzmann, and thus are limited to the analysis of CARS spectra taken under conditions of thermal equilibrium. The method of analysis reported here has been developed to deconvolute CARS spectra of photofragments and chemical reaction products obtained in chemical dynamics experiments under nonequilibrium conditions. The deconvolution procedure has been incorporated into a computer code. The application of that code to the deconvolution of CARS spectra obtained for samples at thermal equilibrium and not at thermal equilibrium is reported. The method is accurate and computationally efficient

  19. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Kinematical analysis of the data from three-particle reactions by statistical methods

    International Nuclear Information System (INIS)

    Krug, J.; Nocken, U.

    1976-01-01

    A statistical procedure to unfold the kinematics of coincidence spectra from three-particle reactions is presented which is used to protect the coincidence events on the kinematical curve. The width of the projection intervals automatically matches the experimental resolution.. The method is characterized by its consistency thus also permitting a reasonable projection of sum-coincidences. (Auth.)

  1. Unfolding energetics and stability of banana lectin.

    Science.gov (United States)

    Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha

    2008-08-01

    The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions. (c) 2008 Wiley-Liss, Inc.

  2. A simple method for generation of back-ground-free gamma-ray spectra

    International Nuclear Information System (INIS)

    Kawarasaki, Y.

    1976-01-01

    A simple and versatile method of generating background-free γ-ray spectra is presented. This method is equivalent to the generation of a continuous background baseline over the entire energy range of spectra corresponding to the original ones obtained with a Ge(Li) detector. These background curves can not be generally expressed in a single and simple analytic form nor in the form of a power series. These background-free spectra thus obtained make it feasible to assign many tiny peaks at the stage of visual inspection of the spectra, which is difficult to do with the original ones. The automatic peak-finding and peak area calculation procedures are both applicable to these background-free spectra. Examples of the application are illustrated. The effect of the peak-shape distortion is also discussed. (Auth.)

  3. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  4. Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface

    Science.gov (United States)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.

  5. Deep Unfolding for Topic Models.

    Science.gov (United States)

    Chien, Jen-Tzung; Lee, Chao-Hsi

    2018-02-01

    Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.

  6. Measurements of the HEU and LEU in-core spectra at the Ford Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wehe, D K [Oak Ridge National Laboratory, Oak Ridge, TN (United States); King, J S; Lee, J C; Martin, W R [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1985-07-01

    The Ford Nuclear Reactor (FNR) at the University of Michigan has been serving as the test site for a low-enriched uranium (LEU) fuel whole-core demonstration. As part of the experimental program, the differential neutron spectrum has been measured in a high-enriched uranium (HEU) core and an LEU core. The HEU and LEU spectra were determined by unfolding the measured activities of foils that were irradiated in the reactor. When the HEU and LEU spectra are compared from meV to 10 MeV, significant differences between the two spectra are apparent below 10 eV. These are probably caused by the additional {sup 238}U resonance absorption in the LEU fuel. No measurable difference occurs in the shape of the spectra above MeV. (author)

  7. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    International Nuclear Information System (INIS)

    Alam, Parvez

    2014-01-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths. (paper)

  8. The mechanical spectra of deposited materials by a composite reed vibration method

    International Nuclear Information System (INIS)

    Ying, X.N.; Zhang, L.; Yuan, Y.H.

    2010-01-01

    Recently a composite reed vibration method has been designed to measure the mechanical spectra (complex Young's modulus) of materials from liquid to solid state. The mechanical spectra of materials can be obtained from a composite system consisting of a substrate reed and of materials deposited on it. In this report, two sets of formulas to calculate the mechanical spectra of deposited materials are further analyzed. The proof is given for the previous named 'approximate formulas' (labeled as Formula II). Then the composite reed vibration method can be safely used as an extension of the mechanical spectrum method of the thin solid film. At the same time, some comments are made on previous analytical formulas (labeled as Formula I). At last, more experiments with a small amount of deposited materials are performed. It is found that smaller quantity is more favorable to achieve the intrinsic mechanical spectra of deposited materials.

  9. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2011-01-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  10. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomas P

    2012-02-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  11. International intercomparison of neutron spectra evaluating methods using activation detectors

    International Nuclear Information System (INIS)

    Fischer, A.

    1975-06-01

    The international intercomparison of neutron spectrum evaluation methods using activation detectors was organized by the IAEA in 1971 - 1972. All of the contributions and the results of a critical evaluation are presented here. The spectra of different contributors are compared to a reference spectrum by means of different integrals and weighting functions. Different cross section sets, foil numbers, energy point systems, guess spectra used by the contributors cause differences in the resulting spectra. The possible ways of separating these effects are also investigated. Suggestions are made for the organization of a new intercomparison on the basis of more uniform input data. (orig.) [de

  12. Use of the response function in the analysis of complex neutron spectra

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Ciarcia, C.; Couchell, G.P.; Shao, J.

    1974-01-01

    Neutron time-of-flight spectra with overlapping peaks must be unfolded to yield contributions of individual neutron groups. This requires an accurate knowledge of the resolution profile of each group. It is also desirable to know the shape of the spectra of neutrons which were scattered more than once in the scatterer, so that corrections for multiple interactions can be made. These resolution profiles and spectra shapes are not readily available. We have developed a series of measures to account for these effects in our work. We monitor the neutron target thickness during target preparation with a separate time-of-flight spectrometer; we measure detector and accelerator time resolutions for different neutron energies using a thin target and we use computer codes to simulate those factors not amenable to direct measurement

  13. SU-E-T-272: Direct Verification of a Treatment Planning System Megavoltage Linac Beam Photon Spectra Models, and Analysis of the Effects On Patient Plans

    Energy Technology Data Exchange (ETDEWEB)

    Leheta, D; Shvydka, D; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: For the photon dose calculation Philips Pinnacle Treatment Planning System (TPS) uses collapsed cone convolution algorithm, which relies on energy spectrum of the beam in computing the scatter component. The spectrum is modeled based on Linac’s standard commissioning data and typically is not independently verified. We explored a methodology of using transmission measurements in combination with regularization data processing to unfold Linac spectra. The measured spectra were compared to those modeled by the TPS, and the effect on patient plans was evaluated. Methods: Transmission measurements were conducted in narrow-beam geometry using a standard Farmer ionization chamber. Two attenuating materials and two build -up caps, having different atomic numbers, served to enhance discrimination between absorption of low and high-energy portions of the spectra, thus improving the accuracy of the results. The data was analyzed using a regularization technique implemented through spreadsheet-based calculations. Results: The unfolded spectra were found to deviate from the TPS beam models. The effect of such deviations on treatment planning was evaluated for patient plans through dose distribution calculations with either TPS modeled or measured energy spectra. The differences were reviewed through comparison of isodose distributions, and quantified based on maximum dose values for critical structures. While in most cases no drastic differences in the calculated doses were observed, plans with deviations of 4 to 8% in the maximum dose values for critical structures were discovered. The anatomical sites with large scatter contributions are the most vulnerable to inaccuracies in the modeled spectrum. Conclusion: An independent check of the TPS model spectrum is highly desirable and should be included as part of commissioning of a new Linac. The effect is particularly important for dose calculations in high heterogeneity regions. The developed approach makes

  14. Frequency domain fatigue damage estimation methods suitable for deterministic load spectra

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.R.; Patel, M.H. [University Coll., Dept. of Mechanical Engineering, London (United Kingdom)

    2000-07-01

    The evaluation of fatigue damage due to load spectra, directly in the frequency domain, is a complex phenomena but with the benefit of significant computation time savings. Various formulae have been suggested but have usually relating to a specific application only. The Dirlik method is the exception and is applicable to general cases of continuous stochastic spectra. This paper describes three approaches for evaluating discrete deterministic load spectra generated by the floating wind turbine model developed the UCL/RAL research project. (Author)

  15. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    International Nuclear Information System (INIS)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Tavagnacco, Claudio; Borsari, Marco

    2011-01-01

    Highlights: → Denaturation involves intermediate and partially unfolded forms. → An unfolded species displaying the haem with Fe coordinated by two His is observed. → Under unfolding conditions the nature of the SAM influences conformation of protein. → Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E o ' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E o ' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  16. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy); Tavagnacco, Claudio [Department of Chemistry, University of Trieste, via Giorgieri 1, 34127 Trieste (Italy); Borsari, Marco, E-mail: marco.borsari@unimore.it [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy)

    2011-08-01

    Highlights: > Denaturation involves intermediate and partially unfolded forms. > An unfolded species displaying the haem with Fe coordinated by two His is observed. > Under unfolding conditions the nature of the SAM influences conformation of protein. > Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E{sup o}' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E{sup o}' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  17. Geometrical analysis of cytochrome c unfolding

    Science.gov (United States)

    Urie, Kristopher G.; Pletneva, Ekaterina; Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-01-01

    A geometrical model has been developed to study the unfolding of iso-1 cytochrome c. The model draws on the crystallographic data reported for this protein. These data were used to calculate the distance between specific residues in the folded state, and in a sequence of extended states defined by n = 3, 5, 7, 9, 11, 13, and 15 residue units. Exact calculations carried out for each of the 103 residues in the polypeptide chain demonstrate that different regions of the chain have different unfolding histories. Regions where there is a persistence of compact structures can be identified, and this geometrical characterization is fully consistent with analyses of time-resolved fluorescence energy-transfer (TrFET) data using dansyl-derivatized cysteine side-chain probes at positions 39, 50, 66, 85, and 99. The calculations were carried out assuming that different regions of the polypeptide chain unfold synchronously. To test this assumption, lattice Monte Carlo simulations were performed to study systematically the possible importance of asynchronicity. Calculations show that small departures from synchronous dynamics can arise if displacements of residues in the main body of the chain are much more sluggish than near-terminal residues.

  18. A consensus successive projections algorithm--multiple linear regression method for analyzing near infrared spectra.

    Science.gov (United States)

    Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin

    2015-02-09

    The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Model based rib-cage unfolding for trauma CT

    Science.gov (United States)

    von Berg, Jens; Klinder, Tobias; Lorenz, Cristian

    2018-03-01

    A CT rib-cage unfolding method is proposed that does not require to determine rib centerlines but determines the visceral cavity surface by model base segmentation. Image intensities are sampled across this surface that is flattened using a model based 3D thin-plate-spline registration. An average rib centerline model projected onto this surface serves as a reference system for registration. The flattening registration is designed so that ribs similar to the centerline model are mapped onto parallel lines preserving their relative length. Ribs deviating from this model appear deviating from straight parallel ribs in the unfolded view, accordingly. As the mapping is continuous also the details in intercostal space and those adjacent to the ribs are rendered well. The most beneficial application area is Trauma CT where a fast detection of rib fractures is a crucial task. Specifically in trauma, automatic rib centerline detection may not be guaranteed due to fractures and dislocations. The application by visual assessment on the large public LIDC data base of lung CT proved general feasibility of this early work.

  20. Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange: THERMODYNAMIC STABILITY CORRELATES WITH RATES OF UNFOLDING RATHER THAN FOLDING.

    Science.gov (United States)

    Shah, Riddhi; Ohashi, Tomoo; Erickson, Harold P; Oas, Terrence G

    2017-01-20

    Globular proteins are not permanently folded but spontaneously unfold and refold on time scales that can span orders of magnitude for different proteins. A longstanding debate in the protein-folding field is whether unfolding rates or folding rates correlate to the stability of a protein. In the present study, we have determined the unfolding and folding kinetics of 10 FNIII domains. FNIII domains are one of the most common protein folds and are present in 2% of animal proteins. FNIII domains are ideal for this study because they have an identical seven-strand β-sandwich structure, but they vary widely in sequence and thermodynamic stability. We assayed thermodynamic stability of each domain by equilibrium denaturation in urea. We then assayed the kinetics of domain opening and closing by a technique known as thiol exchange. For this we introduced a buried Cys at the identical location in each FNIII domain and measured the kinetics of labeling with DTNB over a range of urea concentrations. A global fit of the kinetics data gave the kinetics of spontaneous unfolding and refolding in zero urea. We found that the folding rates were relatively similar, ∼0.1-1 s -1 , for the different domains. The unfolding rates varied widely and correlated with thermodynamic stability. Our study is the first to address this question using a set of domains that are structurally homologous but evolved with widely varying sequence identity and thermodynamic stability. These data add new evidence that thermodynamic stability correlates primarily with unfolding rate rather than folding rate. The study also has implications for the question of whether opening of FNIII domains contributes to the stretching of fibronectin matrix fibrils. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics

    International Nuclear Information System (INIS)

    Milke, N.; Doert, M.; Klepser, S.; Mazin, D.; Blobel, V.; Rhode, W.

    2013-01-01

    The unfolding program TRUEE is a software package for the numerical solution of inverse problems. The algorithm was first applied in the FORTRAN 77 program RUN. RUN is an event-based unfolding algorithm which makes use of the Tikhonov regularization. It has been tested and compared to different unfolding applications and stood out with notably stable results and reliable error estimation. TRUEE is a conversion of RUN to C++, which works within the powerful ROOT framework. The program has been extended for more user-friendliness and delivers unfolding results which are identical to RUN. Beside the simplicity of the installation of the software and the generation of graphics, there are new functions, which facilitate the choice of unfolding parameters and observables for the user. In this paper, we introduce the new unfolding program and present its performance by applying it to two exemplary data sets from astroparticle physics, taken with the MAGIC telescopes and the IceCube neutrino detector, respectively.

  2. Application of a Bonner sphere spectrometer for determination of the energy spectra of neutrons generated by ≈1 MJ plasma focus

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.; Bienkowska, B.; Miklaszewski, R.; Schmidt, H.; Řezáč, K.; Klír, D.; Kravárik, J.; Kubeš, P.

    2010-01-01

    Roč. 81, č. 11 (2010), 113503/1-113503/5 ISSN 0034-6748 R&D Projects: GA MŠk LA08024 Grant - others:FP-6 EU(XE) RITA-CT2006-26095 Institutional research plan: CEZ:AV0Z10100523 Keywords : plasma focus * fusion DD neutrons * Bonner sphere spectrometer * energy spectra of scattered neutrons * unfolded and calculated spectra Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010

  3. Efficient algorithm for generating spectra using line-by-line methods

    International Nuclear Information System (INIS)

    Sonnad, V.; Iglesias, C.A.

    2011-01-01

    A method is presented for efficient generation of spectra using line-by-line approaches. The only approximation is replacing the line shape function with an interpolation procedure, which makes the method independent of the line profile functional form. The resulting computational savings for large number of lines is proportional to the number of frequency points in the spectral range. Therefore, for large-scale problems the method can provide speedups of two orders of magnitude or more. A method was presented to generate line-by-line spectra efficiently. The first step was to replace the explicit calculation of the profile by the Newton divided-differences interpolating polynomial. The second step is to accumulate the lines effectively reducing their number to the number of frequency points. The final step is recognizing the resulting expression as a convolution and amenable to FFT methods. The reduction in computational effort for a configuration-to-configuration transition array with large number of lines is proportional to the number of frequency points. The method involves no approximations except for replacing the explicit profile evaluation by interpolation. Specifically, the line accumulation and convolution are exact given the interpolation procedure. Furthermore, the interpolation makes the method independent of the line profile functional form contrary to other schemes using FFT methods to generate line-by-line spectra but relying on the analytic form of the profile Fourier transform. Finally, the method relies on a uniform frequency mesh. For non-uniform frequency meshes, however, the method can be applied by using a suitable temporary uniform mesh and the results interpolated onto the final mesh with little additional cost.

  4. Validation of computational methods for treatment planning of fast-neutron therapy using activation foil techniques

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R.; Risler, R.

    1997-12-01

    A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility

  5. Summary report of the consultants' meeting on neutron sources spectra for EXFOR

    International Nuclear Information System (INIS)

    Simakov, S.P.; Kaeppeler, F.

    2011-10-01

    The participants highlighted the importance of complementing the averaged cross section data already stored in EXFOR by the incident neutron energy spectra. They shared their experience on measurement and simulation of neutron fields produced at reactors and accelerators over a wide energy range. The source characteristics, format and rules needed for storage in EXFOR were discussed. The participants submitted the numerical information on spectra that will essentially increase the number of 'complete' data sets in EXFOR. The report additionally provides an overview of (i) neutron production cross sections and thick target yields missing from the EXFOR database; (ii) codes for neutron spectra calculations; (iii) informational resources for reactor, radioactive and spallation neutron sources; (iv) codes for spectrum unfolding and (v) EXFOR compilation rules for the Maxwellian averaged cross sections measured for the reactor and astrophysical applications. (author)

  6. Reversible Unfolding of Rhomboid Intramembrane Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Arutyunova, Elena; Panwar, Pankaj; Gimpl, Katharina; Keller, Sandro; Lemieux, M Joanne

    2016-03-29

    Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Heavy meson mass spectra by general relativistic methods

    International Nuclear Information System (INIS)

    Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.

    1984-01-01

    By applying the classical methods of general relativity to elementary particles one can get, in a natural way, the observed confinement of their constituents, avoiding any recourse to phenome-nological models such as bag model and allowing the deduction of the heavy meson (i.e. charmonium (J/psi) and bottomium (UPSILON)) mass spectra

  8. Situated peer coaching and unfolding cases in the fundamentals skills laboratory.

    Science.gov (United States)

    Himes, Deborah O; Ravert, Patricia K

    2012-09-03

    Using unfolding case studies and situated peer coaching for the Fundamentals Skills Laboratory provides students with individualized feedback and creates a realistic clinical learning experience. A quasi-experimental design with pre- and post-intervention data was used to evaluate changes in student ratings of the course. An instrument was used to examine students' self-ratings and student comments about each lab. We found that students' ratings of the lab remained high with the new method and self-evaluations of their performance were higher as the semester progressed. Students appreciated the personalized feedback associated with peer coaching and demonstrated strong motivation and self-regulation in learning. By participating in unfolding case studies with situated peer coaching, students focus on safety issues, practice collaborative communication, and critical thinking in addition to performing psychomotor skills.

  9. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Er isotopes

    International Nuclear Information System (INIS)

    Harun-Ar-Rashid, A.K.M.; Igashira, Masayuki; Ohsaki, Toshiro

    2000-01-01

    Neutron capture cross sections and capture γ-ray spectra of 166,167, 168 Er were measured in the energy region of 10 to 550 keV. The measurements were performed with a pulsed 7 Li(p,n) 7 Be neutron source and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique and the standard capture cross sections of gold were used to derive the capture cross sections. The errors of the derived cross sections were about 5%. The present results were compared with other measurements and evaluations. The observed capture γ-ray pulse-height spectra were unfolded to obtain the corresponding γ-ray spectra. An anomalous shoulder was observed around 3 MeV in each of the capture γ-ray spectra. (author)

  10. An Auto sequence Code to Integrate a Neutron Unfolding Code with thePC-MCA Accuspec

    International Nuclear Information System (INIS)

    Darsono

    2000-01-01

    In a neutron spectrometry using proton recoil method, the neutronunfolding code is needed to unfold the measured proton spectrum to become theneutron spectrum. The process of the unfolding neutron in the existingneutron spectrometry which was successfully installed last year was doneseparately. This manuscript reports that the auto sequence code to integratethe neutron unfolding code UNFSPEC.EXE with the software facility of thePC-MCA Accuspec has been made and run successfully so that the new neutronspectrometry become compact. The auto sequence code was written based on therules in application program facility of PC-MCA Accuspec and then it wascompiled using AC-EXE. Result of the test of the auto sequence code showedthat for binning width 20, 30, and 40 giving a little different spectrumshape. The binning width around 30 gives a better spectrum in mean of givingsmall error compared to the others. (author)

  11. Skyshine spectra of gamma rays

    International Nuclear Information System (INIS)

    Swarup, Janardan

    1980-01-01

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  12. Dry molten globule intermediates and the mechanism of protein unfolding.

    Science.gov (United States)

    Baldwin, Robert L; Frieden, Carl; Rose, George D

    2010-10-01

    New experimental results show that either gain or loss of close packing can be observed as a discrete step in protein folding or unfolding reactions. This finding poses a significant challenge to the conventional two-state model of protein folding. Results of interest involve dry molten globule (DMG) intermediates, an expanded form of the protein that lacks appreciable solvent. When an unfolding protein expands to the DMG state, side chains unlock and gain conformational entropy, while liquid-like van der Waals interactions persist. Four unrelated proteins are now known to form DMGs as the first step of unfolding, suggesting that such an intermediate may well be commonplace in both folding and unfolding. Data from the literature show that peptide amide protons are protected in the DMG, indicating that backbone structure is intact despite loss of side-chain close packing. Other complementary evidence shows that secondary structure formation provides a major source of compaction during folding. In our model, the major free-energy barrier separating unfolded from native states usually occurs during the transition between the unfolded state and the DMG. The absence of close packing at this barrier provides an explanation for why phi-values, derived from a Brønsted-Leffler plot, depend primarily on structure at the mutational site and not on specific side-chain interactions. The conventional two-state folding model breaks down when there are DMG intermediates, a realization that has major implications for future experimental work on the mechanism of protein folding. 2010 Wiley-Liss, Inc.

  13. [Unfolding item response model using best-worst scaling].

    Science.gov (United States)

    Ikehara, Kazuya

    2015-02-01

    In attitude measurement and sensory tests, the unfolding model is typically used. In this model, response probability is formulated by the distance between the person and the stimulus. In this study, we proposed an unfolding item response model using best-worst scaling (BWU model), in which a person chooses the best and worst stimulus among repeatedly presented subsets of stimuli. We also formulated an unfolding model using best scaling (BU model), and compared the accuracy of estimates between the BU and BWU models. A simulation experiment showed that the BWU modell performed much better than the BU model in terms of bias and root mean square errors of estimates. With reference to Usami (2011), the proposed models were apllied to actual data to measure attitudes toward tardiness. Results indicated high similarity between stimuli estimates generated with the proposed models and those of Usami (2011).

  14. Regularization and error assignment to unfolded distributions

    CERN Document Server

    Zech, Gunter

    2011-01-01

    The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.

  15. Application of unfolding transformation in the random matrix theory to analyze in vivo neuronal spike firing during awake and anesthetized conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2018-03-01

    Full Text Available General anesthetics decrease the frequency and density of spike firing. This effect makes it difficult to detect spike regularity. To overcome this problem, we developed a method utilizing the unfolding transformation which analyzes the energy level statistics in the random matrix theory. We regarded the energy axis as time axis of neuron spike and analyzed the time series of cortical neural firing in vivo. Unfolding transformation detected regularities of neural firing while changes in firing densities were associated with pentobarbital. We found that unfolding transformation enables us to compare firing regularity between awake and anesthetic conditions on a universal scale. Keywords: Unfolding transformation, Spike-timing, Regularity

  16. A nonlinear wavelet method for data smoothing of low-level gamma-ray spectra

    International Nuclear Information System (INIS)

    Gang Xiao; Li Deng; Benai Zhang; Jianshi Zhu

    2004-01-01

    A nonlinear wavelet method was designed for smoothing low-level gamma-ray spectra. The spectra of a 60 Co graduated radioactive source and a mixed soil sample were smoothed respectively according to this method and a 5 point smoothing method. The FWHM of 1,332 keV peak of 60 Co source and the absolute activities of 238 U of soil sample were calculated. The results show that the nonlinear wavelet method is better than the traditional method, with less loss of spectral peak and a more complete reduction of statistical fluctuation. (author)

  17. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    International Nuclear Information System (INIS)

    FEHL, DAVID LEE; BIGGS, F.; CHANDLER, GORDON A.; STYGAR, WILLIAM A.

    2000-01-01

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ((le)2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model

  18. Experimental parameterization of an energy function for the simulation of unfolded proteins

    DEFF Research Database (Denmark)

    Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.

    2008-01-01

    The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and e...... and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.......The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle...

  19. Becoming a Peroxidase: Cardiolipin-Induced Unfolding of Cytochrome c

    Science.gov (United States)

    Muenzner, Julia; Toffey, Jason R.; Hong, Yuning; Pletneva, Ekaterina V.

    2014-01-01

    Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein’s function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein’s peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to “open” extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein’s peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes. PMID:23713573

  20. Predictors of natively unfolded proteins: unanimous consensus score to detect a twilight zone between order and disorder in generic datasets

    Directory of Open Access Journals (Sweden)

    Deiana Antonio

    2010-04-01

    Full Text Available Abstract Background Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. Results In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii have a mean flexibility intermediate between that of folded and that of unfolded proteins. Conclusions Our results show that

  1. The unfolding effects on the protein hydration shell and partial molar volume: a computational study.

    Science.gov (United States)

    Del Galdo, Sara; Amadei, Andrea

    2016-10-12

    In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.

  2. Conformational dynamics of a protein in the folded and the unfolded state

    Energy Technology Data Exchange (ETDEWEB)

    Fitter, Joerg

    2003-08-01

    In a quasielastic neutron scattering experiment, the picosecond dynamics of {alpha}-amylase was investigated for the folded and the unfolded state of the protein. In order to ensure a reasonable interpretation of the internal protein dynamics, the protein was measured in D{sub 2}O-buffer solution. The much higher structural flexibility of the pH induced unfolded state as compared to the native folded state was quantified using a simple analytical model, describing a local diffusion inside a sphere. In terms of this model the conformational volume, which is explored mainly by confined protein side-chain movements, is parameterized by the radius of a sphere (folded state, r=1.2 A; unfolded state, 1.8 A). Differences in conformational dynamics between the folded and the unfolded state of a protein are of fundamental interest in the field of protein science, because they are assumed to play an important role for the thermodynamics of folding/unfolding transition and for protein stability.

  3. Unfolding in particle physics: A window on solving inverse problems

    International Nuclear Information System (INIS)

    Spano, F.

    2013-01-01

    Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments. (authors)

  4. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  5. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  6. Application of NASVD method in the CE1-GRS spectra analysis

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the spectral shape features of the Chang'e-1 gamma-ray spectrometer (CE1-GRS) spectra data of level 3, it is difficult to identify elemental composition of the lunar surface. The paper proposes using Noise Adjusted Singular Value Decomposition (NASVD) method to qualitative analysis of CE1-GRS spectra. The result shows that a number of possible elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg and Ca are qualitatively determined by this method.On the other hand, for each measured spectrum, the absolute value of the amplitude corresponding to the first spectral component indicates the total activity of its corresponding lunar surface region's radioactivity. (authors)

  7. Resolution unfolding with limits imposed by statistical experimental errors

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-02-01

    A typical form of the resolution equation is derived by considering the physical measurement of an energy dependent spectrum. It is shown that the information contained in a data set may be expressed by writing the spectrum as a linear combination of a set of resolution functions. Introduction of other functions to describe the spectrum involves extra physical information. An iterative conjugate gradient technique to obtain a spectrum consistent with the data is described. At each iteration the residual discrepancy between the currently predicted yield and the measured data is used to generate the form and mangitude of the next term to be added to the spectrum. Other unfolding techniques are described and analysed, some faster than the conjugate gradient technique in special cases, but restricted in usefulness by implicit assumptions about the resolution functions. The nature of residual errors is considered. The variations of independently measured data sets are discussed, and hence, the variations of the sequence of terms appearing in a consequent conjugate gradient analysis. An approximate measure is obtained for the expected variation of independently obtained spectra. Refinements are briefly considered which apply to a resolution function that is not known precisely or which make use of a requirement that the spectrum be positive throughout its range. It is concluded that a conjugate gradient technique is best if sufficient computer facilities are available, and that, of the less demanding techniques, the best is one that is essentially a more slowly convergent version of a conjugate gradient method. (author)

  8. Preliminary report on an intercomparison of methods for processing Ge(Li) gamma-ray spectra

    International Nuclear Information System (INIS)

    Parr, R.M.; Houtermans, H.; Schaerf, K.

    1978-01-01

    An intercomparison has been organized by the IAEA for the purpose of evaluating methods for processing Ge(Li) gamma-ray spectra. These spectra cover an energy range of about 1MeV and, with one exception, contain only well separated single peaks; another spectrum contains double peaks with various relative intensities and degrees of overlap. The spectra were prepared in such a way that the areas and positions of all peaks, relative to a standard spectrum which is also provided, are known exactly. The intercomparison enables the user to test the ability of his methods (1) to detect small peaks near the limit of detectability; (2) to determine the position and area of more easily detectable peaks, and (3) to determine the position and area of overlapping double peaks. The method of preparation of the spectra and the organization of the intercomparison are described in this report. (author)

  9. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase.

    Directory of Open Access Journals (Sweden)

    Kritika Singh

    Full Text Available Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0-9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications.

  10. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  11. Model independent method to deconvolve hard X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1984-07-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.

  12. Declining global warming effects on the phenology of spring leaf unfolding.

    Science.gov (United States)

    Fu, Yongshuo H; Zhao, Hongfang; Piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Peñuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan A

    2015-10-01

    Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days °C(-1) during 1980-1994 to 2.3 ± 1.6 days °C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.

  13. Microscopic dynamics of water around unfolded structures of barstar at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Somedatta; Chakraborty, Kaushik; Khatua, Prabir; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-02-07

    The breaking of the native structure of a protein and its influences on the dynamic response of the surrounding solvent is an important issue in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to unfold the protein barstar at two different temperatures (400 K and 450 K). The two unfolded forms obtained at such high temperatures are further studied at room temperature to explore the effects of nonuniform unfolding of the protein secondary structures along two different pathways on the microscopic dynamical properties of the surface water molecules. It is demonstrated that though the structural transition of the protein in general results in less restricted water motions around its segments, but there are evidences of formation of new conformational motifs upon unfolding with increasingly confined environment around them, thereby resulting in further restricted water mobility in their hydration layers. Moreover, it is noticed that the effects of nonuniform unfolding of the protein segments on the relaxation times of the protein–water (PW) and the water–water (WW) hydrogen bonds are correlated with hindered hydration water motions. However, the kinetics of breaking and reformation of such hydrogen bonds are found to be influenced differently at the interface. It is observed that while the effects of unfolding on the PW hydrogen bond kinetics seem to be minimum, but the kinetics involving the WW hydrogen bonds around the protein segments exhibit noticeably heterogeneous characteristics. We believe that this is an important observation, which can provide valuable insights on the origin of heterogeneous influence of unfolding of a protein on the microscopic properties of its hydration water.

  14. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  15. A improved method for the analysis of alpha spectra

    International Nuclear Information System (INIS)

    Equillor, Hugo E.

    2004-01-01

    In this work we describe a methodology, developed in the last years, for the analysis of alpha emitters spectra, obtained with implanted ion detectors, that tend to solve some of the problems that shows this type of spectra. This is an improved methodology respect to that described in a previous publication. The method is based on the application of a mathematical function that allows to model the tail of an alpha peak, to evaluate the part of the peak that is not seen in the cases of partial superposition with another peak. Also, a calculation program that works in a semiautomatic way, with the possibility of interactive intervention of the analyst, has been developed simultaneously and is described in detail. (author)

  16. Unfolded equations for massive higher spin supermultiplets in AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Buchbinder, I.L. [Department of Theoretical Physics, Tomsk State Pedagogical University,60 Kievskaya Str., Tomsk, 634061 (Russian Federation); National Research Tomsk State University,36 Lenina Ave., Tomsk, 634050 (Russian Federation); Snegirev, T.V. [Department of Theoretical Physics, Tomsk State Pedagogical University,60 Kievskaya Str., Tomsk, 634061 (Russian Federation); Department of Higher Mathematics and Mathematical Physics,National Research Tomsk Polytechnic University, 30 Lenina Ave., Tomsk, 634050 (Russian Federation); Zinoviev, Yu.M. [Department of Theoretical Physics,Institute for High Energy Physics of National Research Center “Kurchatov Institute”, 1 Pobedy Str., Protvino, Moscow Region, 142280 (Russian Federation)

    2016-08-10

    In this paper we give an explicit construction of unfolded equations for massive higher spin supermultiplets of the minimal (1,0) supersymmetry in AdS{sub 3} space. For that purpose we use an unfolded formulation for massive bosonic and fermionic higher spins and find supertransformations leaving appropriate set of unfolded equations invariant. We provide two general supermultiplets (s,s+1/2) and (s,s−1/2) with arbitrary integer s, as well as a number of lower spin examples.

  17. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  18. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  19. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures

    Science.gov (United States)

    Youssef, Rasha M.; Maher, Hadir M.

    2008-10-01

    A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.

  20. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  1. RPA-mediated unfolding of systematically varying G-quadruplex structures.

    Science.gov (United States)

    Ray, Sujay; Qureshi, Mohammad H; Malcolm, Dominic W; Budhathoki, Jagat B; Celik, Uğur; Balci, Hamza

    2013-05-21

    G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long) or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA concentration (≈1 μM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 ± 0.10 s for all GQ constructs we studied, despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism that is consistent with our observations. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ortiz R, J. M., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas (Mexico)

    2011-10-15

    NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with {sup 6}Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10{sup -8} up to 231.2 MeV. (Author)

  3. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin.

    Directory of Open Access Journals (Sweden)

    Vasyl V Mykuliak

    2018-04-01

    Full Text Available Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.

  4. Investigating the structural origin of trpzip2 temperature dependent unfolding fluorescence line shape based on a Markov state model simulation.

    Science.gov (United States)

    Song, Jian; Gao, Fang; Cui, Raymond Z; Shuang, Feng; Liang, Wanzhen; Huang, Xuhui; Zhuang, Wei

    2012-10-25

    Vibrationally resolved fluorescence spectra of the β-hairpin trpzip2 peptide at two temperatures as well as during a T-jump unfolding process are simulated on the basis of a combination of Markov state models and quantum chemistry schemes. The broad asymmetric spectral line shape feature is reproduced by considering the exciton-phonon couplings. The temperature dependent red shift observed in the experiment has been attributed to the state population changes of specific chromophores. Through further theoretical study, it is found that both the environment's electric field and the chromophores' geometry distortions are responsible for tryptophan fluorescence shift.

  5. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  6. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...

  7. Immobilized unfolded cytochrome c acts as a catalyst for dioxygen reduction.

    Science.gov (United States)

    Tavagnacco, Claudio; Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Borsari, Marco

    2011-10-21

    Unfolding turns immobilized cytochrome c into a His-His ligated form endowed with catalytic activity towards O(2), which is absent in the native protein. Dioxygen could be used by naturally occurring unfolded cytochrome c as a substrate for the production of partially reduced oxygen species (PROS) contributing to the cell oxidative stress.

  8. Quantitative Evaluation of gamma-Spectrum Analysis Methods using IAEA Test Spectra

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul

    1982-01-01

    A description is given of a γ-spectrum analysis method based on nonlinear least-squares fitting. The quality of the method is investigated by using statistical tests on the results from analyses of IAEA test spectra. By applying an empirical correction factor of 0.75 to the calculated peak-area u...

  9. Numerical methods to analyze alpha spectra and application to the study of neptunium 237 and neptunium 236

    International Nuclear Information System (INIS)

    Garcia-Torano, E.

    1990-01-01

    A set of numerical methods to analize alpha spectra measured with semiconductor detectors are presented. The methods can be divided in two groups, the first being based in the X 2 minimization ands the second in the use of the Fourier Transform. The methods based in the minimization of X 2 can, in turn, be divided according to the model used to fit the spectra. Some of them use a monoenergetic line for the intercomparison with the other peaks in the same spectrum. The others take into account the analytical function developed to represent an alpha line. Both allow the determination of positions and areas of the components, as well as the uncertainties of the results. The Fast Fourier Transform is applied to the second group of methods, which include the smoothing of experimental data, and the deconvolution of spectra. Examples are given of the application of these methods to real spectra. The alpha spectra of 237 Np and 236 Np are studied by using some of the methods described in this work. (Author)

  10. Method for total automation of many-dimensionl diffraction spectra analysis

    International Nuclear Information System (INIS)

    Zlokazov, V.B.

    1985-01-01

    A method meant for automatic analysis of amplitude many-dimensional spectra is described. At the first stage peak search including the procedures of smoothing, identification of peak vertices and their sorting is realized. The method is used in the FIND 2 and DOMUS FORTRAN programs that can operate both on the ES-1040 and CDC-6500 type large computers and SM-3 and SM-4 type small computers

  11. Proving the correctness of unfold/fold program transformations using bisimulation

    DEFF Research Database (Denmark)

    Hamilton, Geoff W.; Jones, Neil

    2011-01-01

    by a labelled transition system whose bisimilarity relation is a congruence that coincides with contextual equivalence. Labelled transition systems are well-suited to represent global program behaviour. On the other hand, unfold/fold program transformations use generalization and folding, and neither is easy......This paper shows that a bisimulation approach can be used to prove the correctness of unfold/fold program transformation algorithms. As an illustration, we show how our approach can be use to prove the correctness of positive supercompilation (due to Sørensen et al). Traditional program equivalence...... to describe contextually, due to use of non-local information. We show that weak bisimulation on labelled transition systems gives an elegant framework to prove contextual equivalence of original and transformed programs. One reason is that folds can be seen in the context of corresponding unfolds....

  12. Determination of fast neutrons energy spectra by Monte-Carlo Method

    International Nuclear Information System (INIS)

    Chetaine, A.

    1986-01-01

    Two computation codes based on the Monte-Carlo method are established for studying the spectrometry of neutrons with 14 Mev as initial energy. The spectra are determined, on one hand, around a neutron generator Ti-T target and, on the other hand, in a big paraffin cylinder. One code allows to determine the spectrum of neutrons irradiating the sample at various distances from the Ti-T target versus accelerator parameters: high voltage, atomic or molecular nature of deuterons beam, target thickness and materials surrounding the target. The other code determines neutron spectra at various positions inside and outside the 30 x 30 cm paraffin cylinder. The validity of the procedure used in these codes is verified by determining the spectrum of neutrons crossing a big surface, using the procedure in question and using direct simulation method. The biasing procedure used in the two codes permits to have results with good statistics from a reduced number of drawings. 70 figs.; 62 refs.; 1 tab. (author)

  13. The unfolded protein response has a protective role in yeast models of classic galactosemia

    Directory of Open Access Journals (Sweden)

    Evandro A. De-Souza

    2014-01-01

    Full Text Available Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast, which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.

  14. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  15. Non-leftmost Unfolding in Partial Evaluation of Logic Programs with Impure Predicates

    DEFF Research Database (Denmark)

    Albert, Elvira; Puebla, German; Gallagher, John Patrick

    2006-01-01

    -leftmost unfolding steps can result in incorrect results since the independence of the computation rule no longer holds in the presence of impure predicates. Existing proposals allow non-leftmost unfolding steps, but at the cost of accuracy: bindings and failure are not propagated backwards to predicates which...

  16. Probing force-induced unfolding intermediates of a single staphylococcal nuclease molecule and the effect of ligand binding

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Murayama, Yoshihiro; Katano, Atsuto; Maki, Kosuke; Kuwajima, Kunihiro; Sano, Masaki

    2008-01-01

    Single-molecule manipulation techniques have given experimental access to unfolding intermediates of proteins that are inaccessible in conventional experiments. A detailed characterization of the intermediates is a challenging problem that provides new possibilities for directly probing the energy landscape of proteins. We investigated single-molecule mechanical unfolding of a small globular protein, staphylococcal nuclease (SNase), using atomic force microscopy. The unfolding trajectories of the protein displayed sub-molecular and stochastic behavior with typical lengths corresponding to the size of the unfolded substructures. Our results support the view that the single protein unfolds along multiple pathways as suggested in recent theoretical studies. Moreover, we found the drastic change, caused by the ligand and inhibitor bindings, in the mechanical unfolding dynamics

  17. Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Zsolt Mártonfalvi

    Full Text Available Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme's ATP-binding site and hence contributing to the molecule's mechanosensory function.

  18. A model independent method to deconvolve hard X-ray spectra

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C.

    1984-01-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented. (orig.)

  19. The Dynamic Method for Time-of-Flight Measurement of Thermal Neutron Spectra from Pulsed Sources

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tulaev, A.B.; Bobrakov, V.F.

    1994-01-01

    The time-of-flight method for a measurement of thermal neutron spectra in the pulsed neutron sources with high efficiency of neutron registration, more than 10 5 times higher in comparison with traditional one, is described. The main problems connected with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of a special neutron detector design and other questions are discussed. Some experimental results, spectra from surfaces of the water and solid methane moderators, obtained in the pulsed reactor IBR-2 (Dubna, Russia) are presented. 4 refs., 5 figs

  20. Method of spectra parametrization of (n, x) and (n, nx) reactions induced by DT-neutrons

    International Nuclear Information System (INIS)

    Aleksandrov, D.V.; Kovrigin, B.S.

    1980-01-01

    A method for parmetrization of experimental spectra has been developed for more convenient carrying out a process of separating competing mechanisms contributions in spectra of the (n, x) and (n, nx) reactions induced with DT neutrons. Differential cross sections of competing partial processes are used. as expanding coefficients. Model spectra may be represented in the form of tabulated-given functions calculated separately from formulae of any complexity degree. Fit of model expressions is performed by the least square method (lsm). Step-by-step algorithm of nonlinear optimization is used for search for lsm- evaluations of theoretical models parameters [ru

  1. Study of Different Unfolding Methods of Kinematic Distributions of the WZ$\\,\\to\\,$WZ Scattering with Data and Simulations of the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2101612; Siegert, Frank

    It is analyzed in this work which unfolding methods are suited for the P-value calculation in statistical tests. It is analyzed for distributions of Vector Boson Scattering in the channel WZ$\\,\\to\\,$WZ for fully leptonic final states. WZ$\\,\\to\\,$WZ scattering is predicted by the most successful model of particle physics, the Standard Model of Particle Physics - but was not measured yet. It is scheduled to record $100~\\mathrm{fb}^{-1}$ with the ATLAS detector in Run$~$2 at LHC. With that integrated luminosity an observation of that process, via a cross section measurement, is expected. The distributions of the transverse mass of the WZ system $M_T(WZ)$ and the transverse momentum of the Z boson $p_T^Z$ which are sensitive to deviations of the WZ$\\,\\to\\,$WZ scattering from the Standard Model are analyzed in this work. For comparisons between data and theory predictions detector effect have to be considered, for which the theory has to be folded or the data has to be unfolded. In this study, no significant advan...

  2. ADVANCEMENTS IN TIME-SPECTRA ANALYSIS METHODS FOR LEAD SLOWING-DOWN SPECTROSCOPY

    International Nuclear Information System (INIS)

    Smith, Leon E.; Anderson, Kevin K.; Gesh, Christopher J.; Shaver, Mark W.

    2010-01-01

    Direct measurement of Pu in spent nuclear fuel remains a key challenge for safeguarding nuclear fuel cycles of today and tomorrow. Lead slowing-down spectroscopy (LSDS) is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic mass with an uncertainty lower than the approximately 10 percent typical of today's confirmatory assay methods. Pacific Northwest National Laboratory's (PNNL) previous work to assess the viability of LSDS for the assay of pressurized water reactor (PWR) assemblies indicated that the method could provide direct assay of Pu-239 and U-235 (and possibly Pu-240 and Pu-241) with uncertainties less than a few percent, assuming suitably efficient instrumentation, an intense pulsed neutron source, and improvements in the time-spectra analysis methods used to extract isotopic information from a complex LSDS signal. This previous simulation-based evaluation used relatively simple PWR fuel assembly definitions (e.g. constant burnup across the assembly) and a constant initial enrichment and cooling time. The time-spectra analysis method was founded on a preliminary analytical model of self-shielding intended to correct for assay-signal nonlinearities introduced by attenuation of the interrogating neutron flux within the assembly.

  3. Towards data warehousing and mining of protein unfolding simulation data.

    Science.gov (United States)

    Berrar, Daniel; Stahl, Frederic; Silva, Candida; Rodrigues, J Rui; Brito, Rui M M; Dubitzky, Werner

    2005-10-01

    The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.

  4. Singular value decomposition and artificial neutral network for analyzing bonner sphere data

    International Nuclear Information System (INIS)

    Zhu, Qingjun; Song, Gang; Song, Fengquan; Guo, Qian; Wu, Yican

    2012-01-01

    The objective of this study was to build an effective and reliable method based on the artificial neural network (ANN) model for unfolding neutron spectrum. The number of counts measured by 15 Bonner spheres and 281 neutron spectra were selected as the database. After singular value decomposition was used to determine the relationship between Bonner spheres, 11 Bonner spheres were chosen as input descriptors. The three-layer feedforward neural networks (11-5-1) were employed to predict the spectrum in each energy bin. Using information entropy theory and the results of the ANN calculations, the sensitivity of each sphere to the entropy of the spectrum was quantitatively analyzed. The spectra results were compared with the results obtained using the maximum entropy method (MEM). The averaged root mean-square-error (MSE) of the MEM output and the desired spectra was 0.012; the averaged MSE of the ANN calculations was 0.006. The MSE results indicate that the 11-5-1 ANN models are able to accurately and reliably predict neutron spectra. The ANN model developed in this study to unfold neutron spectra from the counts measured by 11 Bonner spheres provides an alternative method for unfolding spectrum. The singular value decomposition is an effective method for the analysis of data obtained from Bonner spheres and the neutron spectra.

  5. Full-sky formulae for weak lensing power spectra from total angular momentum method

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya

    2013-01-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra

  6. Application of semi-empirical modeling and non-linear regression to unfolding fast neutron spectra from integral reaction rate data

    International Nuclear Information System (INIS)

    Harker, Y.D.

    1976-01-01

    A semi-empirical analytical expression representing a fast reactor neutron spectrum has been developed. This expression was used in a non-linear regression computer routine to obtain from measured multiple foil integral reaction data the neutron spectrum inside the Coupled Fast Reactivity Measurement Facility. In this application six parameters in the analytical expression for neutron spectrum were adjusted in the non-linear fitting process to maximize consistency between calculated and measured integral reaction rates for a set of 15 dosimetry detector foils. In two-thirds of the observations the calculated integral agreed with its respective measured value to within the experimental standard deviation, and in all but one case agreement within two standard deviations was obtained. Based on this quality of fit the estimated 70 to 75 percent confidence intervals for the derived spectrum are 10 to 20 percent for the energy range 100 eV to 1 MeV, 10 to 50 percent for 1 MeV to 10 MeV and 50 to 90 percent for 10 MeV to 18 MeV. The analytical model has demonstrated a flexibility to describe salient features of neutron spectra of the fast reactor type. The use of regression analysis with this model has produced a stable method to derive neutron spectra from a limited amount of integral data

  7. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  8. Unfolding Semantics of the Untyped λ-Calculus with lectrec-Calculus with letrec

    NARCIS (Netherlands)

    Rochel, J.

    2016-01-01

    We investigate the relationship between finite terms in lambda-letrec, the lambda calculus with letrec, and the infinite lambda terms they express. We say that a lambda-letrec term expresses a lambda term if the latter can be obtained as an infinite unfolding of the former. Unfolding is the process

  9. The method of extraction of subspectra with appreciably different values of hyperfine interaction parameters from Moessbauer spectra

    International Nuclear Information System (INIS)

    Nemtsova, O.M.

    2006-01-01

    The task of Moessbauer spectra processing of complex locally inhomogeneous or multi-phase systems is to reveal subspectral contributions with appreciably different values of hyperfine interaction parameters (HFI) in them. A universal method of processing such spectra is suggested which allows to extract the probability density distribution (PDD) of HFI parameters corresponding to the subspectra with essentially different parameters values. The basis of the method is Tikhonov's regularization method with selection for each subspectrum its own value of the regularization parameter. The universal application of the method is demonstrated in the examples of processing real spectra with different sets of subspectral contributions

  10. Production of analysis code for 'JOYO' dosimetry experiment

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Nakazawa, Masaharu.

    1981-01-01

    As part of the measurement and analysis plan for the Dosimetry Experiment at the ''JOYO'' experimental fast reactor, neutron flux spectra analysis is performed using the NEUPAC (Neutron Unfolding Code Package) computer program. The code calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils. The NEUPAC code is based on the J1-type unfolding method, and the estimated neutron flux spectra is obtained as its solution. The program is able to determine the integral quantities and their sensitivities, together with an error estimate of the unfolded spectra and integral quantities. The code also performs a chi-square test of the input/output data, and contains many options for the calculational routines. This report presents the analytic theory, the program algorithms, and a description of the functions and use of the NEUPAC code. (author)

  11. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques

    DEFF Research Database (Denmark)

    Calcutta, Antonello; Jessen, Christian M; Behrens, Manja Annette

    2012-01-01

    induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl ß-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010......)) along with dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). GPS-NMR is used as a tool for fast analysis of the protein unfolding processes upon external perturbation, and DLS and SAXS are used for further structural characterization of the unfolding states. The combination allows...

  12. First Results of Minimum Fisher Regularisation as Unfolding Method for JET NE213 Liquid Scintillator Neutron Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Adams, J. M.; Bertalot, L.; Conroy, S.

    2005-01-01

    Roč. 74, 1-4 (2005), s. 781-786 ISSN 0920-3796. [Symposium on Fusion Technology - SOFT/23rd./. Benátky, 20.9.2004-24.9.2004] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * fusion * neutron diagnostic * spectrum unfolding * scintillator regularisation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.981, year: 2005 http://soft2004.igi.cnr.it/

  13. Study on keV-neutron capture cross sections and capture γ-ray spectra of 117,119Sn

    International Nuclear Information System (INIS)

    Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G.N.; Chung, W.C.; Ro, T.I.

    2006-01-01

    The capture cross sections and capture γ-ray spectra of 117,119 Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7 Li(p,n) 7 Be reaction and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique was applied to observed capture γ-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119 Sn were obtained with the error of about 5% by using the standard capture cross sections of 197 Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture γ-ray spectra of 117,119 Sn were derived by unfolding the observed capture γ-ray pulse-height spectra. The calculations of capture cross sections and capture γ-ray spectra of 117,119 Sn were performed with the EMPIRE-II code. The calculated results were compared with the present experimental ones. (author)

  14. Bosonic Fradkin-Tseytlin equations unfolded

    Energy Technology Data Exchange (ETDEWEB)

    Shaynkman, O.V. [I.E.Tamm Theory Department, Lebedev Physical Institute,Leninski prospect 53, 119991, Moscow (Russian Federation)

    2016-12-22

    We test infinite-dimensional extension of algebra su(k,k) proposed by Fradkin and Linetsky as the candidate for conformal higher spin algebra. Adjoint and twisted-adjoint representations of su(k,k) on the space of this algebra are carefully explored. For k=2 corresponding unfolded system is analyzed and it is shown to encode Fradkin-Tseytlin equations for the set of all integer spins 1,2,… with infinite multiplicity.

  15. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies.

    Science.gov (United States)

    Kumar, Vijay; Prakash, Amresh; Pandey, Preeti; Lynn, Andrew M; Hassan, Md Imtaiyaz

    2018-05-18

    Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding

    NARCIS (Netherlands)

    Hageman, Jurre; Vos, Michel J.; van Waarde, Maria A. W. H.; Kampinga, Harm H.

    2007-01-01

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are

  17. Neutron energy spectra of sup 2 sup 5 sup 2 Cf, Am-Be source and of the D(d,n) sup 3 He reaction

    CERN Document Server

    Sang Tae Park

    2003-01-01

    The neutron energy spectrum of the following sources were measured using a fast neutron spectrometer with the NE-213 liquid scintillator: sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He reaction from a 3 MeV Pelletron accelerator in Tokyo Institute of Technology. The measured proton recoil pulse height data of sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He were unfolded using the mathematical program to obtain the neutron energy spectrum. The sup 2 sup 5 sup 2 Cf and Am-Be neutron energy spectra were measured and the results obtained showed a good agreement with the spectra usually published in the literature. The neutron energy spectrum from D(d,n) sup 3 He was measured and the results obtained also showed a good agreement with the calculation by time of flight (TOF) methods. (author)

  18. Measurement of neutron spectra in varied environments by the foil-activation method with arbitrary trials

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-12-01

    Neutron spectra have been measured by the foil-activation method in 13 different environments in and around the Sandia Pulsed Reactor, the White Sands Missile Range Fast Burst Reactor, and the Sandia Annular Core Research Reactor. The spectra were obtained by using the SANDII code in a manner that was not dependent on the initial trial. This altered technique is better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial-dependent methods. For some of the configurations, studies have also been made of how well the solution is determined in each energy region. The experimental methods and the techniques used in the analyses are thoroughly explained. 34 refs., 51 figs., 40 tabs

  19. AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Grinberg, Victoria [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, UMBC, Baltimore, MD 21250 (United States); Rothschild, Richard E., E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@mit.edu, E-mail: grinberg@space.mit.edu, E-mail: katja@milkyway.gsfc.nasa.gov, E-mail: rrothschild@ucsd.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA (United States)

    2016-03-01

    We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37 million counts in total for Cluster A and 39 million counts for Cluster B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes ∼1%; the most prominent is in the energy range 30–50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster B, via an iterative procedure we created the calibration tool hexBcorr for correcting any Cluster B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.

  20. Comparison of neutron spectrum unfolding codes

    International Nuclear Information System (INIS)

    Zijp, W.

    1979-02-01

    This final report contains a set of four ECN-reports. The first is dealing with the comparison of the neutron spectrum unfolding codes CRYSTAL BALL, RFSP-JUL, SAND II and STAY'SL. The other three present the results of calculations about the influence of statistical weights in CRYSTAL BALL, SAND II and RFSP-JUL

  1. STRANGE ATTRACTORS IN SYMMETRIC UNFOLDINGS OF A SINGULARITY WITH THREE-FOLD ZERO EIGENVALUE

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou

    2009-01-01

    In this paper, we study the Sil'nikov heteroclinic bifurcations, which display strange attractors, for the symmetric versal unfoldings of the singularity at the origin with a nilpotent Linear part and 3-jet, using the normal form, the blow-up and the ge-neralized Mel'nikov methods of heteroclinic orbits to two hyperbolic or nonhyperbolic equilibria in a high-dimensional space.

  2. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeiny, Badr A.

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ( 1DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  3. FERD and FERDOR type unfolding codes

    International Nuclear Information System (INIS)

    Burrus, W.R.

    1976-01-01

    FERD and FERDO are unfolding codes which were developed at the Neutron Physics Division of Oak Ridge National Laboratory in 1965 and 1966. FERDO variants such as FERDOR and FORIST have been widely used, and many useful supplementary procedures have been developed for neutron and gamma-ray spectroscopy and other diverse applications. Algorithms for the codes are discussed

  4. Equilibrium unfolding of A. niger RNase: pH dependence of chemical and thermal denaturation.

    Science.gov (United States)

    Kumar, Gundampati Ravi; Sharma, Anurag; Kumari, Moni; Jagannadham, Medicherla V; Debnath, Mira

    2011-08-01

    Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (A(MG1)) into another (I(MG2)).

  5. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  6. Unfolding and effective bandstructure calculations as discrete real- and reciprocal-space operations

    Energy Technology Data Exchange (ETDEWEB)

    Boykin, Timothy B., E-mail: boykin@ece.uah.edu [Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ajoy, Arvind [School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 (United States); Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard [Network for Computational Nanotechnology, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2016-06-15

    In recent years, alloy electronic structure calculations based on supercell Brillouin zone unfolding have become popular. There are a number of formulations of the method which on the surface might appear different. Here we show that a discrete real-space description, based on discrete Fourier transforms, is fully general. Furthermore, such an approach can more easily show the effects of alloy scattering. We present such a method for treating the random alloy problem. This treatment features straightforward mathematics and a transparent physical interpretation of the calculated effective (i.e., approximate) energy bands.

  7. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    Science.gov (United States)

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Unfolding of true distributions from experimental data distorted by detectors with finite resolutions

    International Nuclear Information System (INIS)

    Gagunashvili, N.D.

    1993-01-01

    A new procedure for unfolding the true distribution from experimental data distorted by a detector is proposed. For the given detector a result can be found by the least squares method, hence, without bias and involving minimal statistical errors. Stability of the result is achieved at the expense of its information content and/or using additional information on the shape of the distributions to be measured. The method may be applied for detectors with linear or nonlinear distortions. 8 refs.; 5 figs

  9. Model-independent separation of poorly resolved hypperfine split spectra by a linear combination method

    International Nuclear Information System (INIS)

    Nagy, D.L.; Dengler, J.; Ritter, G.

    1988-01-01

    A model-independent evaluation of the components of poorly resolved Moessbauer spectra based on a linear combination method is possible if there is a parameter as a function of which the shape of the individual components do not but their intensities do change and the dependence of the intensities on this parameter is known. The efficiency of the method is demonstrated on the example of low temperature magnetically split spectra of the high-T c superconductor YBa 2 (Cu 0.9 Fe 0 .1 ) 3 O 7-y . (author)

  10. Spectra of γ-rays from capture of 2 eV to 9 x 104 eV neutrons by 181Ta

    International Nuclear Information System (INIS)

    Stelts, M.L.

    Using new experimental techniques, the spectra of γ-rays from the capture of neutrons by 181 Ta were measured at the Livermore 100-MeV linac for neutrons from 2 eV to 9 x 10 4 eV with a (Ge(Li)-NaI) three-crystal spectrometer. Individual primary γ-ray lines were resolved to 1778-keV excitation in 182 Ta. Neutron resonances were resolved to 200-eV neutron energy. Data analysis techniques and codes were developed to extract positions and intensities of resolved transitions from the large data matrices accumulated in this experiment. Techniques were developed to unfold the unresolved γ-ray spectra using the simple response of the three-crystal spectrometer. The resolved transition data were used to place 110 states with spin and parity assignments in the 182 Ta level diagram below 1780-keV excitation. A set of 1240 E1 transition strengths were analyzed to extract 1.38 +- 0.11 degrees of freedom for the most likely chisquared fit to the distribution of widths. The E1 strength function was extracted for E/sub gamma/ = 4 to 6 MeV and compared with previous results. The γ-ray spectra for E/sub gamma/ = 1.5 to 6.1 MeV were unfolded for neutron energy groups between 20 and 9 x 10 4 eV. Below 5-MeV γ-ray energy no dependence of the spectral shape on neu []ron energy was observed. (30 figures, 4 tables) (auth)

  11. Unfolding the phenomenon of inter-rater agreement

    DEFF Research Database (Denmark)

    Slaug, Bjørn; Schilling, Oliver; Helle, Tina

    2011-01-01

    Objective: The overall objective was to unfold the phenomenon of inter-rater agreement: to identify potential sources of variation in agreement data and to explore how they can be statistically accounted for. The ultimate aim was to propose recommendations for in-depth examination of agreement, i...

  12. Generate tri-directional spectra-compatible time histories using HHT method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Xie, Wei-Chau, E-mail: xie@uwaterloo.ca; Pandey, Mahesh D.

    2016-11-15

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  13. Generate tri-directional spectra-compatible time histories using HHT method

    International Nuclear Information System (INIS)

    Li, Bo; Xie, Wei-Chau; Pandey, Mahesh D.

    2016-01-01

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  14. Sequence-dependent unfolding kinetics of DNA hairpins studied by nanopore force spectroscopy

    International Nuclear Information System (INIS)

    Renner, Stephan; Bessonov, Andrey; Simmel, Friedrich C; Gerland, Ulrich

    2010-01-01

    Nanopore force spectroscopy is used to study the unzipping kinetics of two DNA hairpin molecules with a 12 base pair long stem containing two contiguous stretches of six GC and six AT base pairs in interchanged order. Even though the thermodynamic stabilities of the two structures are nearly the same, they differ greatly in their unzipping kinetics. When the GC segment has to be broken before the AT segment, the unfolding rate is orders of magnitude smaller than in the opposite case. We also investigated hairpins with stem regions consisting only of AT or GC base pairs. The pure AT hairpins translocate much faster than the other hairpins, whereas the pure GC hairpins translocate on similar timescales to the hairpins with only an initial GC segment. For each hairpin, nanopore force spectroscopy is performed for different loading rates and the resulting unzipping distributions are mathematically transformed to a master curve that yields the unfolding rate as a function of applied voltage. This is compared with a stochastic model of the unfolding process for the two sequences for different voltages. The results can be rationalized in terms of the different natures of the free energy landscapes for the unfolding process.

  15. Highly Perturbed pKa Values in the Unfolded State of Hen Egg White Lysozyme

    OpenAIRE

    Bradley, John; O'Meara, Fergal; Farrell, Damien; Nielsen, Jens Erik

    2012-01-01

    The majority of pKa values in protein unfolded states are close to the amino acid model pKa values, thus reflecting the weak intramolecular interactions present in the unfolded ensemble of most proteins. We have carried out thermal denaturation measurements on the WT and eight mutants of HEWL from pH 1.5 to pH 11.0 to examine the unfolded state pKa values and the pH dependence of protein stability for this enzyme. The availability of accurate pKa values for the folded state of HEWL and separa...

  16. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye; Zhou, Ning; Shi, Junfeng; Pochapsky, Susan Sondej; Pochapsky, Thomas C.; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2015-01-01

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  17. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye

    2015-02-19

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  18. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Directory of Open Access Journals (Sweden)

    Ronghui ZHENG

    2017-12-01

    Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test

  19. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases

    Science.gov (United States)

    Vriend, Gert; Eijsink, Vincent

    1993-08-01

    Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cercus. Several new techniques have been developed to improve the model-building procedures. Also a model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability

  20. Analytical method of spectra calculations in the Bargmann representation

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz

    2014-01-01

    We formulate a universal method for solving an arbitrary quantum system which, in the Bargmann representation, is described by a system of linear equations with one independent variable, such as one- and multi-photon Rabi models, or N level systems interacting with a single mode of the electromagnetic field and their various generalizations. We explain three types of conditions that determine the spectrum and show their usage for two deformations of the Rabi model. We prove that the spectra of both models are just zeros of transcendental functions, which in one case are given explicitly in terms of confluent Heun functions. - Highlights: • Analytical method of spectrum determination in Bargmann representation is proposed. • Three types of conditions determining spectrum are identified. • Method to two generalizations of the Rabi system is applied

  1. Motional properties of unfolded ubiquitin: a model for a random coil protein

    Energy Technology Data Exchange (ETDEWEB)

    Wirmer, Julia [Johann Wolfgang GoeUniversityFrankfurt, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany); Peti, Wolfgang [Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology (United States); Schwalbe, Harald [Johann Wolfgang GoeUniversityFrankfurt, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany)], E-mail: schwalbe@nmr.uni-frankfurt.de

    2006-07-15

    The characterization of unfolded states of proteins has recently attracted considerable interest, as the residual structure present in these states may play a crucial role in determining their folding and misfolding behavior. Here, we investigated the dynamics in the denatured state of ubiquitin in 8 M urea at pH2. Under these conditions, ubiquitin does not have any detectable local residual structure, and uniform {sup 15}N relaxation rates along the sequence indicate the absence of motional restrictions caused by residual secondary structure and/or long-range interactions. A comparison of different models to predict relaxation data in unfolded proteins suggests that the subnanosecond dynamics in unfolded states depend on segmental motions only and do not show a dependence on the residue type but for proline and glycine residues.

  2. Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins.

    Science.gov (United States)

    Romero-Romero, Sergio; Costas, Miguel; Rodríguez-Romero, Adela; Alejandro Fernández-Velasco, D

    2015-08-28

    Temperature is one of the main variables that modulate protein function and stability. Thermodynamic studies of oligomeric proteins, the dominant protein natural form, have been often hampered because irreversible aggregation and/or slow reactions are common. There are no reports on the reversible equilibrium thermal unfolding of proteins composed of (β/α)8 barrel subunits, albeit this "TIM barrel" topology is one of the most abundant and versatile in nature. We studied the eponymous TIM barrel, triosephosphate isomerase (TIM), belonging to five species of different bacterial taxa. All of them were found to be catalytically efficient dimers. The three-dimensional structure of four enzymes was solved at high/medium resolution. Irreversibility and kinetic control were observed in the thermal unfolding of two TIMs, while for the other three the thermal unfolding was found to follow a two-state equilibrium reversible process. Shifts in the global stability curves of these three proteins are related to the organismal temperature range of optimal growth and modulated by variations in maximum stability temperature and in the enthalpy change at that temperature. Reversibility appears to correlate with the low isoelectric point, the absence of a residual structure in the unfolded state, small cavity volume in the native state, low conformational stability and a low melting temperature. Furthermore, the strong coupling between dimer dissociation and monomer unfolding may reduce aggregation and favour reversibility. It is therefore very thought-provoking to find that a common topological ensemble, such as the TIM barrel, can unfold/refold in the Anfinsen way, i.e. without the help of the cellular machinery.

  3. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.

    2005-01-01

    . Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that Delta K58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is I order of magnitude faster in Delta K58-beta(2)M than in wt-beta(2)m...... in the circulation of dialysis patients. This beta(2)M variant, Delta K58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)M...

  4. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  5. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  6. Considerably Unfolded Transthyretin Monomers Preceed and Exchange with Dynamically Structured Amyloid Protofibrils

    DEFF Research Database (Denmark)

    Groenning, Minna; Campos, Raul I; Hirschberg, Daniel

    2015-01-01

    describe an unexpectedly dynamic TTR protofibril structure which exchanges protomers with highly unfolded monomers in solution. The protofibrils only grow to an approximate final size of 2,900 kDa and a length of 70 nm and a comparative HXMS analysis of native and aggregated samples revealed a much higher...... average solvent exposure of TTR upon fibrillation. With SAXS, we reveal the continuous presence of a considerably unfolded TTR monomer throughout the fibrillation process, and show that a considerable fraction of the fibrillating protein remains in solution even at a late maturation state. Together......, these data reveal that the fibrillar state interchanges with the solution state. Accordingly, we suggest that TTR fibrillation proceeds via addition of considerably unfolded monomers, and the continuous presence of amyloidogenic structures near the protofibril surface offers a plausible explanation...

  7. A chemometric method for correcting FTIR spectra of biomaterials for interference from water in KBr discs

    Science.gov (United States)

    FTIR analysis of solid biomaterials by the familiar KBr disc technique is very often frustrated by water interference in the important protein (amide I) and carbohydrate (hydroxyl) regions of their spectra. A method was therefore devised that overcomes the difficulty and measures FTIR spectra of so...

  8. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  9. Measurement and analysis of neutron flux spectra in a neutronics mock-up of the HCLL test blanket module

    International Nuclear Information System (INIS)

    Klix, A.; Batistoni, P.; Boettger, R.; Lebrun-Grandie, D.; Fischer, U.; Henniger, J.; Leichtle, D.; Villari, R.

    2010-01-01

    Fast neutron and gamma-ray flux spectra and time-of-arrival spectra of slow neutrons have been measured in a neutronics mock-up of the European Helium-Cooled Lithium-Lead Test Blanket Module with the aim to validate nuclear cross-section data. The mock-up was irradiated with fusion peak neutrons from the DT neutron generator of the Technical University of Dresden. A well characterized cylindrical NE-213 scintillator was inserted into two positions in the LiPb/EUROFER assembly. Pulse height spectra from neutrons and gamma-rays were recorded from the NE-213 output. The spectra were then unfolded with experimentally obtained response matrices of the NE-213 detector. Time-of-arrival spectra of slow neutrons were measured with a 3 He counter placed in the mock-up, and the neutron generator was operated in pulsed mode. Monte Carlo calculations using the MCNP code and nuclear cross-section data from the JEFF-3.1.1 and FENDL-2.1 libraries were performed and the results are compared with the experimental results. A good agreement of measurement and calculation was found with some deviations in certain energy intervals.

  10. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage mini protein

    Science.gov (United States)

    Day, Ryan; Paschek, Dietmar; Garcia, Angel E.

    2012-01-01

    We study the unbiased folding/unfolding thermodynamics of the Trp-cage miniprotein using detailed molecular dynamics simulations of an all-atom model of the protein in explicit solvent, using the Amberff99SB force field. Replica-exchange molecular dynamics (REMD) simulations are used to sample the protein ensembles over a broad range of temperatures covering the folded and unfolded states, and at two densities. The obtained ensembles are shown to reach equilibrium in the 1 μs per replica timescale. The total simulation time employed in the calculations exceeds 100 μs. Ensemble averages of the fraction folded, pressure, and energy differences between the folded and unfolded states as a function of temperature are used to model the free energy of the folding transition, ΔG(P,T), over the whole region of temperature and pressures sampled in the simulations. The ΔG(P,T) diagram describes an ellipse over the range of temperatures and pressures sampled, predicting that the system can undergo pressure induced unfolding and cold denaturation at low temperatures and high pressures, and unfolding at low pressures and high temperatures. The calculated free energy function exhibits remarkably good agreement with the experimental folding transition temperature (Tf = 321 K), free energy and specific heat changes. However, changes in enthalpy and entropy are significantly different than the experimental values. We speculate that these differences may be due to the simplicity of the semi-empirical force field used in the simulations and that more elaborate force fields may be required to describe appropriately the thermodynamics of proteins. PMID:20408169

  11. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  12. A highly compliant protein native state with a spontaneous-like mechanical unfolding pathway

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Valpapuram, Immanuel; Camilloni, Carlo

    2012-01-01

    The mechanical properties of proteins and their force-induced structural changes play key roles in many biological processes. Previous studies have shown that natively folded proteins are brittle under tension, unfolding after small mechanical deformations, while partially folded intermediate...... states, such as molten globules, are compliant and can deform elastically a great amount before crossing the transition state barrier. Moreover, under tension proteins appear to unfold through a different sequence of events than during spontaneous unfolding. Here, we describe the response to force...... of the four-α-helix acyl-CoA binding protein (ACBP) in the low-force regime using optical tweezers and ratcheted molecular dynamics simulations. The results of our studies reveal an unprecedented mechanical behavior of a natively folded protein. ACBP displays an atypical compliance along two nearly orthogonal...

  13. Solution of Large Systems of Linear Equations in the Presence of Errors. A Constructive Criticism of the Least Squares Method

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1968-09-15

    From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra.

  14. Solution of Large Systems of Linear Equations in the Presence of Errors. A Constructive Criticism of the Least Squares Method

    International Nuclear Information System (INIS)

    Nygaard, K.

    1968-09-01

    From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra

  15. Gamma spectrometric methods for measuring plutonium

    International Nuclear Information System (INIS)

    Gunnink, R.

    1978-01-01

    Nondestructive analyses of plutonium can be made by detecting and measuring the gamma rays emitted by a sample. Although qualitative and semiquantitative assays can be performed with relative ease, only recently have methods been developed, using computer analysis techniques, that provide quantitative results. This paper reviews some new techniques developed for measuring plutonium. The features of plutonium gamma-ray spectra are reviewed and some of the computer methods used for spectrum analysis are discussed. The discussion includes a description of a powerful computer method of unfolding complex peak multiplets that uses the standard linear least-squares techniques of data analysis. This computer method is based on the generation of response profiles for the isotopes composing a plutonium sample and requires a description of the peak positions, relative intensities, and line shapes. The principles that plutonium isotopic measurements are based on are also developed, followed by illustrations of the measurement procedures as applied to the quantitative analysis of plutonium liquid and solid samples

  16. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.

    2009-01-01

    Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and catio......Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS......) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest......, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded...

  17. Conformational fluctuation dynamics of domain I of human serum albumin in the course of chemically and thermally induced unfolding using fluorescence correlation spectroscopy.

    Science.gov (United States)

    Yadav, Rajeev; Sengupta, Bhaswati; Sen, Pratik

    2014-05-22

    The present study elucidates the involvement of conformational fluctuation dynamics during chemically and thermally induced unfolding of human serum albumin (HSA) by fluorescence correlation spectroscopic (FCS) study, time-resolved fluorescence measurements, and circular dichroism (CD) spectroscopic methods. Two fluorescent probes, tetramethylrhodamine-5-maleimide (TMR) and N-(7-dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA) were used to selectively label the domain I of HSA through the reaction with cys-34 for these studies. The guanidine hydrochloride (GnHCl) induced global structural change of HSA is monitored through its hydrodynamic radius (r(H)) and CD response, which is found to be two step in nature. In FCS experiment, along with the diffusion time component we have observed an exponential relaxation time component (τ(R)) that has been ascribed to the concerted chain dynamics of HSA. Unlike in the global structural change, we found that the τ(R) value changes in a different manner in the course of the unfolding. The dependence of τ(R) on the concentration of GnHCl was best fitted with a four state model, indicating the involvement of two intermediate states during the unfolding process, which were not observed through the CD response and r(H) data. The fluorescence lifetime measurement also supports our observation of intermediate states during the unfolding of HSA. However, no such intermediate states were observed during thermally induced unfolding of HSA.

  18. The effect of a DeltaK280 mutation on the unfolded state of a microtubule-binding repeat in Tau.

    Directory of Open Access Journals (Sweden)

    Austin Huang

    Full Text Available Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW, samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2 in wild-type (WT tau and a DeltaK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and DeltaK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of beta-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates.

  19. COOLC, Ne-213 Liquid Scintillation Detector Neutron Spectra Unfolding

    International Nuclear Information System (INIS)

    1971-01-01

    1 - Nature of physical problem solved: COOLC is designed to calculate a neutron energy spectrum from a pulse-height spectrum produced by a detector system using the liquid scintillator NE-213. 2 - Method of solution: The program estimates the counts which would be observed in an ideal detector system having a response which is specified by the user. The solution implicitly takes into account the non-negativity of the desired neutron spectrum. The solution is obtained by finding a nearly optimal combination of slices through the spectrometer response functions such that their sum approximates the response of a channel of the ideal analyzer, and then uses the coefficients so determined to obtain an estimate of the desired neutron spectrum. 3 - Restrictions on the complexity of the problem: There are none noted

  20. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes

    African Journals Online (AJOL)

    High levels of oxLDL lead to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response (UPR), which tends to restore ER homeostasis but switches to apoptosis when ER stress is prolonged. In the present study the ...

  1. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes ...

    African Journals Online (AJOL)

    acer

    Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response. (UPR), which tends to ... in mnocyte/macrophage cell lines as evident of the activation/up-regulation of ER stress/UPR genes. Cholesterol does not seem to exert ... inflammation (Tiwari et al., 2008). One prominent feature of ...

  2. Application of the Oslo method to high resolution gamma spectra

    Science.gov (United States)

    Simon, A.; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.

    2015-10-01

    Hauser-Feshbach statistical model is a widely used tool for calculation of the reaction cross section, in particular for astrophysical processes. The HF model requires as an input an optical potential, gamma-strength function (GSF) and level density (LD) to properly model the statistical properties of the nucleus. The Oslo method is a well established technique to extract GSFs and LDs from experimental data, typically used for gamma-spectra obtained with scintillation detectors. Here, the first application of the Oslo method to high-resolution data obtained using the Ge detectors of the STARLITER setup at TAMU is discussed. The GSFs and LDs extracted from (p,d) and (p,t) reactions on 152154 ,Sm targets will be presented.

  3. Identification of an Unfolding Intermediate for a DNA Lesion Bypass Polymerase

    Science.gov (United States)

    Sherrer, Shanen M.; Maxwell, Brian A.; Pack, Lindsey R.; Fiala, Kevin A.; Fowler, Jason D.; Zhang, Jun; Suo, Zucai

    2012-01-01

    Sulfolobus solfataricusDNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C. PMID:22667759

  4. β-sheet-like formation during the mechanical unfolding of prion protein

    Science.gov (United States)

    Tao, Weiwei; Yoon, Gwonchan; Cao, Penghui; Eom, Kilho; Park, Harold S.

    2015-09-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrPC, whose misfolded form PrPSc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  5. β-sheet-like formation during the mechanical unfolding of prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Weiwei; Cao, Penghui; Park, Harold S., E-mail: parkhs@bu.edu [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Yoon, Gwonchan [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Eom, Kilho [Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2015-09-28

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP{sup C}, whose misfolded form PrP{sup Sc} can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  6. β-sheet-like formation during the mechanical unfolding of prion protein

    International Nuclear Information System (INIS)

    Tao, Weiwei; Cao, Penghui; Park, Harold S.; Yoon, Gwonchan; Eom, Kilho

    2015-01-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP C , whose misfolded form PrP Sc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220

  7. Neutron response matrix for unfolding NE-213 measurements to 21 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Johnson, R.H.

    1976-01-01

    A neutron response matrix from measured neutron responses of NE-213 in the energy range of 0.2 to 22 MeV is presented. An interpolation scheme was used to construct an 81-column matrix from the data of Verbinski, Burrus, Love, Zobel, and Hill. As a test of the new response matrix, the Cf-252 neutron spectrum was measured and unfolded using the new response matrix and the FORIST unfolding code. The spectrum agrees well with previous measurements at lower energies, while providing new information above 8 MeV

  8. Generate floor response spectra, Part 2: Response spectra for equipment-structure resonance

    International Nuclear Information System (INIS)

    Li, Bo; Jiang, Wei; Xie, Wei-Chau; Pandey, Mahesh D.

    2015-01-01

    Highlights: • The concept of tRS is proposed to deal with tuning of equipment and structures. • Established statistical approaches for estimating tRS corresponding to given GRS. • Derived a new modal combination rule from the theory of random vibration. • Developed efficient and accurate direct method for generating floor response spectra. - Abstract: When generating floor response spectra (FRS) using the direct spectra-to-spectra method developed in the companion paper, probability distribution of t-response spectrum (tRS), which deals with equipment-structure resonance or tuning, corresponding to a specified ground response spectrum (GRS) is required. In this paper, simulation results using a large number of horizontal and vertical ground motions are employed to establish statistical relationships between tRS and GRS. It is observed that the influence of site conditions on horizontal statistical relationships is negligible, whereas the effect of site conditions on vertical statistical relationships cannot be ignored. Considering the influence of site conditions, horizontal statistical relationship suitable for all site conditions and vertical statistical relationships suitable for hard sites and soft sites, respectively, are established. The horizontal and vertical statistical relationships are suitable to estimate tRS for design spectra in USNRC R.G. 1.60 and NUREG/CR-0098, Uniform Hazard Spectra (UHS) in Western North America (WNA), or any GRS falling inside the valid coverage of the statistical relationship. For UHS with significant high frequency spectral accelerations, such as UHS in Central and Eastern North America (CENA), an amplification ratio method is proposed to estimate tRS. Numerical examples demonstrate that the statistical relationships and the amplification ratio method are acceptable to estimate tRS for given GRS and to generate FRS using the direct method in different practical situations.

  9. Generate floor response spectra, Part 2: Response spectra for equipment-structure resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo, E-mail: b68li@uwaterloo.ca; Jiang, Wei, E-mail: w46jiang@uwaterloo.ca; Xie, Wei-Chau, E-mail: xie@uwaterloo.ca; Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca

    2015-11-15

    Highlights: • The concept of tRS is proposed to deal with tuning of equipment and structures. • Established statistical approaches for estimating tRS corresponding to given GRS. • Derived a new modal combination rule from the theory of random vibration. • Developed efficient and accurate direct method for generating floor response spectra. - Abstract: When generating floor response spectra (FRS) using the direct spectra-to-spectra method developed in the companion paper, probability distribution of t-response spectrum (tRS), which deals with equipment-structure resonance or tuning, corresponding to a specified ground response spectrum (GRS) is required. In this paper, simulation results using a large number of horizontal and vertical ground motions are employed to establish statistical relationships between tRS and GRS. It is observed that the influence of site conditions on horizontal statistical relationships is negligible, whereas the effect of site conditions on vertical statistical relationships cannot be ignored. Considering the influence of site conditions, horizontal statistical relationship suitable for all site conditions and vertical statistical relationships suitable for hard sites and soft sites, respectively, are established. The horizontal and vertical statistical relationships are suitable to estimate tRS for design spectra in USNRC R.G. 1.60 and NUREG/CR-0098, Uniform Hazard Spectra (UHS) in Western North America (WNA), or any GRS falling inside the valid coverage of the statistical relationship. For UHS with significant high frequency spectral accelerations, such as UHS in Central and Eastern North America (CENA), an amplification ratio method is proposed to estimate tRS. Numerical examples demonstrate that the statistical relationships and the amplification ratio method are acceptable to estimate tRS for given GRS and to generate FRS using the direct method in different practical situations.

  10. Novel absorptivity centering method utilizing normalized and factorized spectra for analysis of mixtures with overlapping spectra in different matrices using built-in spectrophotometer software.

    Science.gov (United States)

    Lotfy, Hayam Mahmoud; Omran, Yasmin Rostom

    2018-07-05

    A novel, simple, rapid, accurate, and economical spectrophotometric method, namely absorptivity centering (a-Centering) has been developed and validated for the simultaneous determination of mixtures with partially and completely overlapping spectra in different matrices using either normalized or factorized spectrum using built-in spectrophotometer software without a need of special purchased program. Mixture I (Mix I) composed of Simvastatin (SM) and Ezetimibe (EZ) is the one with partial overlapping spectra formulated as tablets, while mixture II (Mix II) formed by Chloramphenicol (CPL) and Prednisolone acetate (PA) is that with complete overlapping spectra formulated as eye drops. These procedures do not require any separation steps. Resolution of spectrally overlapping binary mixtures has been achieved getting recovered zero-order (D 0 ) spectrum of each drug, then absorbance was recorded at their maxima 238, 233.5, 273 and 242.5 nm for SM, EZ, CPL and PA, respectively. Calibration graphs were established with good correlation coefficients. The method shows significant advantages as simplicity, minimal data manipulation besides maximum reproducibility and robustness. Moreover, it was validated according to ICH guidelines. Selectivity was tested using laboratory-prepared mixtures. Accuracy, precision and repeatability were found to be within the acceptable limits. The proposed method is good enough to be applied to an assay of drugs in their combined formulations without any interference from excipients. The obtained results were statistically compared with those of the reported and official methods by applying t-test and F-test at 95% confidence level concluding that there is no significant difference with regard to accuracy and precision. Generally, this method could be used successfully for the routine quality control testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A simple method for conversion of airborne gamma-ray spectra to ground level doses

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Bargholz, Kim

    1996-01-01

    A new and simple method for conversion of airborne NaI(Tl) gamma-ray spectra to dose rates at ground level has been developed. By weighting the channel count rates with the channel numbers a spectrum dose index (SDI) is calculated for each spectrum. Ground level dose rates then are determined...... by multiplying the SDI by an altitude dependent conversion factor. The conversion factors are determined from spectra based on Monte Carlo calculations. The results are compared with measurements in a laboratory calibration set-up. IT-NT-27. June 1996. 27 p....

  12. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji; Koizumi, Nozomu

    2012-01-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  13. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  14. Detection and characterization of partially unfolded oligomers of the SH3 domain of α-Spectrin

    NARCIS (Netherlands)

    Casares, S.; Sadqi, M.; López-Mayorga, O.; Conejero-Lara, F.; van Nuland, N.A.J.

    2004-01-01

    For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of α-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning

  15. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  16. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells.

    Science.gov (United States)

    Martins, Ana Sofia; Alves, Inês; Helguero, Luisa; Domingues, Maria Rosário; Neves, Bruno Miguel

    2016-11-01

    The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.

  17. Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum-mechanical methods

    DEFF Research Database (Denmark)

    Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel

    2011-01-01

    Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradiol...

  18. Measurement of jet spectra in Pb–Pb collisions at √(sNN)=2.76TeV with the ALICE detector at the LHC

    International Nuclear Information System (INIS)

    Verweij, Marta

    2013-01-01

    We report a measurement of transverse momentum spectra of jets detected with the ALICE detector in Pb–Pb collisions at √(s NN )=2.76TeV. Jets are reconstructed from charged particles using the anti-k T jet algorithm. The background from soft particle production is determined for each event and subtracted. The remaining influence of underlying event fluctuations is quantified by embedding different probes into heavy-ion data. The reconstructed transverse momentum spectrum is corrected for background fluctuations by unfolding. We compare the inclusive jet spectra reconstructed with R=0.2 and R=0.3 for different centrality classes and compare the jet yield in Pb–Pb and pp events

  19. Clinical evaluation of coronary territory map by using unfolded map of Tl-201 myocardial SPECT

    International Nuclear Information System (INIS)

    Uehara, Toshiisa; Nishimura, Tsunehiko; Katafuchi, Tetsuro; Yamagami, Hidetoshi; Kumita, Shinichirou; Hayashida, Kohei; Hayashi, Makoto

    1990-01-01

    Coronary territory map was developed on unfolded map of exercise Tl-201 myocardial SPECT. Each coronary territory was determined by summing the each unfolded map of 54 cases of single vessel disease respectively, and standardizing with normal pattern obtained from normal patients. The diagnostic accuracy of coronary territory map to identify the diseased coronary artery was analyzed in 104 clinical cases and was compared with that of planar and SPECT visual diagnosis, simple unfolded map (raw map) and extent and severity map. The results were as follows. (1) Territory map showed excellent diagnostic accuracy in single or double vessel disease, especially in diagnosis of left circumflex coronary artery lesion. (2) In triple vessel disease, the diagnostic accuracy of territory map or other unfolded maps was 30% at best, and was inferior to planar or SPECT visual analysis. The cause of this inferiority seemed that the quantitatively analyzed map had no information about the degree of Tl-uptake into lung or myocardium, which give useful information in visual diagnosis. (3) The diagnostic agreement ratio in two observers was the highest in territory map diagnosis, so that the territory map diagnosis seemed to be the most objective one. (4) The unfolded map diagnosis with apical display obtained from long-axis tomogram was useful to diagnose left anteior descending coronary (LAD) lesion, which improve not only the sensitivity of LAD but also specificity of right coronary artery single vessel disease. (author)

  20. Inter-regulation of the unfolded protein response and auxin signaling

    Czech Academy of Sciences Publication Activity Database

    Chen, Y.N.; Aung, K.; Rolčík, Jakub; Walicki, K.; Friml, J.; Brandizzi, F.

    2014-01-01

    Roč. 77, č. 1 (2014), s. 97-107 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : endoplasmic reticulum stress * unfolded protein response * auxin response Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  1. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    Science.gov (United States)

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Comparison of methods for H*(10) calculation from measured LaBr3(Ce) detector spectra.

    Science.gov (United States)

    Vargas, A; Cornejo, N; Camp, A

    2018-07-01

    The Universitat Politecnica de Catalunya (UPC) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) have evaluated methods based on stripping, conversion coefficients and Maximum Likelihood Estimation using Expectation Maximization (ML-EM) in calculating the H*(10) rates from photon pulse-height spectra acquired with a spectrometric LaBr 3 (Ce)(1.5″ × 1.5″) detector. There is a good agreement between results of the different H*(10) rate calculation methods using the spectra measured at the UPC secondary standard calibration laboratory in Barcelona. From the outdoor study at ESMERALDA station in Madrid, it can be concluded that the analysed methods provide results quite similar to those obtained with the reference RSS ionization chamber. In addition, the spectrometric detectors can also facilitate radionuclide identification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Unfolding intermediates of the mutant His-107-Tyr of human ...

    Indian Academy of Sciences (India)

    Srabani Taraphder

    We present in this article a detailed analysis of representative structures and proton transfer activity of .... cal molecular dynamics simulations to identify potential unfolding ... clustering parameters to carry out K-means cluster- ing of different ...

  4. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul [Department of Physics, University at Buffalo, Buffalo, New York 14260 (United States)

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  5. A new method to evaluate neutron spectra for bnct

    International Nuclear Information System (INIS)

    Martin Hernandez, Guido

    2001-01-01

    This paper deals with the development of a method to evaluate neutron spectra for BNCT. Physical dose deposition calculations for different neutron energies, ranging from thermal to fast, were performed. A matrix, containing dose for each energy and position in the beam center line was obtained. MCNP 4B and Snyder's head model were used. A simple computer code containing the matrix calculates the dose for each point in the beam center line depending on the input energy spectrum to be evaluated. The output of this program is the dose distribution in the brain and the dose gain, that is the ratio between dose to tumor and maximum dose to healthy tissue maximum

  6. The Unfolding MD Simulations of Cyclophilin: Analyzed by Surface Contact Networks and Their Associated Metrics

    Science.gov (United States)

    Roy, Sourav; Basu, Sankar; Dasgupta, Dipak; Bhattacharyya, Dhananjay; Banerjee, Rahul

    2015-01-01

    Currently, considerable interest exists with regard to the dissociation of close packed aminoacids within proteins, in the course of unfolding, which could result in either wet or dry moltenglobules. The progressive disjuncture of residues constituting the hydrophobic core ofcyclophilin from L. donovani (LdCyp) has been studied during the thermal unfolding of the molecule, by molecular dynamics simulations. LdCyp has been represented as a surface contactnetwork (SCN) based on the surface complementarity (Sm) of interacting residues within themolecular interior. The application of Sm to side chain packing within proteins make it a very sensitive indicator of subtle perturbations in packing, in the thermal unfolding of the protein. Network based metrics have been defined to track the sequential changes in the disintegration ofthe SCN spanning the hydrophobic core of LdCyp and these metrics prove to be highly sensitive compared to traditional metrics in indicating the increased conformational (and dynamical) flexibility in the network. These metrics have been applied to suggest criteria distinguishing DMG, WMG and transition state ensembles and to identify key residues involved in crucial conformational/topological events during the unfolding process. PMID:26545107

  7. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2014-01-01

    Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.

  8. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method

    Science.gov (United States)

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-01

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  9. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    International Nuclear Information System (INIS)

    Reed, D.L.; Symons, C.R.

    1965-01-01

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  10. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D L; Symons, C R [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-01-15

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  11. Use of orthonormal polynomial expansion method to the description of the energy spectra of biological liquids

    International Nuclear Information System (INIS)

    Bogdanova, N.B.; Todorov, S.T.; Ososkov, G.A.

    2015-01-01

    Orthonormal polynomial expansion method (OPEM) is applied to the data obtained by the method of energy spectra to the liquid of the biomass of wheat in the case when herbicides are used. Since the biomass of a biological object contains liquid composed mainly of water, the method of water spectra is applicable to this case as well. For comparison, the similar data obtained from control sample consisting of wheat liquid without the application of herbicides are shown. The total variance OPEM is involved including errors in both dependent and independent variables. Special criteria are used for evaluating the optimal polynomial degree and the number of iterations. The presented numerical results show good agreement with the experimental data. The developed analysis frame is of interest for future analysis in theoretical ecology.

  12. Directional Unfolded Source Term (DUST) for Compton Cameras.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Mitchell, Dean J.; Horne, Steven M.; O' Brien, Sean; Thoreson, Gregory G

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  13. Geometrically engineering the standard model: Locally unfolding three families out of E8

    International Nuclear Information System (INIS)

    Bourjaily, Jacob L.

    2007-01-01

    This paper extends and builds upon the results of [J. L. Bourjaily, arXiv:0704.0444.], in which we described how to use the tools of geometrical engineering to deform geometrically engineered grand unified models into ones with lower symmetry. This top-down unfolding has the advantage that the relative positions of singularities giving rise to the many 'low-energy' matter fields are related by only a few parameters which deform the geometry of the unified model. And because the relative positions of singularities are necessary to compute the superpotential, for example, this is a framework in which the arbitrariness of geometrically engineered models can be greatly reduced. In [J. L. Bourjaily, arXiv:0704.0444.], this picture was made concrete for the case of deforming the representations of an SU 5 model into their standard model content. In this paper we continue that discussion to show how a geometrically engineered 16 of SO 10 can be unfolded into the standard model, and how the three families of the standard model uniquely emerge from the unfolding of a single, isolated E 8 singularity

  14. Structural changes during the unfolding of Bovine serum albumin

    Indian Academy of Sciences (India)

    The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA ...

  15. Optimization of expression and purification of human mortalin (Hsp70): Folding/unfolding analysis

    Science.gov (United States)

    Khan, Mohd Shahnawaz; Ahmed, Anwar; Tabrez, Shams; Islam, Badar ul; Rabbani, Nayyar; Malik, Ajamaluddin; Ismael, Mohamad A.; Alsenaidy, Mohammad A.; Alsenaidy, Abdulrahman M.

    2017-12-01

    Human mortalin is a Hsp70 mitochondrial protein that plays an essential role in the biogenesis of mitochondria. The deregulation of mortalin expression and its functions could lead to several age-associated disorders and some types of cancers. In the present study, we optimized the expression and purification of recombinant human mortalin by the use of two-step chromatography. Low temperature (18 °C) and 0.5 mM (IPTG) was required for optimum mortalin expression. Chaperone activity of mortalin was assessed by the citrate synthase and insulin protection assay, which suggested their protective role in mitochondria. Folding and unfolding assessments of mortalin were carried out in the presence of guanidine hydrochloride (GdnHCl) by intrinsic fluorescence measurement, ANS (8-analino 1-nephthlene sulfonic acid) binding and CD (circular dichroism) analysis. Under denaturing conditions, mortalin showed decrease in tryptophan fluorescence intensity along with a red shift of 11 nm. Moreover, ANS binding studies illustrated decrease in hydrophobicity. CD measurement of mortalin showed a predominant helical structure. However, the secondary structure was lost at low concentration of GdnHCl (1 M). We present a simple and robust method to produce soluble mortalin and warranted that chaperones are also susceptible to unfolding and futile to maintain protein homeostasis.

  16. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  17. Improving interpretation of infrared spectra for OM characterization by subtraction of spectra from incinerated samples

    Science.gov (United States)

    Ellerbrock, Ruth H.; Gerke, Horst H.; Leue, Martin

    2017-04-01

    Non-destructive methods such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) have been applied to characterize organic matter (OM) at intact structural surfaces among others. However, it is often difficult to distinguish effects of organic components on DRIFT signal intensities from those of mineral components. The objective of this study was to re-evaluate DRIFT spectra from intact earthworm burrow walls and coated cracks to improve the interpretation of C-H and C=O bands. We compared DRIFT and transmission Fourier transform infrared (FTIR) spectra of entire samples that were from the same pedogenetic soil horizon, but different in mineral composition and texture (i.e., glacial till versus loess). Spectra of incinerated samples were subtracted from the original spectra. Transmission FTIR and DRIFT spectra were almost identical for entire soil samples. However, the DRIFT spectra were affected by the bulk mode bands (i.e., wavenumbers 2000 to 1700 cm-1) that affected spectral resolution and reproducibility. The ratios between C-H and C=O band intensities as indicator for OM quality obtained with DRIFT were smaller than those obtained from transmission FTIR. A spectral subtraction procedure was found to reduce effects of mineral absorption bands on DRIFT spectra allowing an improved interpretation. DRIFT spectroscopy as a non-destructive method for analyzing OM composition at intact surfaces in structured soils could be calibrated with information obtained with the more detailed transmission FTIR and complementary methods.

  18. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  19. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  20. A new automated assign and analysing method for high-resolution rotationally resolved spectra using genetic algorithms

    NARCIS (Netherlands)

    Meerts, W.L.; Schmitt, M.

    2006-01-01

    This paper describes a numerical technique that has recently been developed to automatically assign and fit high-resolution spectra. The method makes use of genetic algorithms (GA). The current algorithm is compared with previously used analysing methods. The general features of the GA and its

  1. Nonintegrability of the unfolding of the fold-Hopf bifurcation

    Science.gov (United States)

    Yagasaki, Kazuyuki

    2018-02-01

    We consider the unfolding of the codimension-two fold-Hopf bifurcation and prove its meromorphic nonintegrability in the meaning of Bogoyavlenskij for almost all parameter values. Our proof is based on a generalized version of the Morales-Ramis-Simó theory for non-Hamiltonian systems and related variational equations up to second order are used.

  2. Unfolding measurement of the atmospheric muon neutrino spectrum using IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Mathis; Ruhe, Tim; Meier, Maximilian; Schlunder, Philipp; Menne, Thorben; Fuchs, Tomasz [Dept. of Physics, Technical University of Dortmund, 44227 Dortmund (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a cubic kilometer neutrino observatory located at the geographic South Pole. With its huge volume, the detector is well suited for measurements of the atmospheric muon neutrino energy spectrum. Over the last years, several unfolding analyses for single years were able to provide model independent measurements for the northern hemisphere in an energy region between 200 GeV and 3.2 PeV. In this talk, the extension of the analyses to four additional years of data is presented. With this significant enlargement of the data basis, it is possible to reanalyze the full northern hemisphere with smaller statistical errors. Moreover, the spectrum can be unfolded in several small zenith bands. Measurements of the energy spectrum for different zenith regions provide further information on the composition and the shape of the flux.

  3. Folding and unfolding of large-size shell construction for application in Earth orbit

    Science.gov (United States)

    Kondyurin, Alexey; Pestrenina, Irena; Pestrenin, Valery; Rusakov, Sergey

    2016-07-01

    A future exploration of space requires a technology of large module for biological, technological, logistic and other applications in Earth orbits [1-3]. This report describes the possibility of using large-sized shell structures deployable in space. Structure is delivered to the orbit in the spaceship container. The shell is folded for the transportation. The shell material is either rigid plastic or multilayer prepreg comprising rigid reinforcements (such as reinforcing fibers). The unfolding process (bringing a construction to the unfolded state by loading the internal pressure) needs be considered at the presence of both stretching and bending deformations. An analysis of the deployment conditions (the minimum internal pressure bringing a construction from the folded state to the unfolded state) of large laminated CFRP shell structures is formulated in this report. Solution of this mechanics of deformable solids (MDS) problem of the shell structure is based on the following assumptions: the shell is made of components whose median surface has a reamer; in the separate structural element relaxed state (not stressed and not deformed) its median surface coincides with its reamer (this assumption allows choose the relaxed state of the structure correctly); structural elements are joined (sewn together) by a seam that does not resist rotation around the tangent to the seam line. The ways of large shell structures folding, whose median surface has a reamer, are suggested. Unfolding of cylindrical, conical (full and truncated cones), and large-size composite shells (cylinder-cones, cones-cones) is considered. These results show that the unfolding pressure of such large-size structures (0.01-0.2 atm.) is comparable to the deploying pressure of pneumatic parts (0.001-0.1 atm.) [3]. It would be possible to extend this approach to investigate the unfolding process of large-sized shells with ruled median surface or for non-developable surfaces. This research was

  4. Kernel principal component analysis residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman spectra

    International Nuclear Information System (INIS)

    Li, Boyan; Calvet, Amandine; Casamayou-Boucau, Yannick; Ryder, Alan G.

    2016-01-01

    A new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs. The process worked by first implementing kernel PCA (kPCA) on all the Raman mapping data and second accurately estimating the inter- and intra-spectrum noise to generate two threshold values. CRA identification was then achieved by using the threshold values to evaluate the residuals for each spectrum and assess if a CRA was present. CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the CRA contaminated spectrum. This best fit spectrum then replaced the CRA contaminated spectrum in the dataset. KPCARD efficacy was demonstrated by using simulated data and real Raman spectra collected from solid-state materials. The results showed that KPCARD was fast ( 1 million) Raman datasets. - Highlights: • New rapid, automatable method for cosmic ray artifact correction of Raman spectra. • Uses combination of kernel PCA and noise estimation for artifact identification. • Implements a best fit spectrum replacement correction approach.

  5. General and efficient method for calculating modulation ressponses and noise spectra of active semiconductor waveguides

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We present a theoretical method for obtaining small-signal responses in a spatially resolved active semiconductor waveguide including finite end-facet reflectivities and amplified spontaneous emission. RF-modulation responses and output noise spectra of an SOA are shown....

  6. Comparison between simplified load spectra in accordance with Germanische Lloyd guidelines, and load spectra derived from time domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, M [Aerodyn Energiesysteme gmbH, Rendsburg (Germany)

    1996-09-01

    The Germanische Lloyd guideline allows calculations of load spectra in two fundamentally different ways. In the case of the so-called `simplified load spectra` the maximum amplitude of fluctuation of a load component is formed as {+-}75% of the average value of the purely aerodynamic loads of this component at rated wind conditions, together with an overlay of mass-related loads. The second method allowed in the GL guideline is the calculation of load spectra from simulation results in the time domain. For a number of average wind speeds the time-dependent characteristics of the load components are calculated taking account of the natural spatial turbulence of the wind. These are converted into load spectra using the rainflow method. In a parametric study the load spectra are calculated according to both methods and compared. The calculations are performed for turbines with rated powers of 100 kW to 2000 kW, with two and three blades, and also for stall-controlled and pitch-controlled turbines. The calculated load spectra are compared with each by means of 1 P fatigue equivalent load spectra. The influence of individual parameters is presented, as is the validity of the simplified load spectra. (au)

  7. An innovative method for extracting isotopic information from low-resolution gamma spectra

    International Nuclear Information System (INIS)

    Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.

    1998-01-01

    A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, 137 Cs, and 133 Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied

  8. Reconstruction of X-rays spectra of clinical linear accelerators using the generalized simulated annealing method

    International Nuclear Information System (INIS)

    Manrique, John Peter O.; Costa, Alessandro M.

    2016-01-01

    The spectral distribution of megavoltage X-rays used in radiotherapy departments is a fundamental quantity from which, in principle, all relevant information required for radiotherapy treatments can be determined. To calculate the dose delivered to the patient who make radiation therapy, are used treatment planning systems (TPS), which make use of convolution and superposition algorithms and which requires prior knowledge of the photon fluence spectrum to perform the calculation of three-dimensional doses and thus ensure better accuracy in the tumor control probabilities preserving the normal tissue complication probabilities low. In this work we have obtained the photon fluence spectrum of X-ray of the SIEMENS ONCOR linear accelerator of 6 MV, using an character-inverse method to the reconstruction of the spectra of photons from transmission curves measured for different thicknesses of aluminum; the method used for reconstruction of the spectra is a stochastic technique known as generalized simulated annealing (GSA), based on the work of quasi-equilibrium statistic of Tsallis. For the validation of the reconstructed spectra we calculated the curve of percentage depth dose (PDD) for energy of 6 MV, using Monte Carlo simulation with Penelope code, and from the PDD then calculate the beam quality index TPR_2_0_/_1_0. (author)

  9. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  10. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M.; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E.

    2017-08-01

    The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.

  11. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  12. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A.

    Science.gov (United States)

    Mayo, S L; Baldwin, R L

    1993-11-05

    Amide (NH) proton exchange rates were measured in 0.0 to 0.7 M guanidinium chloride (GdmCl) for 23 slowly exchanging peptide NH protons of ribonuclease A (RNase A) at pH* 5.5 (uncorrected pH measured in D2O), 34 degrees C. The purpose was to find out whether GdmCl induces exchange through binding to exchange intermediates that are partly or wholly unfolded. It was predicted that, when the logarithm of the exchange rate is plotted as a function of the molarity of GdmCl, the slope should be a measure of the amount of buried surface area exposed to GdmCl in the exchange intermediate. The results indicate that these concentrations of GdmCl do induce exchange by means of a partial unfolding mechanism for all 23 protons; this implies that exchange reactions can be used to study the unfolding and stability of local regions. Of the 23 protons, nine also show a second mechanism of exchange at lower concentrations of GdmCl, a mechanism that is nearly independent of GdmCl concentration and is termed "limited structural fluctuation."

  13. Redox Thermodynamics of Cytochromes c Subjected to Urea Induced Unfolding

    NARCIS (Netherlands)

    Monari, S.; Ranieri, A.; Di Rocco, G.; van der Zwan, G.; Peressini, S.; Tavagnacco, C.; Millo, D.; Borsari, M.

    2009-01-01

    The thermodynamics of the electron transfer (ET) process for beef heart and yeast cytochromes c and the Lys72Ala/Lys73Ala/Lys79Ala mutant of the latter species subjected to progressive urea-induced unfolding was determined electrochemically. The results indicate the presence of at least three

  14. High-resolution pyrimidine- and ribose-specific 4D HCCH-COSY spectra of RNA using the filter diagonalization method

    International Nuclear Information System (INIS)

    Douglas, Justin T.; Latham, Michael P.; Armstrong, Geoffrey S.; Bendiak, Brad; Pardi, Arthur

    2008-01-01

    The NMR spectra of nucleic acids suffer from severe peak overlap, which complicates resonance assignments. 4D NMR experiments can overcome much of the degeneracy in 2D and 3D spectra; however, the linear increase in acquisition time with each new dimension makes it impractical to acquire high-resolution 4D spectra using standard Fourier transform (FT) techniques. The filter diagonalization method (FDM) is a numerically efficient algorithm that fits the entire multi-dimensional time-domain data to a set of multi-dimensional oscillators. Selective 4D constant-time HCCH-COSY experiments that correlate the H5-C5-C6-H6 base spin systems of pyrimidines or the H1'-C1'-C2'-H2' spin systems of ribose sugars were acquired on the 13 C-labeled iron responsive element (IRE) RNA. FDM-processing of these 4D experiments recorded with only 8 complex points in the indirect dimensions showed superior spectral resolution than FT-processed spectra. Practical aspects of obtaining optimal FDM-processed spectra are discussed. The results here demonstrate that FDM-processing can be used to obtain high-resolution 4D spectra on a medium sized RNA in a fraction of the acquisition time normally required for high-resolution, high-dimensional spectra

  15. Using the SAND-II and MLM methods to reconstruct fast neutron spectra

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1981-01-01

    The reconstruction of fast neutron spectra from measured reaction rates may be reduced to the solution of Fredholm's integral equation of the first kind. This problem falls in the category of incorrectly formulated problems, and so additional information is required concerning the unknown function i.e. concerning the differential energy dependence of the neutron, flux density sup(phi)(E). There are various methods for seeking a solution to the problem as formulated above. One of the best-known methods used in the USSR is the maximum likelihood method (MLM) (or directional difference method (DDM)), whereas SAND-II is commonly used abroad. The purpose of this paper is to compare the MLM and SAND-II methods, taking as an example the processing of measurement data which were obtained in the B-2 beam line at the BR-10 reactor in order to determine the composition of shielding for a fast reactor

  16. Common features in the unfolding and misfolding of PDZ domains and beyond: the modulatory effect of domain swapping and extra-elements.

    Science.gov (United States)

    Murciano-Calles, Javier; Güell-Bosch, Jofre; Villegas, Sandra; Martinez, Jose C

    2016-01-12

    PDZ domains are protein-protein interaction modules sharing the same structural arrangement. To discern whether they display common features in their unfolding/misfolding behaviour we have analyzed in this work the unfolding thermodynamics, together with the misfolding kinetics, of the PDZ fold using three archetypical examples: the second and third PDZ domains of the PSD95 protein and the Erbin PDZ domain. Results showed that all domains passed through a common intermediate, which populated upon unfolding, and that this in turn drove the misfolding towards worm-like fibrillar structures. Thus, the unfolding/misfolding behaviour appears to be shared within these domains. We have also analyzed how this landscape can be modified upon the inclusion of extra-elements, as it is in the nNOS PDZ domain, or the organization of swapped species, as happens in the second PDZ domain of the ZO2 protein. Although the intermediates still formed upon thermal unfolding, the misfolding was prevented to varying degrees.

  17. High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Seshasayee Aswin Sai Narain

    2005-03-01

    Full Text Available Abstract Background Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is known to fold within 4 ns. Results High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein have been carried out in explicit water using the OPLS-AA force-field incorporated in the program GROMACS. The radius of gyration (Rg and Root Mean Square Deviation (RMSD have been used as order parameters to follow the unfolding process. Distributions of Rg were used to identify ensembles. Conclusion Three ensembles could be identified. While the native-state ensemble shows an Rg distribution that is slightly skewed, the second ensemble, which is presumably the Transition State Ensemble (TSE, shows an excellent fit. The denatured ensemble shows large fluctuations, but a Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative structures from each of these ensembles are presented here.

  18. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    International Nuclear Information System (INIS)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the work of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry

  19. Mean centering of ratio spectra and successive derivative ratio spectrophotometric methods for determination of isopropamide iodide, trifluoperazine hydrochloride and trifluoperazine oxidative degradate

    Directory of Open Access Journals (Sweden)

    Maha M. Abdelrahman

    2016-09-01

    Full Text Available Two sensitive, selective and precise stability indicating methods for the determination of isopropamide iodide (ISO, trifluoperazine hydrochloride (TPZ and trifluoperazine oxidative degradate (DEG were developed and validated. Method A is a successive derivative ratio spectrophotometric one, which depends on the successive derivative of ratio spectra in two steps using 0.1 N HCl as a solvent and measuring TPZ at 250.4 and 257.2 nm, ISO at 223 and 228 nm and DEG at 210.6, 213 and 270.2 nm. Method B is mean centering of ratio spectra which depends on using the mean centered ratio spectra in two successive steps and measuring the mean centered values of the second ratio spectra at 322, 355 and 339 nm for TPZ, ISO and DEG, respectively. Factors affecting the developed methods were studied and optimized, moreover, they have been validated as per ICH guidelines and the results demonstrated that the suggested methods are reliable, reproducible and suitable for routine use with short analysis time. Statistical analysis of the two developed methods with the reported one using F- and Student’s t-test showed no significant difference regarding accuracy and precision.

  20. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  1. One photopeaks' analysis of gamma spectra for the minimum square method through one data processing system

    International Nuclear Information System (INIS)

    Baez Pedrajo, A.B.

    1974-01-01

    The essence of the work is a computer program by which the gamma spectrum of a radioisotope mixture can be analysed in accordance with a library of spectra for the elements assumed to make up the mixture. The program forms a linear combination of standards by the method of least linear squares, analyses the spectrum obtained with respect to the original, and applies to the results the criteria of mean value, variance, standard deviation, γ 2 and its quotient ratio, and the correlation coefficient. The program, written in Fortran, has no limitations as regards the number of channels for each spectrum or the number of spectra, provided all spectra are compatible (same number of channels). As the experimental part of the work a numerical example is given and analysed in critical form to evaluate the suitability of the computer program. (author)

  2. Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging

    Science.gov (United States)

    Kaur, Parminder; Qiang-Fu; Fuhrmann, Alexander; Ros, Robert; Kutner, Linda Obenauer; Schneeweis, Lumelle A.; Navoa, Ryman; Steger, Kirby; Xie, Lei; Yonan, Christopher; Abraham, Ralph; Grace, Michael J.; Lindsay, Stuart

    2011-01-01

    Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance—possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics. PMID:21190677

  3. Determination of electron clinical spectra from percentage depth dose (PDD) curves by classical simulated annealing method

    International Nuclear Information System (INIS)

    Visbal, Jorge H. Wilches; Costa, Alessandro M.

    2016-01-01

    Percentage depth dose of electron beams represents an important item of data in radiation therapy treatment since it describes the dosimetric properties of these. Using an accurate transport theory, or the Monte Carlo method, has been shown obvious differences between the dose distribution of electron beams of a clinical accelerator in a water simulator object and the dose distribution of monoenergetic electrons of nominal energy of the clinical accelerator in water. In radiotherapy, the electron spectra should be considered to improve the accuracy of dose calculation since the shape of PDP curve depends of way how radiation particles deposit their energy in patient/phantom, that is, the spectrum. Exist three principal approaches to obtain electron energy spectra from central PDP: Monte Carlo Method, Direct Measurement and Inverse Reconstruction. In this work it will be presented the Simulated Annealing method as a practical, reliable and simple approach of inverse reconstruction as being an optimal alternative to other options. (author)

  4. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  5. Solvent Effects on Protein Folding/Unfolding

    Science.gov (United States)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  6. Kinetics of protein unfolding at interfaces

    International Nuclear Information System (INIS)

    Yano, Yohko F

    2012-01-01

    The conformation of protein molecules is determined by a balance of various forces, including van der Waals attraction, electrostatic interaction, hydrogen bonding, and conformational entropy. When protein molecules encounter an interface, they are often adsorbed on the interface. The conformation of an adsorbed protein molecule strongly depends on the interaction between the protein and the interface. Recent time-resolved investigations have revealed that protein conformation changes during the adsorption process due to the protein-protein interaction increasing with increasing interface coverage. External conditions also affect the protein conformation. This review considers recent dynamic observations of protein adsorption at various interfaces and their implications for the kinetics of protein unfolding at interfaces. (topical review)

  7. Analysis of COSIMA spectra: Bayesian approach

    Directory of Open Access Journals (Sweden)

    H. J. Lehto

    2015-06-01

    secondary ion mass spectrometer (TOF-SIMS spectra. The method is applied to the COmetary Secondary Ion Mass Analyzer (COSIMA TOF-SIMS mass spectra where the analysis can be broken into subgroups of lines close to integer mass values. The effects of the instrumental dead time are discussed in a new way. The method finds the joint probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes and positions. In the case of two or more lines, these distributions can take complex forms. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique to COSIMA. Finally, we point out that the Bayesian method can be thought of as a means to solve inverse problems but with forward calculations, only with no iterative corrections or other manipulation of the observed data.

  8. Determination of the fast neutrons spectra by the Elastic scattering method (n, p)

    International Nuclear Information System (INIS)

    Elizalde D, J.

    1973-01-01

    This work consists in determining the fast neutron spectra emitted by a Pu-Be isotopic source. The implemented technique is based in the spectrometry (n, p). This consists in making to fall on a fast neutrons beams (polyenergetic) over a thin film of hydrogenated material, detecting the spectra of emitted protons at a fix angle. The polyethylene film and the used solid state detector are inside of a vacuum chamber. The detector is placed at 30 degree with respect to direction of the incident neutrons beam. The protons spectra is stored in a multichannel. the energy is obtained with the prior calibration of the system. The data processing involves the transformation of the protons spectra observed at the falling on neutrons spectra over the film. The energy of the neutrons is related with that of the protons, according to the collision kinematical equations. The cross section of elastic collision of the neutrons with the hydrogen atoms is obtained from literature. Applying these relations to the observed spectra it is obtained the falling on neutron spectra over the film. (Author)

  9. Methods of neutron spectrum calculation from measured reaction velocities in SAIPS

    International Nuclear Information System (INIS)

    Berzonis, M.A.; Bondars, Kh.Ya.

    1981-01-01

    When a user (physicist) needs to perform calculations, he faces a number of problems: obtaining or generating calculation programs, comparing these programs, generating a library of reference spectra, study of calculated spectra and so on. This means routine work which is duplicated in many laboratories. To help solve these problems a computerized information system called SAIPS has been developed, some aspects of which are dealt with in references. The present paper gives a short description of data input into SAIPS and the basic principles of its utilization. SAIPS is based on the ES 1022 computer controlled by the operational system OS ES version 4.1. It contains the programs needed for unfolding spectra, neutron cross-section and reference spectrum libraries and the software for the main system and for computerized calculations

  10. Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra

    Science.gov (United States)

    Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri

    2014-03-01

    We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  11. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  12. Automated method of phasing difficult nuclear magnetic resonance spectra with application to the unsaturated carbon analysis of oils

    Energy Technology Data Exchange (ETDEWEB)

    Sterna, L.L.; Tong, V.P. (Shell Development Company, Houston, TX (USA). Westhollow Research Center)

    1991-08-01

    A new method for the automated phasing of n.m.r. spectra is described. The basis of the automation is that the software performs the phasing in the same fashion as a trained n.m.r. operator rather than using mathematical relationships between absorptive and dispersive spectra. The method is illustrated with processing of the {sup 13}C n.m.r. spectrum of a catalytic cracking feedstock. The software readily phased the spectrum even though the spectrum had very broad features and a significant baseline correction. The software performed well even when the time-domain data was left-shifted to introduce a large first-order phase error. The method was applied to measure the percentage of unsaturated carbon in hydrocarbons. Extensive tests were performed to compare automated processing with manual processing for this application; the automated method was found to give both better precision and accuracy. The method can be easily tailored to many other types of analyses. 9 refs., 4 figs., 3 tabs.

  13. Multistage unfolding of an SH3 domain: an initial urea-filled dry molten globule precedes a wet molten globule with non-native structure.

    Science.gov (United States)

    Dasgupta, Amrita; Udgaonkar, Jayant B; Das, Payel

    2014-06-19

    The unfolding of the SH3 domain of the PI3 kinase in aqueous urea has been studied using a synergistic experiment-simulation approach. The experimental observation of a transient wet molten globule intermediate, IU, with an unusual non-native burial of the sole Trp residue, W53, provides the benchmark for the unfolding simulations performed (eight in total, each at least 0.5 μs long). The simulations reveal that the partially unfolded IU ensemble is preceded by an early native-like molten globule intermediate ensemble I*. In the very initial stage of unfolding, dry globule conformations with the protein core filled with urea instead of water are transiently observed within the I* ensemble. Water penetration into the urea-filled core of dry globule conformations is frequently accompanied by very transient burial of W53. Later during gradual unfolding, W53 is seen to again become transiently buried in the IU ensemble for a much longer time. In the structurally heterogeneous IU ensemble, conformational flexibility of the C-terminal β-strands enables W53 burial by the formation of non-native, tertiary contacts with hydrophobic residues, which could serve to protect the protein from aggregation during unfolding.

  14. Rotational structure in molecular infrared spectra

    CERN Document Server

    di Lauro, Carlo

    2013-01-01

    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in many scientific disciplines, including applications in atmospheric and planetary research. Consequently, the basic principles of vibration-rotation absorption spectroscopy are addressed for contemporary applications. In addition to covering operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry, attention is also given to phase conventions and their effe...

  15. A solution of nonlinear equation for the gravity wave spectra from Adomian decomposition method: a first approach

    Directory of Open Access Journals (Sweden)

    Antonio Gledson Goulart

    2013-12-01

    Full Text Available In this paper, the equation for the gravity wave spectra in mean atmosphere is analytically solved without linearization by the Adomian decomposition method. As a consequence, the nonlinear nature of problem is preserved and the errors found in the results are only due to the parameterization. The results, with the parameterization applied in the simulations, indicate that the linear solution of the equation is a good approximation only for heights shorter than ten kilometers, because the linearization the equation leads to a solution that does not correctly describe the kinetic energy spectra.

  16. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    Science.gov (United States)

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method

    International Nuclear Information System (INIS)

    Vieira, W.J.

    1982-01-01

    With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author) [pt

  18. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  19. Study on thermal neutron spectra in reactor moderators by time-of-flight method

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-12-01

    Prediction of thermal neutron spectra in a reactor core plays very important role in the neutronic design of the reactor for obtaining the accurate thermal group constants. It is well known that the neutron scattering properties of the moderator materials markedly influence the thermal neutron spectra. Therefore, 0 0 angular dependent thermal neutron spectra were measured by the time-of-flight method in the following moderator bulks 1) Graphite bulk poisoned with boron at the temperatures from 20 to 800 0 C, 2) Light water bulk poisoned with Cadmium and/or Indium, 3) Light water-natural uranium heterogeneous bulk. The measured results were compared with calculation utilizing Young-Koppel and Haywood scattering model for graphite and light water respectively. On the other hand, a variety of 20% enriched uranium loaded and graphite moderated cores consisting of the different lattice cell in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments related to Very High Temperature Reactor (VHTR). The experimental data were for the critical masses in 235 U, reactivity worths of experimental burnable poison rods, thorium rods, natural-uranium rods and experimental control rods and kinetic parameters. It is made clear from comparison between measurement and calculation that the accurate thermal group constants can be obtained by use of the Young-Koppel and Haywood neutron scattering models if heterogeneity of reactor core lattices is taken into account precisely. (author)

  20. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  1. Polynomial algebra reveals diverging roles of the unfolded protein response in endothelial cells during ischemia-reperfusion injury.

    Science.gov (United States)

    Le Pape, Sylvain; Dimitrova, Elena; Hannaert, Patrick; Konovalov, Alexander; Volmer, Romain; Ron, David; Thuillier, Raphaël; Hauet, Thierry

    2014-08-25

    The unfolded protein response (UPR)--the endoplasmic reticulum stress response--is found in various pathologies including ischemia-reperfusion injury (IRI). However, its role during IRI is still unclear. Here, by combining two different bioinformatical methods--a method based on ordinary differential equations (Time Series Network Inference) and an algebraic method (probabilistic polynomial dynamical systems)--we identified the IRE1α-XBP1 and the ATF6 pathways as the main UPR effectors involved in cell's adaptation to IRI. We validated these findings experimentally by assessing the impact of their knock-out and knock-down on cell survival during IRI. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Application of LEPRICON methodology to the unfolding of neutron fluxes in the Arkansas Nuclear One-Unit 1 reactor

    International Nuclear Information System (INIS)

    Maerker, R.E.; Broadhead, B.L.; Williams, M.L.

    1985-01-01

    The LEPRICON (Least-squares EPRI CONsolidation) methodology has been gradually developed over the past few years. The system predicts the absolute neutron fluence levels as a function of energy at specified locations within the pressure vessel of an LWR from the analysis of dosimetry measurements performed at some other readily accessible surveillance location(s). LEPRICON is unique in the field of few-group spectral unfolding in that (1) it solves the extrapolation problem necessitated by the ex-situ measurements; (2) it has the capability of simultaneously unfolding a large number of spectral fluences; (3) it has the capability of simultaneously analyzing a series of benchmark experiments, along with measurements performed in an LWR; (4) it provides state-of-the-art methods for calculating the surveillance dosimeter activities and pressure vessel spectral fluences; (5) it incorporates the basic sensitivity and covariance information necessary for estimates of the uncertainties in the original calculated quantities; and (6) it produces adjustments to the calculated quantities with uncertainties that can be significantly reduced from the original values

  3. Preservation of information in Fourier theory based deconvolved nuclear spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Gopalakrishnan, K.R.; Sharma, R.C.; Rattan, S.S.

    1995-01-01

    Nuclear spectroscopy is extremely useful to the internal radiation dosimetry for the estimation of body burden due to gamma emitters. Analysis of nuclear spectra is concerned with the extraction of qualitative and quantitative information embedded in the spectra. A spectral deconvolution method based on Fourier theory is probably the simplest method of deconvolving nuclear spectra. It is proved mathematically that the deconvolution method preserves the qualitative information. It is shown by using simulated spectra and an observed gamma ray spectrum that the method preserves the quantitative information. This may provide a novel approach of information extraction from a deconvolved spectrum. The paper discusses the methodology, mathematical analysis, and the results obtained by deconvolving spectra. (author). 6 refs., 2 tabs

  4. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.

    Science.gov (United States)

    Jesus, Catarina S H; Cruz, Pedro F; Arnaut, Luis G; Brito, Rui M M; Serpa, Carlos

    2018-04-12

    The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1 H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol -1 , 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol -1 , ∼1.7 μs). The essential role of two

  5. Revealing low-energy part of the beta spectra

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2002-01-01

    An effective method is proposed to separate electronic noise from the beta-particle spectra revealing lower energy part of the spectra. The available methods for reducing the noise problem cut the noise along with the low-energy part of the beta spectra by using a discriminator. Our setup eliminates this undesirable effect by shifting the noise toward the lowest energy scale leaving the low-energy part of spectra undisturbed. We achieved this noise-pulse-separation by treating the noise as a pulse so that we can exploit the application of the pulse-shape analyzer equipment used for pulse shape identification of particles and rejection of defective pulses. To the best of our knowledge this method of the noise separation is a novel approach

  6. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo; Marino, Daniele Di; Tramontano, Anna; Chinappi, Mauro; Cecconi, Fabio

    2014-01-01

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  7. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo

    2014-09-09

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  8. Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.

    Directory of Open Access Journals (Sweden)

    Hailey R Bureau

    Full Text Available Steered Molecular Dynamics (SMD has been seen to provide the potential of mean force (PMF along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD. Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.

  9. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    International Nuclear Information System (INIS)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr.

    2004-01-01

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on native gels

  10. Experience – Information – Image: A Historiography of Unfolding. Arab Cinema as Example

    Directory of Open Access Journals (Sweden)

    Laura U. Marks

    2011-04-01

    Many artworks can be illuminated by this process. My examples will be drawn from contemporary Arab cinema. In the heavily politicized Arab milieu, the Image world is constructed as a selective unfolding of only those aspects of Experience that are deemed to be useful or profitable. Some Arab filmmakers, rather than deconstruct the resulting ideological images, prefer to carry out their own unfoldings:  explicating hitherto latent events, knowledges, and sensations. Thus what official history deems merely personal, absurd, micro-events, or no events at all, becomes the stuff of a rich alternative historiography. This process characterizes the work of, among others, Joana Hadjithomas and Khalil Joreige, Nisrine Khodr, Mohammed Soueid, and Akram Zaatari (Lebanon, Azza El-Hassan, Elia Suleiman, and Sobhi Al-Zobaidi (Palestine, and Mohamad Khan (Egypt.

  11. An intercomparison of methods for solving the stochastic collection equation with a focus on cloud radar Doppler spectra in drizzling stratocumulus

    Science.gov (United States)

    Lee, H.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.

    2017-12-01

    Cloud radar Doppler spectra provide rich information for evaluating the fidelity of particle size distributions from cloud models. The intrinsic simplifications of bulk microphysics schemes generally preclude the generation of plausible Doppler spectra, unlike bin microphysics schemes, which develop particle size distributions more organically at substantial computational expense. However, bin microphysics schemes face the difficulty of numerical diffusion leading to overly rapid large drop formation, particularly while solving the stochastic collection equation (SCE). Because such numerical diffusion can cause an even greater overestimation of radar reflectivity, an accurate method for solving the SCE is essential for bin microphysics schemes to accurately simulate Doppler spectra. While several methods have been proposed to solve the SCE, here we examine those of Berry and Reinhardt (1974, BR74), Jacobson et al. (1994, J94), and Bott (2000, B00). Using a simple box model to simulate drop size distribution evolution during precipitation formation with a realistic kernel, it is shown that each method yields a converged solution as the resolution of the drop size grid increases. However, the BR74 and B00 methods yield nearly identical size distributions in time, whereas the J94 method produces consistently larger drops throughout the simulation. In contrast to an earlier study, the performance of the B00 method is found to be satisfactory; it converges at relatively low resolution and long time steps, and its computational efficiency is the best among the three methods considered here. Finally, a series of idealized stratocumulus large-eddy simulations are performed using the J94 and B00 methods. The reflectivity size distributions and Doppler spectra obtained from the different SCE solution methods are presented and compared with observations.

  12. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

    Science.gov (United States)

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza

    2014-11-07

    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  13. Library of sophisticated functions for analysis of nuclear spectra

    Science.gov (United States)

    Morháč, Miroslav; Matoušek, Vladislav

    2009-10-01

    In the paper we present compact library for analysis of nuclear spectra. The library consists of sophisticated functions for background elimination, smoothing, peak searching, deconvolution, and peak fitting. The functions can process one- and two-dimensional spectra. The software described in the paper comprises a number of conventional as well as newly developed methods needed to analyze experimental data. Program summaryProgram title: SpecAnalysLib 1.1 Catalogue identifier: AEDZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 42 154 No. of bytes in distributed program, including test data, etc.: 2 379 437 Distribution format: tar.gz Programming language: C++ Computer: Pentium 3 PC 2.4 GHz or higher, Borland C++ Builder v. 6. A precompiled Windows version is included in the distribution package Operating system: Windows 32 bit versions RAM: 10 MB Word size: 32 bits Classification: 17.6 Nature of problem: The demand for advanced highly effective experimental data analysis functions is enormous. The library package represents one approach to give the physicists the possibility to use the advanced routines simply by calling them from their own programs. SpecAnalysLib is a collection of functions for analysis of one- and two-parameter γ-ray spectra, but they can be used for other types of data as well. The library consists of sophisticated functions for background elimination, smoothing, peak searching, deconvolution, and peak fitting. Solution method: The algorithms of background estimation are based on Sensitive Non-linear Iterative Peak (SNIP) clipping algorithm. The smoothing algorithms are based on the convolution of the original data with several types of filters and algorithms based on discrete

  14. Qualitative Analysis of Chang'e-1 γ-ray Spectrometer Spectra Using Noise Adjusted Singular Value Decomposition Method

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the features of spectra shape of Chang'e-1 γ-ray spectrometer(CE1-GRS) data, it is difficult to determine elemental compositions on the lunar surface. Aimed at this problem, this paper proposes using noise adjusted singular value decomposition (NASVD) method to extract orthogonal spectral components from CE1-GRS data. Then the peak signals in the spectra of lower-order layers corresponding to the observed spectrum of each lunar region are respectively analyzed. Elemental compositions of each lunar region can be determined based upon whether the energy corresponding to each peak signal equals to the energy corresponding to the characteristic gamma-ray line emissions of specific elements. The result shows that a number of elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg, Ca and Na are qualitatively determined by this method. (authors)

  15. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra

    International Nuclear Information System (INIS)

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-01-01

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.

  16. Simultaneous determination of the brand new two-drug combination for the treatment of hepatitis C: Sofosbuvir/ledipasvir using smart spectrophotometric methods manipulating ratio spectra

    Science.gov (United States)

    Eissa, Maya S.

    2017-08-01

    In this work, various sensitive and selective spectrophotometric methods were first introduced for the simultaneous determination of sofosbuvir and ledipasvir in their binary mixture without preliminary separation. Ledipasvir was determined simply by zero-order spectrophotometric method at its λmax = 333.0 nm in a linear range of 2.5-30.0 μg/ml without any interference of sofosbuvir even in low or high concentrations and with mean percentage recovery of 100.05 ± 0.632. Sofosbuvir can be quantitatively estimated by one of the following smart spectrophotometric methods based on ratio spectra developed for the resolution of the overlapped spectra of their binary mixture; ratio difference spectrophotometric method (RD) by computing the difference between the amplitudes of sofosbuvir ratio spectra at 228 nm and 270 nm, first derivative (DD1) of ratio spectra by measuring the sum of amplitude of trough and peak at 265 nm and 277 nm, respectively, ratio subtraction (RS) spectrophotometric method in which sofosbuvir can be successfully determined at its λmax = 261.0 nm and mean centering (MC) of ratio spectra by measuring the mean centering values at 270 nm. All of the above mentioned spectrophotometric methods can estimate sofosbuvir in a linear range of 7.5-90.0 μg/ml with mean percentage recoveries of 100.57 ± 0.810, 99.92 ± 0.759, 99.51 ± 0.475 and 100.75 ± 0.672, respectively. These methods were successfully applied to the analysis of their combined dosage form and bulk powder. The adopted methods were also validated as per ICH guidelines and statistically compared to an in-house HPLC method.

  17. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    Science.gov (United States)

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Understanding how biodiversity unfolds through time under neutral theory.

    Science.gov (United States)

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  19. A time-minimizing hybrid method for fitting complex Moessbauer spectra

    International Nuclear Information System (INIS)

    Steiner, K.J.

    2000-07-01

    The process of fitting complex Moessbauer-spectra is known to be time-consuming. The fitting process involves a mathematical model for the combined hyperfine interaction which can be solved by an iteration method only. The iteration method is very sensitive to its input-parameters. In other words, with arbitrary input-parameters it is most unlikely that the iteration method will converge. Up to now a scientist has to spent her/his time to guess appropriate input parameters for the iteration process. The idea is to replace the guessing phase by a genetic algorithm. The genetic algorithm starts with an initial population of arbitrary input parameters. Each parameter set is called an individual. The first step is to evaluate the fitness of all individuals. Afterwards the current population is recombined to form a new population. The process of recombination involves the successive application of genetic operators which are selection, crossover, and mutation. These operators mimic the process of natural evolution, i.e. the concept of the survival of the fittest. Even though there is no formal proof that the genetic algorithm will eventually converge, there is an excellent chance that there will be a population with very good individuals after some generations. The hybrid method presented in the following combines a very modern version of a genetic algorithm with a conventional least-square routine solving the combined interaction Hamiltonian i.e. providing a physical solution with the original Moessbauer parameters by a minimum of input. (author)

  20. A simple rescue maneuver for unfolding and centering a tightly rolled graft in Descemet membrane endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Droutsas K

    2014-10-01

    Full Text Available Konstantinos Droutsas,1,2 Thomas Bertelmann,1 Frank M Schroeder,1 Dimitrios Papaconstantinou,2 Walter Sekundo1 1Department of Ophthalmology, Philipps University, Marburg, Germany; 2First Department of Ophthalmology, University of Athens, Medical School of Athens, Athens, Greece Abstract: A 74-year-old man underwent Descemet membrane endothelial keratoplasty (DMEK for endothelial decompensation due to Fuchs endothelial dystrophy. After descemetorhexis, the DMEK graft was inserted into the anterior chamber. However, unfolding of the graft was not possible as the graft was very tightly rolled together and the anterior chamber deep. After placing a 30G-cannula connected to an air-filled syringe inside the roll's lumen, a small air bubble was injected, which allowed the roll to open up, until it assumed a “taco” configuration around the bubble. Then, the graft was centered by pressing the posterior part of the roll against, and sweeping it over the iris. In the present case a “tight” DMEK roll was successfully unfolded by injection of a single air bubble into the roll’s lumen and centered by a “sweeping” the partialy unfolded graft over the iris. This technique allowed a controlled unfolding and centering of the DMEK graft with limited trauma to the donor endothelium and may be applied in cases where other less traumatic maneuvers are not successful. Keywords: Fuchs endothelial dystrophy, surgical technique, endothelial keratoplasty

  1. Activation method for measuring the neutron spectra parameters. Computer software

    International Nuclear Information System (INIS)

    Efimov, B.V.; Ionov, V.S.; Konyaev, S.I.; Marin, S.V.

    2005-01-01

    The description of mathematical statement of a task for definition the spectral characteristics of neutron fields with use developed in RRC KI unified activation detectors (UKD) is resulted. The method of processing of results offered by authors activation measurements and calculation of the parameters used for an estimation of the neutron spectra characteristics is discussed. Features of processing of the experimental data received at measurements of activation with using UKD are considered. Activation detectors UKD contain a little bit specially the picked up isotopes giving at irradiation peaks scale of activity in the common spectrum scale of activity. Computing processing of results of the measurements is applied on definition of spectrum parameters for nuclear reactor installations with thermal and close to such power spectrum of neutrons. The example of the data processing, the measurements received at carrying out at RRC KI research reactor F-1 is resulted [ru

  2. Measurement of fast neutron spectra. 1-2

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1976-01-01

    The present status of the techniques for the measurement of fast neutron spectra is reviewed with particular attention to the recent activities in Japan. The first section of this report defines the energy range of fast neutrons, and various techniques are classified into four groups. In the following sections, recent development in each group is reviewed. The first part is the integral method represented mainly by the activation method. The variation of this method is shortly reviewed, and some results of the spectrum measurement for JRR-4 (a thermal research reactor) and YAYOI (a fast neutron source reactor) are presented together with the results of computed spectra. The second part is the method of proton recoil. The improvement of a proportional counter by Ichimori is shortly reviewed. The use of liquid scintillator is also discussed together with the experimental and computational results of YAYOI benchmark spectra of fast neutrons transmitted through the layers of iron. The utilization of n-α or n-p reaction as a sandwitch counter is discussed in the third part. Measured and calculated spectra in the FCA (a fast critical assembly) core are presented as examples. The method of time-of-flight is discussed in the fourth part. Recent developments in Japan such as the method with a double-scintillation counter are shortly presented together with its block diagram. (Aoki, K.)

  3. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  4. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  5. Inactivation and unfolding of protein tyrosine phosphatase from Thermus thermophilus HB27 during urea and guanidine hydrochloride denaturation.

    Directory of Open Access Journals (Sweden)

    Yejing Wang

    Full Text Available The effects of urea and guanidine hydrochloride (GdnHCl on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase, a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV circular dichroism (CD, Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase.

  6. Use of new spectral analysis methods in gamma spectra deconvolution

    International Nuclear Information System (INIS)

    Pinault, J.L.

    1991-01-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)

  7. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr

    2004-09-27

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on

  8. Neutron spectrometry with artificial neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A.; Iniguez de la Torre Bayo, M.P.; Barquero, R.; Arteaga A, T.

    2005-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ 2 -test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  9. Artificial intelligence analysis of paraspinal power spectra.

    Science.gov (United States)

    Oliver, C W; Atsma, W J

    1996-10-01

    OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.

  10. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    Science.gov (United States)

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Comparisons of peak-search and photopeak-integration methods in the computer analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Baedecker, P.A.

    1980-01-01

    Myriad methods have been devised for extracting quantitative information from gamma-ray spectra by means of a computer, and a critical evaluation of the relative merits of the various programs that have been written would represent a Herculean, if not an impossible, task. The results from the International Atomic Energy Agency (IAEA) intercomparison, which may represent the most straightforward approach to making such an evaluation, showed a wide range in the quality of the results - even among laboratories where similar methods were used. The most clear-cut way of differentiating between programs is by the method used to evaluate peak areas: by the iterative fitting of the spectral features to an often complex model, or by a simple summation procedure. Previous comparisons have shown that relatively simple algorithms can compete favorably with fitting procedures, although fitting holds the greatest promise for the detection and measurement of complex peaks. However, fitting algorithms, which are generally complex and time consuming, are often ruled out by practical limitations based on the type of computing equipment available, cost limitations, the number of spectra to be processed in a given time period, and the ultimate goal of the analysis. Comparisons of methods can be useful, however, in helping to illustrate the limitations of the various algorithms that have been devised. This paper presents a limited review of some of the more common peak-search and peak-integration methods, along with Peak-search procedures

  12. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.

    Science.gov (United States)

    Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning

    2013-06-14

    The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.

  13. Correction of measured charged-particle spectra for energy losses in the target - A comparison of three methods

    CERN Document Server

    Soederberg, J; Alm-Carlsson, G; Olsson, N

    2002-01-01

    The experimental facility, MEDLEY, at the The Svedberg Laboratory in Uppsala, has been constructed to measure neutron-induced charged-particle production cross-sections for (n, xp), (n, xd), (n, xt), (n, x sup 3 He) and (n, x alpha) reactions at neutron energies up to 100 MeV. Corrections for the energy loss of the charged particles in the target are needed in these measurements, as well as for loss of particles. Different approaches have been used in the literature to solve this problem. In this work, a stripping method is developed, which is compared with other methods developed by Rezentes et al. and Slypen et al. The results obtained using the three codes are similar and they could all be used for correction of experimental charged-particle spectra. Statistical fluctuations in the measured spectra cause problems independent of the applied technique, but the way to handle it differs in the three codes.

  14. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  15. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Science.gov (United States)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  16. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  17. Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine-Comparison with GEANT4 simulations

    Science.gov (United States)

    Vagena, E.; Theodorou, K.; Stoulos, S.

    2018-04-01

    Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.

  18. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  19. Automatic identification of mass spectra

    International Nuclear Information System (INIS)

    Drabloes, F.

    1992-01-01

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  20. Neutron spectrometry using artificial neural networks

    International Nuclear Information System (INIS)

    Vega-Carrillo, Hector Rene; Martin Hernandez-Davila, Victor; Manzanares-Acuna, Eduardo; Mercado Sanchez, Gema A.; Pilar Iniguez de la Torre, Maria; Barquero, Raquel; Palacios, Francisco; Mendez Villafane, Roberto; Arteaga Arteaga, Tarcicio; Manuel Ortiz Rodriguez, Jose

    2006-01-01

    An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab ( R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem

  1. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  2. Unfolding education for sustainable development as didactic thinking and practice

    DEFF Research Database (Denmark)

    Madsen, Katrine Dahl

    2013-01-01

    This article’s primary objective is to unfold how teachers translate education for sustainable development (ESD) in a school context. The article argues that exploring tensions, ruptures and openings apparent in this meeting is crucial for the development of existing teaching practices in relatio...... the analytical foundation; thus it is the practices as seen from the ‘inside’. Furthermore, ESD practices are considered in a broader societal perspective, pointing to the critical power of the practice lens....

  3. STRUCTURAL ANALYSIS, GEOMETRY AND STATICS OF A COACH UNFOLDING MECHANISM

    Directory of Open Access Journals (Sweden)

    Ovidiu ANTONESCU

    2016-05-01

    Full Text Available Starting from the constructive scheme of the mechanism, the kinematic scheme is drawn in three distinct positions (folded, middle and unfolded. By means of this scheme the mobility of the mechanism is calculated and the structural-topological formula of it is obtained. In the last section of the paper an algorithm of geometric calculus has been elaborated, starting from a kinematic link articulated to the base, element which is considered the driving component.

  4. The Role of E27-K31 and E56-K10 Salt-Bridge Pairs in the Unfolding Mechanism of the B1 Domain of Protein G

    Directory of Open Access Journals (Sweden)

    Tony Ibnu Sumaryada

    2018-02-01

    Full Text Available Molecular dynamics simulations of the B1 fragment of protein G (56 residues have been performed at 325, 350, 375, 400, 450 and 500 K for 10 ns. An analysis of its structural and energetic parameters has indicated that the unfolding process of the GB1 protein begins at 900 ps of a 500-K simulation. The unfolding process is initiated when hydrogen bonds in the hydrophobic core region are broken; it continues with the α-helix transformation into coils and turns and ends with the destruction of the β-hairpins. These unfolding events are consistent with the hybrid model of the protein folding/unfolding mechanism, which is a compromise between the hydrophobic core collapse model and the zipper model. Salt-bridge pairs were found to play an important role in the unfolding process by maintaining the integrity of the tertiary structure of the protein. The breaking (or disappearance of the salt-bridge pairs E27–K31 (in the α-helix and E56–K10 (connecting β4 and β1 has resulted in the destruction of secondary structures and indicates the beginning of the unfolding process. Our results also suggest that the unfolding process in this simulation was not a complete denaturation of the protein because some β-hairpins remained

  5. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  6. Decomposition of continuum {gamma}-ray spectra using synthesized response matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Morhac, M.; Kliman, J.; Krupa, L.; Matousek, V. E-mail: vladislav.matousek@savba.sk; Hamilton, J.H.; Ramayya, A.V

    2004-01-01

    The efficient methods of decomposition of {gamma}-ray spectra, based on the Gold algorithm, are presented. They use a response matrix of Gammasphere, which was obtained by synthesis of simulated and interpolated response functions using a new developed interpolation algorithm. The decomposition method has been applied to the measured spectra of {sup 152}Eu and {sup 56}Co. The results show a very effective removal of the background counts and their concentration into the corresponding photopeaks. The peak-to-total ratio in the spectra achieved after applying the decomposition method is in the interval 0.95-0.99. In addition, a new advanced algorithm of the 'boosted' decomposition has been proposed. In the spectra obtained after applying the boosted decomposition to the measured spectra, very narrow photopeaks are observed with the counts concentrated to several channels.

  7. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.

    Science.gov (United States)

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander

    2014-03-06

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  8. On the unfolding of the fundamental region in integrals of modular invariant amplitudes

    International Nuclear Information System (INIS)

    Trapletti, Michele

    2003-01-01

    We study generic one-loop (string) amplitudes where an integration over the fundamental region F of the modular group is needed. We show how the known lattice-reduction technique used to unfold F to a more suitable region S can be modified to rearrange generic modular invariant amplitudes. The main aim is to unfold F to the strip and, at the same time, to simplify the form of the integrand when it is a sum over a finite number of terms, like in one-loop amplitudes for closed strings compactified on orbifolds. We give a general formula and a recipe to compute modular invariant amplitudes. As an application of the technique we compute the one-loop vacuum energy ρ n for a generic Z n freely acting orbifold, generalizing the result that this energy is less than zero and drives the system to a tachyonic divergence, and that ρ n m if n>m. (author)

  9. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jody Groenendyk

    Full Text Available Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER homeostasis, transient activation of the unfolded protein response (UPR pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.

  10. LSD-based analysis of high-resolution stellar spectra

    Science.gov (United States)

    Tsymbal, V.; Tkachenko, A.; Van, Reeth T.

    2014-11-01

    We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.

  11. Pulse radiolysis experiments: synthesis and analysis of composite spectra

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, R H; Buzzard, G K [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1976-01-01

    Methods are outlined for compiling optical spectra obtained in pulse radiolysis experiments in a form suitable for detailed synthesis and analysis of composite spectra. The experimental data are processed with a programmable calculator having a cassette recorder for the storage of the output data files and a peripheral plotter. The spectra are first smoothed by fitting them parabolically segment by segment. The overall spectrum is then assembled in digital form by interpolating the fitted data on a 1 nm grid and the results are stored on cassette files for further processing. Composite spectra can be readily calculated and plotted from the data on these files or known components can be subtracted from observed spectra to examine underlying contributions. The use of the fairly simple data processing methods described here permits an interactive mode of operation by the investigator which can maximize insight into details of the various contributions to an observed spectrum. Several examples of the use of these methods in conjunction with data obtained with a computer controlled pulse radiolysis data acquisition system are given.

  12. Adjusted neutron spectra of STEK cores for reactivity calculations

    International Nuclear Information System (INIS)

    Dekker, J.W.M.; Dragt, J.B.; Janssen, A.J.; Heijboer, R.J.; Klippel, H.Th.

    1978-02-01

    Neutron flux and adjoint flux spectra form a pre-requisite in the analysis of reactivity worth data measured in the STEK facility. First, a survey of all available information about these spectra is given. Next a special application of a general adjustment method is described. This method has been used to obtain adjusted STEK group flux and adjoint flux spectra, starting from calculated spectra. These theoretical spectra were adjusted to reactivity worths of natural boron (nat. B) and 235 U as well as a number of fission reaction rates. As a by-product in this adjustment calculation adjusted fission group cross sections of 235 U were obtained. The results, viz. group fluxes and adjoint fluxes and adjusted fission cross sections of 235 U are given. They have been used for the interpretation of fission product reactivity worth measurements made in STEK

  13. COMPARISON OF TWO TEMPERATURE MEASUREMENT METHODS BY UPCONVERSION FLUORESCENCE SPECTRA OF ERBIUM-DOPED LEAD-FLUORIDE NANO-GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2015-05-01

    Full Text Available The study and compare of two temperature measurement methods is performed for the case of a lead-fluoride nano-glassceramics in the range from 317 to 423 K with a view to their application to temperature sensors. A method of temperature measurement by means of violet, green and red upconversion fluorescence spectra regression on latent structures and a method of temperature measurement by two fluorescence bands intensity ratio in green range are considered. It is shown that a four-dimensional space of latent structures is an optimum one in terms of temperature measurement accuracy. It made possible temperature determining with a relative error not larger than 0.15% at temperatures higher than 340 K by making use of fluorescence spectra training set with the step of 10 K. The method using two green bands fluorescence intensity ratio is inferior by the accuracy. Independence of pump power fluctuations is a significant advantage of the second method. To take advantage of the first method a stabilization of the pump power is necessary. The results of the work can be taken into account while developing optical temperature sensors with a better performance (in relation to accuracy and measurement range compared to existing ones which utilize temperature redistribution of fluorescence intensities in two closely-spaced bands or temperature dependence of fluorescence lifetime.

  14. A comparison of floor response spectra techniques

    International Nuclear Information System (INIS)

    Yan, M.J.; Galford, J.E.

    1983-01-01

    Floor response spectra (FRS) conventionally have been generated using a time-history method. Babcock and Wilcox has developed a new technique, the Fast Floor Response Spectra (FFRS) method, in which dynamic analyses are done entirely in the frequency domain. This paper compares the two techniques and demonstrates that the FFRS method complies with the 'equivalency' and 'conservatism' requirements of the US NRC's Standard Review Plan. The upper end of a once-through steam generator in the B and W 205 nuclear steam supply system (NSSS) was used to demonstrate that the FFRS method is equivalent to the time-history technique. The two techniques were compared with respect to frequency content and magnitude of response for a given point on the structure. First, the specified forcing function was described in terms of an acceleration time history and an acceleration spectra enveloping that time history. The time-history forcing function was then used in a direct transient analysis to determine the response at the specified point on the NSSS. The resultant response was subsequently converted to a floor response spectra for that point. To show that the FFRS method gave equivalent and conservative results, the FFRS technique was used to determine the modal response directly from the spectral description of the forcing function. The FFRS- and time-history-generated data agreed to within 13 (worst case on conservative side) of each other with the former cutting analytical costs by 99%. (orig./HP)

  15. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-01-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  16. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  17. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in

  18. The effects of crowding agents Dextran-70k and PEG-8k on actin structure and unfolding reaction

    Science.gov (United States)

    Gagarskaia, Iuliia A.; Povarova, Olga I.; Uversky, Vladimir N.; Kuznetsova, Irina M.; Turoverov, Konstantin K.

    2017-07-01

    Recently, an increasing number of studies on proteins' structure, stability and folding are trying to bring the experimental conditions closer to those existing in a living cell, namely to the conditions of macromolecular crowding. In vitro such conditions are typically imitated by the ;inert; highly water-soluble polymers with different hydrodynamic dimensions. In this work, the effects of crowded milieu on the structure and conformational stability of actin, which is a key component of the muscle contraction system, was examined. The crowded milieu was simulated by high concentrations of PEG-8k or Dextran-70k. It was revealed that both crowding agents decelerated but not inhibited actin unfolding and made a compact state of inactivated actin thermodynamically more favorable in comparison with the unfolded state. At the same time, the high viscosity of the solution of crowding agents slowed down all processes and especially inactivated actin formation, since it involves the interaction of 14-16 partially unfolded actin molecules. The effects of crowding agent were larger when its hydrodynamic dimensions were closer to the size of globular actin.

  19. IUE Archival Spectra of 31 Cygni

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1991-06-01

    Full Text Available UV light curve of 31 Cygni has been made from the IUE high dispersion spectra. The depth of primary minimum of the light curve is 5.2 magnitudes because the B4 star's steep spectral gradient. The light curve has been analyzed by the method of Wilson and Devinney Differential Correction (WD. The radial velocities have been measured using the Mg II h lines. The spectroscopic elements have been determined by the method of WD. The change of the Mg II resonance doublet has been investigated based on the eight representative spectra taken at well distributed orbital phases.

  20. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  1. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors

    International Nuclear Information System (INIS)

    Welter, B.

    2007-01-01

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H c2 (T) respectively H c2 (0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown

  2. THE CBS SPECTRA INVESTIGATION AS METHOD OF THE PN CHEMICAL COMPOSITION ANALYSIS

    OpenAIRE

    Shimanskaya, N. N.; Shimansky, V. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Zhuchkov, R. Ya.

    2007-01-01

    We report the results of the investigations of chemical composition of close binaries which had gone through the stage of common envelope and which are the remnants of planetary nebular cores. High resolution spectra for different phases of orbital period of V471 Tau were taken by RTT-150 telescope and were investigated by the modified SYNTH-K program. It was found that the spectra show noticeable variability with appearance of emission components depended on the orbital period phase. For che...

  3. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    Science.gov (United States)

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Redox Thermodynamics of Cytochromes c Subjected to Urea Induced Unfolding

    OpenAIRE

    Monari, S.; Ranieri, A.; Di Rocco, G.; van der Zwan, G.; Peressini, S.; Tavagnacco, C.; Millo, D.; Borsari, M.

    2009-01-01

    The thermodynamics of the electron transfer (ET) process for beef heart and yeast cytochromes c and the Lys72Ala/Lys73Ala/Lys79Ala mutant of the latter species subjected to progressive urea-induced unfolding was determined electrochemically. The results indicate the presence of at least three protein forms which were assigned to a low-temperature and a high-temperature His-Met intermediate species and a bis-histidinate form (although the presence of a His-Lys form cannot be excluded). The muc...

  5. Seeking Educational Quality in the Unfolding of Classroom Discourse: A Focus on Microtransitions

    Science.gov (United States)

    Mameli, Consuelo; Molinari, Luisa

    2014-01-01

    In this paper, we argue the importance of conceptualizing educational quality as located in everyday talk, and to search for it in the unfolding of classroom discourse and interactions. More specifically, we argue that for the discursive classroom process to be qualitatively effective it should be open and accessible by a series of…

  6. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management

    DEFF Research Database (Denmark)

    Fratini, Chiara; Elle, Morten; Jensen, M. B.

    2012-01-01

    for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes...... addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities...

  7. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1976-07-01

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  8. Theoretical analysis of time-dependent neutron spectra in bulk assemblies

    International Nuclear Information System (INIS)

    Akimoto, Tadashi; Ogawa, Yuichi; Togawa, Orihiko.

    1988-01-01

    Time-dependent neutron spectra in an iron assembly and in a graphite assembly are obtained with the one-dimensional S N calculation, in order an attempt to investigate the availability of these spectra to the benchmark test by the LINAC-TOF method for evaluation of nuclear data and numerical methods. The group constants are taken from the JAERI FAST SET Version 1, 2 and the ABBN SET. It was demonstrated by a sensitivity test that the time-dependent neutron spectra are sensitive to changes in the inelastic scattering cross section data in the iron assembly and to changes in the elastic scattering cross section data in the graphite assembly. Moreover, it is shown that the time-dependent spectra in the graphite assembly are sensitive to the group structure. Because some information about the neutron transport phenomena which has not been obtained in the stationary spectra is observed in the time-dependent spectra, the availability of the benchmark test based on the time-dependent spectra is indicated from the theoretical analysis. (author)

  9. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding

    Science.gov (United States)

    Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2015-01-01

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823

  10. Separation of the overlapping effects in spectra for WDXRF using the Rietveld method

    International Nuclear Information System (INIS)

    Salvador, Vera Lucia Ribeiro

    2005-01-01

    This work presents a new methodology for the overlapping spectra separation obtained by the technique of wavelength dispersion X-ray fluorescence (WDXRF). This methodology allows to improve the conventional analytic results and to facilitate the determination of chemical species of a same element without chemical separation, by means of the separation of coming spectra of electronic transitions of valence electrons or chemical effects in internal electrons. With the software 'GSAS-EXPGUI' and the method of Rietveld overcomes the problem of overlapping lines of the present species in the sample and it facilitates the determination of the same ones simultaneously, without the need of samples patterns and calibration curves, what means an expressive gain in relation to other techniques. The preparation of the surface of the sample for the collection of the spectrum represents a critical stage for the acting of the analysis whose effects can be minimized being used the refinement of Rietveld, that allows the determination of the relationships of the intensities of the lines put upon by means of mathematical models, what establishes the basic conditions for obtaining of more precise results in the quantitative analysis. In the case of the determination of chemical species it can separate, for example Cr (III), Cr (VI) and Fe (II), Fe(III) that present overlapping of almost 100%. (author)

  11. [Study on Vis/NIR spectra detecting system for watermelons and quality predicting in motion].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Xu, Hui-Rong; Lu, Hui-Shan; Xie, Li-Juan

    2009-06-01

    To make Vis/NIR diffuse transmittance technique applied to quality prediction for watermelon in motion, the dynamic spectra detecting system was rebuilt. Spectra detecting experiments were conducted and the effects of noises caused by motion on spectra were analyzed. Then the least--square filtering method and Norris differential filtering method were adopted to eliminate the effects of noise on spectra smoothing, and statistical models between the spectra and soluble solids content were developed using partial least square method. The performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples, root mean square errors of calibration (RMSEC) and root mean square errors of prediction (RMSEP). Calibration and prediction results indicated that Norris differential method was an effective method to smooth spectra and improve calibration and prediction results, especially, with r of 0.895, RMSEC of 0.549, and RMSEP of 0.760 for the calibration and prediction result of the first derivative spectra.

  12. Unfolding of Vortices into Topological Stripes in a Multiferroic Material

    Science.gov (United States)

    Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.

    2014-06-01

    Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  13. Use of new threshold detector 199Hg(n,n')/sup 199m/Hg for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Sakurai, K.

    1982-01-01

    The nuclear data for the 199 Hg(n,n')/sup 199m/Hg reaction are reviewed and the data are used for neutron spectrum unfolding. The neutron spectrum of the YAYOI glory-hole is unfolded by SAND II with 10 nuclear reactions including the 199 Hg(n,n')/sup 199m/Hg reaction. The ratio of the measured reaction rate to the calculated reaction rate is about 1:1.1 for the guess spectrum. The 199 Hg(n,n')/sup 199m/Hg, 115 In(n,n')/sup 115m/In, 103 Rh(n,n')/sup 103m/Rh reactions should be useful threshold detectors for the neutron dosimetry with low level fast neutron flux

  14. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra.

    Science.gov (United States)

    Gao, Qun; Liu, Yan; Li, Hao; Chen, Hui; Chai, Yifeng; Lu, Feng

    2014-06-01

    Some expired drugs are difficult to detect by conventional means. If they are repackaged and sold back into market, they will constitute a new public health challenge. For the detection of repackaged expired drugs within specification, paracetamol tablet from a manufacturer was used as a model drug in this study for comparison of Raman spectra-based library verification and classification methods. Raman spectra of different batches of paracetamol tablets were collected and a library including standard spectra of unexpired batches of tablets was established. The Raman spectrum of each sample was identified by cosine and correlation with the standard spectrum. The average HQI of the suspicious samples and the standard spectrum were calculated. The optimum threshold values were 0.997 and 0.998 respectively as a result of ROC and four evaluations, for which the accuracy was up to 97%. Three supervised classifiers, PLS-DA, SVM and k-NN, were chosen to establish two-class classification models and compared subsequently. They were used to establish a classification of expired batches and an unexpired batch, and predict the suspect samples. The average accuracy was 90.12%, 96.80% and 89.37% respectively. Different pre-processing techniques were tried to find that first derivative was optimal for methods of libraries and max-min normalization was optimal for that of classifiers. The results obtained from these studies indicated both libraries and classifier methods could detect the expired drugs effectively, and they should be used complementarily in the fast-screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Scoring-and-unfolding trimmed tree assembler: concepts, constructs and comparisons.

    Science.gov (United States)

    Narzisi, Giuseppe; Mishra, Bud

    2011-01-15

    Mired by its connection to a well-known -complete combinatorial optimization problem-namely, the Shortest Common Superstring Problem (SCSP)-historically, the whole-genome sequence assembly (WGSA) problem has been assumed to be amenable only to greedy and heuristic methods. By placing efficiency as their first priority, these methods opted to rely only on local searches, and are thus inherently approximate, ambiguous or error prone, especially, for genomes with complex structures. Furthermore, since choice of the best heuristics depended critically on the properties of (e.g. errors in) the input data and the available long range information, these approaches hindered designing an error free WGSA pipeline. We dispense with the idea of limiting the solutions to just the approximated ones, and instead favor an approach that could potentially lead to an exhaustive (exponential-time) search of all possible layouts. Its computational complexity thus must be tamed through a constrained search (Branch-and-Bound) and quick identification and pruning of implausible overlays. For his purpose, such a method necessarily relies on a set of score functions (oracles) that can combine different structural properties (e.g. transitivity, coverage, physical maps, etc.). We give a detailed description of this novel assembly framework, referred to as Scoring-and-Unfolding Trimmed Tree Assembler (SUTTA), and present experimental results on several bacterial genomes using next-generation sequencing technology data. We also report experimental evidence that the assembly quality strongly depends on the choice of the minimum overlap parameter k. SUTTA's binaries are freely available to non-profit institutions for research and educational purposes at http://www.bioinformatics.nyu.edu.

  16. FRUIT: An operational tool for multisphere neutron spectrometry in workplaces

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Domingo, Carles; Esposito, Adolfo; Fernandez, Francisco

    2007-01-01

    FRUIT (Frascati Unfolding Interactive Tool) is an unfolding code for Bonner sphere spectrometers (BSS) developed, under the Labview environment, at the INFN-Frascati National Laboratory. It models a generic neutron spectrum as the superposition of up to four components (thermal, epithermal, fast and high energy), fully defined by up to seven positive parameters. Different physical models are available to unfold the sphere counts, covering the majority of the neutron spectra encountered in workplaces. The iterative algorithm uses Monte Carlo methods to vary the parameters and derive the final spectrum as limit of a succession of spectra fulfilling the established convergence criteria. Uncertainties on the final results are evaluated taking into consideration the different sources of uncertainty affecting the input data. Relevant features of FRUIT are (1) a high level of interactivity, allowing the user to follow the convergence process, (2) the possibility to modify the convergence tolerances during the run, allowing a rapid achievement of meaningful solutions and (3) the reduced dependence of the results from the initial hypothesis. This provides a useful instrument for spectrometric measurements in workplaces, where detailed a priori information is usually unavailable. This paper describes the characteristics of the code and presents the results of performance tests over a significant variety of reference and workplace neutron spectra ranging from thermal up to hundreds MeV neutrons

  17. A method of analyzing the scaling violation of inclusive spectra in hard processes

    International Nuclear Information System (INIS)

    Furmanski, W.; Petronzio, R.

    1982-01-01

    The analytic solution of the evolution equations in QCD is given in the form of a series of Laguerre polynomials in the variable y = ln(1/x). The Laguerre series converges very quickly and it can be truncated after few terms with a reasonable accuracy. Also high precision calculations are possible since the coefficients of the series are given by simple recurrence formulae. The method works both for non-singlet and for singlet spectra and it can be applied to any hard process. The inclusion of higher order effects is immediate. The Laguerre technique provides a natural framework for extracting from the data the input quark and gluon distributions without any prejudices concerning their particular analytic form. (orig.)

  18. Comparison of alternative methods for multiplet deconvolution in the analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Blaauw, Menno; Keyser, Ronald M.; Fazekas, Bela

    1999-01-01

    Three methods for multiplet deconvolution were tested using the 1995 IAEA reference spectra: Total area determination, iterative fitting and the library-oriented approach. It is concluded that, if statistical control (i.e. the ability to report results that agree with the known, true values to within the reported uncertainties) is required, the total area determination method performs the best. If high deconvolution power is required and a good, internally consistent library is available, the library oriented method yields the best results. Neither Erdtmann and Soyka's gamma-ray catalogue nor Browne and Firestone's Table of Radioactive Isotopes were found to be internally consistent enough in this respect. In the absence of a good library, iterative fitting with restricted peak width variation performs the best. The ultimate approach as yet to be implemented might be library-oriented fitting with allowed peak position variation according to the peak energy uncertainty specified in the library. (author)

  19. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    Science.gov (United States)

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  20. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra.

    Science.gov (United States)

    Hogewoning, Sander W; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Harbinson, Jeremy

    2010-03-01

    Plant responses to the light spectrum under which plants are grown affect their developmental characteristics in a complicated manner. Lamps widely used to provide growth irradiance emit spectra which are very different from natural daylight spectra. Whereas specific responses of plants to a spectrum differing from natural daylight may sometimes be predictable, the overall plant response is generally difficult to predict due to the complicated interaction of the many different responses. So far studies on plant responses to spectra either use no daylight control or, if a natural daylight control is used, it will fluctuate in intensity and spectrum. An artificial solar (AS) spectrum which closely resembles a sunlight spectrum has been engineered, and growth, morphogenesis, and photosynthetic characteristics of cucumber plants grown for 13 d under this spectrum have been compared with their performance under fluorescent tubes (FTs) and a high pressure sodium lamp (HPS). The total dry weight of the AS-grown plants was 2.3 and 1.6 times greater than that of the FT and HPS plants, respectively, and the height of the AS plants was 4-5 times greater. This striking difference appeared to be related to a more efficient light interception by the AS plants, characterized by longer petioles, a greater leaf unfolding rate, and a lower investment in leaf mass relative to leaf area. Photosynthesis per leaf area was not greater for the AS plants. The extreme differences in plant response to the AS spectrum compared with the widely used protected cultivation light sources tested highlights the importance of a more natural spectrum, such as the AS spectrum, if the aim is to produce plants representative of field conditions.

  1. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J

    2018-01-01

    Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.

  2. Modal spectrum analysis of piping systems under water-hammer loading: Spectra examination

    International Nuclear Information System (INIS)

    Meder, G.; Grams, J.

    1983-01-01

    In the last few years the dynamic calculation with spectra of piping systems under fluid-hammer has been developed. In comparison with the time-history solution method the spectra method has important advantages because it can calculate a bounded solution. In this bounded solution, the inevitable uncertainties of the time-dependent forces and the uncertainties in the modeling of the piping system are taken into account. The spectra also give valuable information about the frequency content of the time-dependent forces, which is important too for correct time-step selection when using the time-history-method. Using the spectra method, the dynamic calculation is divided into stages. First and most essential is the calculation of the spectra. Secondly, a form of superposition is used for combining the results from each eigenmode analysis. In this paper the first stage, calculation of the spectra due to fluid hammer loading, will be examined. An approximate method for load calculation is shown, whereby the results from a change of fluid-dynamic parameters can be quickly determined without making a full numerical analysis. When changes are made in fluiddynamic parameters, the normal result is a change of shift in the frequency content of the spectra. However, for changes in certain parameters, only the force amplitudes are changed. Both types of changes will be discussed. (orig./RW)

  3. Two-trace two-dimensional (2T2D) correlation spectroscopy - A method for extracting useful information from a pair of spectra

    Science.gov (United States)

    Noda, Isao

    2018-05-01

    Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.

  4. Regression filter for signal resolution

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-01-01

    The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)

  5. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    Science.gov (United States)

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  6. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c

    NARCIS (Netherlands)

    Monari, S.; Millo, D.; Ranieri, A.; di Rocco, G.; van der Zwan, G.; Gooijer, C.; Peressini, S.; Tavagnacco, C.; Hildebrandt, P.; Borsari, M.

    2010-01-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements,

  7. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    Science.gov (United States)

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  8. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  9. Automated Endmember Selection for Nonlinear Unmixing of Lunar Spectra

    Science.gov (United States)

    Felder, M. P.; Grumpe, A.; Wöhler, C.; Mall, U.

    2013-09-01

    An important aspect of the analysis of remotely sensed lunar reflectance spectra is their decomposition into intimately mixed constituents. While some methods rely on unmixing of the observed reflectance spectra [1] or on the identification of minerals by extracting the depths and positions of mineral-specific absorption troughs [2, 3], these approaches do not allow for an automated selection of the (a priori unknown) endmembers from a large set of possible constituents. In this study, a non-linear spectral unmixing approach combined with an automated endmember selection scheme is proposed. This method is applied to reflectance spectra of the SIR-2 point spectrometer [4] carried by the Chandrayaan-1 spacecraft.

  10. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  11. Development and validation of different methods manipulating zero order and first order spectra for determination of the partially overlapped mixture benazepril and amlodipine: A comparative study

    Science.gov (United States)

    Hemdan, A.

    2016-07-01

    Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238 nm or from their first order spectra at 253 nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240 nm and 238 nm, respectively, or from their first order spectra at 214 nm and 253 nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60 μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.

  12. The Unfolding of Value Sources During Online Business Model Transformation

    Directory of Open Access Journals (Sweden)

    Nadja Hoßbach

    2016-12-01

    Full Text Available Purpose: In the magazine publishing industry, viable online business models are still rare to absent. To prepare for the ‘digital future’ and safeguard their long-term survival, many publishers are currently in the process of transforming their online business model. Against this backdrop, this study aims to develop a deeper understanding of (1 how the different building blocks of an online business model are transformed over time and (2 how sources of value creation unfold during this transformation process. Methodology: To answer our research question, we conducted a longitudinal case study with a leading German business magazine publisher (called BIZ. Data was triangulated from multiple sources including interviews, internal documents, and direct observations. Findings: Based on our case study, we nd that BIZ used the transformation process to differentiate its online business model from its traditional print business model along several dimensions, and that BIZ’s online business model changed from an efficiency- to a complementarity- to a novelty-based model during this process. Research implications: Our findings suggest that different business model transformation phases relate to different value sources, questioning the appropriateness of value source-based approaches for classifying business models. Practical implications: The results of our case study highlight the need for online-offline business model differentiation and point to the important distinction between service and product differentiation. Originality: Our study contributes to the business model literature by applying a dynamic and holistic perspective on the link between online business model changes and unfolding value sources.

  13. Local Order in the Unfolded State: Conformational Biases and Nearest Neighbor Interactions

    Directory of Open Access Journals (Sweden)

    Siobhan Toal

    2014-07-01

    Full Text Available The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed.

  14. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    Science.gov (United States)

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Analytical investigation of different mathematical approaches utilizing manipulation of ratio spectra

    Science.gov (United States)

    Osman, Essam Eldin A.

    2018-01-01

    This work represents a comparative study of different approaches of manipulating ratio spectra, applied on a binary mixture of ciprofloxacin HCl and dexamethasone sodium phosphate co-formulated as ear drops. The proposed new spectrophotometric methods are: ratio difference spectrophotometric method (RDSM), amplitude center method (ACM), first derivative of the ratio spectra (1DD) and mean centering of ratio spectra (MCR). The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitations and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.

  16. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors; Tunnelspektroskopie an Korngrenzenkontakten aus elektronendotierten Hochtemperatur-Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Welter, B.

    2007-12-07

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H{sub c2}(T) respectively H{sub c2}(0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown.

  17. In-situ gamma spectrometry method for determination of environmental gamma dose

    International Nuclear Information System (INIS)

    Conti, Claudio de Carvalho

    1995-07-01

    This work tries to establish a methodology for germanium detectors calibration, normally used for in situ gamma ray spectrometry, for determining the environmental exposure rate in function of the energy of the incident photons. For this purpose a computer code has been developed, based on the stripping method, for the computational spectra analysis to calculate the contribution of the partial absorption of the gamma rays (Compton effect) in the active and nonactive parts of the detector. The resulting total absorption spectrum is then converted to fluence distribution in function of the energy for the photons reaching the detector, which is then used to calculate the exposure rate or kerma in air. The unfolding and fluency convention parameters are determined by detector calibration using point gamma sources. The method is validated by comparison of the results against the calculated exposure rate at a point of interest for the standards. This method is used for the direct measurement of the exposure rate distribution in function of the energy at the site, in situ measurement technic, leading to rapid results during an emergency situation and also used for indoor measurements. (author)

  18. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra

    International Nuclear Information System (INIS)

    Avila, Gustavo; Carrington, Tucker

    2015-01-01

    In this paper, we improve the collocation method for computing vibrational spectra that was presented in Avila and Carrington, Jr. [J. Chem. Phys. 139, 134114 (2013)]. Using an iterative eigensolver, energy levels and wavefunctions are determined from values of the potential on a Smolyak grid. The kinetic energy matrix-vector product is evaluated by transforming a vector labelled with (nondirect product) grid indices to a vector labelled by (nondirect product) basis indices. Both the transformation and application of the kinetic energy operator (KEO) scale favorably. Collocation facilitates dealing with complicated KEOs because it obviates the need to calculate integrals of coordinate dependent coefficients of differential operators. The ideas are tested by computing energy levels of HONO using a KEO in bond coordinates

  19. A symmetry based study of positron annihilation spectra

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Inst. of Physics and Nuclear Engineering, Bucharest

    1995-01-01

    The authors describe a method for off-line analysis of spectra measured by two-dimensional angular correlation of annihilation radiation (2D-ACAR) positron spectroscopy. The method takes into account, at all its stages, two salient data features: the piecewise constant discretization of the 2D physical momentum distribution into square pixels, performed by the setup, and the occurrence of a characteristic 2D projected symmetry of the positron-electron pair momentum distribution. Several validating criteria are derived which secure significantly increased reliability of the output. The method is tested on 2D-ACAR spectra measured on (R)Ba 2 Cu 3 O 7-δ (R123; R = Y, Dy) single crystals. It resolves ridge Fermi surfaces (FS) up to 3rd Umklapp components on both kinds of R123 spectra. Moreover, on a c-axis-projected Y123 spectrum, measured at 300 K, it resolves a small but clear signature of the pillbox FS at the S point of the first Brillouin zone as well

  20. Neutron flux density and secondary-particle energy spectra at the 184-inch synchrocyclotron medical facility

    International Nuclear Information System (INIS)

    Smith, A.R.; Schimmerling, W.; Henson, A.M.; Kanstein, L.L.; McCaslin, J.B.; Stephens, L.D.; Thomas, R.H.; Ozawa, J.; Yeater, F.W.

    1978-07-01

    Helium ions, with an energy of 920 MeV, produced by the 184-inch synchrocyclotron of the Lawrence Berkeley Laboratory are now being used in a pilot series to determine their efficacy in the treatment of tumors of large volume. The techniques for production of the large uniform radiation fields required for these treatments involve the use of beam-limiting collimators and energy degraders. Interaction of the primary beam with these beam components produces secondary charged particles and neutrons. The sources of neutron production in the beam transport system of the alpha-particle beam have been identified and their magnitudes have been determined. Measurements with activation detectors and pulse counters of differing energy responses have been used to determine secondary particle spectra at various locations on the patient table. These spectra are compared to a calculation of neutron production based on best estimates derived from published cross sections. Agreement between the calculated spectra and those derived from experimental measurements is obtained (at the 10 to 20% level) when the presence of charged particles is taken into account. The adsorbed dose in soft tissue is not very sensitive to the shape of the incident neutron energy spectrum, and the values obtained from unfolding the experimental measurements agree with the values obtained from the calculated spectra within the estimated uncertainty of +-25%. These values are about 3 x 10 -3 rad on the beam axis and about 1 x 10 -3 rad at 20 cm or more from the beam axis, per rad deposited by the incident alpha-particle beam. Estimates of upper limit dose to the lens of the eye and red bone marrow are approximately 10 rad and approximately 1 rad, respectively, for a typical treatment plan. The absorbed dose to the lens of the eye is thus well below the threshold value for cataractogenesis estimated for fission neutrons. An upper limit for the risk of leukemia is estimated to be approximately 0.04%