WorldWideScience

Sample records for spectra molecular structure

  1. Rotational spectra and molecular structure

    CERN Document Server

    Wollrab, James E

    1967-01-01

    Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce

  2. Relationship between molecular structure and Raman spectra of quinolines

    Science.gov (United States)

    Frosch, Torsten; Popp, Jürgen

    2009-04-01

    DFT calculations were applied to investigate the relationship between the molecular structure and the Raman spectra of quinolines. A variety of different quinolines with increasing complexity was investigated and an aminoquinoline nucleus was found that describes the Raman spectrum of protonated chloroquine. It was discovered that the biological important, rigid C7-chloro group and C4-side chain of chloroquine significantly disturb certain molecular vibrations. The protonation at the N1 position causes dramatic changes of the Raman bands in the wavenumber region between 1500 cm -1 and 1650 cm -1. These bands are putative marker bands of the aminoquinoline drugs for π-π interactions to the hematin targets in malaria infected cells. The calculation of the normal modes and the illustration of the associated atomic displacements are very valuable for a deeper understanding of the associated bands in the Raman spectra.

  3. Molecular structure and vibrational spectra of phenolphthalein and its dianion

    Science.gov (United States)

    Kunimoto, Ko-Ki; Sugiura, Hiromasa; Kato, Toshiyuki; Senda, Hitoshi; Kuwae, Akio; Hanai, Kazuhiko

    2001-02-01

    Infrared (IR) and Raman spectra of phenolphthalein (PP) and its dianion form (sodium and potassium salts) were studied both in the solid state and in aqueous solution. Band assignments were carried out on the basis of the isotope shifts of the ring deuterated and 13C-substituted derivatives. Spectral analyses reveal that the PP dianion exists as mixtures of the benzenoid form (colorless) and the quinonoid form (colored) in the solid state and in aqueous solution, while the neutral PP solely takes the γ-lactone form. This work provides the first vibrational spectroscopic evidence for the coexistence of the two species in the PP dianions.

  4. Dynamic molecular structure retrieval from low-energy laser-induced electron diffraction spectra

    Science.gov (United States)

    Vu, Dinh-Duy T.; Phan, Ngoc-Loan T.; Hoang, Van-Hung; Le, Van-Hoang

    2017-12-01

    A recently developed quantitative rescattering theory showed that a laser-free elastic cross section can be separated from laser-induced electron diffraction (LIED) spectra. Based upon this idea, Blaga et al investigated the possibility of reconstructing molecular structure from LIED spectra (2012 Nature 483 7388). In the above study, an independent atoms model (IAM) was used to interpret high-energy electron–molecule collisions induced by a mid-infrared laser. Our research aims to extend the application range of this structural retrieval method to low-energy spectra induced by more common near-infrared laser sources. The IAM is insufficient in this case, so we switch to a more comprehensive model—the multiple scattering (MS) theory. From the original version concerning only neutral targets, we upgrade the model so that it is compatible with electron–ion collisions at low energy. With available LIED experiment data of CO2 and O2, the upgraded MS is shown to be greatly effective as a tool for molecular imaging from spectra induced by a near-infrared laser. The captured image is at about 2 fs after the ionization, shorter than the period 4–6 fs by using the mid-infrared laser in Blaga’s experiment.

  5. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...Introduction……………………………………………………………………….………………..1 Calculation of Absorption Spectra using DFT ……………………………………………..…..….1 DFT Calculation of Equilibrium

  6. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    Science.gov (United States)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  7. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    Science.gov (United States)

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  8. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

    International Nuclear Information System (INIS)

    Hiller, Sebastian; Wider, Gerhard; Etezady-Esfarjani, Touraj; Horst, Reto; Wuethrich, Kurt

    2005-01-01

    In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole-dipole interactions and the associated 'spin diffusion' due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment

  9. Microwave measurements of the spectra and molecular structure for phthalic anhydride

    Science.gov (United States)

    Pejlovas, Aaron M.; Sun, Ming; Kukolich, Stephen G.

    2014-05-01

    The microwave rotational spectrum for phthalic anhydride (PhA) has been measured in the 4-14 GHz microwave region using a pulsed-beam Fourier transform (PBFT) Flygare-Balle type microwave spectrometer. Initially, the molecular structure was calculated using Gaussian 09 suite with mp2/6-311++G** basis and the calculations were used in predicting spectra for the measured isotopologues. The experimental rotational transition frequencies were measured and used to calculate the rotational and centrifugal distortion constants. The rotational constants for the normal isotopologue, four unique 13C substituted isotopologues and two 18O isotologues, were used in a least squares fit to determine nearly all structural parameters for this molecule. Since no substitutions were made at hydrogen sites, the calculated positions of the hydrogen atoms relative to the bonded carbon atoms were used in the structure determination. The rotational constants for the parent isotopologue were determined to be A = 1801.7622(9) MHz, B = 1191.71816(26) MHz, C = 717.44614(28) MHz. Small values for the centrifugal distortion constants were obtained; DJ = 0.0127 kHz, DJK = 0.0652 kHz, and DK = -0.099 kHz, indicating a fairly rigid structure. The structure of PhA is planar with a negative inertial defect of Δ = -0.154 amu Å2. Structural parameters from the mp2 and DFT calculations are in quite good agreement with measured parameters.

  10. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and...1 Calculation of Absorption Spectra using DFT ……………………………………………..…..….2 DFT Calculation of Equilibrium

  11. The molecular structure and vibrational, 1H and 13C NMR spectra of lidocaine hydrochloride monohydrate

    Science.gov (United States)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2016-01-01

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G∗∗ calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The 1H and 13C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21 ppm, respectively.

  12. Intrinsic and collective structure of an algebraic model of molecular rotation-vibration spectra

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Kirson, M.W.

    1988-11-15

    A geometrical framework is provided for a recently proposed interacting boson model of molecular rotation-vibration spectra. An intrinsic state is defined by way of a boson condensate parametrized in terms of shape variables and is used to generate an energy surface. The global minimum of the energy surface determines an equilibrium condensate which serves as the basis for an exact separation of the Hamiltonian into intrinsic and collective parts. A Bogoliubov treatment of the intrinsic part produces, in leading order, the normal modes of vibration and their frequencies, the collective degrees of freedom being represented by zero-frequency Goldstone modes associated with spontaneous symmetry breaking in the condensate. The method is very useful in interpreting numerical results of the algebraic model, in identifying the capabilities and inadequacies of the Hamiltonian, and in constructing appropriate algebraic Hamiltonians for specific molecules. copyright 1988 Academic Press, Inc.

  13. Intrinsic and collective structure of an algebraic model of molecular rotation-vibration spectra

    International Nuclear Information System (INIS)

    Leviatan, A.; Kirson, M.W.

    1988-01-01

    A geometrical framework is provided for a recently proposed interacting boson model of molecular rotation-vibration spectra. An intrinsic state is defined by way of a boson condensate parametrized in terms of shape variables and is used to generate an energy surface. The global minimum of the energy surface determines an equilibrium condensate which serves as the basis for an exact separation of the Hamiltonian into intrinsic and collective parts. A Bogoliubov treatment of the intrinsic part produces, in leading order, the normal modes of vibration and their frequencies, the collective degrees of freedom being represented by zero-frequency Goldstone modes associated with spontaneous symmetry breaking in the condensate. The method is very useful in interpreting numerical results of the algebraic model, in identifying the capabilities and inadequacies of the Hamiltonian, and in constructing appropriate algebraic Hamiltonians for specific molecules. copyright 1988 Academic Press, Inc

  14. Molecular structure and vibrational spectra of 2,2‧,4,4‧,6-pentabromodiphenyl ether (BDE 100)

    Science.gov (United States)

    Chruszcz-Lipska, Katarzyna; Trzewik, Bartosz; Winid, Bogumiła

    2017-07-01

    In this work, FT-IR ATR and Raman (laser line 532 nm) spectra of 2,2‧,4,4‧,6-pentabromodiphenyl ether (BDE 100) have been recorded in the range of 4000-650 and 4000-100 cm- 1, respectively. A combined experimental and theoretical approach (DFT/B3LYP/6-311 ++g** and aug-cc-pVDZ) was used to study molecular structure of BDE 100. Optimization of geometry in the gas phase at these levels of theory indicated that the BDE 100 has skew conformation. The detailed assignment of IR and Raman bands of BDE 100 was done on the basis of calculated results for the most stable conformer. The scaled theoretical frequencies are in good agreement with the experimental ones. Both experimental and theoretical IR and Raman spectra of BDE 100, one of the members of the family of flame retardants, are presented here for the first time.

  15. Microwave spectra, molecular structure, and aromatic character of 4a,8a-azaboranaphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Pejlovas, Aaron M.; Daly, Adam M.; Kukolich, Stephen G. [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Ashe, Arthur J. [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2016-03-21

    The microwave spectra for seven unique isotopologues of 4a,8a-azaboranaphthalene [hereafter referred to as BN-naphthalene] were measured using a pulsed-beam Fourier transform microwave spectrometer. Spectra were obtained for the normal isotopologues with {sup 10}B, {sup 11}B, and all unique single {sup 13}C and the {sup 15}N isotopologue (with {sup 11}B), in natural abundance. The rotational, centrifugal distortion and quadrupole coupling constants determined for the {sup 11}B{sup 14}N isotopologue are A = 3042.712 75(43) MHz, B = 1202.706 57(35) MHz, C = 862.220 13(35) MHz, D{sub J} = 0.06(1) kHz, 1.5χ{sub aa} ({sup 14}N) = 2.5781(61) MHz, 0.25(χ{sub bb} − χ{sub cc}) ({sup 14}N) = − 0.1185(17) MHz, 1.5χ{sub aa} (11B) = − 3.9221(75) MHz, and 0.25(χ{sub bb} − χ{sub cc}) ({sup 11}B) = − 0.9069(24) MHz. The experimental inertial defect is Δ = − 0.159 amu Å{sup 2}, which is consistent with a planar structure for the molecule. The B—N bond length from the experimentally determined structure is 1.47 Å, which indicates π-bonding character between the B and N. The measured quadrupole coupling strengths provide important and useful information about the bonding, orbital occupancy, and aromatic character for this aromatic molecule. Extended Townes-Dailey analyses were used to determine the B and N electron sp{sup 2}-hybridized and p-orbital occupations. These results are compared with electron orbital occupations from the natural bond orbital option in theoretical calculations. From the analyses, it was determined that BN-naphthalene has aromatic character similar to that of other N-containing aromatics. The results are compared with similar results for B—N bonding in 1,2-dihydro-1,2-azaborine and BN-cyclohexene. Accurate and precise structural parameters were obtained from the microwave measurements on seven isotopologues and from high-level G09 calculations.

  16. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4'-Nitrobiphenyl by density functional theory.

    Science.gov (United States)

    Govindarasu, K; Kavitha, E

    2014-03-25

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4'-Nitrobiphenyl (abbreviated as 4M4'NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4'NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm(-1). The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental (1)H and (13)C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4'NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Published by Elsevier B.V.

  17. Comparison of various molecular forms of bovine trypsin: Correlation of infrared spectra with X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Prestrelski, S.J. (Mount Sinai School of Medicine of the City Univ. of New York (USA)); Byler, D.M. (U.S. Department of Agriculture, Philadelphia, PA (USA)); Liebman, M.N. (AMOCO Technology Corporation, Naperville, IL (USA))

    1991-01-01

    Fourier-transform infrared spectroscopy is a valuable method for the study of protein conformation in solution primarily because of the sensitivity to conformation of the amide I band (1700-1620 cm{sup {minus}1}) which arises from the backbone C{double bond}O stretching vibration. Combined with resolution-enhancement techniques such as derivative spectroscopy and self-deconvolution, plus the application of iterative curve-fitting techniques, this method provides a wealth of information concerning protein secondary structure. Further extraction of conformational information from the amide I band is dependent upon discerning the correlations between specific conformation types and component bands in the amide I region. In this paper the authors report spectra-structure correlations derived from conformational perturbations in bovine trypsin which arise from autolytic processing, zymogen activation, and active-site inhibition. IR spectra were collected for the single-chain ({beta}-trypsin) and once-cleaved, double-chain ({alpha}-trypsin) forms as well as at various times during the course of autolysis and also for zymogen, trypsinogen, and {beta}-trypsin inhibited with diisopropyl fluorophosphate. Spectral differences among the various molecular forms were interpreted in light of previous biochemical studies of autolysis and the known three-dimensional structures of the zymogen, the active enzyme, and the DIP-inhibited form. The spectroscopic results from these proteins in D{sub 2}O imply that certain loop structures may absorb in the region of 1655 cm{sup {minus}1}. They estimate that this approach to data analysis and interpretation is sensitive to changes of 0.01 unit or less in the relative integrated intensities of component bands in spectra whose peaks are well resolved.

  18. Microwave measurements of the spectra and molecular structure for the monoenolic tautomer of 1,2- cyclohexanedione.

    Science.gov (United States)

    Pejlovas, Aaron M; Barfield, Michael; Kukolich, Stephen G

    2015-03-05

    The microwave spectrum for the monoenolic tautomer of 1,2-cyclohexanedione was measured in the 4-14 GHz regime using a pulsed-beam Fourier transform (PBFT), Flygare-Balle-type microwave spectrometer. The molecular structure and moments of inertia were initially calculated using Gaussian 09 using MP2 and 6-311++G** basis sets, and these calculations were used to predict the rotational constants and microwave spectra. Rotational transition frequencies were measured and used to determine rotational constants (A, B, and C) and centrifugal distortion constants (D(J) and D(K)). The rotational constants for the parent isotopologue, one singly substituted deuterium and six singly substituted (13)C isotopologues, were used in a least-squares fit to determine gas-phase structural parameters for this molecule. All hydrogen atoms were held fixed to the calculated positions, as well as the carbon atoms at positions 1 and 10 and the oxygen atoms at positions 6 and 7. The rotational constants for the parent isotopologue are A = 3161.6006(12), B = 2101.5426(3), and C = 1320.7976(4) MHz. The distortion constants obtained from the fit are D(J) = 0.0436 and D(K) = 0.436 kHz. Structural parameters from the MP2 calculations are in fair agreement with the measured parameters.

  19. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT

    Science.gov (United States)

    Prashanth, J.; Reddy, Byru Venkatram

    2018-03-01

    The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.

  20. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  1. Anhamonic finite temperature effects on the Raman and Infrared spectra to determine the crystal structure phase III of solid molecular hydrogen

    OpenAIRE

    Singh, Ranber; Azadi, Sam; Kühne, Thomas D.

    2013-01-01

    We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature are particularly important and qualitatively influences the main conclusions. While P6$_3$/m is the most likely candidate for phase III at the nuclear ground state, at finite temperature the C2/c structure appears to be more suitable.

  2. Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioEthanol production using DRIFT with uni- and multivariate molecular spectral analyses.

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared

  3. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine: DFT study.

    Science.gov (United States)

    Mahalakshmi, G; Balachandran, V

    2014-10-15

    The FT-IR and FT-Raman spectra of 4-Aminomethylpiperidine have been recorded using Perkin Elmer Spectrophotometer and Nexus 670 spectrophotometer. The equilibrium geometrical parameters, various bonding features, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated using Hartree-Fock and density functional method (B3LYP) with 6-311+G(d,p) basis set. Detailed interpretations of the vibrational spectra have been carried out with the aid of the normal coordinate analysis. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of intra molecular hydrogen bonds, electron delocalization and steric effects. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of 4-Aminomethylpiperidine (4AMP) were calculated. The theoretical UV-Visible spectrum of the compound was computed in the region 200-400nm by time-dependent TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The dipole moment (μ) and polarizability (α), anisotropy polarizability (Δα) and hyperpolarizability (β) of the molecule have been reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Extended analysis of satellite structures in particle induced X-ray emission spectra using molecular orbital calculations

    Science.gov (United States)

    Uda, U.

    Methods for estimating intensity distributions of X-ray satellite spectra induced by accelerated ions with energies of a few McVlamu are reviewed, where the orbitals responsible for X-ray emission are written in the molecular frame, not in the atomic frame. The ionization cross section is written here in the frame of the direct Coulomb interaction and the shake process. The following two factors are taken into account: (1) changes in the number of orbital electrons due to molecular orbital formation and (2) deviation of the number of electric charges on the projectile ion from the nuclear charge Z. Here the semiclassical approximation (SCA) has been used to calculate the Coulomb interaction between the projectile ion and the orbital electrons. In order to estimate the intensity of X-rays emitted from multiply ionized states changes in the fluorescence yield from the yield of isolated atoms caused by resonant orbital rearrangement (ROR), were also taken into account. Furthermore the energy loss of the projectile ions and absorption of emitted X-rays in the material were taken into account. The agreement between the calculated and the observed X-ray satellite intensities is satisfactory when we use all the correction terms mentioned above.

  5. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    Science.gov (United States)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  6. Astrophysical interpretation of molecular spectra

    International Nuclear Information System (INIS)

    Scoville, N.Z.

    1984-01-01

    As sensitive, high resolution spectrometers are developed throughout the infrared great progress is anticipated in understanding not only the young-stellar objects but also the active galaxy nuclei so luminous in the far-infrared. In the infrared the variety of atomic and molecular spectroscopic transitions is capable of probing conditions ranging from hot circumstellar HII regions, molecular envelopes, and shock fronts at > 2000 K down to cold, low density interstellar gas at < 10 K. The ability to measure both physical conditions and kinematics aids in the separation of the physical regimes and in the building of a coherent dynamic/evolutionary model. The author briefly reviews the characteristics of some of the observed molecular transitions and theoretical considerations important for understanding their excitation. (Auth.)

  7. Molecular structure, vibrational spectra and quantum chemical MP2/DFT studies toward the rational design of hydroxyurea imprinted polymer

    Science.gov (United States)

    Prasad, Bhim Bali; Rai, Garima

    2013-03-01

    In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d, 2p) basis set. The theoretical values for 13C and 1H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.

  8. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    Directory of Open Access Journals (Sweden)

    Zhiyuan Niu

    2011-03-01

    Full Text Available The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS from bioethanol processing in comparison with original feedstock (wheat (Triticum, corn (Zea mays. The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1, A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1, A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm-1, A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1, A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm-1, H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1, H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1. The study shows that the grains had lower spectral intensity (KM Unit of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05, higher (P < 0.05 intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0 and A_860 (20.7 vs. 7.6 than their co-products from bioethanol processing. There were no differences (P > 0.05 in the peak area intensities of A_Cell (structural CHO at 1292–1198 cm−1 and A_CHO (total CHO at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05 in the peak height intensities of H_1415 and H_1370 (structural CHOs with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS

  9. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This

  10. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia (UNC); (Purdue); (SFU-Russia); (Lund)

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  11. Energetics of the rearrangement of neutral and ionized perfluorocyclopropane to perfluoropropylene. Use of infrared multiphoton dissociation spectra to identify structural isomers of molecular ions

    International Nuclear Information System (INIS)

    Bomse, D.S.; Berman, D.W.; Beauchamp, J.L.

    1981-01-01

    Infrared photodissociation spectroscopy is used to compare the structure of gas-phase C 3 F 6 + ions obtained by electron-impact ionization of two isomeric precursors: perfluoropropylene and perfluorocyclopropane. Photodissociation spectra are obtained by observing the extent of multiphoton dissociation as the CO 2 laser is tuned across the 925 to 1080 cm -1 wavelength range. Ions are formed, stored, and detected with the use of techniques of ion cyclotron resonance spectroscopy. Infrared multiphoton excitation is effected by using low-power, continuous-wave laser radiation. The fingerprint spectrum of the molecular ion of perfluorocyclopropane is identical with that obtained from perfluoropropylene, indicating rearrangement of the former to the latter. Photodissociation kinetics indicate that the entire perfluorocyclopropane molecular ion population isomerizes to the more stable perfluoropropylene structure. Thermochemistry of C 3 F 6 and C 3 F 6 + isomers is discussed. Comparisons are made with the analogous C 3 H 6 system. Photoionization mass spectroscopy results yield ΔH/sub f/(c-C 3 F 6 ) = -233.8 kcal/mol. 4 figures

  12. Local Mode Analysis: Decoding IR Spectra by Visualizing Molecular Details.

    Science.gov (United States)

    Massarczyk, M; Rudack, T; Schlitter, J; Kuhne, J; Kötting, C; Gerwert, K

    2017-04-20

    Integration of experimental and computational approaches to investigate chemical reactions in proteins has proven to be very successful. Experimentally, time-resolved FTIR difference-spectroscopy monitors chemical reactions at atomic detail. To decode detailed structural information encoded in IR spectra, QM/MM calculations are performed. Here, we present a novel method which we call local mode analysis (LMA) for calculating IR spectra and assigning spectral IR-bands on the basis of movements of nuclei and partial charges from just a single QM/MM trajectory. Through LMA the decoding of IR spectra no longer requires several simulations or optimizations. The novel approach correlates the motions of atoms of a single simulation with the corresponding IR bands and provides direct access to the structural information encoded in IR spectra. Either the contributions of a particular atom or atom group to the complete IR spectrum of the molecule are visualized, or an IR-band is selected to visualize the corresponding structural motions. Thus, LMA decodes the detailed information contained in IR spectra and provides an intuitive approach for structural biologists and biochemists. The unique feature of LMA is the bidirectional analysis connecting structural details to spectral features and vice versa spectral features to molecular motions.

  13. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  14. Vibrational spectra, molecular structure, NBO, NMR, UV, first order hyperpolarizability, analysis of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol by Density functional theory.

    Science.gov (United States)

    Govindarasu, K; Kavitha, E

    2014-06-05

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol (abbreviated as SN5N2PLA) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The Fourier transform infrared (FT-IR) and FT-Raman spectra of SN5N2PLA were recorded in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. UV-Visible spectrum of the compound that dissolved in methanol were recorded in the region 200-800nm and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The molecular stability and bond strength have been investigated by applying the Natural Bond Orbital (NBO) analysis. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of SN5N2PLA were calculated using the GIAO method in methanol solution and compared with the measured experimental data. The dipole moment, polarizability and first order hyperpolarizability values were also computed. The polarizability and first hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The Chemical reactivity and Thermodynamic properties of SN5N2PLA at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) analysis were investigated using theoretical calculations. Published by Elsevier B.V.

  15. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl

    Science.gov (United States)

    Sagdinc, Seda G.; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-01

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl.

  16. Machine learning molecular dynamics for the simulation of infrared spectra.

    Science.gov (United States)

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  17. Theoretical investigation of molecular structure and vibrational spectra of 3,5-Diphenyl-4-(3,4,5-Trimethoxybenzylideneamino)-4H-1,2,4-Triazole Molecular

    International Nuclear Information System (INIS)

    Avci, D.

    2005-01-01

    The molecular geometry and vibrational frequencies of 3,5-diphenyl-4-(3,4,5- trimethoxybenzylideneamino)-4H-1,2,4-triazole in the ground state have been calculated using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 3,5-diphenyl-4-(3,4,5-trimethoxybenzylideneamino)-4H-1,2,4- triazole with calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems

  18. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  19. NBO, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of 4-Chloro-3,5-Xylenol: a combined experimental and theoretical study.

    Science.gov (United States)

    Arivazhagan, M; Gayathri, R

    2013-12-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab initio) study on the structure and the vibrations of 4-Chloro-3,5-Xylenol (CXL) are compared and analyzed. CXL is a chlorinated phenolic antiseptic which is a bactericide against most gram-positive bacteria. The first hyperpolarizability (β0) of this novel molecular system and related non-linear properties of CXL are calculated using HF/6-311++G(d,p) method on the finite-field approach. The energy and oscillator strength calculated using absorption spectra (UV-Vis spectrum), this spectral analysis confirms the charge transfer of the molecule. The theoretical (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge Including Atomic Orbital (GIAO) method, to analyze the molecular environment as well as the delocalization activities of electron clouds. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical hardness (η), first electron excitation energy (τ) and electrophilicity index (ω) as well as local reactivity (S) analyzed using HOMO and LUMO energies; the energy band gap are also determined. NBO analysis shows that charge in electron density(ED) in the σ(*) and π(*) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (Intramolecular Charge Transfer) within the molecule. Inter molecular hydrogen bonds exist between -OH group, give the evidence for the formation of dimer entities in the title molecule. The influences of chlorine atom, hydroxyl group and methyl group on the geometry of benzene and its normal modes of vibrations (monomer and dimer of CXL) have also been discussed. Finally the calculated results were applied to simulate Infrared and Raman spectra of the title molecule which show good agreement with observed spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. NBO, NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of 4-Chloro-3,5-Xylenol: A combined experimental and theoretical study

    Science.gov (United States)

    Arivazhagan, M.; Gayathri, R.

    2013-12-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab initio) study on the structure and the vibrations of 4-Chloro-3,5-Xylenol (CXL) are compared and analyzed. CXL is a chlorinated phenolic antiseptic which is a bactericide against most gram-positive bacteria. The first hyperpolarizability (β0) of this novel molecular system and related non-linear properties of CXL are calculated using HF/6-311++G(d,p) method on the finite-field approach. The energy and oscillator strength calculated using absorption spectra (UV-Vis spectrum), this spectral analysis confirms the charge transfer of the molecule. The theoretical 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge Including Atomic Orbital (GIAO) method, to analyze the molecular environment as well as the delocalization activities of electron clouds. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical hardness (η), first electron excitation energy (τ) and electrophilicity index (ω) as well as local reactivity (S) analyzed using HOMO and LUMO energies; the energy band gap are also determined. NBO analysis shows that charge in electron density(ED) in the σ* and π* antibonding orbitals and E(2) energies confirms the occurrence of ICT (Intramolecular Charge Transfer) within the molecule. Inter molecular hydrogen bonds exist between -OH group, give the evidence for the formation of dimer entities in the title molecule. The influences of chlorine atom, hydroxyl group and methyl group on the geometry of benzene and its normal modes of vibrations (monomer and dimer of CXL) have also been discussed. Finally the calculated results were applied to simulate Infrared and Raman spectra of the title molecule which show good agreement with observed spectra.

  1. Molecular structure, vibrational spectra, NBO, UV and first order hyperpolarizability, analysis of 4-Chloro-dl-phenylalanine by density functional theory.

    Science.gov (United States)

    Govindarasu, K; Kavitha, E

    2014-12-10

    The Fourier transform infrared (4000-400cm(-1)) and Fourier transform Raman (3500-50cm(-1)) spectra of 4-Chloro-dl-phenylalanine (4CLPA) were recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory (DFT) method using B3LYP/6-31G(d,p) as basis set. The observed vibrational wavenumbers were compared with the calculated results. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Predicted electronic absorption spectra from TD-DFT calculation have been analyzed comparing with the UV-Vis (200-800nm) spectrum. The effects of chlorine and ethylene group substituent in benzene ring in the vibrational wavenumbers have been analyzed. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4CLPA were calculated. The Chemical reactivity and chemical potential of 4CLPA is calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbital (FMO) analysis were investigated using theoretical calculations. Published by Elsevier B.V.

  2. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  3. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  4. Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory.

    Science.gov (United States)

    Issaoui, Noureddine; Ghalla, Houcine; Muthu, S; Flakus, H T; Oujia, Brahim

    2015-02-05

    In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Decoding Pure Rotational Molecular Spectra for Asymmetric Molecules

    Directory of Open Access Journals (Sweden)

    S. A. Cooke

    2013-01-01

    Full Text Available Rotational spectroscopy can provide insights of unparalleled precision with respect to the wavefunctions of molecular systems that have relevance in fields as diverse as astronomy and biology. In this paper, we demonstrate how asymmetric molecular pure rotational spectra may be analyzed “pictorially” and with simple formulae. It is shown that the interpretation of such spectra relies heavily upon pattern recognition. The presentation of some common spectral line positions in near-prolate asymmetric rotational spectra provides a means by which spectral assignment, and approximate rotational constant determination, may be usefully explored. To aid in this endeavor we have created a supporting, free, web page and mobile web page.

  6. Molecular geometry in the ultraviolet absorption spectra

    International Nuclear Information System (INIS)

    Albuquerque, S.F. de; Monteiro, L.S.; Adamis, L.M.B.; Baltar, M.C.P.; Silva, R.M. da

    1977-01-01

    The ultraviolet absorption spectra may be sensibly affected by steric effects. These effects can cause a lot of difficulties and unexpected changes in spectrum. The most general source of such difficulties is steric inhibition of resonance. In addition to this, ultraviolet epectra may be markedly changed by steric factors which change the positions of dipoles in the molecule with respect to each other and by the interaction of nonconjugated chromophores suitably located in space. We have studied in detail each of these effects presenting a lot of usual and importants examples in Organic Chemistry. Others relevants subjects were not considerated in this present work [pt

  7. Vibrational spectra, molecular structure, NBO, HOMO-LUMO and first order hyperpoalarizability analysis of 1,4-bis(4-formylphenyl)anthraquinone by density functional theory

    Science.gov (United States)

    Renjith, R.; Mary, Y. Sheena; Varghese, Hema Tresa; Panicker, C. Yohannan; Thiemann, Thies; Van Alsenoy, Christian

    2014-10-01

    Anthraquinone derivatives are most important class of a system that absorb in the visible region. Infrared and Raman spectroscopic analyses were carried out on 1,4-bis(4-formylphenyl)anthraquinone. The interpretation of the spectra was aided by DFT calculations of the molecule. The vibrational wavenumbers were examined theoretically using the Gaussian09 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. A computation of the first hyperpolarizability of the compound indicates that this class of substituted anthraquinones may be a good candidate as a NLO material. Optimized geometrical parameters of the compound are in agreement with similar reported structures. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis.

  8. Vibrational spectra, molecular structure, natural bond orbital, first order hyperpolarizability, thermodynamic analysis and normal coordinate analysis of Salicylaldehyde p-methylphenylthiosemicarbazone by density functional method

    Science.gov (United States)

    Porchelvi, E. Elamurugu; Muthu, S.

    2015-01-01

    The thiosemicarbazone compound, Salicylaldehyde p-methylphenylthiosemicarbazone (abbreviated as SMPTSC) was synthesized and characterized by FTIR, FT-Raman and UV. Density functional (DFT) calculations have been carried out for the title compound by performing DFT level of theory using B3LYP/6-31++G(d,p) basis set. The molecular geometry and vibrational frequencies were calculated and compared with the experimental data. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set. The stability and charge delocalization of the molecule was studied by natural bond orbital (NBO) analysis. Thearomaticities of the phenyl rings were studied using the standard harmonic oscillator model of aromaticity (HOMA) index. Mulliken population analysis on atomic charges is also calculated. The molecule orbital contributions are studied by density of energy states (DOSs).

  9. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  10. Molecular structure, vibrational spectra, MEP, HOMO-LUMO and NBO analysis of Hf(SeO3)(SeO4)(H2O)4

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Halachev, Nenko; Dimitrova, Ginka

    2016-02-01

    Hf(SeO3)(SeO4)(H2O)4 was obtained with the hydrothermal synthesis. The geometry optimization of this molecule was done by Density Functional Theory (DFT/B3LYP) method with 6-31G(d) basis set and LANL2DZ for Hf. The experimental infrared spectrum was compared with calculated and complete vibrational assignment was provided. The bond orders and the electronic properties of the molecule were calculated. The natural bond orbital analysis (NBO) was performed in order to study the intramolecular bonding interactions among bonds and delocalization of unpaired electrons. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap were presented. The electrostatic potential was calculated in order to investigate the reaction properties of the molecule. The thermodynamic properties of the studied compound at different temperatures were calculated.

  11. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  12. The Vibrational Spectra of the Boron Halides and their Molecular ...

    African Journals Online (AJOL)

    The structures, interaction energies and vibrational spectra of the van derWaals complexes formed between boron trifluoride, as Lewis acid, and water and hydrogen sulphide, as Lewis bases, have been determined by means of ab initio calculations at the second-order level of Møller-Plesset perturbation theory, using a ...

  13. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  14. ExoCross: Spectra from molecular line lists

    Science.gov (United States)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  15. Photoionization and molecular structure

    International Nuclear Information System (INIS)

    Palma, A.

    1983-01-01

    A presentation is here given of the theoretical work on photoionization and molecular structure carried out by the author and coworkers. The implications of the photoionization process on the molecular geometry are emphasized. In particular, the ionization effect on deep orbitals is considered and it is shown that, contrary to traditional thinking, these orbitals have relevant effects on the molecular geometry. The problem of calculating photoionization relative intensities for the full spectrum is also considered, and the results of the present model are compared with experimental and other theoretical results. (author)

  16. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    Science.gov (United States)

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.

  17. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  18. Synthesis, structural, spectroscopic, anti-cancer and molecular docking studies on novel 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol using XRD, FTIR, NMR, UV-Vis spectra and DFT

    Science.gov (United States)

    Pavitha, P.; Prashanth, J.; Ramu, G.; Ramesh, G.; Mamatha, K.; Venkatram Reddy, Byru

    2017-11-01

    The novel titled compound 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol (AMD) has been synthesized by slow evaporation technique from mixed solvent system of methanol with anthracene-9-carbaldehyde and 2-amino-2-methylpropane-1,3-diol. The synthesized molecule AMD was characterized experimentally by single crystal XRD, FTIR, NMR and UV-Vis spectra and density functional theory (DFT) computations. The structure of the crystal has been determined as orthorhombic system with space group P 21 21 21 and the cell parameters are obtained using XRD data. The optimized ground state geometry of the molecule is determined by evaluating torsional potentials as a function of angle of free rotation around Csbnd C bonds of functional groups by DFT method employing B3LYP functional with 6-311++G(d,p) basis set. All the fundamental vibrations of the molecule are assigned unambiguously using potential energy distribution (PED) obtained in the DFT computations. The rms error between the observed and scaled frequencies is 6.20 cm-1. The values of dipole moment, polarizability and hyperpolarizability are evaluated to study the NLO behavior of the molecule. The HOMO-LUMO energies and thermodynamic parameters are also determined. The molecular electrostatic surface potential (MESP) is mapped to obtain the charge density distribution. The 1H and 13C NMR chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible spectrum of the compound is also recorded in the region 200-800 nm to know the type of electronic transitions involved. The anti-cancer activity of AMD is determined against human breast cancer cell line MCF-7 and human prostate cancer cell line PC-3 and correlated the results with study of molecular docking against pharmacological protein IDO-1 receptor.

  19. Spectra modelling combining molecular dynamics and quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Novák, Vít; Bouř, Petr

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR GAP208/11/0105; GA ČR GA15-09072S Grant - others:GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : Raman scattering * molecular dynamics * autocorrelation function Subject RIV: CF - Physical ; Theoretical Chemistry

  20. Photoelectron spectra and electronic structures of some indigo dyes

    Science.gov (United States)

    Bauer, Helmut; Kowski, Klaus; Kuhn, Hubert; Lüttke, Wolfgang; Rademacher, Paul

    1998-04-01

    The He(I) photoelectron spectra of thioindigo ( 3), selenoindigo ( 4), bi(4,4-dimethyltetrahydropyrrole-3-one-2-ylidene) ( 5), bi(4,4-dimethyltetrahydrothiophene-3-one-2-ylidene) ( 6), octahydroindigo ( 8), 4,4'-dibutyl-5,5'-dimethylpyrrolindigo ( 9), and thiophenindigo ( 10) have been obtained by evaporating the compounds at temperatures up to about 350°C. The ionization potentials (IPs) are compared with those of the parent compound indigo ( 1) and are related to orbital energies or electronic states of the respective radical cations with the aid of semi-empirical SCF MO calculations. A satisfactory interpretation of the spectra is achieved with the Outer Valence Green's function method OVGF in combination with PM3 results. The first three IPs of all indigoid molecules in this study have the same origin, i.e. they relate to similar molecular orbitals. Because of the close relationship of the electronic structures of indigoid molecules, the IPs of the unknown unsubstituted pyrrolindigo ( 7) could be estimated.

  1. Algebraic descriptions of nuclear and molecular rotation-vibration spectra

    International Nuclear Information System (INIS)

    Roosmalen, O.S. van.

    1982-01-01

    The application of algebraic models to the description of rotational and vibrational degrees of freedom of nuclei and molecules are discussed. Simple model Hamiltonians are shown to give good agreement with the energy spectra of diatomic molecules and nuclei. Some formal aspects of path integral methods for many-boson systems are treated. The two representations for the quantum mechanical propagator are compared and appear to be identical in leading order in 1/N (N is the number of bosons). Approximations for both are static and dynamic problems are discussed. Applications of mean field techniques are also treated. A description of tri- and tetra-atomic molecules in terms of a U(4)xU(4) and U(4)xU(4)xU(4) group structure is given. Linear molecules appear to correspond with symmetries of O(4) type. S-matrix elements are calculated to test mean field methods, and the results compared with exact calculations. (Auth.)

  2. Simulation of Eu3+ luminescence spectra of borosilicate glasses by molecular dynamics calculations

    International Nuclear Information System (INIS)

    De Bonfils, J.; Panczer, G.; De Ligny, D.; Champagnon, B.; Peuget, S.; Delaye, J. M.; Chaussedent, S.; Monteil, A.

    2008-01-01

    Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born-Mayer-Huggins potentials and three body angular terms representing Coulomb and covalent interactions. Atomic positions within the glasses are then determined. Simulations of luminescence spectra were then obtained by calculation of the ligand field parameters affecting each luminescent ion. Considering the C 2v symmetry, it is possible to calculate the radiative transition probabilities between the emitter level, 5 D o , and the splitted receptor levels, 7 F J (J=0-3) for each Eu 3+ ion. The simulated emission spectra are obtained by convolution of all the Eu 3+ ions contributions. A comparison with the experimental data issue from fluorescence line narrowing and micro-luminescence spectroscopies allowed us not only to validate the simulation of luminescence spectra from simulated environments, but also to confirm the presence and the identification of two major Eu 3+ sites distribution in the nuclear glasses thanks to spectra-structure correlations. (authors)

  3. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Regulatory Guide 1.60 criteria and is scaled to a log peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. 2 refs., 2 figs., 2 tabs

  4. Photoelectron spectra and structures of three cyclic dipeptides

    DEFF Research Database (Denmark)

    Wickrama Arachchilage, A.P.; Wang, F.; Feyer, V.

    2012-01-01

    spectra of all three cyclic dipeptides agree reasonably well with the experimental spectra. The central ring and the side chains act as independent chromophores whose spectra do not influence one another, except for prolyl dipeptides, where the pyrrole ring is fused with the central ring. In this case......We have investigated the electronic structure of three cyclic dipeptides: cyclo(Histidyl-Glycyl) (cHisGly), cyclo(Tyrosyl-Prolyl) (cTyrPro), and cyclo(Phenylalanyl-Phenylalanyl) (cPhePhe) in the vapor phase, by means of photoemission spectroscopy and theoretical modeling. The last compound...

  5. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  6. Electronic spectra and structure of allopurinol: a xanthine oxidase inhibitor

    Science.gov (United States)

    Shukla, M. K.; Mishra, P. C.

    1996-10-01

    Electronic absorption, fluorescence and fluorescence excitation spectra of allopurinol, a well-known inhibitor of the enzyme xanthine oxidase, have been studied in aqueous solution at different pH. The observed spectra have been interpreted in terms of the neutral, anionic and cationic forms of allopurinol with the help of molecular orbital calculations which included optimisation of geometries of the neutral keto and enol forms of the molecule in the lowest singlet excited state. Electrostatic potential mapping has been performed to identify the most probable site of binding of allopurinol with xanthine oxidase.

  7. The electronic absorption spectra of some acyl azides. Molecular orbital treatment

    Science.gov (United States)

    Abu-Eittah, Rafie H.; Mohamed, Adel A.; Farag, A. M.; Al Omar, Ahmed M.

    2008-06-01

    The electronic absorption spectra of benzoyl azide and its derivatives: p-methyl, p-methoxy, p-chloro and p-nitrobenzoyl azide were investigated in different solvents. The observed spectra differ basically from the electronic spectra of aryl azides or alkyl azides. Four intense π-π * transitions were observed in the accessible UV region of the spectrum of each of the studied compounds. The contribution of charge transfer configurations to the observed transitions is rather weak. Shift of band maximum with solvent polarity is minute. On the other hand, band intensity is highly dependent on the solvent used. The observed transitions are delocalized rather than localized ones as in the case with aryl and alkyl azides. The attachment of the C dbnd O group to the azide group in acyl azides has a significant effect on the electronic structure of the molecule. The arrangements as well as energies of the molecular orbitals are different in acyl azides from those in aryl azides. The first electronic transition in phenyl azide is at 276 nm, whereas that of bezoyle azide is at 251 nm. Ab initio molecular orbital calculations using both RHF/6-311G* and B3LYP/6-31+G * levels were carried out on the ground states of the studied compounds. The wave functions of the excited states were calculated using the CIS and the AM1-CI procedures.

  8. Computer simulation of molecular absorption spectra for asymmetric top molecules

    International Nuclear Information System (INIS)

    Bende, A.; Tosa, V.; Cosma, V.

    2001-01-01

    The effective Hamiltonian formalism has been used to develop a model for infrared multiple-photon absorption (IRMPA) process in asymmetric top molecules. Assuming a collisionless regime, the interaction between the molecule and laser field can be described by the time-dependent Schroedinger equation. By using the rotating wave approximation and Laplace transformation, the time-dependent problem reduces to a time-independent eigen problem for an effective Hamiltonian which can be solved only numerically for a real vibrational-rotational structure of polyatomic molecule. The vibrational-rotational structure is assumed to be an anharmonic oscillator coupled to an asymmetric rigid rotor. The main assumptions taken into account for this model are the following: (1) the excitation is coherent, i.e. the collision (if present during the laser pulse) does not influence the excitation; (2) the excitation starts from the ground state and is near resonant to a normal mode, thus, the rotating wave approximation can be applied; (3) after absorbing N photons the vibrational energy of the excited mode leak into a quasicontinuum; (4) the thermal population of the ground state is given by the Maxwell-Boltzmann distribution law. The energy levels of the asymmetric top molecules cannot be represented by an explicit formula analogous to that for the symmetric top, according to quantum mechanics, but we can consider it a deviation from the prolate or oblate case of the symmetric top, and we can find in the same manner the selection rules of the asymmetric case using the selection rules for the symmetric case. The infrared bands of asymmetric top molecules are not resolved, but if the dispersion used is not too small, so that the envelopes of the bands can be distinguished from simple maxima, it is possible to draw conclusions as to the type of the bands. In this case, the simulation of the absorption spectra can give us some important information about the types of these bands. In

  9. Synthesis, structure, redox and spectra of green iridium complexes ...

    Indian Academy of Sciences (India)

    TECS

    3. *For correspondence. Synthesis, structure, redox and spectra of green iridium complexes of tridentate azo-aromatic ligands. MANASHI PANDA,a CHAYAN DAS,a CHEN-HSIUNG HUNGb and. SREEBRATA ... Mn(II)7 and Fe(II)8 but also produces stable anionic ..... the EPR of the oxidized complexes were not suc- cessful ...

  10. The Vibrational Spectra of the Boron Halides and Their Molecular ...

    African Journals Online (AJOL)

    NICO

    Complementary to the technique of matrix isolation spectroscopy in solid noble gas or nitrogen matrices is that of the use of cryogenic liquids (usually noble gases) as solvents for the examination of vibrational spectra. These studies have the advantage that they give direct experi- mental access to the enthalpies of reactions ...

  11. An experimental and theoretical investigation of Acenaphthene-5-boronic acid: conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra.

    Science.gov (United States)

    Karabacak, Mehmet; Sinha, Leena; Prasad, Onkar; Asiri, Abdullah M; Cinar, Mehmet

    2013-11-01

    The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400cm(-1) and 4000-10cm(-1), respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability 〈β〉, its components and associated properties such as average polarizability and anisotropy of the polarizability (α and Δα) of AN-5-BA was calculated using the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    Science.gov (United States)

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  13. Ab initio Molecular Orbital Studies of the Vibrational Spectra of some ...

    African Journals Online (AJOL)

    Ab initio Molecular Orbital Studies of the Vibrational Spectra of some van der Waals Complexes. Part 4. Complexes of Sulphur Dioxide with Carbon Dioxide, Carbonyl Sulphide, Carbon Disulphide and Nitrous Oxide.

  14. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  15. Structural biology of Molecular machines

    Indian Academy of Sciences (India)

    Administrator

    a structural biology perspective. TANWEER HUSSAIN. Molecular Reproduction, Development and Genetics (MRDG). Indian Institute of Science (IISc). Bangalore. Symposium on “Molecular Machines: a multidiscipline enterprise” 1st July 2017. 28th mid-year meeting of Indian Academy of Sciences at IISc, Bangalore ...

  16. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    Science.gov (United States)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  17. Structure, spectra and stability of a tetrafluoromethane-water complex.

    Science.gov (United States)

    Mierzwicki, Krzysztof; Mielke, Zofia; Sałdyka, Magdalena; Coussan, Stephane; Roubin, Pascale

    2008-03-07

    The complex formed between water and tetrafluoromethane has been studied by infrared matrix isolation spectroscopy and ab initio calculations. The geometries of the CF4-H2O complexes were optimized in two steps at the MP2/aug-cc-pVTZ level of theory. The structure found at this level was reoptimized on the CP-corrected potential energy surface. The interaction energy was partitioned according to the SAPT scheme and the topological analysis of the electron density was performed. The optimized structure corresponds to the nonhydrogen bonded complex with an oxygen atom of water oriented toward the carbon atom of CF4. The infrared spectra of CF4-H2O /Ne(Ar) matrices demonstrate the presence of a well defined CF4-H2O structure in accord with theoretical prediction. Two complex vibrations were identified in the spectra of neon matrices and four vibrations were observed in the spectra of argon matrices. The available experimental data are in accord with the CP-corrected calculated data.

  18. The Electronic Structure and Spectra of Triphenylamines Functionalized by Phenylethynyl Groups

    Science.gov (United States)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Grigoras, M.

    2018-01-01

    We study the features of the electronic structure and the IR, UV, and visible spectra of a series of triphenylamines substituted with phenylethynyl groups. The analysis is performed at the level of the density functional theory (DFT) and its nonstationary version in comparison with the experimental data of IR and electron spectroscopy. It is shown that, in the excited state, there is a change in the alternation of single, double, and triple bonds in accordance with the character of bonding and antibonding in the lowest vacant molecular orbital. The gradual introduction of additional phenylethynyl groups does not cause frequency shifts in the IR spectra of the molecules under study, but significantly affects the intensity of the corresponding IR bands. A similar effect is also observed in the electronic-absorption spectra of these compounds. This can be used for optical tuning of triphenylamines as promising materials for organic light-emitting diodes and solar cells.

  19. Modeling of A-DLTS Spectra of MOS Structures

    Directory of Open Access Journals (Sweden)

    Peter Hockicko

    2008-01-01

    Full Text Available Acquisition of basic characteristic of defects has become possible through a wide class of measurement techniqueswhich probe the interface, the near interface, as well as the bulk of semiconductor. Results presented here are basedessentially on the acoustic version of Deep Level Transient Spectroscopy (A-DLTS measurements. This method is based onthe acoustoelectric response effect observed at the interface. The A-DLTS uses the acoustoelectric response signal (ARSproduced by MOS structure interface when a longitudal acoustic wave propagates through a structure. The ARS is extremelysensitive to external conditions of the structure and reflects any changes in the charge distribution connected with chargedtraps. The temperature dependence of ARS after bias voltage step application is investigated and the activation energies andsome other parameters of traps at the insulator – semiconductor interface are determined. The results obtained formArrhenius plots of A-DLTS spectra of selected MOS structures are compared with results obtained from modeling of ADLTS spectra using theoretical model.

  20. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  1. The Vibrational Spectra of the Boron Halides and Their Molecular ...

    African Journals Online (AJOL)

    These complexes are bound through the hydroxyl O, the N and the nitrosyl O atoms, in decreasing order of strength of interaction, and in the last case two separate rotational isomers have been identified. The intermolecular structural parameters and the perturbations of the intramolecular bond lengths and angles are ...

  2. Molecular structure and centrifugal distortion in methylthioethyne

    NARCIS (Netherlands)

    Engelsen, D. den

    1969-01-01

    The investigation of the microwave spectra of five isotopic species of methylthioethyne, HCCSCH3 enabled a fairly reliable calculation to be made of bond lengths and angles. The centrifugal distortion parameters are related to molecular vibrations.

  3. Electronic structure, charge distribution and X-ray emission spectra of V3Si

    International Nuclear Information System (INIS)

    Anisimov, V.I.; Gubanov, V.A.; Ivanovskii, A.L.; Kurmaev, E.Z.; Weber, J.; Lacroix, R.

    1979-01-01

    Cluster calculations of the electronic structure and charge distribution in V 3 Si have been performed using two different molecular orbital methods: a semiempirical LCAO and the MS Xα model. The results are compared with X-ray emission spectra and band structure calculations. An analysis of the calculated electronic distribution reveals a charge transfer from Si-atoms to V-atoms, the additional charge on a V-atom being 0.6e (LCAO) and 0.4e (MS Xα method). The results are in good agreement with experiment, which indicates that the cluster approach is adequate for the description of charge distributions and spectra characteristics of the A-15 compounds. (author)

  4. The Vibrational Spectra of the Boron Halides and their Molecular ...

    African Journals Online (AJOL)

    NJD

    2004-06-15

    Jun 15, 2004 ... 3 D.W. Ball and M.J. Zehe, NASA Technical Memorandum 106422, NASA,. Washington, DC, USA, 1993. 4 M.E. Jacox, K.I. Irikura and W.E. Thompson, J. Chem. Phys., 2000, 113,. 5705–5715. 5 D.W. Ball, J. Mol. Structure (Theochem), 1995, 331, 223–228. 6 J.A. Altmann, M.G. Govender and T.A. Ford, Mol.

  5. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  6. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 3{sub 10}- and α-helix of acetyl(alanine){sub n}NH{sub 2} (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm{sup −1} is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine){sub 20} and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  7. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Science.gov (United States)

    Sahu, Nityananda; Gadre, Shridhar R.

    2016-03-01

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm-1 is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  8. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach.

    Science.gov (United States)

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-28

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  9. On the effects of transforming the vibrational spectra of molecular systems under microwave radiation

    International Nuclear Information System (INIS)

    Serikov, A.A.

    1993-01-01

    This problem is analyzed within the quantum-classical theory of molecular spectra. It is shown that the above-mentioned spectrum transformation could be, in principle, realized in macromolecular systems with strong interaction, and attention is drawn to the resonance character of the effect. (author). 19 refs., 1 fig

  10. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  11. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  12. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine.

    Science.gov (United States)

    Srivastava, Santosh K; Singh, Vipin B

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals.

    KAUST Repository

    Brambilla, Luigi

    2014-10-14

    © 2014 American Chemical Society. In this work, we report a comparative analysis of the infrared and Raman spectra of octa(3-hexylthiophene) (3HT)8, trideca(3-hexylthiophene) (3HT)13, and poly(3-hexylthiophene) P3HT recorded in various phases, namely, amorphous, semicrystalline, polycrystalline and single crystal. We have based our analysis on the spectra of the (3HT)8 single crystal (whose structure has been determined by selected area electron diffraction) taken as reference and on the results of DFT calculations and molecular vibrational dynamics. New and precise spectroscopic markers of the molecular structures show the existence of three phases, namely: hairy (phase 1), ordered (phase 2), and disordered/amorphous (phase 3). Conceptually, the identified markers can be used for the molecular structure analysis of other similar systems.

  14. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  15. The geometric content of the interacting boson model for molecular spectra

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1981-12-01

    The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)

  16. EPR Studies of Spin Labels Bound to Ceramic Surfaces, and Simulation of Magnetic Resonance Spectra by Molecular Trajectory.

    Science.gov (United States)

    Auteri, Francesco Paul

    Electron paramagnetic resonance (EPR) spectroscopy is sensitive to molecular rotational correlation times in the range of 10^{-6} to 10^{-11} seconds. EPR spin labels are often attached or incorporated into molecular structures as probes of local viscosities and dynamics. In part I of this work, methods of covalently attaching a variety of spin labels to silica and alumina ceramic surfaces are developed in an attempt to study local viscosities at varying distances from about 5 A^circ to 25 A^circ from the ceramic/liquid interface. Three solvents, diethyl ether, benzene, and cyclohexane, are chosen for detailed study in combination with the spin labels, TEMPOL, 5-DOXYL, and 12-DOXYL. EPR spectra of each system are taken over the range of temperatures from -140 ^circC to 50^circ C (or just below the solvent boiling point). Spectra show good sensitivity to solvent, temperature, and probe. The effect of adding 3% (w/o) poly-(octadecyl-methacrylate) (PODM) to benzene and cyclohexane on spin label mobility is also studied in this work. Rotational correlation times from lineshapes are analyzed assuming isotropic rotation using spectral splitting, line width, and simulation methods. These approaches are often inadequate for the more complex spectral line shapes observed for tethered spin labels, especially in the intermediate motional regime where sensitivity to anisotropic dynamics is greatest. In part II of this work, a novel approach to the prediction of spectral line shapes is developed. It is shown that EPR spectra may be computed directly from molecular trajectories using classical approximations to describe the time evolution of the magnetization vector under fluctuating effective interaction tensor values. Line shape simulations using molecular trajectories generated by Brownian dynamics theory are less time intensive than existing methods. Simulation of magnetic resonance line shapes by molecular trajectories as generated by programs such as CHARMM promises to be

  17. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  18. Uncertainties of Molecular Structural Parameters

    International Nuclear Information System (INIS)

    Császár, Attila G.

    2014-01-01

    performed. Simply, there are significant disagreements between the same bond lengths measured by different techniques. These disagreements are, however, systematic and can be computed via techniques of quantum chemistry which deal not only with the motions of the electrons (electronic structure theory) but also with the often large amplitude motions of the nuclei. As to the relevant quantum chemical computations, since about 1970 electronic structure theory has become able to make quantitative predictions and thus challenge (or even overrule) many experiments. Nevertheless, quantitative agreement of quantum chemical results with experiment can only be expected when the motions of the atoms are also considered. In the fourth age of quantum chemistry we are living in an era where one can bridge quantitatively the gap between ‘effective’, experimental and ‘equilibrium’, computed structures at even elevated temperatures of interest thus minimizing any real uncertainties of structural parameters. The connections mentioned are extremely important as they help to understand the true uncertainty of measured structural parameters. Traditionally it is microwave (MW) and millimeterwave (MMW) spectroscopy, as well as gas-phase electron diffraction (GED), which yielded the most accurate structural parameters of molecules. The accuracy of the MW and GED experiments approached about 0.001Å and 0.1º under ideal circumstances, worse, sometimes considerably worse, in less than ideal and much more often encountered situations. Quantum chemistry can define both highly accurate equilibrium (so-called Born-Oppenheimer, r e BO , and semiexperimental, r e SE ) structures and, via detailed investigation of molecular motions, accurate temperature-dependent rovibrationally averaged structures. Determining structures is still a rich field for research, understanding the measured or computed uncertainties of structures and structural parameters is still a challenge but there are firm and well

  19. RETRACTED: Experimental FT-IR, FT-Raman spectra and quantum chemical studies of optimized molecular structures, conformers and vibrational characteristics of nicotinic acid and thio-nicotinic acid

    Science.gov (United States)

    Singh, Priyanka; Yadav, T. K.; Karabacak, M.; Yadav, R. A.; Singh, N. P.

    2012-10-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. This article has been retracted because the authors have copied several parts of the following already published paper without permission of the authors: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 79, Issue 5, September 2011, Pages 1316-1325. http://dx.doi.org/10.1016/j.saa.2011.04.062.

  20. Vulnerability and floor spectra of seismically isolated structures

    International Nuclear Information System (INIS)

    Pham, K.H.

    2010-09-01

    This thesis was motivated by issues that arise regarding the use of the method of seismic isolation in the nuclear industry. Despite the research conducted during the last decades in the field of seismic isolation, many questions about the behavior of isolated structures remain. These questions concern, on the one hand, the vulnerability of these structures, due to an excursion (unexpected) in the post-linear domain, and on the other hand, phenomena that can lead to a significant excitation of none isolated modes. Furthermore, unlike previous work studying the seismic behavior of buildings, an important part of this thesis is devoted to the behavior of equipment through the study of floor spectra. Firstly, the probability of failure, in the case of nonlinear response of the superstructure, was studied with simple models, for different laws of nonlinear behavior and different types of support. Then, the effects of heavy damping were investigated and the mechanism of amplification of the response of non-isolated modes has been explained. To resolve the amplification problem of none isolated modes, the mixed isolated systems, combining passive isolation with semi-active devices, have been considered. The numerical analyses confirm the effectiveness of this approach. Finally, a series of shaking table tests on a simple model with two degrees of freedom was conducted. The model is equipped with a magneto-rheological damper which is controlled as a semi-active device. The comparison of the experimental results with those of numerical simulations shows that the models developed are able to represent satisfactorily the essential physical phenomena. (author)

  1. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics.

    Science.gov (United States)

    Barros, Ariane Isis; Victor de Babos, Diego; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2016-12-01

    Different precursors were evaluated for the generation of reference spectra and correction of the background caused by SiO molecules in the determination of Sb in facial cosmetics by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. Zeolite and mica were the most effective precursors for background correction during Sb determination using the 217.581nm and 231.147nm lines. Full 2 3 factorial design and central composite design were used to optimize the atomizer temperature program. The optimum pyrolysis and atomization temperatures were 1500 and 2100°C, respectively. A Pd(NO 3 ) 2 /Mg(NO 3 ) 2 mixture was employed as the chemical modifier, and calibration was performed at 217.581nm with aqueous standards containing Sb in the range 0.5-2.25ng, resulting in a correlation coefficient of 0.9995 and a slope of 0.1548s ng -1 . The sample mass was in the range 0.15-0.25mg. The accuracy of the method was determined by analysis of Montana Soil (II) certified reference material, together with addition/recovery tests. The Sb concentration found was in agreement with the certified value, at a 95% confidence level (paired t-test). Recoveries of Sb added to the samples were in the range 82-108%. The limit of quantification was 0.9mgkg -1 and the relative standard deviation (n=3) ranged from 0.5% to 7.1%. From thirteen analyzed samples, Sb was not detected in ten samples (blush, eye shadow and compact powder); three samples (two blush and one eye shadow) presented Sb concentration in the 9.1-14.5mgkg -1 range. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  3. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    The spectroscopic properties of the title compound have beeninvestigated by using IR, UV–Vis and ¹H NMR techniques. The molecular geometry and spectroscopic data of the title compound have been calculated by using the density functional method (B3LYP) invoking 6-311G(d,p) basis set. UV-Vis spectra of the two ...

  4. Composite load spectra for select space propulsion structural components

    Science.gov (United States)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  5. Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N

    Science.gov (United States)

    Muramatsu, Yasuji

    Theoretical B K, C K and N K x-ray emission/absorption spectra of three possible graphitic-structured BC2N clusters are predicted based on the B2p-, C2p-, and N2p- density-of-states (DOS) calculated by discrete variational (DV)-X[alpha] molecular orbital calculations. Several prominent differences in DOS spectral features among BC2Ns, h-BN, and graphite are confirmed from comparison of calculated B2p-, C2p-, and N2p-DOS spectra. These variations in the spectra allow BC2N structures to be positively identified by high-resolution x-ray emission/absorption spectroscopy in the B K, C K, and N K regions.

  6. The effects of soil-structure interaction modeling techniques on in-structure response spectra

    International Nuclear Information System (INIS)

    Johnson, J.J.; Wesley, D.A.; Almajan, I.T.

    1977-01-01

    The structure considered for this investigation consisted of the reactor containment building (RCB) and prestressed concrete reactor vessel (PCRV) for a HTGR plant. A conventional lumped-mass dynamic model in three dimensions was used in the study. The horizontal and vertical response, which are uncoupled due to the symmetry of the structure, were determined for horizontal and vertical excitation. Five different site conditions ranging from competent rock to a soft soil site were considered. The simplified approach to the overall plant analysis utilized stiffness proportional composite damping with a limited amount of soil damping consistent with US NRC regulatory guidelines. Selected cases were also analyzed assuming a soil damping value approximating the theoretical value. The results from the simplified approach were compared to those determined by rigorously coupling the structure to a frequency independent half-space representation of the soil. Finally, equivalent modal damping ratios were found by matching the frequency response at a point within the coupled soil-structure system determined by solution of the coupled and uncoupled equations of motion. The basis for comparison of the aforementioned techniques was the response spectra at selected locations within the soil-structure system. Each of the five site conditions was analyzed and in-structure response spectra were generated. The response spectra were combined to form a design envelope which encompasses the entire range of site parameters. Both the design envelopes and the site-by-site results were compared

  7. Structure of spectra of linear operators in Banach spaces

    International Nuclear Information System (INIS)

    Smolyanov, O G; Shkarin, S A

    2001-01-01

    Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular, necessary and sufficient conditions for three disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach space are obtained

  8. Structures in semiclassical spectra: a question of scale

    International Nuclear Information System (INIS)

    Berry, M.V.

    1984-01-01

    Theories of semiclassical bound state spectra for systems with N freedoms are reviewed, emphasizing the different features occurring on successively finer scales of energy E, measured in terms of h/2π, and attempting to correlate these with whether the underlying classical motion is regular or irregular. (Auth.)

  9. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations.

    Science.gov (United States)

    Mlodzianoski, Michael J; Curthoys, Nikki M; Gunewardene, Mudalige S; Carter, Sean; Hess, Samuel T

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample.

  10. On the molecular structure, vibrational spectra, HOMO-LUMO, molecular electrostatic potential, UV-Vis, first order hyperpolarizability, and thermodynamic investigations of 3-(4-chlorophenyl)-1-(1yridine-3-yl) prop-2-en-1-one by quantum chemistry calculations

    Science.gov (United States)

    Rahmani, Rachida; Boukabcha, Nourdine; Chouaih, Abdelkader; Hamzaoui, Fodil; Goumri-Said, Souraya

    2018-03-01

    A recent experimental study has allowed synthesis of a new organic nonlinear optical material 3-(4-chlorophenyl)-1-(pyridin-3-yl)prop-2-en-1-one(CPP) with a high second harmonic generation efficiency. We apply density functional theory (DFT, GGA and B3LYP) and Hartree-Fock (HF) methods to calculate the vibrational wavenumbers. They are assigned with by using the potential energy distribution method. The calculated first hyperpolarizability of the title compound is comparable with the reported values of similar derivatives and 25 times that of the standard NLO material urea. The HOMO-LUMO calculations lead to consider GGA-PBE as the best functional to determine the electronic band gap of CPP molecule. We complete this study with assignment of the vibrational modes and perform a comparison with the experimental results. The analysis of MEP map shows that the most reactive site of the CPP molecule is the site containing the oxygen atom. Furthermore, because of the enhancement of molecular vibration within the CPP molecule, the thermodynamic parameters are increasing with the increase of temperature. The FTIR, Raman and NMR spectra are calculated using DFT approach and corroborate the experimental available data.

  11. Hydrostatic pressure and temperature effect on the Raman spectra of the molecular crystal 2-amine-1,3,4-thiadiazole

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.

    2018-03-01

    The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.

  12. VizieR Online Data Catalog: Sgr B2 los molecular absorption line spectra (Corby+, 2018)

    Science.gov (United States)

    Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.

    2017-11-01

    Spectra covering transitions of c-C3H2, c-H1 SO, CCS, H2CS, HCS+, OH, SiO, 29SiO, H2CO, H2(13C)O, l-C3H, and l-C3H+ with line-of-sight absorption observed in the 1-50 GHz data from the PRebiotic Interstellar MOlecular Survey (PRIMOS) taken with the Robert C. Byrd Green Bank Telescope (GBT). Data were observed between 2001 and 2014, with the majority of the data obtained in 2007 in GBT Key Science project ID GBT07A-051. Spectra have been baseline-subtracted using best fit polynomials as described in the paper, and normalized by the continuum, so that the y-axis represents (T/TC-1). Data are provided in the FITS format; each FITS file contains all lines of a single molecule that are observed to have foreground absorption. Please refer to Table 1 of the paper to obtain molecular transition rest frequencies, energies, GBT beam sizes, and transition quantum numbers. (2 data files).

  13. Spectra and Charge Transport of Polar Molecular Photoactive Layers Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuanzuo Li

    2015-01-01

    Full Text Available The ground state structures, HOMO and LUMO energy levels, band gaps ΔH-L, ionization potentials (IP, and electron affinities (EA of three types of copolymer P1 and its derivatives P2, P3, and PBDT-BTA were investigated by using density functional theory (DFT with B3LYP and 6-31G (d basis set. On the base of optimized structures of ground states, their absorption spectra were obtained by using TD-DFT//Cam-B3LYP/6-31 G (d. Research shows that with the increasing conjugated units, HOMO energy levels increased, LUMO energy levels decreased, and band gaps decreased gradually. Moreover, their ionization potentials decreased and electron affinities increased along with the increase of conjugated chains, and absorption spectra red-shifted. In addition, the side chain has a significant effect on the properties of ground and excited states. In order to investigate the influence of conjugated units and side chain on the charge transport, their hole and electron reorganization energies were calculated, and the results indicated that Pb have a good hole transport capability. Considering the practical application, the HOMO and LUMO energy levels, band gaps, and absorption spectra under external electric field were studied, and the results proved that the external electric field has an effect on the optical and electronic properties.

  14. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    MS received 29 December 2015; revised 9 April 2016; accepted 25 May 2016 ... B, open form blue. Scheme 1. Structures and Photochromic reaction of the title compound. 2. Experimental. 2.1 Materials and measurements. The mid-IR spectra were obtained in the ... segment is put between two parallel Au(111) surfaces,.

  15. Results on Jet Spectra and Structure from ALICE

    CERN Document Server

    Morsch, Andreas

    2013-01-01

    Full jet reconstruction in ALICE uses the combined information from charged and neutral particles. Essentially all jet constituents can be measured with large efficiency down to very low transverse momenta (pT > 150 MeV/c). This has the advantage to introduce a minimum bias on the jet fragmentation, in particular for low jet momenta and in the presence of quenching. In this article, we present preliminary results from reconstruction of charged jets in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV. The inclusive charged jet spectrum, the jet nuclear modification factors (R_AA, R_CP), the ratio of spectra measured with different resolution parameters and hadron-jet correlations are discussed. For pp data at the same center of mass energy, the inclusive spectrum of fully reconstructed jets and its resolution parameter dependence are reported.

  16. Resolved Hyperfine Structure in the Spectra of Crystals for Optical Quantum Memory

    Directory of Open Access Journals (Sweden)

    Popova M.N.

    2015-01-01

    Full Text Available A brief review is given on recent studies of the hyperfine structure and inhomogeneously broadened line profiles in the spectra of rare earth containing crystals considered as promising candidates for optical quantum memory.

  17. A hysteresis phenomenon in NMR spectra of molecular nanomagnets Fe8: a resonant quantum tunneling system

    Science.gov (United States)

    Yamasaki, Tomoaki; Ueda, Miki; Maegawa, Satoru

    2003-05-01

    A molecular nanomagnet Fe8 with a total spin S=10 in the ground state attracts much attention as a substance which exhibits the quantum tunneling of magnetization below 300 mK. We performed 1H NMR measurements for a single crystal of Fe8 in temperature range between 20 and 800 mK. The spectra below 300 mK strongly depend on the sequence of the applied field and those in the positive and negative fields are not symmetric about zero field, while they are symmetric above 300 mK. We discuss the origin of this hysteresis phenomenon, relating to the initial spin state of molecules, the resonant quantum tunneling and the nuclear spin relaxation process.

  18. A hysteresis phenomenon in NMR spectra of molecular nanomagnets Fe8: a resonant quantum tunneling system

    International Nuclear Information System (INIS)

    Yamasaki, Tomoaki; Ueda, Miki; Maegawa, Satoru

    2003-01-01

    A molecular nanomagnet Fe8 with a total spin S=10 in the ground state attracts much attention as a substance which exhibits the quantum tunneling of magnetization below 300 mK. We performed 1 H NMR measurements for a single crystal of Fe8 in temperature range between 20 and 800 mK. The spectra below 300 mK strongly depend on the sequence of the applied field and those in the positive and negative fields are not symmetric about zero field, while they are symmetric above 300 mK. We discuss the origin of this hysteresis phenomenon, relating to the initial spin state of molecules, the resonant quantum tunneling and the nuclear spin relaxation process

  19. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water

    Science.gov (United States)

    Ivanov, Sergei D.; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik

    2010-01-01

    Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."

  20. Ab initio Molecular Orbital Studies of the Vibrational Spectra of some ...

    African Journals Online (AJOL)

    NJD

    2004-06-15

    Jun 15, 2004 ... The binary complexes formed between sulphur dioxide, as electron donor, and the series carbon dioxide, carbonyl sulphide and carbon disulphide, as electron acceptors, have been studied by means of ab initio molecular orbital theory. The optimized structures, the interaction energies and the vibrational ...

  1. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function

    Science.gov (United States)

    Reddy, Sandeep K.; Moberg, Daniel R.; Straight, Shelby C.; Paesani, Francesco

    2017-12-01

    The structure of liquid water as a function of temperature is investigated through the modeling of infrared and Raman spectra along with structural order parameters calculated from classical and quantum molecular dynamics simulations with the MB-pol many-body potential energy function. The magnitude of nuclear quantum effects is also monitored by comparing the vibrational spectra obtained from classical and centroid molecular dynamics, both in intensities and peak positions. The observed changes in spectral activities are shown to reflect changes in the underlying structure of the hydrogen-bond network and are found to be particularly sensitive to many-body effects in the representation of the electrostatic interactions. Overall, good agreement is found with the experimental spectra, which provides further evidence for the accuracy of MB-pol in predicting the properties of water.

  2. Green synthesis, structure and fluorescence spectra of new azacyanine dyes

    Science.gov (United States)

    Enchev, Venelin; Gadjev, Nikolai; Angelov, Ivan; Minkovska, Stela; Kurutos, Atanas; Markova, Nadezhda; Deligeorgiev, Todor

    2017-11-01

    A series of symmetric and unsymmetric monomethine azacyanine dyes (monomethine azacyanine and merocyanine sulfobetaines) were synthesized with moderate to high yields via a novel method using microwave irradiation. The compounds are derived from a condensation reaction between 2-thiomethylbenzotiazolium salts and 2-imino-3-methylbenzothiazolines proceeded under microwave irradiation. The synthetic approach involves the use of green solvent and absence of basic reagent. TD-DFT calculations were performed to simulate absorption and fluorescent spectra of synthesized dyes. Absorption maxima, λmax, of the studied dyes were found in the range 364-394 nm. Molar absorbtivities were evaluated in between 40300 and 59200 mol-1 dm3 cm-1. Fluorescence maxima, λfl, were registered around 418-448 nm upon excitation at 350 nm. A slight displacements of theoretically estimated absorption maxima according to experimental ones is observed. The differences are most probably due to the fact that the DFT calculations were carried out without taking into account the solvent effect. In addition, the merocyanine sulfobetaines also fluorescence in blue optical range (420-480 nm) at excitation in red range (630-650 nm).

  3. Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics.

    Science.gov (United States)

    Luber, Sandra

    2017-03-14

    We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.

  4. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  5. Molecular Structure of Nucleic Acids

    Indian Academy of Sciences (India)

    chain, that is, after 34 A. The distance of a phosphorus atom from the fibre axis is 10. A. As the phosphates are on the outside, cations have easy access to them. The structure is an open one, and its water content is rather high. At lower water contents we would expect the bases to tilt so that the structure could become more.

  6. Molecular Structure of Nucleic Acids

    Indian Academy of Sciences (India)

    A structure for nucleic acid has already been proposed by Pauling and Corey [1]. They kindly made'their manuscript available to us in advance of publication. Their model consists of three inter-twined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory ...

  7. Spectra and structure of gallium compounds. Part IX . Infrared and Raman spectra of trimethylphosphinegallium trichloride and normal coordinate calculations of gallium trichloride and the adduct

    Science.gov (United States)

    Durig, J. R.; Chatterjee, K. K.

    1982-05-01

    The infrared (3200-50 cm -1)and the Raman (3200-30 cm -1) spectra of (CH 3) 3PGaCI 3 have been recorded for the solid state. The spectra are interpreted on the basis of an effective C3v molecular symmetry for the crystalline state and a complete vibrational assignment except for the torsional modes is presented. The frequencies and potential energy distribution for GaCl 3 and those of the adduct have been calculated utilizing a modified valence force field model. A comparison of the calculated potential constants for the adduct with those of the free Lewis acid and base is made and the differences are shown to be consistent with structural changes upon adduct formation and explained in terms of the VSEPR model. Extensive coupling is observed between the GaP stretching mode and the GaCI 3 and the PC 3 stretching and symmetric deformational modes. Various degrees of coupling are also observed between other skeletal modes of vibration, including coupling between the PC 3 and GaCI 3 rocking motions. The value of 2.01 mdyn Å -1 for the GaP stretching force constant is the same as that previously determined for the same constant for (CH 3) 3PGaH 3. Several weak bands, observed in the low frequency region of the infrared and Raman spectra of crystalline (CH 3) 3PGaCl 3, are characterized as lattice modes arising from intermolecular librations. These results are compared to the similar quantities in some corresponding molecules.

  8. On The Design of Gravity Structures using Wave Spectra

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Brorsen, Michael

    Although most structures are subjected to dynamic, stochastic loads, it is in fact seldom that these loads are considered in the design, Normally the design is based on an equivalent static load, establishing naturally with due consideration to the true conditions, This method is often called...

  9. Structure, ecological spectra and species dominance in riparian ...

    African Journals Online (AJOL)

    This paper investigates the structure of the Benin Riparian Forests (RFs) through different methods: lifeforms, phytogeographic types, diameter class distribution, basal area, and stem density. Field data was collected in 373 phytosociological relevés using the Braun-Blanquet approach. RFs displayed a physiognomy that is ...

  10. Models for the active site in galactose oxidase: Structure, spectra ...

    Indian Academy of Sciences (India)

    Administrator

    exogenous anions. To understand the structural and spectroscopic consequences of phenolate donors in this enzyme, we initiated a study of monomeric copper(II) complexes containing mono- and bis-phenolate and .... are unusual and this is in remarkable contrast to the equatorial Cu(II)-phenolate bond observed in the ...

  11. Models for the active site in galactose oxidase: Structure, spectra ...

    Indian Academy of Sciences (India)

    Administrator

    Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two.

  12. Models for the active site in galactose oxidase: Structure, spectra ...

    Indian Academy of Sciences (India)

    The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (H 7.0) or acetate (from buffer, H 4.5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper ...

  13. Structural properties of maize hybrids established by infrared spectra

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2015-01-01

    Full Text Available This paper discusses the application of the infrared (IR spectroscopy method for determination of structural properties of maize hybrid grains. The IR spectrum of maize grain has been registered in the following hybrids: ZP 341, ZP 434 and ZP 505. The existence of spectral bands varying in both number and intensity, as well as their shape, frequency and kinetics have been determined. They have been determined by valence oscillations and deformation oscillations of the following organic compounds: alkanes, alkenes, alkynes, amides, alcohols, ethers, carboxylic acids, esters and aldehydes and ketones, characteristic for biogenic compounds such as carbohydrates, proteins and lipids. In this way, possible changes in the grain structure of observed maize hybrids could be detected.

  14. Optical spectra and electronic structure of actinide ions in compounds and in solution

    International Nuclear Information System (INIS)

    Carnall, W.T.; Crosswhite, H.M.

    1985-08-01

    This report provides a summary of theoretical and experimental studies of actinide spectra in condensed phases. Much of the work was accomplished at Argonne National Laboratory, but references to related investigations by others are included. Spectroscopic studies of the trivlent actinides are emphasized, as is the use of energy level parameters, evaluated from experimental data, to investigate systematic trends in electronic structure and other properties. Some reference is made to correlations with atomic spectra, as well as with spectra of the (II), (IV), and higher valence states. 207 refs., 39 figs., 38 tabs

  15. Neutron spectra and cross sections for ice and clathrate generated from the synthetic spectrum and synthetic model for molecular solids

    International Nuclear Information System (INIS)

    Petriw, S; Cantargi, F; Granada, R

    2006-01-01

    We present here a Synthetic Model for Molecular Solids, aimed at the description of the interaction of thermal neutrons with this kind of systems.Simple representations of the molecular dynamical modes are used, in order to produce a fair description of neutron scattering kernels and cross sections with a minimum set of input data. Using those spectra, we have generated thermal libraries for M C N P [es

  16. Spectra and structure of organophosphorus compounds—XXVIII. Vibrational and conformational analysis of dimethylmethoxyphosphine and some isotopically substituted derivatives

    Science.gov (United States)

    van der Veken, B. J.; Little, T. S.; Li, Y. S.; Harris, M. E.; Durig, J. R.

    The i.r. spectra (3600-50 cm -1) of the gaseous and solid states, and the Raman spectra (3600-10 cm -1) of the gaseous, liquid and solid states of (CH 3) 2POCH 3, (CH 3) 2POCD 3, (CD 3) 2POCH 3 and (CD 3) 2POCD 3 have been recorded. Thirty-five of the 36 normal modes have been assigned and the asymmetric torsion has been observed as a broad weak feature centered at 106 cm -1 in the far i.r. spectrum of gaseous (CH 3) 2POCH 3. A comparison of the vibrational spectra obtained for the fluid phases with those obtained for the amorphous and annealed solids indicates the existence of a second conformer present in a small amount in the gas phase but becoming more abundant in the liquid phase and the only remaining rotamer in the annealed solid. Asymmetric top i.r. band contour simulation provides evidence that the dominating species in the gas phase is one in which the methoxy methyl group is oriented approximately 60° ( gauche) away from the lone pair of electrons on the phosphorus atom. The rotamer which remains in the spectra of the annealed solid has been assigned to a structure in which the lone pair on the phosphorus atom is oriented trans to the methoxy methyl group. These results are compared to similar data obtained for methoxy phosphoryl compounds and discussed in terms of both canonical molecular orbital and VSEPR thoery.

  17. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  18. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".

    Science.gov (United States)

    Oshokoya, Olayinka O; JiJi, Renee D

    2015-09-10

    Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C-O and N-H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage." An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved "disordered" spectrum represents the better defined poly-proline II type structure

  19. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT.

    Science.gov (United States)

    Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Kovalenko, V I

    2016-09-05

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614cm(-1) in the experimental IR spectrum and by bands at 3327, 3241cm(-1) in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular NH⋯S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  1. Theoretical prediction of S Kβ fine structures in PIXE-induced XRF spectra

    International Nuclear Information System (INIS)

    Uda, M.; Yamamoto, T.; Tatebayashi, T.

    1999-01-01

    Sulfur is one of the most important elements found in air pollutants. A PIXE-induced XRF system equipped with a crystal spectrometer is a candidate to analyze chemical states of S in the pollutants. To aid in the design of the spectrometer for this purpose, fundamental data have been collected by calculating S Kβ spectra by use of the discrete variational Xα (DV-Xα) method for molecular orbital calculations. The calculated spectra have very faithfully reproduced XRF spectra observed for mixtures of Na 2 SO 4 , Na 2 SO 3 and ZnS using a Ge (1 1 1) flat crystal spectrometer, which were used as representative chemical species including SO 4 2- and SO 3 2- , and as an example of sulfides in the air pollutants

  2. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    Science.gov (United States)

    Schollée, Jennifer E.; Schymanski, Emma L.; Stravs, Michael A.; Gulde, Rebekka; Thomaidis, Nikolaos S.; Hollender, Juliane

    2017-12-01

    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.

  3. Collisional effects on molecular spectra laboratory experiments and models, consequences for applications

    CERN Document Server

    Hartmann, Jean-Michel; Robert, Daniel

    2008-01-01

    Gas phase molecular spectroscopy is a powerful tool for obtaining information on the geometry and internal structure of isolated molecules as well as on the interactions that they undergo. It enables the study of fundamental parameters and processes and is also used for the sounding of gas media through optical techniques. It has been facing always renewed challenges, due to the considerable improvement of experimental techniques and the increasing demand for accuracy and scope of remote sensing applications. In practice, the radiating molecule is usually not isolated but diluted in a mixture

  4. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  5. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  6. Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud

    Science.gov (United States)

    Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana

    2018-04-01

    We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.

  7. How We Teach Molecular Structure to Freshmen.

    Science.gov (United States)

    Hurst, Michael O.

    2002-01-01

    Currently molecular structure is taught in general chemistry using three theories, this being based more on historical development rather than logical pedagogy. Electronegativity is taught with a confusing mixture of definitions that do not correspond to modern practice. Valence bond theory and VSEPR are used together in a way that often confuses…

  8. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 5. Molecular structure ... The entropy of the title compound was also performed at HF using the hybrid functional BLYP and B3LYP with 6-31 G(d,p) as basis set levels of theory. Natural bond orbital (NBO) analysis of the title molecule is also carried out.

  9. The study of crystal structures and vibrational spectra of inorganicsalts of 2,4-diaminopyrimidine

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Mathauserová, J.; Císařová, I.; Němec, I.; Fábry, Jan

    2016-01-01

    Roč. 1103, Jan (2016), s. 82-93 ISSN 0022-2860 R&D Projects: GA ČR GA14-05506S Institutional support: RVO:68378271 Keywords : salts of 2,4-diaminopyrimidine * single crystal X-ray structural analysis * vibrational spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.753, year: 2016

  10. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...... stable steps appear in the absorption spectrum when conditions for dynamical localization are met. [S0163-1829(95)03412-2]....

  11. ULg Spectra: An Interactive Software Tool to Improve Undergraduate Students' Structural Analysis Skills

    Science.gov (United States)

    Agnello, Armelinda; Carre, Cyril; Billen, Roland; Leyh, Bernard; De Pauw, Edwin; Damblon, Christian

    2018-01-01

    The analysis of spectroscopic data to solve chemical structures requires practical skills and drills. In this context, we have developed ULg Spectra, a computer-based tool designed to improve the ability of learners to perform complex reasoning. The identification of organic chemical compounds involves gathering and interpreting complementary…

  12. Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne

    2017-05-15

    The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.

  13. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  14. Vibrational Spectra of β″-Type BEDT-TTF Salts: Relationship between Conducting Property, Time-Averaged Site Charge and Inter-Molecular Distance

    Directory of Open Access Journals (Sweden)

    Takashi Yamamoto

    2012-07-01

    Full Text Available The relationship between the conducting behavior and the degree of charge fluctuation in the β″-type BEDT-TTF salts is reviewed from the standpoints of vibrational spectroscopy and crystal structure. A group of β″-type ET salts demonstrates the best model compounds for achieving the above relationship because the two-dimensional structure is simple and great diversity in conducting behavior is realized under ambient pressure. After describing the requirement for the model compound, the methodology for analyzing the results of the vibrational spectra is presented. Vibrational spectroscopy provides the time-averaged molecular charge, the charge distribution in the two-dimensional layer, and the inter-molecular interactions, etc. The experimental results applied to 2/3-filled and 3/4-filled β″-type ET salts are reported. These experimental results suggest that the conducting property, the difference in the time-averaged molecular charges between the ionic and neutral-like sites, the alternation in the inter-molecular distances and the energy levels in the charge distributions are relevant to one another. The difference in the time-averaged molecular charges, ∆ρ, is a useful criterion for indicating conducting behavior. All superconductors presented in this review are characterized as small but finite ∆ρ.

  15. Molecular phylogenetics before sequences: oligonucleotide catalogs as k-mer spectra.

    Science.gov (United States)

    Ragan, Mark A; Bernard, Guillaume; Chan, Cheong Xin

    2014-01-01

    From 1971 to 1985, Carl Woese and colleagues generated oligonucleotide catalogs of 16S/18S rRNAs from more than 400 organisms. Using these incomplete and imperfect data, Carl and his colleagues developed unprecedented insights into the structure, function, and evolution of the large RNA components of the translational apparatus. They recognized a third domain of life, revealed the phylogenetic backbone of bacteria (and its limitations), delineated taxa, and explored the tempo and mode of microbial evolution. For these discoveries to have stood the test of time, oligonucleotide catalogs must carry significant phylogenetic signal; they thus bear re-examination in view of the current interest in alignment-free phylogenetics based on k-mers. Here we consider the aims, successes, and limitations of this early phase of molecular phylogenetics. We computationally generate oligonucleotide sets (e-catalogs) from 16S/18S rRNA sequences, calculate pairwise distances between them based on D 2 statistics, compute distance trees, and compare their performance against alignment-based and k-mer trees. Although the catalogs themselves were superseded by full-length sequences, this stage in the development of computational molecular biology remains instructive for us today.

  16. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    Science.gov (United States)

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  17. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide

    International Nuclear Information System (INIS)

    Parigger, Christian G.; Woods, Alexander C.; Surmick, David M.; Gautam, Ghaneshwar; Witte, Michael J.; Hornkohl, James O.

    2015-01-01

    Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C 2 ), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C 2 , CN, and TiO diatomic spectra. - Highlights: • We present a program for fitting of molecular spectra. • This includes data base for AlO, C 2 , CN, and TiO. • We discuss the details of the program including fitting. • We show computed examples and reference current work

  18. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Parigger, Christian G., E-mail: cparigge@tennessee.edu [The University of Tennessee/University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States); Woods, Alexander C.; Surmick, David M.; Gautam, Ghaneshwar; Witte, Michael J. [The University of Tennessee/University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States); Hornkohl, James O. [Hornkohl Consulting, Tullahoma, TN 37388 (United States)

    2015-05-01

    Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C{sub 2}), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C{sub 2}, CN, and TiO diatomic spectra. - Highlights: • We present a program for fitting of molecular spectra. • This includes data base for AlO, C{sub 2}, CN, and TiO. • We discuss the details of the program including fitting. • We show computed examples and reference current work.

  19. Determination of floor response spectra for the Brookhaven HFBR reactor building structure

    Energy Technology Data Exchange (ETDEWEB)

    Subudhi, M.; Goradia, H.

    1978-11-01

    In order to perform the dynamic analysis of various structural components of the HFBR reactor building at Brookhaven National Laboratory (BNL) subjected to seismic disturbances, it is necessary to obtain the floor response spectra of the primary structure. The mathematical model includes the four floor levels of the internal structure, the dome, and soil spring effects. The standard time history analysis is adopted to obtain the response spectrum for each floor of the internal structure. This report summarizes the results both in tabular and graphical form for various damping values.

  20. Determination of floor response spectra for the Brookhaven HFBR reactor building structure

    International Nuclear Information System (INIS)

    Subudhi, M.; Goradia, H.

    1978-11-01

    In order to perform the dynamic analysis of various structural components of the HFBR reactor building at Brookhaven National Laboratory (BNL) subjected to seismic disturbances, it is necessary to obtain the floor response spectra of the primary structure. The mathematical model includes the four floor levels of the internal structure, the dome, and soil spring effects. The standard time history analysis is adopted to obtain the response spectrum for each floor of the internal structure. This report summarizes the results both in tabular and graphical form for various damping values

  1. Molecular structure of a tolyl derivative of γ-pyrone

    Science.gov (United States)

    Tranfić Bakić, Marina; Cetina, Mario; Mazalović, Sanja

    2018-01-01

    A study of the molecular structure of a new derivative of γ-pyrone, which is assumed to be of biological and pharmacological importance, has been carried out. The detailed insight into the structure of the γ-pyrone derivative was obtained by 1H NMR, 13C NMR, IR and Raman spectroscopy. Furthermore, its crystal structure was determined by single crystal X-ray diffraction method and its behavior in solutions was examined by UV/Vis and fluorescence spectroscopy. Assignment of the vibrational spectra of the studied compound is presented and correlated to some structural parameters. DFT calculations, namely geometry optimization, frequency calculations, and NBO population analysis, were performed at B3LYP/6-311G++(d,p) level of theory and the obtained data was compared to the experimental results to further elucidate the structural details. In addition, energies of the electronic transitions were estimated using DFT calculations at the same level of theory, and the calculated results showed good agreement with experimental data. It was shown that longer Csbnd C and shorter Cdbnd C bonds alternate in the pyrone ring and that the structure of the studied γ-pyrone derivative comprises two intramolecular Csbnd H⋯O bonds. All the results pointed to relatively weak π-electron delocalization inside the pyrone moiety and significantly stronger π-electron delocalization through tolyl substituents.

  2. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  3. Marine Biotoxins: Laboratory Culture and Molecular Structure

    Science.gov (United States)

    1991-01-21

    4 (B) 108.3 12.1 6.4 - (L) GT - Cambierdiscus toxicus PL - Prorocentrum lima KB - Kahala Beach L - lethal + - toxic symptoms - 15 - Table IV. DaM for...on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Mice, Lab Animals, Maitotoxin, RA I, BD, Marine Toxin , 076 13 Ciquatoxin...most potent naturally occurring toxins known. Their physiological actions are diverse, as are their molecular structures, not all of which have been

  4. Study on the structure and vibrational spectra of efavirenz conformers using DFT: Comparison to experimental data

    Science.gov (United States)

    Mishra, Soni; Tandon, Poonam; Ayala, A. P.

    2012-03-01

    Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on DFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule.

  5. Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study

    Science.gov (United States)

    Wysokiński, Rafał; Hernik, Katarzyna; Szostak, Roman; Michalska, Danuta

    2007-03-01

    Orotic acid (vitamin B 13) is a key intermediate in biosynthesis of the pyrimidine nucleotides in living organisms, moreover, it may serve as the biological carrier for some metal ions. cis-Diammine(orotato)platinum(II), cis-[Pt(C 5H 2N 2O 4)(NH 3) 2] can be considered as a new potential cisplatin analogue. The FT-Raman and FT-IR spectra of the title complex are reported, for the first time. The molecular structure, vibrational frequencies, and the theoretical infrared and Raman intensities have been calculated by the density functional mPW1PW91 method. The detailed vibrational assignment has been made on the basis of the calculated potential energy distribution. The theoretically predicted IR and Raman spectra show very good agreement with experiment. Natural bond orbital (NBO) analyses were performed for cisplatin, carboplatin and the title complex. The results provided new data on the nature of platinum-ligand bonding in these compounds. Strong intramolecular hydrogen bond between the orotate ligand and the coordinated ammonia group stabilizes the structure of the platinum(II) complex. Thus, it is suggested that the orotate ligand in the title complex is more inert to the substitution reactions than the chloride ligands in cisplatin.

  6. Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study

    International Nuclear Information System (INIS)

    Wysokinski, Rafal; Hernik, Katarzyna; Szostak, Roman; Michalska, Danuta

    2007-01-01

    Orotic acid (vitamin B 13 ) is a key intermediate in biosynthesis of the pyrimidine nucleotides in living organisms, moreover, it may serve as the biological carrier for some metal ions. cis-Diammine(orotato)platinum(II), cis-[Pt(C 5 H 2 N 2 O 4 )(NH 3 ) 2 ] can be considered as a new potential cisplatin analogue. The FT-Raman and FT-IR spectra of the title complex are reported, for the first time. The molecular structure, vibrational frequencies, and the theoretical infrared and Raman intensities have been calculated by the density functional mPW1PW91 method. The detailed vibrational assignment has been made on the basis of the calculated potential energy distribution. The theoretically predicted IR and Raman spectra show very good agreement with experiment. Natural bond orbital (NBO) analyses were performed for cisplatin, carboplatin and the title complex. The results provided new data on the nature of platinum-ligand bonding in these compounds. Strong intramolecular hydrogen bond between the orotate ligand and the coordinated ammonia group stabilizes the structure of the platinum(II) complex. Thus, it is suggested that the orotate ligand in the title complex is more inert to the substitution reactions than the chloride ligands in cisplatin

  7. Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Rafal; Hernik, Katarzyna [Faculty of Chemistry, Wroclaw University of Technology, Smoluchowskiego 23, 50-370 Wroclaw (Poland); Szostak, Roman [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Michalska, Danuta [Faculty of Chemistry, Wroclaw University of Technology, Smoluchowskiego 23, 50-370 Wroclaw (Poland)], E-mail: danuta.michalska@pwr.wroc.pl

    2007-03-06

    Orotic acid (vitamin B{sub 13}) is a key intermediate in biosynthesis of the pyrimidine nucleotides in living organisms, moreover, it may serve as the biological carrier for some metal ions. cis-Diammine(orotato)platinum(II), cis-[Pt(C{sub 5}H{sub 2}N{sub 2}O{sub 4})(NH{sub 3}){sub 2}] can be considered as a new potential cisplatin analogue. The FT-Raman and FT-IR spectra of the title complex are reported, for the first time. The molecular structure, vibrational frequencies, and the theoretical infrared and Raman intensities have been calculated by the density functional mPW1PW91 method. The detailed vibrational assignment has been made on the basis of the calculated potential energy distribution. The theoretically predicted IR and Raman spectra show very good agreement with experiment. Natural bond orbital (NBO) analyses were performed for cisplatin, carboplatin and the title complex. The results provided new data on the nature of platinum-ligand bonding in these compounds. Strong intramolecular hydrogen bond between the orotate ligand and the coordinated ammonia group stabilizes the structure of the platinum(II) complex. Thus, it is suggested that the orotate ligand in the title complex is more inert to the substitution reactions than the chloride ligands in cisplatin.

  8. Vibrational spectra and molecular conformation of taurine and its related compounds

    Science.gov (United States)

    Ohno, Keiichi; Mandai, Yoshitaka; Matsuura, Hiroatsu

    1992-04-01

    IR and Raman spectra have been measured for taurine (2-aminoethanesulfonic acid) and its sodium salt in the solid state and Raman spectra for aqueous solutions of taurine with different pH values. Normal coordinate treatment has been carried out. The analysis of the spectra has indicated that, in the solid state, the molecule of taurine takes the gauche form while that of the sodium salt takes the trans form, and that the trans and gauche forms coexist in both acidic and basic aqueous solutions. The CS stretching bands for the gauche and trans forms were observed at 742 cm -1 and 803 cm -1 respectively. These bands were applied to a conformational analysis of other compounds containing a taurine skeleton; sodium taurocholate takes the gauche conformation about the bond axis NCCS.

  9. SSI response of a typical shear wall structure. Appendix B. In-structure response spectra comparisons. Volume 2

    International Nuclear Information System (INIS)

    Johnson, J.J.; Schewe, E.C.; Maslenikov, O.R.

    1984-04-01

    The objectives of this study were two-fold: (1) develop building response calibration factors, i.e., factors which relate best estimate or median level response to responses calculated by selected design procedures. Soil-structure interaction was the phenomenon of interest because significant simplifications are frequently introduced in its treatment; and (2) the second objective can be viewed in the context of a question: what effect does placing an identical structure on different sites and with different foundation conditions have on structure response. The structure selected for this study is a part of the Zion AFT complex. Only the auxiliary, fuel-handling, and diesel generator buildings were studied. This structure is a connected group of shear-wall buildings constructed of reinforced concrete, typical of nuclear power plant structures. The bases of comparison for this study were structure responses: peak in-structure accelerations (27 components), and peak wall forces and moments (111 components). In-structure response spectra were also considered. This appendix contains in-structure response spectra comparisons in detail

  10. Identifying the structure of 4-chlorophenyl isocyanide adsorbed on Au(111) and Pt(111) surfaces by first-principles simulations of Raman spectra.

    Science.gov (United States)

    Hu, Wei; Duan, Sai; Zhang, Yujin; Ren, Hao; Jiang, Jun; Luo, Yi

    2017-12-13

    Surface Raman spectroscopy has become one of the most powerful analytical tools for interfacial structures. However, theoretical modeling for the Raman spectra of molecular adsorbate on metallic surfaces is a long-standing challenge because accurate descriptions of the electronic structure for both the metallic substrates and adsorbates are required. Here we present a quasi-analytical method for high-precision surface Raman spectra at the first principle level. Using this method, we correlate both geometrical and electronic structures of a single 4-chlorophenyl isocyanide (CPI) molecule adsorbed on a Au(111) or Pt(111) surface with its Raman spectra. The "finger-print" frequency shift of the CN stretching mode reveals the in situ configuration of CPI is vertical adsorption on the top site of the Au(111) surface, but a bent configuration when it adsorbs on the hollow site of the Pt(111) surface. Electronic structure calculations reveal that a π-back donation mechanism often causes a red shift to the Raman response of CN stretching mode. In contrast, σ donation as well as a wall effect introduces a blue shift to the CN stretching mode. A clear relationship for the dependence of Raman spectra on the surface electronic and geometrical information is built up, which largely benefits the understanding of chemical and physical changes during the adsorption. Our results highlight that high-precision theoretical simulations are essential for identifying in situ geometrical and electronic surface structures.

  11. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  12. New solar carbon abundance based on non-LTE CN molecular spectra

    International Nuclear Information System (INIS)

    Mount, G.H.; Linsky, J.L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggests a revised carbon abundance for the Sun. A value of log A/subc/=8.35plus-or-minus0.15 which is significantly lower than the presently accepted value of log A/subc/=8.55 is suggested. This revision may have important consequences in astrophysics

  13. ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite.

    Science.gov (United States)

    Kubicki, James D; Paul, Kristian W; Kabalan, Lara; Zhu, Qing; Mrozik, Michael K; Aryanpour, Masoud; Pierre-Louis, Andro-Marc; Strongin, Daniel R

    2012-10-16

    Periodic plane-wave density functional theory (DFT) and molecular cluster hybrid molecular orbital-DFT (MO-DFT) calculations were performed on models of phosphate surface complexes on the (100), (010), (001), (101), and (210) surfaces of α-FeOOH (goethite). Binding energies of monodentate and bidentate HPO(4)(2-) surface complexes were compared to H(2)PO(4)(-) outer-sphere complexes. Both the average potential energies from DFT molecular dynamics (DFT-MD) simulations and energy minimizations were used to estimate adsorption energies for each configuration. Molecular clusters were extracted from the energy-minimized structures of the periodic systems and subjected to energy reminimization and frequency analysis with MO-DFT. The modeled P-O and P---Fe distances were consistent with EXAFS data for the arsenate oxyanion that is an analog of phosphate, and the interatomic distances predicted by the clusters were similar to those of the periodic models. Calculated vibrational frequencies from these clusters were then correlated with observed infrared bands. Configurations that resulted in favorable adsorption energies were also found to produce theoretical vibrational frequencies that correlated well with experiment. The relative stability of monodentate versus bidentate configurations was a function of the goethite surface under consideration. Overall, our results show that phosphate adsorption onto goethite occurs as a variety of surface complexes depending on the habit of the mineral (i.e., surfaces present) and solution pH. Previous IR spectroscopic studies may have been difficult to interpret because the observed spectra averaged the structural properties of three or more configurations on any given sample with multiple surfaces.

  14. Propagator theory of atomic and molecular structure

    International Nuclear Information System (INIS)

    Oehrn, Y.

    1976-01-01

    It is not at all obvious which methods of use in quantum chemistry can be characterized as being without wavefunctions. There are, however, a number of methods that purpose to calculate atomic and molecular electronic structure and properties without the explicit use of many-electron wavefunctions. Fully realizing the arbitrariness of any classification of such methods as well as the absence of sharp boundaries between any choice of groups, the author separates the three kinds of approaches: (i) Local Density Energy Functional Methods, (ii) Density Matrix Methods, (iii) Propagator or Green's Function Methods. (Auth.)

  15. Structure, electronic properties and electron energy loss spectra of transition metal nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Koutsokeras, L.E.; Matenoglou, G.M.; Patsalas, P., E-mail: ppats@cc.uoi.gr

    2013-01-01

    We present a thorough and critical study of the electronic properties of the mononitrides of the group IV–V–VI metals (TiN, ZrN, HfN, NbN, TaN, MoN, and WN) grown by Pulsed Laser Deposition (PLD). The microstructure and density of the films have been studied by X-Ray Diffraction (XRD) and Reflectivity (XRR), while their optical properties were investigated by spectral reflectivity at vertical incidence and in-situ reflection electron energy loss spectroscopy (R-EELS). We report the R-EELS spectra for all the binary TMN and we identify their features (metal-d plasmon and N-p + metal-d loss) based on previous ab-initio band structure calculations. The spectral positions of p + d loss peak are rationally grouped according to the electron configuration (i.e. of the respective quantum numbers) of the constituent metal. The assigned and reported R-EELS spectra can be used as a reference database for the colloquial in-situ surface analysis performed in most laboratories. - Highlights: ► Identification of the effect of ionization potential to the structure of PLD nitride films. ► Report of low energy electron loss spectra of NbN, MoN, HfN, TaN, WN. ► Correlation of the Np+Med loss peak with the metal’s valence electron configuration.

  16. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates with aromatic substituents

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, Sergey A., E-mail: allser@bk.ru [Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 (Russian Federation); Vovna, Vitaliy I. [Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 (Russian Federation); Borisenko, Aleksandr V. [Vladivostok Branch of Russian Customs Academy, 16v Strelkovaya St., Vladivostok, 690034 (Russian Federation)

    2016-11-15

    Highlights: • The electronic structures of three nitrogen analogues of boron β-diketonates have been investigated. • UV photoelectron spectra have been interpreted. • The structure of the UV photoelectron spectra is in good agreement with the energies and compositions of Kohn-Sham orbitals. - Abstract: The electronic structure of three nitrogen analogoues of boron β-diketonates containing aromatic substituents was studied by the ultraviolet photoelectron spectroscopy and within the density functional theory. In order to determine effects of heteroatom substitution in the chelate ligand, a comparative analysis was carried out for the electronic structure of three model compounds. In a range of model compounds, the HOMO's nature was revealed to be the same. The HOMO-1 orbital of nitrogen containing compounds is determined by the presence of lone electron pairs of nitrogen. In a range of the complexes under study, the influence of aromatic substituents on the electronic structure was defined. In the imidoylamidinate complex, in contrast to formazanates and β-diketonates, it was found the absence of any noticeable mixing of π-orbitals of the chelate and benzene rings. It was shown that within energy range to 11 eV, the calculated results reproduce well the energy differences between the ionized states of complexes.

  17. Electronic structure and optical spectra of catechol on TiO2 nanoparticles from real time TD-DFT simulations.

    Science.gov (United States)

    Sánchez-de-Armas, R; San-Miguel, M A; Oviedo, J; Márquez, A; Sanz, J F

    2011-01-28

    The electronic structure and the optical response of free catechol, [Ti(cat)(3)](2-) complex, and catechol bound to TiO(2) nanoclusters have been analysed using time dependent density functional theory (TD-DFT) performing calculations both in real time and frequency domains. Both approaches lead to similar results providing the basis sets and functionals are similar. For all cases, the simulated spectra agree well with the experimental ones. For the adsorption systems, the spectra show a band at 4.7 eV associated to intramolecular catechol π→π* transitions, and low energy bands corresponding to transitions from catechol to the cluster with a tail that is red-shifted when the coupling between the dye and the cluster is more effective. Thus, dissociative adsorption modes provide longer tails than the molecular mode. Although the bidentate complex is more stable than the monodentate, the energy difference between both is smaller when the cluster size increases. Small cluster models reproduce the main features of the optical response, however, the (TiO(2))(15) cluster constitutes the minimal size to provide a complete picture. In this case, the conventional TD-DFT (frequency domain) calculations are highly demanding computationally, while real time TD-DFT is more efficient and the calculations become affordable.

  18. Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra

    Science.gov (United States)

    Scherbaum, Frank

    1990-08-01

    The estimation of Q values and/or source corner frequencies fc from single-station narrow-band recordings of microearthquake spectra is a strongly nonunique problem. This is due to the fact that the spectra can be equally well fitted with low-Q/high-fc or a high-Q/low-fc spectral models. Here, a method is proposed to constrain this ambiguity by inverting a set of microearthquake spectra for a three-dimensional Q model structure and model source parameters seismic moment (Mo ) and corner frequency (fc ) simultaneously. The inversion of whole path Q can be stated as a linear problem in the attenuation operator t* and solved using a tomographic reconstruction of the three-dimensional Q structure. This Q structure is then used as a "geometrical constraint" for a nonlinear Marquardt-Levenberg inversion of Mo and fc and a new Q value. The first step of the method consists of interactively fitting the observed microearthquake spectra by spectral models consisting of a source spectrum with an assumed high-frequency decay, a single-layer resonance filter to account for local site effects, and additional "whole path attenuation" along the ray path. From the obtained Q values, a three-dimensional Q model is calculated using a tomographic reconstruction technique (SIRT). The individual Q values along each ray path are then used as Q starting values for a nonlinear iterative Marquardt-Levenberg inversion of Mo and fc and a "new" Q value. Subsequently, the "new" Q values are used to reconstruct the next Q model which again provides starting values for the "next" nonlinear inversion of Mo, fc, and Q. This process is repeated until the "goodness of fit measure" indicates no further improvement of the results. The method has been tested on a set of approximately 2800 P wave spectra (0.9 effects close to the surface shows that site effects may cause a corruption of the resulting Q model at shallow depths. For the given data set and depths below 3-5 km, the method is believed to be

  19. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    Science.gov (United States)

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  20. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  1. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  2. [Molecular structure and fractal analysis of oligosaccharide].

    Science.gov (United States)

    Liu, Wen-long; Wang, Lu-man; He, Dong-qi; Zhang, Tian-lan; Gou, Bao-di; Li, Qing

    2014-10-18

    To propose a calculation method of oligosaccharides' fractal dimension, and to provide a new approach to studying the drug molecular design and activity. By using the principle of energy optimization and computer simulation technology, the steady structures of oligosaccharides were found, and an effective way of oligosaccharides fractal dimension's calculation was further established by applying the theory of box dimension to the chemical compounds. By using the proposed method, 22 oligosaccharides' fractal dimensions were calculated, with the mean 1.518 8 ± 0.107 2; in addition, the fractal dimensions of the two activity multivalent oligosaccharides which were confirmed by experiments, An-2 and Gu-4, were about 1.478 8 and 1.516 0 respectively, while C-type lectin-like receptor Dectin-1's fractal dimension was about 1.541 2. The experimental and computational results were expected to help to find a class of glycoside drugs whose target receptor was Dectin-1. Fractal dimension, differing from other known macro parameters, is a useful tool to characterize the compound molecules' microscopic structure and function, which may play an important role in the molecular design and biological activity study. In the process of oligosaccharides drug screening, the fractal dimension of receptor and designed oligosaccharides or glycoclusters can be calculated respectively. The oligosaccharides with fractal dimension close to that of target receptor should then take priority compared with others, to get the drug molecules with latent activity.

  3. Inelastic spectra to predict period elongation of structures under earthquake loading

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2015-01-01

    (expressed by the force reduction factor, Ry), post-yield stiffness (ay) and hysteretic laws are examined for a large number of strong motions. Constant-strength, inelastic spectra in terms of Tin/Tel are calculated to assess the extent of period elongation for various levels of structural inelasticity......Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi-parametric task, which is related to both epistemic....... Moreover, the influence that structural characteristics (Ry, ay and degrading level) and strong-motion parameters (epicentral distance, frequency content and duration) exert on period lengthening are studied. Determined by regression analyses of the data obtained, simplified equations are proposed...

  4. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1975-01-01

    The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por­ tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus­ sion on point symmetry to include space symmetry. The selection rules in­ clude space group selection rules (for k = 0). Numerous examples are pro­ vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor­ dinate treatment of ...

  5. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

    Science.gov (United States)

    Arion, T.; Takahashi, O.; Püttner, R.; Ulrich, V.; Barth, S.; Lischke, T.; Bradshaw, A. M.; Förstel, M.; Hergenhahn, U.

    2014-06-01

    In a molecular Auger spectrum information on the decaying state is implicitly ensemble-averaged. For a repulsive core-ionized state, for example, contributions from all parts of its potential curve are superimposed in the Auger spectrum. Using carbon tetrafluoride (CF4, tetrafluoromethane), we demonstrate for the first time that these contributions can be disentangled by recording photoelectron-Auger electron coincidence spectra with high energy resolution. For the F K-VV spectrum of CF4, there are significant differences in the Auger decay at different intermediate state (single core hole) geometries. With the help of calculations, we show that these differences result primarily from zero-point fluctuations in the neutral molecular ground state, but are amplified by the nuclear dynamics during Auger decay.

  6. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

    International Nuclear Information System (INIS)

    Arion, T; Ulrich, V; Barth, S; Lischke, T; Bradshaw, A M; Takahashi, O; Püttner, R; Förstel, M; Hergenhahn, U

    2014-01-01

    In a molecular Auger spectrum information on the decaying state is implicitly ensemble-averaged. For a repulsive core-ionized state, for example, contributions from all parts of its potential curve are superimposed in the Auger spectrum. Using carbon tetrafluoride (CF 4 , tetrafluoromethane), we demonstrate for the first time that these contributions can be disentangled by recording photoelectron–Auger electron coincidence spectra with high energy resolution. For the F K-VV spectrum of CF 4 , there are significant differences in the Auger decay at different intermediate state (single core hole) geometries. With the help of calculations, we show that these differences result primarily from zero-point fluctuations in the neutral molecular ground state, but are amplified by the nuclear dynamics during Auger decay. (paper)

  7. Effects of the molecular rotational dynamics on dielectric and far-infra-red spectra of anisotropic liquids

    International Nuclear Information System (INIS)

    Nordio, P.L.; Segre, U.

    1981-01-01

    Dielectric and far-infra-red spectra of uniaxial liquid-crystal phase are analysed in terms of correlation functions calculated by a memory function formalism. SAIL (strong anisotropic interaction limit) conditions are always found to apply, resulting in diffusional regime at low working frequencies. Dipole friction has been also included in the calculations to consider many-particle interactions, its effect being analogous to the introduction of slowly relaxing local structures. (author)

  8. Soil-structure interaction effects on containment fragilities and floor response spectra statistics

    International Nuclear Information System (INIS)

    Pires, J.; Reich, M.; Chokshi, N.C.

    1987-01-01

    The probability-based method for the reliability evaluation of nuclear structures developed at Brookhaven National Laboratory (BNL) is extended to include soil-structure interaction effects. A reinforced concrete containment is analyzed in order to investigate the soil-structure interaction effects on: structural fragilities; floor response spectra statistics and acceleration response correlations. To include the effect of soil flexibility on the reliability assessment the following two step approach is used. In the first step, the lumped parameter method for soil-structure interaction analysis is used together with a stick model representation of the structure in order to obtain the motions of the foundation plate. These motions, which include both translations and rotations of the foundation plate, are expressed in terms of the power-spectral density of the free-field ground excitation and the transfer function of the total acceleration response of the foundation. The second step involves a detailed finite element model of the structure subjected to the interaction motions computed from step one. Making use of the structural model and interaction motion the reliability analysis method yields the limit stat probabilities and fragility data for the structure

  9. Structural and molecular hair abnormalities in trichothiodystrophy.

    Science.gov (United States)

    Liang, Christine; Morris, Andrea; Schlücker, Sebastian; Imoto, Kyoko; Price, Vera H; Menefee, Emory; Wincovitch, Stephen M; Levin, Ira W; Tamura, Deborah; Strehle, Katrin R; Kraemer, Kenneth H; DiGiovanna, John J

    2006-10-01

    We examined hair from 15 patients with trichothiodystrophy (TTD), a rare inherited disorder with brittle, cystine-deficient hair. They had a wide variety of phenotypes, from brittle hair only to severe intellectual impairment and developmental delay. Polarizing light microscopic examination showed alternating light and dark (tiger tail) bands under polarizing microscopy. Confocal microscopy captured structural features of breaks in intact TTD hairs. The autofluorescent appearance was regular and smooth in normal donors and markedly irregular in sections of TTD hairs possibly reflecting abnormalities in melanin distribution. Scanning electron microscopy revealed numerous surface irregularities. All TTD hair samples had reduced sulfur content. We observed an inverse correlation (R(val)=0.9) between sulfur content and percent of hairs with shaft abnormalities (trichoschisis, trichorrhexis nodosa, or ribbon/twist). There was no association between clinical disease severity and percent of abnormal hairs. Raman spectra of hairs from TTD patients and normal donors revealed a larger contribution of energetically less favored disulfide conformers in TTD hairs. Our data indicate that the brittleness of the TTD hair is dependent upon abnormalities at several levels of organization. These changes make TTD hairs excessively prone to breakage and weathering.

  10. Some aspects of floor spectra of 1DOF nonlinear primary structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Feau, C.

    2007-01-01

    In this paper the influence of the nonlinear behaviour of the primary structure on floor spectra is investigated by means of simple models. The general trends of floor spectra for different types of nonlinear behaviour of one degree of freedom (1DOF) primary structure are shown and we point out their common futures and their differences. A special attention is given to the cases of elastoplastic and nonlinear elastic behaviours and methods to determine an equivalent linear oscillator are proposed. The properties (frequency and damping) of this equivalent linear oscillator are quite different from the properties of equivalent linear oscillators commonly considered in practice. In particular, in the case of elastoplastic behaviour, there is no frequency shift and damping is smaller than assumed by other methods commonly used. In the case of nonlinear elastic behaviour, the concept of an equivalent frequency which is a random variable is used. Finally, a design floor spectrum of primary structures, exhibiting energy dissipating nonlinear behaviour is proposed. (authors)

  11. Manipulation of molecular structures with magnetic fields

    NARCIS (Netherlands)

    Boamfa, M.I.

    2003-01-01

    The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high

  12. Algorithmic dimensionality reduction for molecular structure analysis.

    Science.gov (United States)

    Brown, W Michael; Martin, Shawn; Pollock, Sara N; Coutsias, Evangelos A; Watson, Jean-Paul

    2008-08-14

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation--a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation.

  13. Algorithmic dimensionality reduction for molecular structure analysis

    Science.gov (United States)

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation. PMID:18715062

  14. Algorithmic dimensionality reduction for molecular structure analysis

    Science.gov (United States)

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-08-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation-a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation.

  15. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  16. Molecular motion and structure in plastics

    International Nuclear Information System (INIS)

    Doolan, K.R.; Baxter, M.

    2000-01-01

    Full text: When molten thermoplastics solidify, the polymeric chains form a completely amorphous structure or a mixture of crystalline and amorphous regions. Measurement of Nuclear Magnetic Resonance (NMR) relaxation times provides information about the configuration and molecular motion of polymeric chains in solid plastics. We are currently measuring the NMR relaxation times T 1 , T 2 , T 2 and T 1p as a function of temperature using a Bruker High Power pulsed NMR Spectrometer for several different classes of thermoplastics containing varying concentrations of inorganic filler materials. We present data here for T 1 , and T 2 obtained for polyethylenes, polypropylenes, polystyrenes and acrylics in the temperature range 100 K to 450 K. At temperatures below 320 K, all of the polyethylenes and polypropylenes and some of the polystyrenes and acrylics produced NMR signals after a single radio frequency (RF) pulse with rapidly and slowly decaying components corresponding to the rigid and flexible regions within the plastic. From these results we have estimated using Mathematica the amount of crystallinity within the polyethylenes and polypropylenes. For the impact modified polystyrenes and acrylics studied we have estimated the amounts of elastomeric phases present. We find that the initial rapid decay signal produced by polyethylenes and polypropylenes is Gaussian while the long tail is Lorentzian. All of the signal components from the polystyrenes and the acrylics were fitted using Lorentzian functions indicating their structures are highly amorphous. Addition of CaCO 3 filler to polypropylene resins appears to reduce the crystallinity of the material. We also present data for the activation energy of the molecular motion inducing longitudinal relaxation, from T 1 measurements

  17. CIRCUMSTELLAR MOLECULAR LINE ABSORPTION AND EMISSION IN THE OPTICAL-SPECTRA OF POST-AGB STARS

    NARCIS (Netherlands)

    BAKKER, EJ; LAMERS, HJGLM; WATERS, LBFM; SCHOENMAKER, T

    We present a list of post-AGB stars showing molecular line absorption and emission in the optical spectrum. Two objects show CH+, one in emission and one in absorption, and 10 stars show C-2 and CN in absorption. The Doppler velocities of the C-2 lines and the rotational temperatures indicate that

  18. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  19. Phosphorescent Molecularly Doped Light-Emitting Diodes with Blended Polymer Host and Wide Emission Spectra

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available Stable green light emission and high efficiency organic devices with three polymer layers were fabricated using bis[2-(4′-tert-butylphenyl-1-phenyl-1H-benzoimidazole-N,C2′] iridium(III (acetylacetonate doped in blended host materials. The 1 wt% doping concentration showed maximum luminance of 7841 cd/cm2 at 25.6 V and maximum current efficiency of 9.95 cd/A at 17.2 V. The electroluminescence spectra of devices indicated two main peaks at 522 nm and 554 nm coming from phosphor dye and a full width at half maximum (FWHM of 116 nm. The characteristics of using blended host, doping iridium complex, emission spectrum, and power efficiency of organic devices were investigated.

  20. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2

    International Nuclear Information System (INIS)

    Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.

    2004-01-01

    The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds

  1. Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping.

    Science.gov (United States)

    Dou, Qingqing; Zhang, Yong

    2011-11-01

    Recently, lanthanide based nanocrystals with upconversion fluorescence emission have attracted a lot of interest and the nanocrystals have been used for bioimaging, biodetection, and therapeutic applications. Use of the nanocrystals for multiplexed detection has also been explored; however, nanocrystals with multicolor emission are required. Some efforts have been made to tune the emission spectra of the nanocrystals based on manipulation of upconverting lanthanide ions doped in the crystals or creation of core/shell structures. In this work, alkali ions with an ionic radius slightly larger or smaller than Na such as Li and K were doped into NaYF(4):Yb,Er nanocrystals and their effect on the crystal structure and subsequently the upconversion emission spectra were studied. It was found that the phase transition occurs in the nanocrystals when a different amount of Li and K was doped. Furthermore, the intensity ratios between the blue, green, and red emission peaks changed accordingly, and make it possible to tune the upconversion fluorescence of the nanocrystals by Li and K doping.

  2. Fullerene-Based Photoactive Layers for Heterojunction Solar Cells: Structure, Absorption Spectra and Charge Transfer Process

    Directory of Open Access Journals (Sweden)

    Yuanzuo Li

    2014-12-01

    Full Text Available The electronic structure and optical absorption spectra of polymer APFO3, [70]PCBM/APFO3 and [60]PCBM/APFO3, were studied with density functional theory (DFT, and the vertical excitation energies were calculated within the framework of the time-dependent DFT (TD-DFT. Visualized charge difference density analysis can be used to label the charge density redistribution for individual fullerene and fullerene/polymer complexes. The results of current work indicate that there is a difference between [60]PCBM and [70]PCBM, and a new charge transfer process is observed. Meanwhile, for the fullerene/polymer complex, all calculations of the twenty excited states were analyzed to reveal all possible charge transfer processes in depth. We also estimated the electronic coupling matrix, reorganization and Gibbs free energy to further calculate the rates of the charge transfer and the recombination. Our results give a clear picture of the structure, absorption spectra, charge transfer (CT process and its influencing factors, and provide a theoretical guideline for designing further photoactive layers of solar cells.

  3. Oxygen infrared spectra of oxyhemoglobins and oxymyoglobins. Evidence of two major liganded O2 structures

    International Nuclear Information System (INIS)

    Potter, W.T.; Tucker, M.P.; Houtchens, R.A.; Caughey, W.S.

    1987-01-01

    The dioxygen stretch bands in infrared spectra for solutions of oxy species of human hemoglobin A and its separated subunits, human mutant hemoglobin Zurich (β63His to Arg), rabbit hemoglobin, lamprey, hemoglobin, sperm whale myoglobin, bovine myoglobin, and a sea worm chlorocruorin are examined. Each protein exhibits multiple isotope-sensitive bands between 1160 and 1060 cm -1 for the liganded 16 O 2 , 17 O 2 , and 18 O 2 . The O-O stretch bands for each of the mammalian myoglobins and hemoglobins are similar, with frequencies that differ between proteins by only 3-5 cm -1 . The spectra for the lamprey and sea worm hemoglobins exhibit greater diversity. For all proteins an O-O stretch band expected to occur near 1125 cm -1 for 16 O 2 and 17 O 2 , but not 18 O 2 , appears split by ∼25 cm -1 due to an unidentified perturbation. The spectrum for each dioxygen isotope, if unperturbed, would contain two strong bands for the mammalian myoglobins (1150 and 1120 cm -1 ) and hemoglobins (1155 and 1125 cm -1 ). Two strong bands separated by ∼30 cm -1 for each oxy heme protein subunit indicate that two major protein conformations (structure) that differ substantially in O 2 bonding are present. The two dioxygen structures can result from a combination of dynamic distal and proximal effects upon the O 2 ligand bound in a bent-end-on stereochemistry

  4. Imaging molecular structure and dynamics using laser driven recollisions

    International Nuclear Information System (INIS)

    Marangos, J.P.; Baker, S.; Torres, R.; Kajumba, N.; Haworth, C.; Robinson, J.; Tisch, J.W.G.; Lein, M.; Chirila, C.; Vozzi, C.

    2006-01-01

    molecular alignment. We demonstrate a new technique using high order harmonic generation in molecules to probe nuclear dynamics and structural rearrangement on a sub-femtosecond timescale. The chirped nature of the electron wavepacket produced by laser ionization in a strong field gives rise to a similar chirp in the photons emitted upon electron-ion recombination. Use of this chirp in the emitted light allows information about nuclear dynamics to be gained with 100 attosecond temporal resolution, from excitation by an 8 fs pulse, in a single laser shot. Measurements on H 2 and D 2 agree well with calculations of ultra-fast nuclear dynamics in the H 2 + molecule, confirming the validity of the method. Guided by this result, we have measured harmonic spectra from CH 4 and CD 4 to demonstrate a few-femtosecond timescale for the onset of proton rearrangement in methane upon ionization.

  5. Molecular structure input on the web

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2010-02-01

    Full Text Available Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.

  6. Origin of Discrepancies in Inelastic Electron Tunneling Spectra of Molecular Junctions

    OpenAIRE

    Yu, Lam H.; Zangmeister, Christopher D.; Kushmerick, James G.

    2007-01-01

    We report inelastic electron tunneling spectroscopy (IETS) of multilayer molecular junctions with and without incorporated metal nano-particles. The incorporation of metal nanoparticles into our devices leads to enhanced IET intensity and a modified line-shape for some vibrational modes. The enhancement and line-shape modification are both the result of a low lying hybrid metal nanoparticle-molecule electronic level. These observations explain the apparent discrepancy between earlier IETS mea...

  7. Quantifying the Impact of Spectral Coverage on the Retrieval of Molecular Abundances from Exoplanet Transmission Spectra

    Science.gov (United States)

    Chapman, John W.; Zellem, Robert T.; Line, Michael R.; Vasisht, Gautam; Bryden, Geoff; Willacy, Karen; Iyer, Aishwarya R.; Bean, Jacob; Cowan, Nicolas B.; Fortney, Jonathan J.; Griffith, Caitlin A.; Kataria, Tiffany; Kempton, Eliza M.-R.; Kreidberg, Laura; Moses, Julianne I.; Stevenson, Kevin B.; Swain, Mark R.

    2017-10-01

    Using forward models for representative exoplanet atmospheres and a radiometric instrument model, we generated synthetic observational data to explore how well the major C- and O-bearing chemical species (CO, CO2, CH4, and H2O), important for determining atmospheric opacity and radiation balance, can be constrained by transit measurements as a function of spectral wavelength coverage. This work features simulations for a notional transit spectroscopy mission and compares two cases for instrument spectral coverage (wavelength coverage from 0.5-2.5 μm and 0.5-5 μm). The simulation is conducted on a grid with a range of stellar magnitudes and incorporates a full retrieval of atmospheric model parameters. We consider a range of planets from sub-Neptunes to hot Jupiters and include both low and high mean molecular weight atmospheres. We find that including the 2.5-5 μm wavelength range provides a significant improvement in the degree of constraint on the retrieved molecular abundances: up to ˜3 orders of magnitude for a low mean molecular weight atmosphere (μ = 2.3) and up to a factor of ˜6 for a high mean molecular weight atmosphere (μ = 28). These decreased uncertainties imply that broad spectral coverage between the visible and the mid-infrared is an important tool for understanding the chemistry and composition of exoplanet atmospheres. This analysis suggests that the James Webb Space Telescope’s (JWST) Near-Infrared Spectrograph (NIRSpec) 0.6-5 μm prism spectroscopy mode, or similar wavelength coverage with possible future missions, will be an important resource for exoplanet atmospheric characterization.

  8. Automated Protein NMR Structure Determination Using Wavelet De-noised NOESY Spectra

    International Nuclear Information System (INIS)

    Dancea, Felician; Guenther, Ulrich

    2005-01-01

    A major time-consuming step of protein NMR structure determination is the generation of reliable NOESY cross peak lists which usually requires a significant amount of manual interaction. Here we present a new algorithm for automated peak picking involving wavelet de-noised NOESY spectra in a process where the identification of peaks is coupled to automated structure determination. The core of this method is the generation of incremental peak lists by applying different wavelet de-noising procedures which yield peak lists of a different noise content. In combination with additional filters which probe the consistency of the peak lists, good convergence of the NOESY-based automated structure determination could be achieved. These algorithms were implemented in the context of the ARIA software for automated NOE assignment and structure determination and were validated for a polysulfide-sulfur transferase protein of known structure. The procedures presented here should be commonly applicable for efficient protein NMR structure determination and automated NMR peak picking

  9. Mass spectra-based framework for automated structural elucidation of metabolome data to explore phytochemical diversity

    Directory of Open Access Journals (Sweden)

    Fumio eMatsuda

    2011-08-01

    Full Text Available A novel framework for automated elucidation of metabolite structures in liquid chromatography-mass spectrometer (LC-MS metabolome data was constructed by integrating databases. High-resolution tandem mass spectra data automatically acquired from each metabolite signal were used for database searches. Three distinct databases, KNApSAcK, ReSpect, and the PRIMe standard compound database, were employed for the structural elucidation. The outputs were retrieved using the CAS metabolite identifier for identification and putative annotation. A simple metabolite ontology system was also introduced to attain putative characterization of the metabolite signals. The automated method was applied for the metabolome data sets obtained from the rosette leaves of 20 Arabidopsis accessions. Phenotypic variations in novel Arabidopsis metabolites among these accessions could be investigated using this method.

  10. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    Science.gov (United States)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  11. Structure, Spectra, and DFT Simulation of Nickel Benzazolate Complexes with Tris(2-aminoethyl)amine Ligand.

    Science.gov (United States)

    Cerezo, Javier; Requena, Alberto; Zúñiga, José; Piernas, María José; Santana, M Dolores; Pérez, José; García, Luís

    2017-03-20

    Benzazolate complexes of Ni(II), [Ni(pbz)(tren)]ClO 4 (pbz = 2-(2'-hydroxyphenyl)-benzimidazole (pbm), 1, 2-(2'-hydroxyphenyl)-benzoxazole (pbx), 2, 2-(2'-hydroxyphenyl)-benzothiazole (pbt), 3; tren = tris(2-aminoethyl)amine), are prepared by self-assembly reaction and structurally characterized. Theoretical DFT simulations are carried out to reproduce the features of their crystal structures and their spectroscopic and photophysic properties. The three complexes are moderately luminescent at room temperature both in acetonitrile solution and in the solid state. The simulations indicate that the absorption spectrum is dominated by two well-defined transitions, and the electronic density concentrates in three MOs around the benzazole ligands. The Stokes shifts of the emission spectra of complexes 1-3 are determined by optimizing the electronic excited state.

  12. Quantitative analysis of satellite structures in XPS spectra of gold and silver

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, N., E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla, Univ. Sevilla – CSIC, av. Américo Vespucio 49, E-41092 Sevilla (Spain); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-10-15

    Highlights: • Accurate determination of the energy loss functions for Au and Ag. • Calculation of effective inelastic electron scattering cross sections for Au and Ag. • Convolution of these cross sections with varying model primary spectra F(E). • Variation of F(E) until a good agreement with experimental XPS spectra is reached. • Quantitative determination of Au 4f and Ag 3d characteristics. - Abstract: Identification of specific chemical states and local electronic environments at surfaces by X-ray photoelectron spectroscopy (XPS) is often difficult because it is not straightforward to quantitatively interpret the shape and intensity of shake-up structures that originate from the photoexcitation process. Indeed the shape and intensity of measured XPS structures are strongly affected by both extrinsic excitations due to electron transport out of the surface and intrinsic excitations induced by the sudden creation of the static core hole. These processes must be taken into account to quantitatively extract, from experimental XPS, the primary excitation spectrum of the considered transition which includes all effects that are part of the initial photo-excitation process, i.e. lifetime broadening, spin–orbit coupling, and multiplet splitting. It was previously shown [N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 620 (2014) 17] that both extrinsic and intrinsic excitations could be included in an effective energy-differential inelastic electron scattering cross section for XPS which is then convoluted with the primary excitation spectrum to model the full XPS spectrum. This method can thus be applied to determine the primary excitation spectrum from any XPS spectrum. We use this approach in the present paper to determine the Au 4f and Ag 3d photoemission spectra from pure metals. We observe that characteristic energy loss features of the XPS spectra are not only due to photoelectron energy losses. We thus prove the existence of a double shake-up process

  13. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  14. The use of molecular spectra simulation for diagnostics of reactive flows

    Directory of Open Access Journals (Sweden)

    Enizete Aparecida Gonçalves

    2011-01-01

    Full Text Available The C2* radical is used as a system probe tool to the reactive flow diagnostic, and it was chosen due to its large occurrence in plasma and combustion in aeronautics and aerospace applications. The rotational temperatures of C2* species were determined by the comparison between 2 experimental and theoretical data. The simulation code was developed by the authors, using C++ language and the object oriented paradigm, and it includes a set of new tools that increase the efficacy of the C2* probe to determine the rotational temperature of the system. A brute force approach for the determination of spectral parameters was adopted in this version of the computer code. The statistical parameter c2 was used as an objective criterion to determine the better match of experimental and synthesized spectra. The results showed that the program works even with low-quality experimental data, typically collected from in situ airborne compact apparatus. The technique was applied to flames of a Bunsen burner, and the rotational temperature of ca. 2100 K was calculated.

  15. Origin of discrepancies in inelastic electron tunneling spectra of molecular junctions.

    Science.gov (United States)

    Yu, Lam H; Zangmeister, Christopher D; Kushmerick, James G

    2007-05-18

    We report inelastic electron tunneling spectroscopy (IETS) of multilayer molecular junctions with and without incorporated metal nanoparticles. The incorporation of metal nanoparticles into our devices leads to enhanced IET intensity and a modified line shape for some vibrational modes. The enhancement and line-shape modification are both the result of a low lying hybrid metal nanoparticle-molecule electronic level. These observations explain the apparent discrepancy between earlier IETS measurements of alkane thiolate junctions by Kushmerick et al. [Nano Lett. 4, 639 (2004)] and Wang et al. [Nano Lett. 4, 643 (2004)].

  16. Understanding the interface between silicon-based materials and water: Molecular-dynamics exploration of infrared spectra

    Directory of Open Access Journals (Sweden)

    José A. Martinez-Gonzalez

    2017-11-01

    Full Text Available Molecular-dynamics simulations for silicon, hydrogen- and hydroxyl-terminated silicon in contact with liquid water, at 220 and 300 K, display water-density ‘ordering’ along the laboratory z-axis, emphasising the hydrophobicity of the different systems and the position of this first adsorbed layer. Density of states (DOS of the oxygen and proton velocity correlation functions (VACFs and infrared (IR spectra of the first monolayer of adsorbed water, calculated via Fourier transformation, indicate similarities to more confined, ice-like dynamical behaviour (redolent of ice. It was observed that good qualitative agreement is obtained between the DOS for this first layer in all systems. The DOS for the lower-frequency zone indicates that for the interface studied (i.e., the first layer near the surface, the water molecules try to organise in a similar form, and that this form is intermediate between liquid water and ice. For IR spectra, scrutiny of the position of the highest-intensity peaks for the stretching and bending bands indicate that such water molecules in the first solvating layer are organised in an intermediate fashion between ice and liquid water.

  17. Synthesis, crystal structure, and spectra of 3,3- dimethyl-1-N-(1'-phenyl-2',3'-dimethyl-5'-oxo-3'- pyrazolin-4'-yl)imino-1,2,3,4-tetrahydroisoquinoline

    International Nuclear Information System (INIS)

    Sokol, V.I.; Ryabov, M.A.; Merkur'eva, N.Yu.; Davydov, V.V.; Zaitsev, B.E.; Shklyaev, Yu.V.; Sergienko, V.S.; Zaitsev, B.E.

    1996-01-01

    The synthesis and the crystal and molecular structure of 3,3-dimethyl-1-N-(1'-phenyl-2',3'- dimethyl-5'-oxo-3'-pyrazolin-4'-yl)imino-1,2,3,4-tetrahydroisoquinoline are reported. As is evidenced by the 1H NMR, IR, and electron spectra, the tautomeric form of the compounds observed in the crystal is also retained in solutions

  18. Rotational Spectra of N2OH+ and CH2CHCNH+ Molecular Ions

    Science.gov (United States)

    Martinez, Oscar; , Jr.; Lattanzi, Valerio; McCarthy, Michael C.; Thorwirth, Sven

    2011-06-01

    Protonated molecular ions of nitrous oxide (N2OH+) and acrylonitrile (CH2CHCNH+) have been detected at high spectral resolution in the molecular beam of a Fourier transform microwave spectrometer on the basis of high-level ab initio calculations. The ions were synthesized in the throat of a pulsed supersonic nozzle by discharging in a flow of the corresponding precursor gas (either N2O or CH2CHCN) heavily diluted in H2. Two isomers of N2OH+ were identified, corresponding to protonation at either the N or O end of NNO. This work contributes precise nitrogen hyperfine coupling constants to existing measurements of ground state NNOH+, and represents the first detection of the higher energy HNNO+ isomer, which is calculated to lie 4.4 kcal/mol above ground. In addition, protonated acrylonitrile has been detected for the first time at high spectral resolution, yielding spectroscopic constants that are in excellent agreement with high-level quantum-chemical calculations. Owing to sizable calculated dipole moments of protonated nitrous oxide and acrylonitrile and the relatively high proton affinities of their neutral counterparts, both cations are plausible candidates for astronomical detection with radio telescopes. At CCSD(T)/cc-pwCVQZ level of theory with zero-point vibrational effects at CCSD(T)/cc-pVQZ. J. M. L. Martin & T. J. Lee, J. Chem. Phys. 98, 7951 (1993)

  19. Determining Three Dimension Q - Attenuation Structure beneath Kyushu Island, Japan exerting Waveform - Spectra of Microearthquakes

    Science.gov (United States)

    Parithusta, R.; Matsumoto, S.; Shimizu, H.

    2007-12-01

    Examining the anelastic structure in the uppermost mantle and the crust continues to be a significant problem in seismology. In particular, the observation of attenuation heterogeneities around subduction zones and active fault has implication for the dynamic oceanic lithosphere and asthenosphere. Seismic attenuation can be estimated by extracting the amplitude-frequency information contained in seismic waveforms and it provides an important insight into the nature of heterogeneities structure and composition of the earth's interior. The study area at Kyushu Island, in South Part of Japan is characterized by subduction from Philippine Sea Slab and Eurasian Plate; volcanic front seen in islands arcs runs through the central part of Kyushu Island. Futagawa- Hinagu Fault zone, which is one of the active faults in Japan, lies in the middle of Kyushu, in which the seismic activity of shallow earthquakes is high. The fault is furrow from southwest of Aso volcano until Yatsushiro city, with the type of right-lateral strike slip. For investigating the 3D wave attenuation Q structure of the crust and the upper mantle in Kyushu Island, we examined the seismic wave spectra for micro earthquakes (Magnitude 2.5 - 4.5) observed at seismic stations by Kyushu Univ., JMA, and Hi-net. In this study selected waveform were used for spectral analysis concerning strong lateral heterogeneities, to estimate Q values by the spectral decay of the spectrum. Used for estimating path attenuation, we obtained the best result with amplitude spectra determined for a 128 - sample window around seismic-wave arrivals and having signal-to-noise ratio greater than 2 over the continuous frequency range. Solving for Q structure, an inversion program were developed with referring Tsumura, 2000.,by given a set of path attenuation, source parameter, site response and velocity model, the Q structure can be distinguished the difference between fore-arc zone and back arc zone around Kyushu Island, especially

  20. Analysis of fine structure of X-ray spectra from laser-irradiated gold dot

    International Nuclear Information System (INIS)

    Yang Guohong; Zhang Jiyan; Zhang Baohan; Zhou Yuqing; Li Jun

    2000-01-01

    The X-ray emission spectra from highly stripped plasma of gold has been observed by focusing a Nd-glass frequency tripled laser beam onto the surface of the gold dot at the XINGGUANG II laser facilities. The spectra of gold ions in the range of 0.0003 nm-0.0004 nm was recorded using the plate PET (2d = 0.8742 nm) crystal spectrometer. The code of average energy of relativistic sub-arrays was built on the basis of the code MCDF (Multi-Configuration-Dirac-Fock). Using the spin-orbit-split-arrays (SOSA) formalism, mean wavelengths and full widths at half height of isolated peaks of sub-arrays of lower charged gold ions, isoelectronic with Cu, Zn, Ga and Ge, was calculated. Twenty-six lines are interpreted, they pertain mainly to transitions of 3d-nf (n = 5,6,7) of gold ions from Ni-like to As-like. These results of experiment and calculation have important application in plasma diagnostics and examination of high Z elemental atomic structure calculation

  1. ExoMol molecular line lists - XXVI: spectra of SH and NS

    Science.gov (United States)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-04-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X 2Π ground state for 32SH, 33SH, 34SH and 32SD, and 14N32S, 14N33S, 14N34S, 14N36S and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X 2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2 300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms fitting error of 0.002 cm-1. Each NS calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS database. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  2. ExoMol molecular line lists - XXIII. Spectra of PO and PS

    Science.gov (United States)

    Prajapat, Laxmi; Jagoda, Pawel; Lodi, Lorenzo; Gorman, Maire N.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-12-01

    Comprehensive line lists for phosphorus monoxide (31P16O) and phosphorus monosulphide (31P32S) in their X 2Π electronic ground state are presented. The line lists are based on new ab initio potential energy (PEC), spin-orbit (SOC) and dipole moment (DMC) curves computed using the MRCI+Q-r method with aug-cc-pwCV5Z and aug-cc-pV5Z basis sets. The nuclear motion equations (i.e. the rovibronic Schrödinger equations for each molecule) are solved using the program DUO. The PECs and SOCs are refined in least-squares fits to available experimental data. Partition functions, Q(T), are computed up to T = 5000 K, the range of validity of the line lists. These line lists are the most comprehensive available for either molecule. The characteristically sharp peak of the Q-branches from the spin-orbit split components gives useful diagnostics for both PO and PS in spectra at infrared wavelengths. These line lists should prove useful for analysing observations and setting up models of environments such as brown dwarfs, low-mass stars, O-rich circumstellar regions and potentially for exoplanetary retrievals. Since PS is yet to be detected in space, the role of the two lowest excited electronic states (a 4Π and B 2Π) are also considered. An approximate line list for the PS X-B electronic transition, which predicts a number of sharp vibrational bands in the near ultraviolet, is also presented. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  3. DFT and experimental studies of the structure and vibrational spectra of 2-(tert-buroxycarbonyl (Boc) - amino)-5-bromopyridine

    Science.gov (United States)

    Premkumar, S.; Jawahar, A.; Umadevi, M.; Sathe, V. G.; Asath, R. Mohamed; Franklin Benial, A. Milton

    2014-04-01

    The vibrational frequencies and frontier molecular orbitals of 2-(tert-buroxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) were theoretically calculated by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The vibrational spectra were experimentally recorded by Fourier transform-infrared (FT-IR) and Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed vibrational frequencies. Theoretically calculated and experimentally observed vibrational frequencies were compared and assigned. The molecular interaction, stability and intermolecular charge transfer of BABP were studied using frontier molecular orbitals (FMO) analysis.

  4. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.

    Science.gov (United States)

    van Zandvoort, Ilona; Wang, Yuehu; Rasrendra, Carolus B; van Eck, Ernst R H; Bruijnincx, Pieter C A; Heeres, Hero J; Weckhuysen, Bert M

    2013-09-01

    Neither the routes through which humin byproducts are formed, nor their molecular structure have yet been unequivocally established. A better understanding of the formation and physicochemical properties of humins, however, would aid in making biomass conversion processes more efficient. Here, an extensive multiple-technique-based study of the formation, molecular structure, and morphology of humins is presented as a function of sugar feed, the presence of additives (e.g., 1,2,4-trihydroxybenzene), and the applied processing conditions. Elemental analyses indicate that humins are formed through a dehydration pathway, with humin formation and levulinic acid yields strongly depending on the processing parameters. The addition of implied intermediates to the feedstocks showed that furan and phenol compounds formed during the acid-catalyzed dehydration of sugars are indeed included in the humin structure. IR spectra, sheared sum projections of solid-state 2DPASS (13) C NMR spectra, and pyrolysis GC-MS data indicate that humins consist of a furan-rich polymer network containing different oxygen functional groups. The structure is furthermore found to strongly depend on the type of feedstock. A model for the molecular structure of humins is proposed based on the data presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular structure, vibrational spectroscopic studies and natural ...

    Indian Academy of Sciences (India)

    The best method to reproduce the experimental wave numbers is B3LYP method with the. 6-31G(d,p) basis set. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the infrared spectra of 7A4TFMC was also reported. The entropy of the ...

  6. Investigation of temperature dependence of muonic X-ray spectra structure in silicon and vanadium oxides

    International Nuclear Information System (INIS)

    Andreeff, A.; Evseev, V.S.; Minkova, A.; Ortlepp, H.-G.; Roganov, V.S.; Rybakov, V.N.; Sabirov, B.M.; Fromm, W.

    1979-01-01

    To study the influence of matter macroscopic properties on the negative muon atomic capture the muonic X-ray spectra have been measured from silicon at 77 deg and 295 deg, from VO 2 at 295 deg and 355 deg, and from V 2 O 3 at 77 deg and 295 deg using a Ge(Li) spectrometer 55 cm 3 in volume and ''on-line'' technique. It is shown that neither changes of a conductivity in all targets, nor a rebuilding of both vanadium oxydes crystal structure at phase transition does not cause any alteration in muonic X-ray spectrum. The obtained results are discussed in terms of a ''time pit''

  7. Double photoionisation spectra of molecules

    CERN Document Server

    Eland, John

    2017-01-01

    This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...

  8. Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W.; Pedersen, Roger A.; Fisher,Susan J.; Weier, Heinz-Ulrich G.

    2006-02-08

    Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.

  9. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals

    Directory of Open Access Journals (Sweden)

    J.Grigas

    2007-01-01

    Full Text Available The paper presents the X-ray photoelectron spectra (XPS of the valence band (VB and of the principal core levels from the (110 and (001 crystal surfaces for the quasi-one-dimensional high permittivity SbSeI single crystal isostructural to ferroelectric SbSI. The XPS were measured with monochromatized Al Ka radiation in the energy range of 0-1400 eV at room temperature. The VB is located from 1.6 to 20 eV below the Fermi level. Experimental energies of the VB and core levels are compared with the results of theoretical ab initio calculations of the molecular model of the SbSeI crystal. The electronic structure of the VB is revealed. Shifts in the core-level binding energies of surface atoms relative to bulk ones, which show a dependency on surface crystallography, have been observed. The chemical shifts of the core levels (CL in the SbSeI crystal for the Sb, I and Se states are obtained.

  10. Density functional studies of molecular structures of N-methyl ...

    Indian Academy of Sciences (India)

    Administrator

    studies. Sparse experimental data on the gas-phase geometry of DMF reported in the literature compares well with the DFT results on DMF. DFT emerges as a powerful method to calculate molecular structures. Keywords. Density functional theory; alkyl amides; molecular structure of alkyl amides; transition state search; ...

  11. Conformational states of N-acylalanine dithio esters: correlation of resonance Raman spectra with structures

    International Nuclear Information System (INIS)

    Lee, H.; Angus, R.H.; Storer, A.C.; Varughese, K.I.; Carey, P.R.

    1988-01-01

    The conformational states of N-acylalanine dithio esters, involving rotational isomers about the RC(=O)NH-CH(CH 3 ) and NHCH(CH 3 )-C(=S) bonds, are defined and compared to those of N-acylglycine dithio esters. The structure of N-(p-nitrobenzoyl)-DL-alanine ethyl dithio ester has been determined by X-ray crystallographic analysis; it is a B-type conformer with the amide N atom cis to the thiol sulfur. Raman and resonance Raman (RR) measurements on this compound and for the B conformers of solid N-benzoyl-DL-alanine ethyl dithio ester and N-(β-phenylpropionyl)-DL-alanine ethyl dithio ester and its NHCH(CD 3 )C(=S) and NHCH(CH 3 ) 13 C(=S) analogues are used to set up a library of RR data for alanine-based dithio esters in a B-conformer state. RR data for this solid material in its isotopically unsubstituted and CH(C-D 3 )C(=S) and CH(CH 3 ) 13 C(=S) forms provide information on the RR signatures of alanine dithio esters in A-like conformations. RR spectra are compared for the solid compounds, for N-(p-nitrobenzoyl)-DL-alanine, N-(β-phenylpropionyl)-DL-alanine, and (methyloxycarbonyl)-L-phenylalanyl-DL-alanine ethyl dithio ester, and for several 13 C=S- and CD 3 -substituted analogues in CCl 4 or aqueous solutions. The RR data demonstrate that the alanine-based dithio esters take up A, B, and C 5 conformations in solution. The RR spectra of these conformers are clearly distinguishable from those for the same conformers of N-acylglycine dithio esters. However, the crystallographic and spectroscopic results show that the results show that the conformational properties of N-acylglycine and N-acylalanine dithio esters are very similar

  12. From plasmon spectra of metallic to vibron spectra of dielectric nanoparticles.

    Science.gov (United States)

    Preston, Thomas C; Signorell, Ruth

    2012-09-18

    Light interacts surprisingly differently with small particles than with bulk or gas phase materials. This can cause rare phenomena such as the occurence of a "blue moon". Spectroscopic particle phenomena of similar physical origin have also spawned countless applications ranging from remote sensing to medicine. Despite the broad interest in particle spectra, their interpretation still poses many challenges. In this Account, we discuss the challenges associated with the analysis of infrared, or vibron, extinction spectra of small dielectric particles. The comparison with the more widely studied plasmon spectra of metallic nano-particles reveals many common features. The shape, size, and architecture of particles influence the band profiles in vibron and plasmon spectra in similar ways. However, the molecular structure of dielectric particles produces infrared spectral features that are more diverse and detailed or even unique to vibron spectra. More complexity means higher information content, but that also makes the spectra more difficult to interpret. Conventional models such as classical electromagnetic theory with a continuum description of the wavelength-dependent optical constants are often no longer applicable to these spectra. In cases where accurate optical constants are not available and for ultrafine particles, where the molecular structure and quantum effects become essential, researchers must resort to molecular models for light-particle interaction that do not require the prior knowledge of optical constants. In this Account, we illustrate how vibrational exciton approaches combined with molecular dynamics simulations and solid-state density functional calculations provide a viable solution to these challenges. Molecular models reveal two important characteristics of vibron spectra of small molecularly structured particles. The band profiles in vibron spectra are largely determined by transition dipole coupling between the molecules in a particle

  13. Algorithmic dimensionality reduction for molecular structure analysis

    OpenAIRE

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated alg...

  14. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  15. Similarity Measure for Molecular Structure: A Brief Review

    Science.gov (United States)

    Bero, S. A.; Muda, A. K.; Choo, Y. H.; Muda, N. A.; Pratama, S. F.

    2017-09-01

    Similarity or distance measures have been used widely to calculate the similarity or dissimilarity between two samples of dataset. Cheminformatics is known as the domain that dealing with chemical information and both similarity and distance coefficient have been an important role for matching, searching and classification of chemical information. There are various types of similarity/distance coefficient used in molecular structure similarity searching. Generally, the calculation using similarity/distance coefficient is focusing more on 2-dimensional (2D) rather than 3-dimensional (3D) structure. In this paper, the popular similarity/distance coefficients for molecular structure will be reviewed together with the review on 3D molecular structure.

  16. Applications of the Cambridge Structural Database to molecular inorganic chemistry.

    Science.gov (United States)

    Orpen, A Guy

    2002-06-01

    Applications of the data in the Cambridge Structural Database (CSD) to knowledge acquisition and fundamental research in molecular inorganic chemistry are reviewed. Various classes of application are identified, including the derivation of typical molecular dimensions and their variability and transferability, the derivation and testing of theories of molecular structure and bonding, the identification of reaction paths and related conformational analyses based on the structure correlation hypothesis, and the identification of common and presumably energetically favourable intermolecular interactions. In many of these areas, the availability of plentiful structural data from the CSD is set against the emergence of high-quality computational data on the geometry and energy of inorganic complexes.

  17. Molecular structure and exciton dynamics in organic conjugated polymers

    Science.gov (United States)

    Thomas, Alan K.

    , quenchable, isolated singlet excitations. The structure of J aggregates which leads to isolated excitations, and the role which inter-chain contact sites play in triplet formation from these singlet excitations is revealed. New structure-function relationships were uncovered in poly (3-alkyl-thienylenevinylene) (P3ATV) derivatives using resonance Raman and photocurrent spectroscopies. Time-dependent spectroscopic theory was used to interpret experimental Raman and absorption spectra that revealed the presence of structural polymorphs. These polymorphs provide an explanation of the spectroscopic evidence without presumption of a deactivating dark state in this unusually non-fluorescence material. Photovoltaic devices constructed from blends of poly (2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and PCBM blends were examined using Raman and photocurrent imaging techniques. These techniques were used to identify different packing states in blended thin films and correlate photocurrent production with local order. Intensity modulated spectroscopic techniques (IMPS) were then used to locate regions of non-geminate charge recombination at interfaces between amorphous and crystalline regions in working devices. Next, P3HT/PCBM OPV devices were exposed to ionizing radiation in a vacuum chamber. These devices were characterized before and after exposure, using standardized solar cell tests, Raman imaging, wide-field IMPS, and IMVS spectroscopies. An analysis of the spectroscopic data determined that the donor polymer is highly resistant to radiation damage, and that the degradation of device performance is due to an effect (cross-linking or degradation) within aggregates of the acceptor. This dissertation concludes with an interpretation of the significance of the findings contained herein to organic electronics, followed by a brief outlook for future work in these fields. Potential theories to describe and predict molecular interactions for organic polymers in

  18. Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives

    KAUST Repository

    Wang, Haitao

    2014-01-01

    The molecular aggregation structure of 5,5′-bis(naphthalen-2-yl)-2,2′-bi(1,3,4-oxadiazole) (BOXD-NP) was studied by computing the intermolecular interaction potential energy surface (PES) at density functional theory level based on a dimer model. All B3LYP, CAM-B3LYP and M062x functionals can yield a reliable isolated molecular geometry. The conformation of BOXD-NP obtained with all methods is perfectly planar, indicating good conjugation ability between oxadiazole and naphthalene rings. The vibrational frequencies of BOXD-NP were also calculated using the B3LYP/6-311+G∗∗ method, which showed great consistency with the experimental observations and makes the assignments of the IR spectra more solid. It was revealed that the lowest excited state of BOXD-NP should be assigned as a highly allowed π-π∗ state by TD-DFT calculation. Considering the non-covalent interactions in molecular aggregates, the M062x functional was applied in the construction of the PES. Besides the packing structure found in the crystals, PES also predicted several stable structures, indicating that PES has great ability in guiding molecular self-assembly. Symmetry Adapted Perturbation Theory (SAPT) analysis on these energy-minimum molecular stacking structures revealed that London dispersion forces are the strongest attractive component in the binding. This journal is

  19. Theoretical study of electron transport throughout some molecular structures

    Science.gov (United States)

    Abbas, Mohammed A. A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2017-11-01

    The present work is a theoretical study of the electronic properties of some molecular structures. The system that takes into account in the study is left lead-donor-molecule-acceptor-right lead. The molecule, such as (phenyl, biphenyl, triphenyl, naphthalene, anthracene, and phenanthrene), is threaded by magnetic flux. This work contains two parts. First is computing density of states of the molecular structures as a closed system by density functional theory (DFT). Second is calculating the transmission probability and electric current of such molecular structures as an open system by steady-state theoretical model. Furthermore, the most important effects, taking into consideration are quantum interference, magnetic flux, and interface structure. Our results show that the connection of the molecule to the two leads, the number of rings, the magnetic flux, and the geometrical structure of the molecule play an important role in determining the energy gap of molecular structures.

  20. Theoretical Investigation of the Effect of the Rare Gas Matrices on the Vibrational Spectra of Solvated Molecular Ions: Cu+CO

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Šilhan, Martin; Nachtigall, Petr

    2002-01-01

    Roč. 117, č. 20 (2002), s. 9298-9305 ISSN 0021-9606 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : vibrational spectra * solvated molecular ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.998, year: 2002

  1. Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure

    Science.gov (United States)

    Purser, Gordon H.

    1999-07-01

    This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure. The "best" Lewis structures are those that, when combined with the VSEPR model, allow the accurate prediction of molecular properties, such as polarity, bond length, bond angle, and bond strength. These structures are achieved by minimizing formal charges within the molecule, even if it requires an expanded octet on atoms beyond the second period. Lewis structures that show an expanded octet do not imply full d-orbital involvement in the bonding. They suggest that the presence of low-lying d-orbitals is important in producing observed molecular structures. Based on this work, the presence of electron density, not a large separation in charge, is responsible for the short bond lengths and large angles in species containing nonmetal atoms from beyond the second period. This result contradicts results obtained from natural population analysis, a method that attempts to derive Lewis structures from molecular orbital calculations.

  2. Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups.

    Science.gov (United States)

    Cojocaru, Corneliu; Airinei, Anton; Fifere, Nicusor

    2013-01-01

    The molecular orbital calculations have been carried out to investigate the structure and stability of (E) / (Z) isomers of some azobenzene derivatives containing maleimide groups. A special attention has been devoted to the compound (E)-1, (E)-1-(4-(phenyldiazenyl)phenyl)-1H-pyrrole-2,5-dione, for which the available crystallographic experimental data have been used to validate the modeling structures computed at the theoretical levels AM1, PM3, RHF/6-31+G(d,p) and B3LYP/6-31+G(d,p). To this end, the discrepancy between experimental and calculated structural parameters has been ascertained in terms of root-mean-square deviation (RMSD). The quantum calculations at the level RHF/6-31+G(d,p) yield the most accurate results on (E)-1 structure giving a deviation error from crystallographic data of about 5.00% for bond lengths and 0.97% for interatomic angles. The theoretical electronic absorption spectra of azobenzene derivatives of concern have been computed by means of configuration-interaction method (CI) at the level of semi-empirical Hamiltonians (AM1 and PM3). Likewise, the molecular energy spectra, electrostatic potential and some quantitative structure activity relationship (QSAR) properties of studied molecules have been computed and discussed in the paper.

  3. Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone.

    Science.gov (United States)

    Sharma, Archna; Reva, Igor; Fausto, Rui

    2008-07-03

    The structure of hydroxyacetone (HA) isolated in an argon matrix (at 12 K) and in a neat solid phase (at 12-175 K) was characterized by using infrared (IR) spectroscopy. The interpretation of the experimental results was supported by high-level quantum chemical calculations, undertaken by using both ab initio (MP2) and density functional theory methods. A potential-energy surface scan, carried out at the MP2/6-311++G(d,p) level of theory, predicted four nonequivalent minima, Cc, Tt, Tg, and Ct, all of them doubly degenerate by symmetry. The energy barriers for conversion between most of the symmetrically related structures and also between some of the nonequivalent minima (e.g., Tg --> Tt and Ct --> Tt) are very small and stay below the zero-point vibrational level associated with the isomerization coordinate in the higher-energy form in each pair. Therefore, only Cc and Tt conformers have physical significance, with populations of 99 and 1%, respectively, in gas phase at room temperature. For the matrix-isolated compound, only the most stable Cc conformer was observed. On the other hand, the polarizable continuum model calculations indicated that in water solution, the population of Tt and Ct conformers might be high enough (ca. 6 and 11%, respectively) to enable their experimental detection, thus supporting the conclusions of a previous IR spectroscopy study [ Spectrochim. Acta A 2005, 61, 477] in which the presence of more than one HA conformer in aqueous solution was postulated. The signatures of these minor conformers, however, do not appear in the spectra of the neat HA crystal, and the crystal structure was rationalized in terms of centrosymmetric hydrogen-bonded dimers consisting of two Cc-like units. Finally, we calculated (1)H, (13)C, and (17)O NMR chemical shifts at different levels of theory and found them to agree with available experimental data.

  4. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  5. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  6. Molecular dynamics modeling of structural battery components

    NARCIS (Netherlands)

    Verners, O.; Van Duin, A.C.T.; Wagemaker, M.; Simone, A.

    2015-01-01

    A crosslinked polymer based solid electrolyte prototype material –poly(propylene glycol) diacrylate– is studied using the reactive molecular dynamics force field ReaxFF. The focus of the study is the evaluation of the effects of equilibration and added plasticizer (ethylene carbonate) or anion

  7. Molecular structure of the lecithin ripple phase

    NARCIS (Netherlands)

    de Vries, AH; Yefimov, S; Mark, AE; Marrink, SJ

    2005-01-01

    Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in

  8. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    cates an easy outlook of the makeup of the molec- ular orbitals in a certain energy range. The energy split between the HOMOs and LUMOs are the crit- ical parameters in special molecular electrical trans- port properties which help in the measure of elec- tron conductivity.42 The HOMO represents the ability to donate an ...

  9. Infrared spectra, methyl group structure and internal rotation in some methy - metal compounds

    Science.gov (United States)

    McKean, D. C.; McQuillan, G. P.; Torto, I.; Morrisson, A. R.

    1986-03-01

    Recent and current work on spectra in the CH and CD stretching regions of methyl-metal compounds is reviewed. Free internal rotation with CH force constant variation is found in MMe 3 (M  Ga, Tl) and MMe(CO) 5 (M  Mn, Re) compounds, studied in the gas phase. From solution measurements, no such rotation occurs in CpMMe(CO) 3 (M  Cr,Mo,W) and Cp 2MMe 2 (M  Ti,Zr,Hf), in most of which each methyl group contains two types of CH bond. In each d-subgroup, ν isCH decreases with increasing atomic number, while δ sCH 3 increases. The reverse occurs from Ga to Tl. r oCH values are predicted. There is evidence for the breakdown of the ν isCH/∠HCH correlation, especially in MeTiCl 3 where several features point to an unusual structure of the methyl group.

  10. Development of the in-structure response spectra of the VVER-440 Model 230 Kozloduy Plant

    International Nuclear Information System (INIS)

    Kostov, M.K.; Prato, C.A.; Stevenson, J.D.

    1993-01-01

    The Kozloduy NPP is located in the North-West part of Bulgaria on the Danube river. The plant consists of four units of 440 MW and two units of 1,000 MW. In the last 15 years there have been three strong, intermediate depth earthquakes in the Vrancea seismic zone (1977, 1986, 1990) which have affected the NPP site. The Vrancea zone is located approximately 300 km northeast of the plant. It is known for the generation of strong, long-period seismic motions. In 1990 an intensive work program for qualification of the plant according to the international standards (IAEA 1991; IAEA 1992) was initiated. The work started by a project for site confirmation. As a result, new design seismic characteristics were obtained. A Review Level Earthquake is defined by a maximum acceleration of 0.2 g; a response spectrum is shown. The generation of the in-structure response spectra for units 1 and 2 VVER-440 Model 230 is presented in this paper. The coauthors belong to an IAEA Advisory Team assisting the seismic upgrading project of the Kozloduy plant

  11. Turbulence descriptors for scaling fatigue loading spectra of wind turbine structural components

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N D

    1994-07-01

    The challenge for the designer in developing a new wind turbine is to incorporate sufficient strength in its components to safely achieve a 20- or 30-year service life. To accomplish this, the designer must understand the load and stress distributions (in a statistical sense at least) that the turbine is likely to encounter during its operating life. Sources of loads found in the normal operating environment include start/stop cycles, emergency shutdowns, the turbulence environment associated with the specific site and turbine location, and extreme or ``rare`` events that can challenge the turbine short-term survivability. Extreme events can result from an operational problem (e.g., controller failure) or violent atmospheric phenomena (tornadic circulations, strong gust fronts). For the majority of the operating time, however, the character of the turbulent inflow is the dominant source of the alternating stress distributions experienced by the structural components. Methods of characterizing or scaling the severity of the loading spectra (or the rate of fatigue damage accumulation) must be applicable to a wide range of turbulent inflow environments -- from solitary isolation to the complex flows associated with multi-row wind farms. The metrics chosen must be related to the properties of the turbulent inflow and independent of the nature of local terrain features.

  12. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    Science.gov (United States)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    solutions of histidine and N-acetyl- L-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle ( θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.

  13. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    Science.gov (United States)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  14. From structure to spectra. Tight-binding theory of InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Elias

    2014-07-23

    Self-assembled semiconductor quantum dots have raised considerable interest in the last decades due to a multitude of possible applications ranging from carrier storage to light emitters, lasers and future quantum communication devices. Quantum dots offer unique electronic and photonic properties due to the three-dimensional confinement of charge carriers and the coupling to a quasi-continuum of wetting layer and barrier states. In this work we investigate the electronic structure of In{sub x}Ga{sub 1-x}As quantum dots embedded in GaAs, considering realistic quantum dot geometries and Indium concentrations. We utilize a next-neighbour sp{sup 3}s{sup *} tight-binding model for the calculation of electronic single-particle energies and wave functions bound in the nanostructure and account for strain arising from lattice mismatch of the constituent materials atomistically. With the calculated single-particle wave functions we derive Coulomb matrix elements and include them into a configuration interaction treatment, yielding many-particle states and energies of the interacting many-carrier system. Also from the tight-binding single-particle wave functions we derive dipole transition strengths to obtain optical quantum dot emission and absorption spectra with Fermi's golden rule. Excitonic fine-structure splittings are obtained, which play an important role for future quantum cryptography and quantum communication devices for entanglement swapping or quantum repeating. For light emission suited for long-range quantum-crypted fiber communication InAs quantum dots are embedded in an In{sub x}Ga{sub 1-x}As strain-reducing layer, shifting the emission wavelength into telecom low-absorption windows. We investigate the influence of the strain-reducing layer Indium concentration on the excitonic finestructure splitting. The fine-structure splitting is found to saturate and, in some cases, even reduce with strain-reducing layer Indium concentration, a result being

  15. From structure to spectra. Tight-binding theory of InGaAs quantum dots

    International Nuclear Information System (INIS)

    Goldmann, Elias

    2014-01-01

    Self-assembled semiconductor quantum dots have raised considerable interest in the last decades due to a multitude of possible applications ranging from carrier storage to light emitters, lasers and future quantum communication devices. Quantum dots offer unique electronic and photonic properties due to the three-dimensional confinement of charge carriers and the coupling to a quasi-continuum of wetting layer and barrier states. In this work we investigate the electronic structure of In x Ga 1-x As quantum dots embedded in GaAs, considering realistic quantum dot geometries and Indium concentrations. We utilize a next-neighbour sp 3 s * tight-binding model for the calculation of electronic single-particle energies and wave functions bound in the nanostructure and account for strain arising from lattice mismatch of the constituent materials atomistically. With the calculated single-particle wave functions we derive Coulomb matrix elements and include them into a configuration interaction treatment, yielding many-particle states and energies of the interacting many-carrier system. Also from the tight-binding single-particle wave functions we derive dipole transition strengths to obtain optical quantum dot emission and absorption spectra with Fermi's golden rule. Excitonic fine-structure splittings are obtained, which play an important role for future quantum cryptography and quantum communication devices for entanglement swapping or quantum repeating. For light emission suited for long-range quantum-crypted fiber communication InAs quantum dots are embedded in an In x Ga 1-x As strain-reducing layer, shifting the emission wavelength into telecom low-absorption windows. We investigate the influence of the strain-reducing layer Indium concentration on the excitonic finestructure splitting. The fine-structure splitting is found to saturate and, in some cases, even reduce with strain-reducing layer Indium concentration, a result being counterintuitively. Our result

  16. Theoretical investigations of the structures and electronic spectra of 8-hydroxylquinoline derivatives

    Science.gov (United States)

    Ning, Pan; Ren, Tiegang; Zhang, Yanxin; Zhang, Jinglai

    2013-11-01

    The spectroscopic properties of 8-hydroxyquinoline derivatives are theoretically investigated by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The target molecules are divided into two groups: group (I): (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)quinolin-8-ol (A), together with corresponding potential reaction products of A with acetic acid, i.e., (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)quinolin-8-yl acetate (AR1), and (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)-8-hydroxyquinolinium (AR2); group (II): (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)quinolin-8-ol (B), as well as potential reaction products of B with acetic acid, i.e., (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)quinolin-8-yl acetate (BR1), and (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)-8-hydroxyquinolinium (BR2). The geometries are optimized by B3LYP and M06 methods. The results indicate that product molecules tend to be effectively planar compared with reactants. Subsequently, UV absorption spectra are simulated through TD-DFT method with PCM model to further confirm the reasonable products of two reactions. AR2 and BR2 are identified as the target molecules through the experimental spectra for the real products. It is worth noting that the maximum absorption wavelengths of compounds AR2 and BR2 present prominent red shift compared the initial reactants A and B, respectively, which should be ascribed to the enhancive planarity of products that mentioned above and the decreased HOMO-LUMO energy gap. Geometric structures and optical properties for corresponding compounds are discussed in detail.

  17. Li{sub 4}Ba[BN{sub 2}]{sub 2} - structure and vibrational spectra

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Somer, Mehmet; Kiraz, Kamil [Chemistry Department, Koc University, Sariyer-Istanbul (Turkey)

    2017-12-13

    The nitridoborate Li{sub 4}Ba[BN{sub 2}]{sub 2} was synthesized from a 4:1 molar ratio of Li{sub 3}[BN]{sub 2} and Ba{sub 3}[BN{sub 2}]{sub 2} in an arc-welded niobium ampoule at a maximum annealing temperature of 1173 K. The structure was refined from single-crystal X-ray diffractometer data: new type, P1, a = 533.9(2), b = 585.0(3), c = 860.6(4) pm, α = 80.72(3), β = 73.84(6), γ = 89.87(4) , wR{sub 2} = 0.1196, 1429 F{sup 2} values, 50 variables. The Li{sub 4}Ba[BN{sub 2}]{sub 2} structure contains two crystallographically independent [BN{sub 2}]{sup 3-} units with 134 pm B-N distance, which are slightly bent: 178 for N2-B1-N1 and 175 for N4-B2-N3. Due to the high lithium content both [BN{sub 2}]{sup 3-} units have a strongly distorted coordination by 8Li{sup +} + 3Ba{sup 2+}. The four crystallographically independent lithium cations show distorted tetrahedral coordination by [BN{sub 2}]{sup 3-} units with Li-N distances ranging from 195 to 247 pm. IR and Raman spectra show the typical vibrations of the [BN{sub 2}] unit along with a well-resolved splitting of the ν({sup 10}B) and ν({sup 11}B) frequencies. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. TD-M06-2X insights into the absorption and emission spectra of dichlorvos and its molecularly imprinted recognition by methacrylic acid.

    Science.gov (United States)

    Cheng, Xueli

    2016-11-01

    The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.

  19. Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra.

    Science.gov (United States)

    Mauri, F; Vast, N; Pickard, C J

    2001-08-20

    Density functional theory is demonstrated to reproduce the 13C and 11B NMR chemical shifts of icosahedral boron carbides with sufficient accuracy to extract previously unresolved structural information from experimental NMR spectra. B4C can be viewed as an arrangement of 3-atom linear chains and 12-atom icosahedra. According to our results, all the chains have a CBC structure. Most of the icosahedra have a B11C structure with the C atom placed in a polar site, and a few percent have a B (12) structure or a B10C2 structure with the two C atoms placed in two antipodal polar sites.

  20. Interpretation of polarized Cu K x-ray absorption near-edge-structure spectra of CuO

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Šimůnek, Antonín

    2001-01-01

    Roč. 13, - (2001), s. 8519-8525 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z1010914 Keywords : polarized Cu K-edge spectra * CuO * band-structure calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.611, year: 2001

  1. Structural and spectroscopic properties of the second generation phosphorus-viologen "molecular asterisk".

    Science.gov (United States)

    Furer, V L; Vandukov, A E; Katir, N; Majoral, J P; El Kadib, A; Caminade, A M; Bousmina, M; Kovalenko, V I

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium (BFBP) molecule without counter ions PF6(-) does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar OC6H4CHNN(CH3) fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Structural and spectroscopic properties of the second generation phosphorus-viologen “molecular asterisk”

    Science.gov (United States)

    Furer, V. L.; Vandukov, A. E.; Katir, N.; Majoral, J. P.; El Kadib, A.; Caminade, A. M.; Bousmina, M.; Kovalenko, V. I.

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium (BFBP) molecule without counter ions PF6- does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  3. Structure of bright-rimmed molecular clouds

    International Nuclear Information System (INIS)

    Wootten, A.; Sargent, A.; Knapp, G.; Huggins, P.J.

    1983-01-01

    Five bright-rimmed molecular clouds, NGC 1977, IC 1396, IC 1848 A, B35, and NGC 7822, have been mapped with 30'' resolution in the J = 2--1 lines of 12 co. For the first three, 13 CO maps have also been made. The spatial distributions of temperature, density, and molecular abundance in these clouds have been determined, particularly in the vicinity of the rims. In general, the gas densities increase close to the rims, but temperature enhancements occur over comparatively extended regions. Near the rims the gas kinematics is varied: velocity gradients are observed in several regions, and in IC 1396 line broadening is distinguishable. A detailed study of the excitation of 13 CO demonstrates that near the well-resolved rim in NGC 1977 where C I and carbon recombination lines have been observed, there is a definite decline in the CO abundance. These molecular clouds span a variety of stages of star formation, but in none does the interaction with the adjacent H II region appear to have substantially affected the course of the star-forming history of the cloud

  4. Direct simulations of anharmonic infrared spectra using quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD): methanol in water.

    Science.gov (United States)

    Ghosh, Manik Kumer; Lee, Jooyong; Choi, Cheol Ho; Cho, Minhaeng

    2012-09-13

    One of the most stringent tests for chemical accuracy of a hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation method would be to directly compare the calculated vibrational spectra with the corresponding experimental results. Here, the applicability of hybrid QM/effective fragment potential (EFP) to the simulations of methanol infrared spectra is investigated in detail. It is demonstrated that the QM/EFP simulations in combination with time correlation function theory yield not only the fundamental transition bands but also the major overtone and combination bands of methanol dissolved in water in both mid- and near-IR regions. This clearly indicates that the QM/EFP-molecular dynamics can be a viable way of obtaining an anharmonic infrared spectrum that provides information on solvatochromic frequency shifts and fluctuations, solute-solvent interaction-induced dephasing, and anharmonic coupling effects on vibrational spectra of aqueous solutions. We anticipate that the computational protocol developed here can be effectively used to simulate both one- and two-dimensional vibrational spectra of biomolecules and chemically reactive systems in condensed phases.

  5. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  6. Comparisons of experimental beta-ray spectra important to decay heat predictions with ENSDF (Evaluated Nuclear Structure Data File) evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J.K.

    1990-03-01

    Graphical comparisons of recently obtained experimental beta-ray spectra with predicted beta-ray spectra based on the Evaluated Nuclear Structure Data File are exhibited for 77 fission products having masses 79--99 and 130--146 and lifetimes between 0.17 and 23650 sec. The comparisons range from very poor to excellent. For beta decay of 47 nuclides, estimates are made of ground-state transition intensities. For 14 cases the value in ENSDF gives results in very good agreement with the experimental data. 12 refs., 77 figs., 1 tab.

  7. Comparisons of experimental beta-ray spectra important to decay heat predictions with ENSDF [Evaluated Nuclear Structure Data File] evaluations

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1990-03-01

    Graphical comparisons of recently obtained experimental beta-ray spectra with predicted beta-ray spectra based on the Evaluated Nuclear Structure Data File are exhibited for 77 fission products having masses 79--99 and 130--146 and lifetimes between 0.17 and 23650 sec. The comparisons range from very poor to excellent. For beta decay of 47 nuclides, estimates are made of ground-state transition intensities. For 14 cases the value in ENSDF gives results in very good agreement with the experimental data. 12 refs., 77 figs., 1 tab

  8. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  9. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  10. Neutron irradiation effects in fusion or spallation structural materials: Some recent insights related to neutron spectra

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.

    1998-01-01

    A review is presented of recent insights on the role of transmutation in the development of radiation-induced changes in dimension or radiation-induced changes in physical or mechanical properties. It is shown that, in some materials and some neutron spectra, transmutation can significantly affect or even dominate a given property change process. When the process under study is also sensitive to displacement rate, and especially if it involves radiation-induced segregation and precipitation, it becomes much more difficult to separate the transmutation and displacement rate dependencies. This complicates the application of data derived from 'surrogate' spectra to predictions in other flux-spectra environments. It is also shown in this paper that one must be sensitive to the impact of previously -ignored 'small' variations in neutron spectra within a given reactor. In some materials these small variations have major consequences. (author)

  11. Infrared and Raman scattering spectra of layered structured Ga3InSe4 crystals

    Science.gov (United States)

    Isik, M.; Gasanly, N. M.; Korkmaz, F.

    2013-03-01

    The infrared reflectivity and transmittance and Raman scattering in Ga3InSe4 layered crystals were investigated in the frequency ranges of 100-400, 400-4000 and 25-500 cm-1. The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes.

  12. Study on the variations of molecular structures of some biomolecules induced by free electron laser using FTIR spectroscopy

    Science.gov (United States)

    Yang, Limin; Xu, Yizhuang; Su, Yunlan; Wu, Jinguang; Zhao, Kui; Wang, Mingkai; Xu, Jinqiang; Dai, Zhiping; Chen, Jia'er

    2007-05-01

    In this study, free electron laser (FEL) with selective wavelength was used to induce structure changes of biomolecules, which were characterized by FTIR spectroscopy. For understanding of the interactions between FEL and biomolecules as well as biological tissues, the biomolecules investigated are ATP, ADP, AMP, t-RNA, D-ribose and the complex of SmCl 3- D-ribose. Their FTIR spectra before and after irradiation of FEL show molecular structure variations of the samples after irradiation of FEL, especially the rearrangement of their hydrogen bond networks. Along with the various irradiation wavelengths, irradiation time and molecular structures, the changes after irradiation are different for these molecules. In the FTIR spectra after irradiation, the phenomenon that the bands split into several peaks indicates the existence of several structures, conformations and configurations, which may be prompted by multiple photons process induced by FEL. After irradiation, the changes in their IR spectra indicate the occurrence of stable or metastable states of the molecules after irradiation, which illustrated that IR spectroscopy is a sensitive probe of molecular structure and provides us a method to detect the information related to the mechanism of the irradiation process.

  13. Hybrid structures for molecular level sensing

    Science.gov (United States)

    Lemieux, Melburne Charles

    With substantial molecular mobility and segment dynamics relative to metals and ceramics, all polymeric materials, to some extent, are stimuli-responsive by exhibiting pronounced chemical and physical changes in the backbone, side chains, segments, or end groups induced by changes in the local environment. Thus, the push to incorporate polymeric materials as sensing/responsive nanoscale layers into next-generation miniaturized sensor applications is a natural progression. The significance and impact of this research is wide-ranging because it offers design considerations and presents results in perhaps two of the most critical broad areas of nanotechnology: ultrathin multifunctional polymer coatings and miniaturized sensors. In this work, direct evidence is given showing that polymer coatings comprised of deliberately selected molecular segments with very different chemistry can have switchable properties, and that the surface composition can be precisely controlled, and thus properties can be tuned: all in films on the order of 20 nm and less. Furthermore, active sensing layers in the form of plasma-polymerized polymers are successfully incorporated into actual silicon based microsensors resulting in a novel hybrid organic/inorganic materials platform for microfabricated MEMS sensors with record performance far beyond contemporary sensors in terms of detection sensitivity to various environments. The results produced in this research show thermal sensors with more than two orders of magnitude better sensitivity than what is attainable currently. In addition, a humidity response on the order of parts per trillion, which is four orders of magnitude more sensitive than current designs is achieved. Molecular interactions and forces for organic molecules are characterized at the picoscale to optimize polymeric nanoscale layer design that in turn optimize and lead to microscale hybrid sensors with unprecedented sensitivities.

  14. Theoretical studies on the electronic structure, charge distribution and vibrational spectra of diglyme-M +-AsF 6- (M = Li, Na, K)

    Science.gov (United States)

    Pinjari, Rahul V.; Joshi, Kaustubh A.; Gejji, Shridhar P.

    2008-12-01

    Electronic structure and the vibrational spectra of CH 3(OCH 2CH 2) 2OCH 3-M +-AsF 6- (M = Li, Na, K) have been obtained using the density functional theory. Lithium ion exhibits a pentavalent coordination via 3 oxygens from diglyme and two fluorines of AsF 6- whereas Na + and K + exhibit coordinate number 6 with 3 fluorines of the anion binding to alkali metal in these complexes. Analysis of calculated spectra reveal that the CH 2 wag (840-1120 cm -1) vibrations in the complex are sensitive to metal ion coordination. A frequency downshift relative to the free anion has been predicted for the vibrations of AsF 6- anion when the fluorines are directly bonded (denoted by F*) to metal ion. Consequent reorganization of electron density in the complex engenders a frequency shift in the opposite direction for As-F vibrations wherein the fluorine atoms are not coordinating to the alkali metal ion. An approach based on the molecular electron density topography coupled with the difference electron density map explains the direction of the frequency shifts of C-O-C and the As-F stretchings compared to those of free diglyme or AsF 6 anion. A new method, which includes the color-mapping function for the difference molecular electron density (MED), superimposed on the bond critical points in MED topography has been suggested to explain the direction of the frequency shifts in a single attempt.

  15. Radiation damage of variscite in historic crafts: Solarization, decolouration, structural changes and spectra from ionoluminescence

    International Nuclear Information System (INIS)

    Garcia-Guinea, J.; Correcher, V.; Sanchez-Munoz, L.; Lopez-Arce, P.; Townsend, P.D.; Hole, D.E.

    2008-01-01

    X-ray diffraction measurements, during halogen lamp illumination to simulate sunlight, (TXRD) show a phase transition from variscite (AlPO 4 .H 2 O) Messbach to variscite Lucin and a loss of the dark green colour. The differential-thermal and thermo-gravimetric (DTA-TG) analyses and thermoluminescence (TL) peaks all depict this first-order phase transition which takes place under sunlight. From the water vaporization temperature up to circa 650 deg. C, a second-order phase transition progressively occurs from variscite to berlinite (AlPO 4 ) by loss of a second unit of water with hydrogen bonded to the lattice. The ion beam luminescence (IBL) spectra of the Zamora variscite display a spectral band from 500 to 570 nm attributed to [UO 2 ] 2+ in phosphates, and another spectral band from 670 to 740 nm is linked with Cr(VI) 3+ defects situated in octahedral Al(VI) 3+ positions. In the hydrous variscite lattice, the Al-O and P-O chemical bonds are mainly covalent; with the degree of covalency of the P-O chemical bond significantly larger than of Al-O. This open structure of variscite, which has a crystal field of reduced strength, involves small shifts of the absorption bands which intensify the blue-green transmission producing the characteristic emerald colour of the dark green variscite of Zamora. These data provide a valuable basis for detection of solarization damage in historic crafts with inlaid variscite in the Museo del Prado (Madrid, Spain)

  16. Molecular dynamics simulations of matrix deposition. III. Site structure analysis for porphycene in argon and xenon.

    Science.gov (United States)

    Kyrychenko, Alexander; Waluk, Jacek

    2005-08-08

    Porphycene (1) and porphyrin (2), two constitutional isomers, reveal completely different electronic spectral patterns in argon and xenon matrices. For the former the spectra recorded in the two solidified gases resemble each other, whereas for the latter they are completely different. This difference can be rationalized by molecular-dynamics simulations of the structure of the microenvironment carried out for the two chromophores embedded in argon and xenon hosts. For 1, the structure of the main substitutional site is the same for Ar and Xe and consists of a hexagonal cavity obtained by removing seven host atoms from the [111] crystallographic plane. An analogous structure is obtained for 2 in xenon. However, in argon the porphyrin chromophore environment is shared between several different sites, with the number of replaced host atoms ranging from seven to ten. These results demonstrate that a relatively minor structural alternation may lead to major changes in the spectral pattern of molecules embedded in rare-gas cryogenic matrices.

  17. Systematic analysis of crystal and molecular structures

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Dohnálek, Jan

    2012-01-01

    Roč. 19, č. 2 (2012), s. 86-87 ISSN 1211-5894. [Struktura 2012. Kolokvium Krystalografické společnosti. 11.06.2012-14.06.2012, Klatovy] R&D Projects: GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : structure databases * structure-function relations * organic and inorganic materials Subject RIV: EE - Microbiology, Virology

  18. Monomeric and dimeric structures, electronic properties and vibrational spectra of azelaic acid by HF and B3LYP methods

    Science.gov (United States)

    Kumar, Amarendra; Narayan, Vijay; Prasad, Onkar; Sinha, Leena

    2012-08-01

    Quantum chemical calculations of energies, dipole moment, polarizability, hyperpolarizability and vibrational wavenumbers of Azelaic acid (AZA) were carried out by using ab initio HF and B3LYP methods with 6-311++G(d,p) basis set. Hydrogen-bonded dimer of AZA, optimized by counterpoise correction, has also been studied by HF and B3LYP at the 6-311++G(d,p) level and the effects of molecular association through Osbnd H⋯O hydrogen bonding have been discussed. A complete vibrational analysis of AZA has been performed and assignments are made on the basis of potential energy distribution. The comparisons and assignments of the vibrational frequencies indicate that the experimental spectra also correspond acceptably with those of theoretically simulated spectra except the hydrogen-bonded coupled infrared vibrations.

  19. Characterising the Structure of Molecular Clouds

    Science.gov (United States)

    Wong, Graeme Francis

    The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12

  20. Exciton spectra and energy band structure of Cu{sub 2}ZnSiSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guc, M., E-mail: gmax@phys.asm.md [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Levcenko, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Dermenji, L. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Gurieva, G. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Schorr, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Syrbu, N.N. [Technical University of Moldova, Chisinau MD-2004, Republic of Moldova (Moldova, Republic of); Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of)

    2014-02-25

    Highlights: • Reflection spectra of Cu{sub 2}ZnSiSe{sub 4} were studied for E ⊥ c and E || c light polarizations. • Four excitonic series are revealed in the reflection spectra at 10 K. • Model of exciton dispersion and the presence of a dead-layer. • Exciton Rydberg energies and free carriers effective masses were calculated. • Reflectivity for E ⊥ c and E || c were analyzed in the region 3–6 eV at 300 K. -- Abstract: Exciton spectra are studied in Cu{sub 2}ZnSiSe{sub 4} single crystals at 10 and 300 K by means of reflection spectroscopy. The exciton parameters, dielectric constant and free carriers effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The structure found in the reflectivity was analyzed and related to the theoretical electronic band structure of close related Cu{sub 2}ZnSiS{sub 4} semiconductor.

  1. Spectra and structure of gallium compounds. Part X. Infrared and Raman spectra, vibrational assignment, and normal coordinate calculations for trimethylaminegallium trichloride

    Science.gov (United States)

    Durig, J. R.; Chatterjee, K. K.

    The far IR (450-480 cm-1) and Raman (3200-3230 cm-1) spectra of (CH3)3 NGaCl3 have been recorded in the solid state and interpreted in detail on the basis of C3 molecular symmetry. A modified valence force field model is used to calculate the frequencies and potential energy distribution of the adduct. The calculated force constants of the adduct are compared with those previously reported for the free Lewis acid and the free Lewis base moieties, and the observed differences ascribed to geometrical changes of the uncomplexed species on adduct formation and explained on the basis of the VSEPR model and non-bond interactions. Extensive coupling is observed between the GaN stretching mode and the NC3 symmetric stretching and the NC3 symmetric deformational modes. Strong coupling interaction is also found between the GaCl3 antisymmetric stretch and the NC3 antisymmetric deformation. The calculated value of 2.50 mdyn Å-1 for the GaN stretching force constant in (CH3)3NGaCl3 is larger than any of those previously determined in complexes such as (CH3)3NGaH3 (2.43 mdyn Å-1), (CH3)3NGa(CH3)3 (1.61 mdyn Å-1), and H3NGa(CH3)3 (1.08 mdyn Å-1). The observed variations in the magnitudes of the stretching force constants of the donor-acceptor dative bond is found to be consistent with the estimated relative stabilities of this series of adducts.

  2. Molecular-orbital studies via satellite-free x-ray fluorescence: Cl K absorption and K--valence-level emission spectra of chlorofluoromethanes

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Cowan, P.L.; Lindle, D.W.; LaVilla, R.E.; Jach, T.; Deslattes, R.D.

    1991-01-01

    X-ray absorption and emission measurements in the vicinity of the chlorine K edge of the three chlorofluoromethanes have been made using monochromatic synchrotron radiation as the source of excitation. By selectively tuning the incident radiation to just above the Cl 1s single-electron ionization threshold for each molecule, less complex x-ray-emission spectra are obtained. This reduction in complexity is attributed to the elimination of multielectron transitions in the Cl K shell, which commonly produce satellite features in x-ray emission. The resulting ''satellite-free'' x-ray-emission spectra exhibit peaks due only to electrons in valence molecular orbitals filling a single Cl 1s vacancy. These simplified emission spectra and the associated x-ray absorption spectra are modeled using straightforward procedures and compared with semiempirical ground-state molecular-orbital calculations. Good agreement is observed between the present experimental and theoretical results for valence-orbital energies and those obtained from ultraviolet photoemission, and between relative radiative yields determined both experimentally and theoretically in this work

  3. Advanced computational method for studying molecular vibrations and spectra for symmetrical systems with many degrees of freedom, and its application to fullerene

    Science.gov (United States)

    Bogush, Igor; Ciobu, Victor; Paladi, Florentin

    2017-10-01

    A computational method for studying molecular vibrations and spectra for symmetrical systems with many degrees of freedom was developed. The algorithm allows overcoming difficulties on the automation of calculus related to the symmetry determination of such oscillations in complex systems with many degrees of freedom. One can find symmetrized displacements and, consequently, obtain and classify normal oscillations and their frequencies. The problem is therefore reduced to the determination of eigenvectors by common numerical methods, and the algorithm simplifies the procedure of symmetry determination for normal oscillations. The proposed method was applied to studying molecular vibrations and spectra of the fullerene molecule C60, and the comparison of theoretical results with experimental data is drawn. The computational method can be further extended to other problems of group theory in physics with applications in clusters and nanostructured materials.

  4. Molecular beams

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1985-01-01

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  5. Study of defect structure with new software for numerical analysis of PAL spectra

    International Nuclear Information System (INIS)

    Kansy, J; Giebel, D

    2011-01-01

    The positron trapping model is implemented into the code of LT 9-2 version of LT software. This allows to search directly for the positron trapping parameters of lifetime spectra relating to samples containing defects of vacancy type. The method of analysis, together with the possibility of simultaneous analysis of many lifetime spectra, enables one to reduce, in comparison with the conventional way of analysis, the number of free parameters used by the fitting procedure. LT 9-2 is employed to analyze artificial spectra simulated according to 2-and 3-state trapping model and the results are discussed with regard to the spectrum statistics and the way in which the calculation process is conducted.

  6. Structural studies on Mycobacterium tuberculosis RecA: Molecular ...

    Indian Academy of Sciences (India)

    Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP ...

  7. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  8. Infrared and Raman scattering spectra of layered structured Ga3InSe4 crystals

    International Nuclear Information System (INIS)

    Isik, M.; Gasanly, N.M.; Korkmaz, F.

    2013-01-01

    The infrared reflectivity and transmittance and Raman scattering in Ga 3 InSe 4 layered crystals were investigated in the frequency ranges of 100–400, 400–4000 and 25–500 cm −1 . The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes

  9. Structures of Life: The Role of Molecular Structures in Scientists' Work

    NARCIS (Netherlands)

    Vyas, Dhaval; Kulyk, Olga Anatoliyivna; van der Vet, P.E.; Nijholt, Antinus; van der Veer, Gerrit C.; Jorge, J

    2008-01-01

    The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions

  10. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  11. Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yajing; Wang Yinghui; Yang Yanqiang, E-mail: yqyang@hit.edu.c [Harbin Institute of Technology, Center for Condensed Matter Science and Technology, Department of Physics (China); Dlott, Dana D., E-mail: dlott@illinois.ed [University of Illinois at Urbana-Champaign, School of Chemical Sciences (United States)

    2010-03-15

    Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed 'structural energetic materials' that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al{sub 2}O{sub 3}, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550-1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.

  12. Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions

    Science.gov (United States)

    Peng, Yajing; Wang, Yinghui; Yang, Yanqiang; Dlott, Dana D.

    2010-03-01

    Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed "structural energetic materials" that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al2O3, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550-1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.

  13. Structure and spectra of photochemically obtained nanosized silver particles in presence of modified porous silica

    OpenAIRE

    Galina Krylova; Anna Eremenko; Natalia Smirnova; Susie Eustis

    2005-01-01

    Mesoporous silica powders and films modified with organic sensitizer benzophenone were used as photocatalysts in the reaction of silver ion reduction by isopropyl alcohol under UV-irradiation with λ= 253.7 nm and 365 nm in presence of colloidal silica as stabilizer. Morphological changes of silver colloids during irradiation were studied using transmission electron microscopy, and correlated to the absorption spectra.

  14. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios

    2017-01-01

    The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...

  15. MOSBY: a molecular structure viewer program with portability and extensibility.

    Science.gov (United States)

    Ueno, Yutaka; Asai, Kiyoshi

    2002-03-01

    A molecular structure viewer program, MOSBY has been developed for studies that use atomic coordinates to understand the structures of protein molecules. The program is designed to be portable with a comprehensive user interface by our high-throughput graphics library. In addition, it cooperates with extension modules customized for individual research topics and analysis. For example, an electron density module loads and displays electron density maps derived in X-ray crystallographic analysis superimposed to an atomic model. A molecular dynamics module reads a trajectory file of the results of molecular dynamics calculations and animates the structure. These plug-in modules are devised to function without modification to the MOSBY program. For variations of analysis and calculations with atomic coordinates, the portability and extensibility illustrated by MOSBY play an important rule in scientific computational tools with active software development.

  16. Molecular structures guide the engineering of chromatin.

    Science.gov (United States)

    Tekel, Stefan J; Haynes, Karmella A

    2017-07-27

    Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity.

    Science.gov (United States)

    Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng

    2011-09-01

    Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.

  18. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  19. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  20. Modified corrections for London forces in solid-state density functional theory calculations of structure and lattice dynamics of molecular crystals.

    Science.gov (United States)

    King, Matthew D; Korter, Timothy M

    2012-06-28

    Dispersion forces are critical for defining the crystal structures and vibrational potentials of molecular crystals. It is, therefore, important to include corrections for these forces in periodic density functional theory (DFT) calculations of lattice vibrational frequencies. In this study, DFT was augmented with a correction term for London-type dispersion forces in the simulations of the structures and terahertz (THz) vibrational spectra of the dispersion-bound solids naphthalene and durene. The parameters of the correction term were modified to best reproduce the experimental crystal structures and THz spectra. It was found that the accurate reproduction of the lattice dimensions by adjusting the magnitude of the applied dispersion forces resulted in the highest-quality fit of the calculated vibrational modes with the observed THz absorptions. The method presented for the modification of the dispersion corrections provides a practical approach to accurately simulating the THz spectra of molecular crystals, accounting for inherent systematic errors imposed by computational and experimental factors.

  1. Structure of the X-ray photoelectron spectra of fluorides and oxides of lanthanides connected with the dynamic effect

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Teterin, A.Yu.; Lebedev, A.M.; Utkin, I.O.; Nikitin, A.S.

    1998-01-01

    Impact of dynamic effect on the fine structure of the X-ray electron spectra of the lanthanide oxides and fluorides is considered. Significant complication of the Ln4p-electrons occurs due to interaction of configurations of the basic single-hole and additional two-hole finite states of the 4p 5 4d 10 4f n ↔ 4p 6 4d 8 4f n+1 type. Impact of the atoms nature of the nearest surrounding of the lanthanides ions on the parameters of such fine structure is evaluated [ru

  2. Structural and vibrational dynamics of molecular solids under variable temperature and pressure

    Science.gov (United States)

    Schatschneider, Bohdan Hindulak

    An ultra-high resolution FTIR study (0.01cm-1) coupled with molecular simulations of para-terphenyl (PTP) under variable temperatures and pressures has been conducted in an effort to better understand the molecular dynamics (MD) of organic molecular crystals. PTP's use as an electrooptic material and as a host matrix for single molecular spectroscopy has created significant interest into the systems dynamics under variable conditions. Our high resolution study reveals many structure and dynamics changes in the PTP matrix as a result of changes in temperature and pressure. Further spectroscopic analysis using MD verifies these structural and dynamics alterations. Accurately modeled pressure and temperature phase transitions between the low-temperature low-pressure triclinic phase and the high-pressure high-temperature monoclinic phase of PTP was accomplished by a one-parameter optimization of the torsion potential component of the polymer consistent force field (PCFF) along with incorporation of COMPASS' (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) non-bond parameters. Initial MD simulations implementing the universal force field COMPASS could not adequately model the experimental crystal structure at 113K, nor could it reproduce the known transition temperature at ambient pressure or yield a well-defined transition pressure at low temperature. Therefore, we needed to create a new potential which was shown to reproduce the solid-solid phase transitions. The previously never simulated pressure induced solid-solid phase transition of PTP at low temperature (20K) and varying pressures (0-1GPa) was modeled. The symmetry based crystal/molecular rearrangement shows a compression and distortion of the unit cell and corresponding angles along with a flattening of the once twisted PTP molecules at high pressures (>0.5GPa). A fourth crystal phase (Phase IV) has been successfully identified through analysis of the individual molecule

  3. Molecular structure of dextran sulphate sodium in aqueous environment

    Science.gov (United States)

    Yu, Miao; Every, Hayley A.; Jiskoot, Wim; Witkamp, Geert-Jan; Buijs, Wim

    2018-03-01

    Here we propose a 3D-molecular structural model for dextran sulphate sodium (DSS) in a neutral aqueous environment based on the results of a molecular modelling study. The DSS structure is dominated by the stereochemistry of the 1,6-linked α-glucose units and the presence of two sulphate groups on each α-glucose unit. The structure of DSS can be best described as a helix with various patterns of di-sulphate substitution on the glucose rings. The presence of a side chain does not alter the 3D-structure of the linear main chain much, but affects the overall spatial dimension of the polymer. The simulated polymers have a diameter similar to or in some cases even larger than model α-hemolysin nano-pores for macromolecule transport in many biological processes, indicating a size-limited translocation through such pores. All results of the molecular modelling study are in line with previously reported experimental data. This study establishes the three-dimensional structure of DSS and summarizes the spatial dimension of the polymer, serving as the basis for a better understanding on the molecular level of DSS-involved electrostatic interaction processes with biological components like proteins and cell pores.

  4. Nanohashtag structures based on carbon nanotubes and molecular linkers

    Science.gov (United States)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  5. Quantum chemical determination of molecular geometries, interpretation of FT-IR, FT-Raman spectra and charge transfer properties for N-(2-cyanoethyl)-N-methylaniline.

    Science.gov (United States)

    Revathi, B; Nataraj, A; Balachandran, V

    2014-04-24

    FT-Raman and FT-IR spectra were recorded for N-(2-cyanoethyl)-N-methylaniline sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and Raman scattering activities were computed using DFT method. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the potential energy distribution (PED) of the normal modes. Molecular parameters such as bond length, and bond angle were calculated with the same method. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π(*) transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of various atoms of title molecule and other thermo-dynamical parameters were calculated using same levels of calculation. The correlation equations between heat capacity, entropy, Gibb's free energies changes with temperatures were fitted by quadratic formula. UV-VIS spectral analyses of title molecule have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) for gas phase in different solvent are also illustrated. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  7. A new tridentate Schiff base Cu(II) complex: synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2013-06-01

    A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The structure-property relationship of chiral 1,1'-binaphthyl-based polyoxometalates: TDDFT studies on the static first hyperpolarizabilities and the ECD spectra.

    Science.gov (United States)

    Wang, Jian-Ping; Yan, Li-Kai; Guan, Wei; Wen, Shi-Zheng; Su, Zhong-Min

    2012-02-01

    In this paper, density functional theory is used to investigate the linear optical and nonlinear optical (NLO) properties of a series of Λ-type chiral compounds composed of two Lindqvist-type polyoxometalates (POMs) linked by 1,1'-binaphthyl derivatives through arylimido. It shows that compound 1 which has two POMs on 6-6'-sites of 1,1'-binaphthyl possesses large static first hyperpolarizability and the strongest two-dimensional NLO response among studied compounds. The organic substituents on 2-2'-sites of 1,1'-binaphthyl twofold control the NLO responses of studied compounds. They act as electron acceptors or donors therefore suppress or enhance the NLO responses of studied compounds, and they restrain the torsion angles between two naphthyl rings at certain degrees which are inversely proportional to the NLO responses. Compound 6 with remarkable NLO response is obtained as ferrocene substitutes on 2-2'-sites of 1,1'-binaphthyl. Additionally, the electronic circular dichroism (ECD) spectra of studied compounds are simulated with CAM-B3LYP and B3LYP hybrid functionals. The results agree well with the experimental ECD spectra. The charge-transfer transitions from organic fragment to POM are responsible for the ECD differences between molecular hybrids and their precursors. It is confirmed that these Λ-type chiral compounds are potentially high-dimensional NLO materials and the structure-property relationship of these compounds is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Effect of principal and secondary ligands on the electronic structures and spectra of a series of ruthenium(II complexes

    Directory of Open Access Journals (Sweden)

    Zhang Yanli

    2016-01-01

    Full Text Available A DFT(density functional theory/TDDFT(time-dependent density functional theory investigation is performed to study the ground-state geometries, electronic structures, and absorption spectra of twelve ruthenium(II thiosemicarbazone complexes [Ru(CO(C(Ln], where Ln=derivatives of dibasic tetradentate Schiff-base ligand and X=AsPh3/PPh3/Py. The ground-state geometries are optimized at the B3LYP/6-31G(d-LANL2DZ level, and the spectra are simulated by means of TD-B3LYP/6-31G(d-LANL2DZ method on the basis of the optimized geometries. The influence of principal and secondary ligands (Ln and X on transition characters and absorption peak positions is evaluated.

  10. Spectra-structure correlations in NIR region: Spectroscopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol.

    Science.gov (United States)

    Beć, Krzysztof B; Grabska, Justyna; Czarnecki, Mirosław A

    2018-05-15

    We investigated near-infrared (7500-4000 cm -1 ) spectra of n-hexanol, cyclohexanol and phenol in CCl 4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin.

    Science.gov (United States)

    Georgieva, I; Trendafilova, N; Dodoff, N; Kovacheva, D

    2017-04-05

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  12. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1969-01-01

    This volume is a consequence of a series of seminars presented by the authors at the Infrared Spectroscopy Institute, Canisius College, Buffalo, New York, over the last nine years. Many participants on an intermediate level lacked a sufficient background in mathematics and quantum mechan­ ics, and it became evident that a non mathematical or nearly nonmathe­ matical approach would be necessary. The lectures were designed to fill this need and proved very successful. As a result of the interest that was developed in this approach, it was decided to write this book. The text is intended for scientists and students with only limited theore­ tical background in spectroscopy, but who are sincerely interested in the interpretation of molecular spectra. The book develops the detailed selection rules for fundamentals, combinations, and overtones for molecules in several point groups. Detailed procedures used in carrying out the normal coordinate treatment for several molecules are also presented. Numerous examples...

  13. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    Science.gov (United States)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  14. Fluid structure and molecular interaction of acetophenone derivatives

    Indian Academy of Sciences (India)

    pp. 1129-1137. Fluid structure and molecular interaction of acetophenone derivatives. K K GUPTA and P J sINGH. Department of Physics, Government MSJ (PG) College, Bharatpur 321 001, India. E-mail: kkguptakkg@indiatimes.com. MS received 4 June 2003; revised 2 January 2004; accepted 2 January 2004. Abstract.

  15. Molecular cloning, sequence analysis and structure prediction of the ...

    African Journals Online (AJOL)

    Molecular cloning, sequence analysis and structure prediction of the related to b 0,+ amino acid transporter (rBAT) in Cyprinus carpio L. ... The amplified product was 2370 bp, including a 42 bp 5'-untranslated region, a 288 bp 3'-untranslated region, and a 2040 bp open reading frame (ORF), which encoded 679 amino acids ...

  16. Molecular conformation and liquid structure of 2-propanol through ...

    Indian Academy of Sciences (India)

    neutron diffraction data [12]. 3. Method of analysis. 3.1 General background. In the following paragraph we present the extraction of total neutron molecular structure .... carbon and oxygen contributions and important information about the hydrogen positions ... the hydroxyl group OD1 is at a staggered position, as expected.

  17. Molecular structure and DFT investigations on new cobalt(II ...

    Indian Academy of Sciences (India)

    Sci. Vol. 127, No. 12, December 2015, pp. 2137–2149. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0976-x. Molecular structure and DFT investigations on new cobalt(II) chloride complex with superbase guanidine type ligand. SAIED M SOLIMANa,b,∗, MORSY A M ABU-YOUSSEFb,∗. , JΦRG ALBERINGc and.

  18. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  19. Molecular tailoring approach for exploring structures, energetics and ...

    Indian Academy of Sciences (India)

    Administrator

    4,5 proposed a density matrix divide-and-conquer (DC) method for electronic structure calculation of large molecules. The method is based on partitioning the density matrix and is applicable to both HF and DFT level of theories. Subsequently, Gadre et al. 6 formulated the. Molecular Tailoring Approach (MTA) for evaluating.

  20. Learning Molecular Structures in a Tangible Augmented Reality Environment

    Science.gov (United States)

    Asai, Kikuo; Takase, Norio

    2011-01-01

    This article presents the characteristics of using a tangible table top environment produced by augmented reality (AR), aimed at improving the environment in which learners observe three-dimensional molecular structures. The authors perform two evaluation experiments. A performance test for a user interface demonstrates that learners with a…

  1. Molecular epidemiology and population structure of bovine Streptococcus uberis

    DEFF Research Database (Denmark)

    Rato, M G; Bexiga, R; Nunes, S F

    2008-01-01

    The molecular epidemiology and population structure of 30 bovine subclinical mastitis field isolates of Streptococcus uberis, collected from 6 Portuguese herds (among 12 farms screened) during 2002 and 2003, were examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isol...

  2. Molecular conformation and liquid structure of 2-propanol through ...

    Indian Academy of Sciences (India)

    The neutron diffraction data analysis of deuterated liquid 2-propanol at room temperature to define its molecular conformation is presented. 2-Propanol being a large molecule with twelve atomic sites, the conformation analysis is tricky and an improved method of data analysis is given. The intermolecular structural ...

  3. Density functional studies of molecular structures of N-methyl ...

    Indian Academy of Sciences (India)

    Density functional theory was applied to the calculation of molecular structures of N-methyl formamide (NMF), N,N-dimethyl formamide (DMF), and N,Ndimethyl acetamide (DMA). DFT calculations on NMF, DMF, and DMA were performed using a combination of the local functional of Vosko, Wilk, and Nusair (VWN) with the ...

  4. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v anthr...

  5. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy

  6. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  7. Exploring antioxidant reactivity and molecular structure of phenols ...

    Indian Academy of Sciences (India)

    MERCEDES BECERRA-HERRERA

    2017-07-11

    Jul 11, 2017 ... Abstract. Phenolic compounds can be considered as the most important bioactive compounds in Mediterranean diet. However, many of the complex connections between phenols antioxidant reactivity and their molecular structure remain unsolved. To shine light on these issues, the antioxidant reactivity of ...

  8. Exploring antioxidant reactivity and molecular structure of phenols ...

    Indian Academy of Sciences (India)

    Phenolic compounds can be considered as themost important bioactive compounds in Mediterranean diet. However, many of the complex connections between phenols antioxidant reactivity and their molecular structure remain unsolved. To shine light on these issues, the antioxidant reactivity of 15 relevant phenolic ...

  9. Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV–vis and EXAFS study

    NARCIS (Netherlands)

    Keller, D.E.; Visser, T.; Soulimani, F.; Koningsberger, D.C.; Weckhuysen, B.M.

    2007-01-01

    The effect of hydration on the molecular structure of silica-supported vanadium oxide catalysts with loadings of 1–16 wt.% V has been systematically investigated by infrared, Raman, UV–vis and EXAFS spectroscopy. IR and Raman spectra recorded during hydration revealed the formation of V–OH groups,

  10. IR spectra and structure of glasses in the BaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Miroshnichenko, O.Ya.; Mombelli, V.V.

    1979-01-01

    Studied are IR absorption spectra and determined are the main structural characteristics of tungstophosphate glasses of the BaO-WO 3 -P 2 O 5 system in all the area of glass formation. It is shown that the main structural components of their anion network are phosphate chains consisting of PO 4 tetrahedrons and tungstate chains consisting of WO 4 tetrahedrons and of WO 6 octahedrons. These chains are connected by P-O-W bridges into three-dimentional tungstophosphate network, where the ratio of phosphate and tungstate structural units and their polymerization degree change without limits depending on the glass composition. Analysis of concentration frequency dependence and spectral band intensity permit to clarify the effect of each component on the glass structure in all the area of glass formation of the triple system

  11. Cambridge Structural Database as a tool for studies of general structural features of organic molecular crystals

    International Nuclear Information System (INIS)

    Kuleshova, Lyudmila N; Antipin, Mikhail Yu

    1999-01-01

    The review surveys and generalises data on the use of the Cambridge Structural Database (CSD) for studying and revealing general structural features of organic molecular crystals. It is demonstrated that software and facilities of the CSD allow one to test the applicability of a number of known concepts of organic crystal chemistry (the principle of close packing, the frequency of occurrence of space groups, the preferred formation of centrosymmetrical molecular crystals, etc.) on the basis of abundant statistical data. Examples of the use of the Cambridge Structural Database in engineering of molecular crystals and in the systematic search for compounds with specified properties are given. The bibliography includes 122 references.

  12. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    Science.gov (United States)

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Physiochemical Characteristics and Molecular Structures for Digestible Carbohydrates of Silages.

    Science.gov (United States)

    Refat, Basim; Prates, Luciana L; Khan, Nazir A; Lei, Yaogeng; Christensen, David A; McKinnon, John J; Yu, Peiqiang

    2017-10-18

    The main objectives of this study were (1) to assess the magnitude of differences among new barley silage varieties (BS) selected for varying rates of in vitro neutral detergent fiber (NDF) digestibility (ivNDFD; Cowboy BS with higher ivNDFD, Copeland BS with intermediate ivNDFD, and Xena BS with lower ivNDFD) with regard to their carbohydrate (CHO) molecular makeup, CHO chemical fractions, and rumen degradability in dairy cows in comparison with a new corn silage hybrid (Pioneer 7213R) and (2) to quantify the strength and pattern of association between the molecular structures and digestibility of carbohydrates. The carbohydrate-related molecular structure spectral data was measured using advanced vibrational molecular spectroscopy (FT/IR). In comparison to BS, corn silage showed a significantly (P carbohydrates were significantly (P carbohydrate content of the silages. In conclusion, the univariate approach with only one-factor consideration (ivNDFD) might not be a satisfactory method for evaluating and ranking BS quality. FT/IR molecular spectroscopy can be used to evaluate silage quality rapidly, particularly the digestible fiber content.

  14. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  15. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    Science.gov (United States)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  16. New Diethyl Ammonium Salt of Thiobarbituric Acid Derivative: Synthesis, Molecular Structure Investigations and Docking Studies

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2015-11-01

    Full Text Available The synthesis of the new diethyl ammonium salt of diethylammonium(E-5-(1,5-bis(4-fluorophenyl-3-oxopent-4-en-1-yl-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity value of 0.229.

  17. Theoretical study of molecular structures, vibrational and NMR spectra on azobenzene derivatives

    Science.gov (United States)

    Karakaya, M.; Ucun, F.

    2014-02-01

    In this study, we have calculated the most stable tautomeric forms and their ground state conformers of 2,4-dihydroxyazobenzene and 2,4-dihydroxy-6-methyl-4'-nitroazobenzene molecules. Calculations show that the most preferential tautomeric forms of these molecules are azo form for 2,4-dihydroxyazobenzene and hydrazo form for 2,4-dihydroxy-6-methyl-4'-nitroazobenzene. Vibrational frequencies, 1H and 13C NMR shifts of ground state conformers of stable tautomeric forms of the molecules have been calculated by using density functional theory-B3LYP method with 6-311G(d,p) basis set. All assignments of theoretical frequencies have been performed by potential energy distribution analysis. Calculated spectral results are in a good agreement with the corresponding experimental data.

  18. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  19. Design of Carborane Molecular Architectures via Electronic Structure Computations

    International Nuclear Information System (INIS)

    Oliva, J.M.; Serrano-Andres, L.; Klein, D.J.; Schleyer, P.V.R.; Mich, J.

    2009-01-01

    Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of poly carborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photo energy processes.

  20. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    Science.gov (United States)

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  1. Madelung's potentials structure of X-ray emission spectra, and reactivity of alkali metal metavanadates

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, V.V.; Fotiev, A.A.; Tskhaj, V.A.; Cherkashenko, V.M. (AN SSSR, Sverdlovsk. Inst. Khimii)

    1983-07-01

    Madelung constants of ionic sublattices, describing the dependence of Madelung potentials on ionic charges in crystallographically non-equivalent V, O and M positions, were calculated for metavanadates MVO/sub 3/ (M=Li, Na, K, Rb, Cs). Semiempirical interpretation of the fine structure and shifts of intensity maximums of X-ray VKsub(..beta..''..beta..sup(5))- and VLsub(..cap alpha..)-emission spectra and X-ray spectral assessment of the degree of chemical bond ionicity in metavanadate oxy-vanadium sublattice are given. The reactivity of these compounds during their interaction with vanadium pentoxide and the activity of different ions in this process were considered.

  2. X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound

    Science.gov (United States)

    Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.

    2017-09-01

    The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.

  3. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    of photoemission spectra from W single crystals. The nondirect as well as the direct models for bulk photoemission processes are investigated. The emission from the three low-index surfaces (100), (110), and (111) exhibits strong dependence on direction and acceptance cone. According to the present band model...... there should essentially be no emission normal to the (110) face for photon energies between 9.4 and 10.6 eV. Experimental observation of emission in this gap, however, implies effects not included in the simple bulk models. In particular, effects arising from surface emission have been considered, i.......e., emission of those electrons which are excited in a single-step process from initial states near the surface to final states outside the crystal. The electrons that are emitted from the surface in directions perpendicular to the crystal planes carry information on the one-dimensional surface density...

  4. Fine structure of spectra of a bound exciton in tetragonal zinc diphosphide

    International Nuclear Information System (INIS)

    Syrbu, N.N.; Morozova, V.I.; Stratan, G.I.

    1989-01-01

    Investigation into the low-temperature luminescence spectra recorded in different crystal geometry relative to the direction of incident radiation wave vector, has demonstrated the existence of saddle-shaped valent zone ceiling near k=0 in zinc tetragonal diphosphide monocrystals. Binding energies of free (2.2085 eV) and bound (A(2.1943eV)B(2.1765eV), C(2.1447eV)) excitons as well as the phonon energy value are determined by investigations into absorption spectrum and radiative recombination. Phonon-free lines of bound A 0 and C 0 excitons are splitted into 2.2 and 0.3 MeV respectively. The band exciton singlet-triplet state splittings in a magnetic field and their field dependences are obtained. The spectroscopic splitting factor g=1.9 is determined

  5. Correlation of vapor phase infrared spectra and regioisomeric structure in synthetic cannabinoids

    Science.gov (United States)

    Smith, Lewis W.; Thaxton-Weissenfluh, Amber; Abiedalla, Younis; DeRuiter, Jack; Smith, Forrest; Clark, C. Randall

    2018-05-01

    The twelve 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(1- and 2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C24H23NO) yielding identical nominal and accurate masses. These twelve isomers cover all possible positions of carbonyl bridge substitution for both indole (positons 2-7) and naphthalene rings (positions 1 and 2). Regioisomeric compounds can represent significant challenges for mass based analytical methods however, infrared spectroscopy is a powerful tool for the identification of positional isomers in organic compounds. The vapor phase infrared spectra of these twelve uniquely similar compounds were evaluated in GC-IR experiments. These spectra show the bridge position on the indole ring is a dominating influence over the carbonyl absorption frequency observed for these compounds. Substitution on the pyrrole moiety of the indole ring yields the lowest Cdbnd O frequency values for position 2 and 3 giving a narrow range from 1656 to 1654 cm-1. Carbonyl absorption frequencies are higher when the naphthoyl group is attached to the benzene portion of the indole ring yielding absorption values from 1674 to 1671 cm-1. The aliphatic stretching bands in the 2900 cm-1 region yield a consistent triplet pattern because the N-alkyl substituent tail group remains unchanged for all twelve regioisomers. The asymmetric CH2 stretch is the most intense of these three bands. Changes in positional bonding for both the indole and naphthalene ring systems results in unique patterns within the 700 wavenumber out-of-plane region and these absorption bands are different for all 12 regioisomers.

  6. Correlation of vapor phase infrared spectra and regioisomeric structure in synthetic cannabinoids.

    Science.gov (United States)

    Smith, Lewis W; Thaxton-Weissenfluh, Amber; Abiedalla, Younis; DeRuiter, Jack; Smith, Forrest; Clark, C Randall

    2018-05-05

    The twelve 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(1- and 2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C 24 H 23 NO) yielding identical nominal and accurate masses. These twelve isomers cover all possible positions of carbonyl bridge substitution for both indole (positons 2-7) and naphthalene rings (positions 1 and 2). Regioisomeric compounds can represent significant challenges for mass based analytical methods however, infrared spectroscopy is a powerful tool for the identification of positional isomers in organic compounds. The vapor phase infrared spectra of these twelve uniquely similar compounds were evaluated in GC-IR experiments. These spectra show the bridge position on the indole ring is a dominating influence over the carbonyl absorption frequency observed for these compounds. Substitution on the pyrrole moiety of the indole ring yields the lowest CO frequency values for position 2 and 3 giving a narrow range from 1656 to 1654cm -1 . Carbonyl absorption frequencies are higher when the naphthoyl group is attached to the benzene portion of the indole ring yielding absorption values from 1674 to 1671cm -1 . The aliphatic stretching bands in the 2900cm -1 region yield a consistent triplet pattern because the N-alkyl substituent tail group remains unchanged for all twelve regioisomers. The asymmetric CH 2 stretch is the most intense of these three bands. Changes in positional bonding for both the indole and naphthalene ring systems results in unique patterns within the 700 wavenumber out-of-plane region and these absorption bands are different for all 12 regioisomers. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Rotational spectra of the Xe-(H2O)2 van der Waals trimer: xenon as a probe of electronic structure and dynamics.

    Science.gov (United States)

    Wen, Qing; Jäger, Wolfgang

    2007-03-22

    Rotational spectra of three isotopomers of the Xe-(H2O)2 van der Waals trimer were recorded using a pulsed-nozzle, Fourier transform microwave spectrometer. Nine [nine, four] a-type and twelve [eleven, seven] b-type transitions were measured for the 132Xe-(H2O)2 [129Xe-(H2O)2, 131Xe-(H2O)2] isotopomer. The determined rotational and centrifugal distortion constants were used to extract information about the structure and vibrational motions of the complex. The nuclear quadrupole hyperfine structures due to the 131Xe (nuclear spin quantum number I=3/2) nucleus were also detected. The large value of the off-diagonal nuclear quadrupole coupling constant chiab in particular provides detailed insight into the electronic environment of the xenon atom and the orientations of the water molecules within the complex. An effective structure that best reproduces the experimental 131Xe nuclear quadrupole coupling constants is rationalized by ab initio calculations. An overall goal of this line of work is to determine how the successive solvation of a xenon atom with water molecules affects the xenon electron distribution and its intermolecular interactions. The results may provide molecular level interpretations of 129Xe NMR data from, for example, imaging experiments.

  8. Molecular structure and interactions of nucleic acid components in nanoparticles: ab initio calculations

    International Nuclear Information System (INIS)

    Rubin, Yu.V.; Belous, L.F.

    2012-01-01

    Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.

  9. Structural and Molecular Modeling Features of P2X Receptors

    Directory of Open Access Journals (Sweden)

    Luiz Anastacio Alves

    2014-03-01

    Full Text Available Currently, adenosine 5'-triphosphate (ATP is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.

  10. The past and the future of Alzheimer’s disease CSF biomarkers – a journey towards validated biochemical tests covering the whole spectra of molecular events

    Directory of Open Access Journals (Sweden)

    Kaj eBlennow

    2015-09-01

    Full Text Available This paper gives a short review on cerebrospinal fluid (CSF biomarkers for Alzheimer’s disease (AD, from early developments to high-precision validated assays on fully automated lab analyzers. We also discuss developments on novel biomarkers, such as synaptic proteins and Aβ oligomers. Our vision for the future is that assaying a set of biomarkers in a single CSF tube can monitor the whole spectra of AD molecular pathogenic events. CSF biomarkers will have a central position not only for clinical diagnosis, but also for the understanding of the sequence of molecular events in the pathogenic process underlying AD and as tools to monitor the effects of novel drug candidates targeting these different mechanisms.

  11. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    Science.gov (United States)

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  12. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v...... anthralin, the description of the vibrational structure of the compound is thus complicated by the circumstance that moment directions for transitions polarized perpendicular to the C2 axis (z) are not uniquely determined by symmetry, but can take any direction in the xy plane. The molecular vibrations...... of DHBP were investigated by IR polarization spectroscopy on samples aligned in stretched polyethylene. The observed Linear Dichroic (LD) absorbance curves, corresponding to absorbance measured with the electric vector of the sample beam parallel (U) and perpendicular (V) to the stretching direction, were...

  13. Hydrophobic radical influence on structure and vibration spectra of zwitter-ionic forms of glycine and alanine in condensed state

    International Nuclear Information System (INIS)

    Ten, G.N.; Kadrov, D.M.; Baranov, V.I.

    2014-01-01

    Structure and vibrational spectra of the zwitter-ionic forms of glycine and alanine in water solution and solid state have been calculated in the B3LYP/6-311++G(d,p) approximation. The environment influence has been taken into account by two methods: the self-consistent reaction field (SCRF) method and one of modeling the glycine and alanine complexes with molecules of water. The structure, energy and spectral properties have been determined which allow establishing an influence of the hydrophobic radical on the glycine and alanine ability to form the hydrogen bonds. It is shown by comparison with experiment that for the calculation of vibrational (IR and Raman) spectra of the zwitter-ionic forms of glycine and alanine in the condensed states they must be surrounded with three molecules of water, one of which is located between the N + H 3 and COO - ionic groups. The value of energy necessary to form the Ala complexes with water compared to Gly ones is 56.47 and 12.55 kcal/mol higher in the case of the complex formation with 1and 3 molecules of water, respectively, located between bipolar groups. (authors)

  14. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins.

    Science.gov (United States)

    Couvineau, Alain; Laburthe, Marc

    2012-05-01

    The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  15. Exponential Repulsion Improves Structural Predictability of Molecular Docking

    Czech Academy of Sciences Publication Activity Database

    Bazgier, Václav; Berka, K.; Otyepka, M.; Banáš, P.

    2016-01-01

    Roč. 37, č. 28 (2016), s. 2485-2494 ISSN 0192-8651 Institutional support: RVO:61389030 Keywords : cyclin-dependent kinases * structure-based design * scoring functions * cdk2 inhibitors * force-field * ligand interactions * drug discovery * purine * potent * protein-kinase-2 * molecular docking * dock 6.6 * drug design * cyclin-dependent kinase 2 * directory of decoys Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.229, year: 2016

  16. Invariant molecular-dynamics approach to structural phase transitions

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.

    1991-01-01

    Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics

  17. Theoretical study on the molecular and crystal structures of nitrogen ...

    Indian Academy of Sciences (India)

    The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which ...

  18. Comparison of molecular structure of alkali metal o-, m- and p-nitrobenzoates

    Science.gov (United States)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2008-09-01

    The influence of nitro-substituent in ortho, meta and para positions as well as lithium, sodium, potassium, rubidium and cesium on the electronic system of aromatic ring and the distribution of electronic charge in carboxylic group of the nitrobenzoates were estimated. Optimized geometrical structures were calculated (B3LYP/6-311++G ∗∗). To make quantitative evaluation of aromaticity of studied molecules the geometric (A J, BAC, I 6 and HOMA) as well as magnetic (NICS) aromaticity indices were calculated. Electronic charge distribution was also examined by molecular spectroscopic study, which may be the source of quality criterion for aromaticity. Experimental and theoretical FT-IR, FT-Raman and NMR ( 1H and 13C) spectra of the title compounds were analyzed. The calculated parameters were compared to experimental characteristics of these molecules.

  19. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Science.gov (United States)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  20. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  1. Structure-Acidity-IR Spectra Correlations for p-Substituted N-Phenylsulfonylbenzamidesâ€

    Directory of Open Access Journals (Sweden)

    Zora Sustekova

    2004-03-01

    Full Text Available The wavenumbers of the IR absorption bands of the C=O, S=O and N-H stretching vibrations for a series of p-substituted N-phenylsulfonylbenzamides were measured in trichloromethane. The bond orders, Mulliken charges, charge densities and heats of formation were calculated using the PM3 method. Fifty significant mutual mono parameter (MP and six dual parameter (DP correlations were found for the IR spectral, theoretical structural data, substituent constants and previously reported dissociation constants in five polar organic solvents. The transmission of the substituent effects has been discussed and the solvent effect on the slopes of some linear correlations was evaluated using different solvent parameters. The results showed that the factors describing the electronic structure and controlling the dissociation equilibrium and the IR spectra properties of p-substituted N-phenylsulfonylbenzamides must be the same

  2. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  3. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-03-22

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  4. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    International Nuclear Information System (INIS)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-01-01

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  5. Using photoelectron diffraction to determine complex molecular adsorption structures

    International Nuclear Information System (INIS)

    Woodruff, D P

    2010-01-01

    Backscattering photoelectron diffraction, particularly in the energy-scan mode, is now an established technique for determining in a quantitative fashion the local structure of adsorbates on surfaces, and has been used successfully for ∼100 adsorbate phases. The elemental and chemical-state specificity afforded by the characteristic core level photoelectron binding energies means that it has particular advantages for molecular adsorbates, as the local geometry of inequivalent atoms in the molecule can be determined in a largely independent fashion. On the other hand, polyatomic molecules present a general problem for all methods of surface structure determination in that a mismatch of intramolecular distances with interatomic distances on the substrate surface means that the atoms in the adsorbed molecule are generally in low-symmetry sites. The quantities measured experimentally then represent an incoherent sum of the properties of each structural domain that is inequivalent with respect to the substrate point group symmetry. This typically leads to greater ambiguity or precision in the structural solutions. The basic principles of the method are described and illustrated with a simple example involving molecule/substrate bonding through only one constituent atom (TiO 2 -(110)/H 2 O). This example demonstrates the importance of obtaining quantitative local structural information. Further examples illustrate both the successes and the problems of this approach when applied to somewhat more complex molecular adsorbates.

  6. Structural modeling and molecular dynamics simulation of the actin filament.

    Science.gov (United States)

    Splettstoesser, Thomas; Holmes, Kenneth C; Noé, Frank; Smith, Jeremy C

    2011-07-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. Copyright © 2011 Wiley-Liss, Inc.

  7. Multivariate Analysis of Two-Dimensional 1H, 13C Methyl NMR Spectra of Monoclonal Antibody Therapeutics To Facilitate Assessment of Higher Order Structure.

    Science.gov (United States)

    Arbogast, Luke W; Delaglio, Frank; Schiel, John E; Marino, John P

    2017-11-07

    Two-dimensional (2D) 1 H- 13 C methyl NMR provides a powerful tool to probe the higher order structure (HOS) of monoclonal antibodies (mAbs), since spectra can readily be acquired on intact mAbs at natural isotopic abundance, and small changes in chemical environment and structure give rise to observable changes in corresponding spectra, which can be interpreted at atomic resolution. This makes it possible to apply 2D NMR spectral fingerprinting approaches directly to drug products in order to systematically characterize structure and excipient effects. Systematic collections of NMR spectra are often analyzed in terms of the changes in specifically identified peak positions, as well as changes in peak height and line widths. A complementary approach is to apply principal component analysis (PCA) directly to the matrix of spectral data, correlating spectra according to similarities and differences in their overall shapes, rather than according to parameters of individually identified peaks. This is particularly well-suited for spectra of mAbs, where some of the individual peaks might not be well resolved. Here we demonstrate the performance of the PCA method for discriminating structural variation among systematic sets of 2D NMR fingerprint spectra using the NISTmAb and illustrate how spectral variability identified by PCA may be correlated to structure.

  8. DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells

    Science.gov (United States)

    Rezvani, M.; Darvish Ganji, M.; Jameh-Bozorghi, S.; Niazi, A.

    2018-04-01

    In the present work density functional theory (DFT) and time-dependent semiempirical ZNIDO/S (TD-ZNIDO/S) methods have been used to investigate the ground state geometries, electronic structures and excited state properties of triad systems. The influences of the type of metal in the porphyrin ring, change in bridge position and porphyrine-ZnP duplicate on the energies of frontier molecular orbital and UV-Vis spectra has been studied. Geometry optimization, the energy levels and electron density of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), chemical hardness (η), electrophilicity index (ω), electron accepting power (ω+) were calculated using ZINDO/S method to predict which molecule is the most efficient with a great capability to be used as a triad molecule in solar industry. Moreover the light harvesting efficiency (LHE) was calculated by means of the oscillator strengths which are obtained by TD-ZINDO/S calculation. Theoretical studies of the electronic spectra by ZINDO/S method were helpful in interpreting the observed electronic transitions. This aspect was systematically explored in a series of C60-Porphyrine-Metalloporphyrine (C60-P-Mp) triad system with M being Fe, Co, Ni, Ti, and Zn. Generally, transition metal coordination compounds are used as effective sensitizers, due to their intense charge-transfer absorption over the whole visible range and highly efficient metal-to-ligand charge transfer. We aim to optimize the performance of the title solar cells by altering the frontier orbital energy gaps. The results reveal that cell efficiency can be enhanced by metal functionalization of the free base porphyrin. Ti-porphyrin was found to be the most efficient dye sensitizer for dye sensitized solar cells (DSSCs) based on C60-P-Mptriad system due to C60-Por-TiP complex has lower chemical hardness, gap energy and chemical potential as well as higher electron accepting power among other complexes. In

  9. Influence of hurricane wind field in the structure of directional wave spectra.

    Science.gov (United States)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  10. Properties of Cerium Hydroxides from Matrix Infrared Spectra and Electronic Structure Calculations.

    Science.gov (United States)

    Fang, Zongtang; Thanthiriwatte, K Sahan; Dixon, David A; Andrews, Lester; Wang, Xuefeng

    2016-02-15

    Reactions of laser ablated cerium atoms with hydrogen peroxide or hydrogen and oxygen mixtures diluted in argon and condensed at 4 K produced the Ce(OH)3 and Ce(OH)2 molecules and Ce(OH)2(+) cation as major products. Additional minor products were identified as the Ce(OH)4, HCeO, and OCeOH molecules. These new species were identified from their matrix infrared spectra with D2O2, D2, and (18)O2 isotopic substitution and correlating observed frequencies with values calculated by density functional theory. We find that the amounts of Ce(OH)3 and of the Ce(OH)2(+) cation increase on UV (λ > 220 nm) photolysis, while Ce(OH)2, Ce(OH)4, and HCeO are photosensitive. The observed major species for Ce are in the +III or +II oxidation state, and the minor product, Ce(OH)4, is in the +IV oxidation state. The calculations for the vibrational frequencies with the B3LYP functional agree well with the experiment. The NBO analysis shows significant backbonding to the metal 4f and 5d orbitals for the closed shell species. Most open shell species have the excess spin in the 4f with paired spin in the 5d due to backbonding. The heats of formation of the observed species were derived from the available data from experiment and the calculated reaction energies. The major products in this study are different from similar reactions for Th where the tetrahydroxide was the major species.

  11. Molecular structure of humin and melanoidin via solid state NMR.

    Science.gov (United States)

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-05-19

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry, and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective (13)C substitution, (1)H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose, and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogeneous network-type polymer in which sugar molecules cross-link the heterocycles. © 2011 American Chemical Society

  12. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    Science.gov (United States)

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.

  13. Demystifying fluorine chemical shifts: Electronic structure calculations address origins of seemingly anomalous 19F-NMR spectra of fluorohistidine isomers and analogues

    Science.gov (United States)

    Kasireddy, Chandana; Bann, James G.

    2015-01-01

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of 19F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in 19F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of 19F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  14. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    International Nuclear Information System (INIS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-01-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5 ′ -monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5 ′ -monophosphate, and adenosine 5 ′ -triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety

  15. Microwave Spectra of the Deuterium Isotopologues of cis-Hexatriene and a Semiexperimental Equilibrium Structure

    Science.gov (United States)

    Craig, Norman C.; Chen, Yihui; Fuson, Hannah A.; Tian, Hengfeng; van Besien, Herman; Conrad, Andrew R.; Tubergen, Michael J.; Rudolph, Heinz Dieter; Demaison, Jean

    2013-10-01

    Microwave transitions and ground state rotational constants are reported for five newly synthesized deuterium isotopologues of cis-1,3,5-hexatriene (cHTE). These rotational constants along with those of the parent and the three 13C species are used with vibration-rotation constants calculated from an MP2/cc-pVTZ model to derive an equilibrium structure. That structure is improved by the mixed estimation method. In this method, internal coordinates from good-quality quantum chemical calculations (with appropriate uncertainties) are fit simultaneously with moments of inertia of the full set of isotopologues. The new structure of cHTE is confirmed to be planar and is stabilized by an interaction between the hydrogen atoms H2 and H5, which form a bond and participate in a six-membered ring. cHTE shows larger structural effects of π-electron delocalization than does butadiene with the effects being magnified in the center of the molecule. Thus, strong structural evidence now exists for an increase in π-electron delocalization as the polyene chain lengthens.

  16. Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka

    2017-08-01

    In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.

  17. Ultrafast electron diffraction: oriented molecular structures in space and time.

    Science.gov (United States)

    Baskin, J Spencer; Zewail, Ahmed H

    2005-11-11

    The technique of ultrafast electron diffraction allows direct measurement of changes which occur in the molecular structures of isolated molecules upon excitation by femtosecond laser pulses. The vectorial nature of the molecule-radiation interaction also ensures that the orientation of the transient populations created by the laser excitation is not isotropic. Here, we examine the influence on electron diffraction measurements--on the femtosecond and picosecond timescales--of this induced initial anisotropy and subsequent inertial (collision-free) molecular reorientation, accounting for the geometry and dynamics of a laser-induced reaction (dissociation). The orientations of both the residual ground-state population and the excited- or product-state populations evolve in time, with different characteristic rotational dephasing and recurrence times due to differing moments of inertia. This purely orientational evolution imposes a corresponding evolution on the electron scattering pattern, which we show may be similar to evolution due to intrinsic structural changes in the molecule, and thus potentially subject to misinterpretation. The contribution of each internuclear separation is shown to depend on its orientation in the molecular frame relative to the transition dipole for the photoexcitation; thus not only bond lengths, but also bond angles leave a characteristic imprint on the diffraction. Of particular note is the fact that the influence of anisotropy persists at all times, producing distinct differences between the asymptotic "static" diffraction image and the predictions of isotropic diffraction theory.

  18. Molecular tailoring approach for exploring structures, energetics and ...

    Indian Academy of Sciences (India)

    Keywords. Molecular clusters; linear scaling methods; molecular tailoring approach (MTA); Hartree-Fock (HF) method; density functional theory (DFT); Møller-Plesset second order (MP2) method; molecular electron density (MED); molecular electrostatic potential.

  19. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    Science.gov (United States)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  20. Nanometer patterning of water by tetraanionic ferrocyanide stabilized in aqueous nanodrops† †Electronic supplementary information (ESI) available: Complete citation for ref. 6, 43, 52 and 54, expanded region of nESI spectra in Fig. 1, comparison of individual radial distribution functions and atomic coordinates for the lowest energy Fe(CN)6 4–(H2O)160 structure along the molecular dynamics trajectory illustrated in Fig. 7. See DOI: 10.1039/c6sc03722d Click here for additional data file.

    Science.gov (United States)

    DiTucci, Matthew J.

    2017-01-01

    Formation of the small, highly charged tetraanion ferrocyanide, Fe(CN)6 4–, stabilized in aqueous nanodrops is reported. Ion–water interactions inside these nanodrops are probed using blackbody infrared radiative dissociation, infrared photodissociation (IRPD) spectroscopy, and molecular modeling in order to determine how water molecules stabilize this highly charged anion and the extent to which the tetraanion patterns the hydrogen-bonding network of water at long distance. Fe(CN)6 4–(H2O)38 is the smallest cluster formed directly by nanoelectrospray ionization. Ejection of an electron from this ion to form Fe(CN)6 3–(H2O)38 occurs with low-energy activation, but loss of a water molecule is favored at higher energy indicating that water molecule loss is entropically favored over loss of an electron. The second solvation shell is almost complete at this cluster size indicating that nearly two solvent shells are required to stabilize this highly charged anion. The extent of solvation necessary to stabilize these clusters with respect to electron loss is substantially lower through ion pairing with either H+ or K+ (n = 17 and 18, respectively). IRPD spectra of Fe(CN)6 4–(H2O)n show the emergence of a free O–H water molecule stretch between n = 142 and 162 indicating that this ion patterns the structure of water molecules within these nanodrops to a distance of at least ∼1.05 nm from the ion. These results provide new insights into how water stabilizes highly charged ions and demonstrate that highly charged anions can have a significant effect on the hydrogen-bonding network of water molecules well beyond the second and even third solvation shells. PMID:28451280

  1. Rich structure in the correlation matrix spectra in non-equilibrium steady states.

    Science.gov (United States)

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H

    2017-01-17

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  2. Modeling the structure and vibrational spectra for oxouranium dichloride monomer and dimer

    Science.gov (United States)

    Umreiko, D. S.; Shundalau, M. B.; Trubina, O. V.

    2010-11-01

    Structural models are designed and spectral characteristics are computed for the monomer and dimer of the oxouranium dichloride (UOCl2) molecule based on ab initio calculations. The calculations were carried out in the LANL2DZ effective core potential approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). A close-to-planar Y-shaped equilibrium configuration with Cs symmetry is obtained for the UOCl2 monomer. The formation of the dimer is accompanied by both significant changes in the structure of the monomeric fragments and the actual loss of their identities. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and qualitative agreement between calculation and experiment are demonstrated.

  3. Relation of high harmonic spectra to electronic structure in N2

    International Nuclear Information System (INIS)

    Farrell, J.P.; McFarland, B.K.; Guehr, M.; Bucksbaum, P.H.

    2009-01-01

    High harmonics of N 2 exhibit a number of features that are related to the electronic structure and sub-femtosecond dynamics of the molecule. Through measurements and simulations, we show how the harmonic spectral shape, spectral phase, alignment angle dependence, and intensity dependence can be related to the strong-field ionization and recombination dynamics of the HOMO and HOMO-1 electron orbitals. A field-free static model of the molecule is insufficient to explain the observations.

  4. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  5. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra.

    Science.gov (United States)

    Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S

    2018-04-06

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

  6. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward; Thorsen, Tyler J.; Fu, Qiang

    2017-07-28

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.

  7. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I observe

  8. Close-packed (polytypic) structures in molecular-dynamics simulations

    International Nuclear Information System (INIS)

    Moody, M.; Ray, J.R.; Rahman, A.

    1987-01-01

    Molecular-dynamics (MD) computer-simulation studies are used to study close-packed structures found in solid-phase atomic systems interacting via a Morse potential (parametrized to model Ni). A graphical display of particle positions [a (112-bar0) projection] within the parallelepiped forming the MD cell is illustrated. Such a graphic projection allows accurate, complete, and readily visual recognition of the stacking order of close-packed planes and is a much more effective way of identifying polytypes than a study of the pair-distribution function for the structure. These illustrations demonstrate the polytypic nature of previously and newly recognized MD close-packed structures. When assuming compatibility with periodic boundary conditions, as is conventional in MD, only certain polytypes are allowed for an MD simulation system. A discussion of compatibility between close-packed structures and the periodic boundary conditions is presented. The pair coordination numbers, geometrical structure-factor intensities, and potential-energy lattice sums are then calculated for some of these compatible structures. This paper concludes that, through careful consideration, a considerable variety of close-packed physical systems may be appropriately modeled with use of MD computer simulation. Conversely, proper interpretation of the data obtained during such studies may require awareness of the findings presented here

  9. EXANA, a program for analysing EXtended energy loss fine structures, EXELFS spectra

    International Nuclear Information System (INIS)

    Tafreshi, M.A.; Bohm, C.; Csillag, S.

    1992-09-01

    This paper is a users guide and reference manual for the EXANA, an IBM or IBM compatible PC-based program used for analysing extended fine structures occurring on the high energy side of the ionisation edges. The RDF (Radial Distance Function) obtained from this analysis contains information about the number, distance, and type of the nearby atoms, as well as the inelastic mean free path and disorder in distances from the centre atom to the atoms in a atomic shell around it. The program can be made available on request. (au)

  10. Contributions to Advances in Blend Pellet Products (BPP) Research on Molecular Structure and Molecular Nutrition Interaction by Advanced Synchrotron and Globar Molecular (Micro)Spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, VÍctor H; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  11. Microwave spectra and structure of the cyclopropanecarboxylic acid-formic acid dimer

    Energy Technology Data Exchange (ETDEWEB)

    Pejlovas, Aaron M.; Kukolich, Stephen G. [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Lin, Wei [Department of Chemistry, University of Texas Rio Grande Valley, Brownsville, Texas 78520 (United States)

    2015-09-28

    The rotational spectrum of the cyclopropanecarboxylic acid–formic acid doubly hydrogen bonded dimer has been measured in the 4-11 GHz region using a Flygare-Balle type pulsed-beam Fourier transform microwave spectrometer. Rotational transitions were measured for the parent, four unique singly substituted {sup 13}C isotopologues, and a singly deuterated isotopologue. Splittings due to a possible concerted double proton tunneling motion were not observed. Rotational constants (A, B, and C) and centrifugal distortion constants (D{sub J} and D{sub JK}) were determined from the measured transitions for the dimer. The values of the rotational (in MHz) and centrifugal distortion constants (in kHz) for the parent isotopologue are A = 4045.4193(16), B = 740.583 80(14), C = 658.567 60(23), D{sub J} = 0.0499(16), and D{sub JK} = 0.108(14). A partial gas phase structure of the dimer was derived from the rotational constants of the measured isotopologues, previous structural work on each monomer units and results of the calculations.

  12. Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains

    Science.gov (United States)

    Papoular, Robert J.; Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.; Papoular, Renaud

    2013-07-01

    The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the ultraviolet extinction of nanoparticles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 Å features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 μm-1, while its peak position shifts from 4.65 to 4.75 μm-1. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 μm-1). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial sp2 bondings into sp3 or sp1, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals, etc. The present treatment thus bridges gaps between physically different model materials.

  13. Coalescence of silver unidimensional structures by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.

    2007-01-01

    The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)

  14. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  15. The structure of molecular liquids. Neutron diffraction and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bianchi, L.

    2000-05-01

    Neutron diffraction (ND) measurements on liquid methanol (CD 3 OD, CD 3 O(H/D), CD 3 OH) under ambient conditions were performed to obtain the distinct (intra- + inter-molecular), G dist (r) and inter-molecular, G inter (r) radial distribution functions (rdfs) for the three samples. The H/D substitution on hydroxyl-hydrogen (Ho) has been used to extract the partial distribution functions, G XHo (r) (X=C, O, and H - a methyl hydrogen) and G XX (r) at both the distinct and inter-molecular levels from the difference techniques of ND. The O-Ho bond length, which has been the subject of controversy in the past, is found purely from the distinct partial distribution function, G XHo (r) to be 0.98 ± 0.01 A. The C-H distance obtained from the distinct G XX (r) partial is 1.08 ± 0.01 A. These distances determined by fitting an intra-molecular model to the total distinct structure functions are 0.961 ± 0.001 A and 1.096 ± 0.001 A, respectively. The inter-molecular G XX (r) function, dominated by contributions from the methyl groups, apart from showing broad oscillations extending up to ∼14 A is featureless, mainly because of cancellation effects from six contributing pairs. The Ho-Ho partial pair distribution function (pdf), g HoHo (r), determined from the second order difference, shows that only one other Ho atom can be found within a mean Ho-Ho separation of 2.36 A. The average position of the O-Ho hydrogen bond determined for the first time purely from experimental inter-molecular G XHo (r) partial distribution function is found to be at 1.75 ± 0.03 A. The experimental structural results at the partial distribution level are compared with those obtained from molecular dynamics (MD) simulations performed in NVE ensemble by using both 3- and 6-site force field models for the first time in this study. The MD simulations with both the models reproduce the ND rdfs rather well. However, discrepancies begin to appear between the simulated and the experimental partial

  16. Arrangement of Fibril Side Chains Studied by Molecular Dynamics and Simulated Infrared and Vibrational Circular Dichroism Spectra

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Kiederling, T. A.; Bouř, Petr

    2014-01-01

    Roč. 118, č. 24 (2014), s. 6937-6945 ISSN 1520-6106 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:MŠMT(CZ) LM2010005; AV ČR(CZ) M200550902; MŠMT(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : insulin amyloid superstructures * DFT * VCD * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  17. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    Science.gov (United States)

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  18. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    Science.gov (United States)

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  19. Analysis on spectra of hydroacoustic field in sonar cavity of the sandwich elastic wall structure

    Science.gov (United States)

    Xuetao, W.; Rui, H.; Weike, W.

    2017-09-01

    In this paper, the characteristics of the mechanical self - noise in sonar array cavity are studied by using the elastic flatbed - filled rectangular cavity parameterization model. Firstly, the analytic derivation of the vibration differential equation of the single layer, sandwich elastic wall plate structure and internal fluid coupling is carried out, and the modal method is used to solve it. Finally, the spectral characteristics of the acoustic field of rectangular cavity of different elastic wallboard materials are simulated and analyzed, which provides a theoretical reference for the prediction and control of sonar mechanical self-noise. In this paper, the sandwich board as control inside the dome background noise of a potential means were discussed, the dome background noise of qualitative prediction analysis and control has important theoretical significance.

  20. Exact free oscillation spectra, splitting functions and the resolvability of Earth's density structure

    Science.gov (United States)

    Akbarashrafi, F.; Al-Attar, D.; Deuss, A.; Trampert, J.; Valentine, A. P.

    2018-04-01

    Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called `full mode coupling' allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1-2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems

  1. Experimental nuclear magnetic resonance spectral assignments, 1H/13C GIAO calculations, molecular structure and molecular resonance states of 4-Methyl-1H-Indazole-5-Boronic acid

    Science.gov (United States)

    Dikmen, Gökhan

    2018-03-01

    Some molecules such as 4-Methyl-1H-Indazole-5-Boronic Acid (4M1HI5BA) have different resonance states under different temperatures. Henceforth, it is difficult to characterize these type of molecules. Since, in general one or more hydrogen atoms move through the molecule and molecular symmetry changes. The possible 3 different resonance forms and molecular structure of 4-Methyl-1H-Indazole-5-Boronic Acid (4M1HI5BA) molecule have been studied experimentally using nuclear magnetic resonance (NMR) spectroscopy. 13C cross-polarization magic-angle spinning, 11B, 1H, 13C, COSY, HMBC, NOESY, T1 relaxation time NMR spectra of 4M1HI5BA molecule have been reported. Moreover, 1H NMR spectra were obtained in different solvents and under variable temperatures. Results from experimental datas showed that title molecule has three different resonance states and these resonance states change with different temperature. In addition, 1H and 13C chemical shift values were calculated by GIAO method and computed values were compared with experimentally obtained values. There are good agreement between experimental and theoretical chemical shift values.

  2. DFT charge transfer of hybrid molecular ferrocene/Si structures

    International Nuclear Information System (INIS)

    Calborean, Adrian; Buimaga-Iarinca, Luiza; Graur, Florin

    2015-01-01

    The electrochemical behavior and electronic properties of redox-active ferrocenes grafted onto semiconductor Si(100) substrate were investigated theoretically by first-principles calculations. Organic molecules were attached via the formation of Si-C covalent bonds through two different linkers: vinyl (direct grafting), and N 3 (CH 2 ) 11 (indirect grafting). Redox energies and the electronic properties relating to different spacers in hybrid ferrocene Fc/Si and ferrocenium Fc + /Si structures were theoretically extracted and compared with experimental cyclic voltametry data. Electronic charge transfers are discussed through the alignment positions of the frontier orbitals of the molecule with respect to the Si substrate gap. Periodic boundary conditions were used to investigate the Si(100) as a slab surface and hybrid Fc/Si structures. The resulting projected density of states (PDOS) were compared with molecular results and discussed in the light of experimental data. (paper)

  3. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  4. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    Science.gov (United States)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  5. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging

    Science.gov (United States)

    Zhang, Guojin; Senak, Laurence; Moore, David J.

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  6. Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.; Glerup, M.; Holtappels, P.

    2000-01-01

    Mixed ionic-electronic conducting pyrochlore structure oxides, with Pr and Gd on the A site and Zr, Mn, Ce, Sn, In, Mo, and Ti on the B site, were characterised by X-ray powder diffraction and Raman spectroscopy. Mn and In have a solubility around x = 0.1-0.2 in Pr2Zr2-xMnxO7 and Pr2Sn2-xInxO7......-O(x) and V-O on the O site, interstitial oxygens O-i", and delocalised electrons and electron holes. Four mass action law expressions govern such a model. The defect model can rationalise why home-valent doping, i.e. substitution of Zr(4+) by Ce(4+), can lead to an increase in ionic conductivity....... The calculated Brouwer diagram for Pr2Zr1.6Ce0.4O7+/-delta is shown. This composition has a transition from mixed ionic p-type to presumably pure ionic conduction around pO(2) = 10(-7.5) atm. At pO(2)

  7. Surface-Bound Molecular Film Structure Effects on Electronic and Magnetic Properties

    Science.gov (United States)

    Pronschinske, Alex M.

    This thesis dissertation will discuss the importance of understanding the driving forces of molecular assembly on surfaces and the need to characterize the electronic and magnetic properties of the resulting organic films. Furthermore, experimental results on model organic molecular assemblies, benzoate on Cu(110) and Fe[(H2BPz2)2bpy] ("Fe-bpy") on Au(111), and their novel film properties will be presented. The primary experimental techniques used in this work are scanning tunneling microscopy and spectroscopy (STM, STS), and so a theoretical characterization of constant current distance-voltage STS (z(V)-STS) will also be developed. Deposition of benzoic acid (C6H5COOH) on to Cu(110) will be used to create a diverse molecular environment of benzoate molecules (C6H5COO+). In this film we will utilize structural phases consisting of co-existing orientation (alpha-phase) and uniform molecular orientation (c(8x2) phase) to probe electric potential variation across the surface of the film. Using z( V)-STS find that the electron affinity level of a molecule's near-neighbor will exert a substrate-mediated influence on the energy of the molecule's image potential state; which we describe using a 1-D dielectric continuum model. Motivated by the unique utility of z(V)-STS for gentle probing of molecular electronic structure and electric potential we perform a thorough theoretical characterize of z( V)-STS. We derive a differential equation for simulating z(V)-STS spectra under the standard approximation of a square tunneling barrier. Moreover, we derive an equation for sample density of states (DOS) that is applicable for all modes of STS. The central result of this work for interpretation of z(V)-STS results is a characterization of systematic error between state energy and z(V)-STS peak location, as well we show that empirical normalization procedure for removing background distortion from constant height current-voltage STS, (V/I)dI/dV, is also applicable to z(V)-STS is

  8. Structures and physicochemical properties of molecular aggregates of lipids

    International Nuclear Information System (INIS)

    Iwahashi, Makio

    2005-01-01

    Structures and physicochemical properties of lipids such as fatty acids, alcohols, acylglycerols and steroids in their two- or three-dimensional states were studied through the measurements of surface pressure (π), surface-molecular area (A), vapor-pressure osmosis, radioactivity (R), self-diffusion coefficient (D), density, viscosity, near-infrared spectroscopy (NIR), 13 C-NMR spin-lattice relaxation time (T 1 ), ESR, SEM, DSC, X-ray diffraction and small-angle neutron scattering (SANS). Following results are obtained: (1) π-A and R-A relationships indicate that the explanation, being widely believed, of the reaction occurred in the oleic acid or the trioleylglycerol monolayer on the aqueous KMnO 4 solution is incorrect. (2) By using the LB film of 3 H-labelled fatty acid, the upper limit of the neutrino mass was determined. In addition, by using the LB film of 14 C-labelled fatty acid, a new type of crystal-transformation process was found, in which fatty-acid crystal transforms from its unstable state to its stable one by the transfer of the fatty acid molecules through the vapor phase. (3) Fatty acids always exist as their dimers in their liquid state and mostly in non-polar solvents; the dimers are the units of the molecular movements in the molten liquid and in solvents. T 1 results clearly showed the internal molecular movements of the dimers. In addition, D and SANS results indicated that two different kinds of fatty acids in their binary mixture make only each homodimers. (4) Furthermore, the study on the liquid structure of fatty acids such as cis-6-, cis-9-, cis-11-, trans-9-octadecenoic acids and stearic acid indicated that these fatty-acid dimers construct the clusters resemble to the smectic-liquid crystal in the liquid state. The clusters determine the physicochemical properties of the liquid of the fatty acid. (author)

  9. Equilibrium theory of molecular fluids: Structure and freezing transitions

    Science.gov (United States)

    Ram, Jokhan

    2014-05-01

    In this article we review equilibrium theory of molecular fluids which includes structure and freezing transitions. The application of the theory to evaluate the pair correlation functions using Integral Equation methods and Computer Simulations have been discussed. Freezing of classical complex fluids based on the density functional approach is also discussed and compare a variety of its versions. Transitions discussed are sensitive to the value of direct correlation functions of the effective liquid which is required as an input information in the theory. Accurate evaluation of pair correlation functions is emphasized. Calculation of these correlation functions which pose problems in the case of ordered phases is discussed. The pair correlation functions of the ordered phase, which are supposed to be made up of two contributions, one that preserves the symmetry of the isotropic phase and a second that breaks it, are discussed. A new free-energy functional developed for an inhomogeneous system that contains both symmetry conserved and symmetry broken parts of the direct pair correlation function is discussed. The most useful three dimensional reference interaction site model (3D-RISM) and its extension done recently by many workers is discussed. Application of this theory to a large variety of complex systems in combination with the density functional theory method implemented in the Amsterdam density functional software package is discussed. Coupling of the 3D-RISM salvation theory with molecular dynamics in the Amber molecular dynamics package is also given. The importance of the density functional theory for the study of the structure and phase behaviour of hard polyhedral is also discussed. The dynamical density functional and its generalized form applied for many important class of problems such as binary mixture, anisotropic particles dynamics of freezing and wetting, colloidal samples, particle self diffusion in complex environment, colloidal sedimentation

  10. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  11. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL; Monticelli, Luca [Institut National de la Santé et de la Recherche Médicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada; Katsaras, John [ORNL

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  12. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Directory of Open Access Journals (Sweden)

    Hyung Woo Lee

    2015-09-01

    Full Text Available Production of biodegradable polylactic acid (PLA from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III oxide (γ-Al2O3 or zinc oxide (ZnO, in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol than that from γ-Al2O3 (81,400 g/mol. The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.

  13. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  14. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  15. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    Science.gov (United States)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  16. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    Science.gov (United States)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  17. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  18. Computer-assisted structure elucidation from 13C-NMR-Spectra. I. The development of a three-dimensional structure code. II. The development of an isomer generating program

    International Nuclear Information System (INIS)

    Schuetz, V.

    1999-05-01

    The presented thesis consists of two separate programs which both aid the automated structure elucidation in the CSEARCH database system. A successful utilization of a large collection of NMR reference spectra for the prediction of chemical shift values is dependent on a strong correlation between the spectral data and the structural information via unique coding. By now, this was done using the two-dimensional HOSE code, which turned out to be insufficient whenever stereochemical effects other than cis/trans-isomerism contribute to the chemical shift values. Therefore, this new algorithm has been developed to derive the demanded three-dimensional descriptors. The calculation is performed by matching the query structures against pattern molecules taken from a carefully selected library of ring skeletons. No three-dimensional coordinates are necessary, since the algorithm elucidates the descriptors on base of two-dimensional structures having their stereocenters specified using 'up/down' bonds. The descriptors are defined as number of interactions over 3 to 5 bonds, number of cis-substituents over 1 to 2 ringbonds and markers for axial substituents. This approach of deriving descriptors for steric interactions has successfully extended the HOSE coding scheme and has been implemented into a neural network; both methods allow for high-quality prediction of 13 C-NMR chemical shift values. The second algorithm is an isomer generating program named GENERAL, which efficiently supports the structure elucidation process by calculating all mathematically possible structures to a given molecular formula. The resulting list of structures is exhaustive and free of redundancy. Besides the basic input information - like the molecular formula and the specification of structural fragments, constraints can be defined to restrict the number of resulting structures. The most valuable information is provided by state-of-the-art 2D-NMR experiments and can be easily incorporated into

  19. Mathematical analysis of compressive/tensile molecular and nuclear structures

    Science.gov (United States)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  20. Ab Initio Calculations of X-ray Spectra : Atomic Multiplet and Molecular Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of Transition Metal Complexes

    NARCIS (Netherlands)

    Josefsson, Ida; Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; de Groot, Frank; Wernet, Philippe; Odelius, Michael

    2012-01-01

    A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra

  1. Infrared spectra reveal box-like structures for a pentamer and hexamer of mixed carbon dioxide-acetylene clusters.

    Science.gov (United States)

    Rezaei, Mojtaba; Norooz Oliaee, J; Moazzen-Ahmadi, N; McKellar, A R W

    2016-01-21

    Except for a few cases like water and carbon dioxide, identification and structural characterization of clusters with more than four monomers is rare. Here, we provide experimental and theoretical evidence for existence of box-like structures for a pentamer and a hexamer of mixed carbon dioxide-acetylene clusters. Two mid-infrared cluster absorption bands are observed in the CO2ν3 band region using a tunable diode laser to probe a pulsed supersonic jet. Each requires the presence of both carbon dioxide and acetylene in the jet, and (from observed rotational spacings) involves clusters containing about 4 to 7 molecules. Structures are predicted for mixed CO2 + C2H2 clusters using a distributed multipole model, and the bands are assigned to a specific pentamer, (CO2)3-(C2H2)2, and hexamer, (CO2)4-(C2H2)2. The hexamer has a box-like structure whose D2d symmetry is supported by observed intensity alternation in the spectrum. The pentamer has a closely related structure which is obtained by removing one CO2 molecule from the hexamer. These are among the largest mixed molecular clusters to be assigned by high-resolution spectroscopy.

  2. Response and sensitivity of lipid related molecular structure to wet and dry heating in Canola tissue

    Science.gov (United States)

    Abeysekara, Saman; Samadi; Yu, Peiqiang

    2012-05-01

    Heat treatments are used to manipulate nutrient utilization, availability and functional properties. The objective of this study was to characterize any molecular level changes of the functional groups associated with lipid structure in canola (Brassica) seed, as affected during the wet and dry heat treatment processes using molecular spectroscopy. The parameters included lipid CH3 asymmetric (ca. 2970-2946 cm-1), CH2 asymmetric (ca. 2945-2880 cm-1), CH3 symmetric (ca. 2881-2864 cm-1) and CH2 symmetric (ca. 2864-2770 cm-1) functional groups, lipid carbonyl Cdbnd O ester group (ca. 1774-1711 cm-1), lipid unsaturation group (CH attached to C-C) (ca. 3007 cm-1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Raw canola seeds were used for the control or autoclaved at 120 °C for 1 h (HT-1: wet heating) or dry roasted at 120 °C for 1 h (HT-2: dry heating). Molecular spectral analysis of lipid functional group ratios were not significantly changed (P > 0.05) in the CH2 asymmetric to CH3 asymmetric stretching band peak intensity ratios for canola seed. Both wet (HT-1) and dry heating method (HT-2) had no significant effect (P > 0.05) on lipid carbonyl Cdbnd O ester group and lipid unsaturation group (CH attached to Cdbnd C). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH3 and CH2 asymmetric and symmetric region (ca. 2992-2770 cm-1), unsaturated lipids band region (ca. 3025-2993 cm-1) and lipid carbonyl Cdbnd O ester band region (ca. 1774-1711 cm-1). The results indicated that both dry and wet heating of given intense had no impact to the molecular spectrum in lipid related functional groups of canola seed, and was not strong enough to elicit heat-induced changes in lipid conformation.

  3. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  4. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  5. Isotope chemistry and molecular structure. Carbon and oxygen isotope chemistry

    International Nuclear Information System (INIS)

    Bigeleisen, J.; Hom, R.C.; Ishida, T.

    1976-01-01

    The relationships between force constants and the isotope chemistry of carbon and oxygen are calculated for H 2 O, CO 2 , CH 2 O, CH 4 , C 2 H 4 , C 2 H 6 , and C 6 H 6 . Significant differences are found from the general features of protium--deuterium isotope chemistry. These are shown to be associated with a structural effect. Hydrogen is always an end atom except for hydrogen bonded moleules. Carbon is generally tetrahedrally bonded and its isotope chemistry shows significant contributions from the interaction between stretching and bending modes. These interactions lead to deviations in additivity of the total isotope effect from the contributions of the individual force constants. Stretching forces dominate the isotope chemistry of carbon and oxygen as they do in hydrogen. They account for 70%--90% of the reduced partition function ratios. Correlations are made between the stretching force contributions and molecular structure. It is shown that while significant differences exist between the specific contributions calculated from different force fields for methane, ethane, and benzene, the absolute value of ln(s/s') f is rather insensitive to the detailed structures of the F matrices studied

  6. Transmission electron microscopy and the molecular structure of icosahedral viruses.

    Science.gov (United States)

    San Martín, Carmen

    2015-09-01

    The field of structural virology developed in parallel with methodological advances in X-ray crystallography and cryo-electron microscopy. At the end of the 1970s, crystallography yielded the first high resolution structure of an icosahedral virus, the T=3 tomato bushy stunt virus at 2.9Å. It took longer to reach near-atomic resolution in three-dimensional virus maps derived from electron microscopy data, but this was finally achieved, with the solution of complex icosahedral capsids such as the T=25 human adenovirus at ∼3.5Å. Both techniques now work hand-in-hand to determine those aspects of virus assembly and biology that remain unclear. This review examines the trajectory followed by EM imaging techniques in showing the molecular structure of icosahedral viruses, from the first two-dimensional negative staining images of capsids to the latest sophisticated techniques that provide high resolution three-dimensional data, or snapshots of the conformational changes necessary to complete the infectious cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Controlling molecular deposition and layer structure with supramolecular surface assemblies

    Science.gov (United States)

    Theobald, James A.; Oxtoby, Neil S.; Phillips, Michael A.; Champness, Neil R.; Beton, Peter H.

    2003-08-01

    Selective non-covalent interactions have been widely exploited in solution-based chemistry to direct the assembly of molecules into nanometre-sized functional structures such as capsules, switches and prototype machines. More recently, the concepts of supramolecular organization have also been applied to two-dimensional assemblies on surfaces stabilized by hydrogen bonding, dipolar coupling or metal co-ordination. Structures realized to date include isolated rows, clusters and extended networks, as well as more complex multi-component arrangements. Another approach to controlling surface structures uses adsorbed molecular monolayers to create preferential binding sites that accommodate individual target molecules. Here we combine these approaches, by using hydrogen bonding to guide the assembly of two types of molecules into a two-dimensional open honeycomb network that then controls and templates new surface phases formed by subsequently deposited fullerene molecules. We find that the open network acts as a two-dimensional array of large pores of sufficient capacity to accommodate several large guest molecules, with the network itself also serving as a template for the formation of a fullerene layer.

  8. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Solving structures of protein complexes by molecular replacement with Phaser

    International Nuclear Information System (INIS)

    McCoy, Airlie J.

    2006-01-01

    Four case studies in using maximum-likelihood molecular replacement, as implemented in the program Phaser, to solve structures of protein complexes are described. Molecular replacement (MR) generally becomes more difficult as the number of components in the asymmetric unit requiring separate MR models (i.e. the dimensionality of the search) increases. When the proportion of the total scattering contributed by each search component is small, the signal in the search for each component in isolation is weak or non-existent. Maximum-likelihood MR functions enable complex asymmetric units to be built up from individual components with a ‘tree search with pruning’ approach. This method, as implemented in the automated search procedure of the program Phaser, has been very successful in solving many previously intractable MR problems. However, there are a number of cases in which the automated search procedure of Phaser is suboptimal or encounters difficulties. These include cases where there are a large number of copies of the same component in the asymmetric unit or where the components of the asymmetric unit have greatly varying B factors. Two case studies are presented to illustrate how Phaser can be used to best advantage in the standard ‘automated MR’ mode and two case studies are used to show how to modify the automated search strategy for problematic cases

  10. Effect of processing on carbon molecular sieve structure and performance

    KAUST Repository

    Das, Mita

    2010-11-01

    Sub-micron sized carbon molecular sieve (CMS) materials were produced via ball milling for subsequent use in hybrid material formation. A detailed analysis of the effects of the milling process in the presence of different milling environments is reported. The milling process apparently alters the molecular scale structure and properties of the carbon material. Three cases: unmilled, air milled and nitrogen milled, were analyzed in this work. The property changes were probed using equilibrium sorption experiments with different gases. Furthermore, WAXD and BET results also showed differences between milling processes. Finally in order to improve the interfacial polymer-sieve region of hybrid membranes, the CMS surface was chemically modified with a linkage unit capable of covalently bonding the polymer to the sieve. A published single-wall carbon nanotube (SWCNTs) modification method was adopted to attach a primary aromatic amine to the surface. Several aspects including rigidity, chemical composition, bulky groups and length were considered in selecting the preferred linkage unit. Fortunately kinetic and equilibrium sorption properties of the modified sieves showed very little difference from unmodified samples, suggesting that the linkage unit is not excessively filling or obstructing access to the pores of the CMSs during the modification process. © 2010 Elsevier Ltd. All rights reserved.

  11. Influence of the molecular structure on hydrolyzability of epoxy resins

    International Nuclear Information System (INIS)

    Pays, M.F.

    1996-01-01

    EDF has decided to use glass reinforced composites for certain pipework in Pressurized Water Reactors (service water, emergency-supplied service water, fine pipe works, etc...) as a replacement for traditional materials. In practice, steel is prone to rapid corrosion in these circuits; introducing composites could prove economically viable if their long term behaviour can be demonstrated. However, composite materials can undergo deterioration in service through hydrolysis of the resin or the fibre-matrix interface. Different resins can be chosen depending on the programmed use. A first study has covered the hydrolyzability of polyester and vinyl ester resins. The present document undertakes the resistance to hydrolysis of epoxy resins, concentrating on those reputed to withstand high temperatures. This research uses model monomer, linking the molecular structure of the materials to their resistance to hydrolysis. (author)

  12. Calculations of optical rotation: Influence of molecular structure

    Directory of Open Access Journals (Sweden)

    Yu Jia

    2012-01-01

    Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.

  13. Hamiltonian flow over saddles for exploring molecular phase space structures

    Science.gov (United States)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  14. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  15. Raman and photoluminescence spectra of ZnTe/CdSe and ZnTe/CdTe tetrapod shaped nano-hetero structures

    Science.gov (United States)

    Fiore, Angela; Morello, Giovanni; Scremin, Barbara Federica

    2018-01-01

    In the present paper we report the Raman and photoluminescence characterization of two nano-hetero-structures of II-VI semiconductors, tetrapod shaped. The examined samples were constituted of a ZnTe core and either CdSe or CdTe arms. The main contributions to the Raman spectra were assigned to phonons from the arms of the structures, but the weak contribution from the ZnTe core was identified from the separate measurement of spectra of the seeds used for growing the arms. The simultaneously acquired photoluminescence spectra allowed identifying an intense band characteristic of a Type II band alignment at 920 nm for the ZnTe/CdSe nanostructures.

  16. Determining the stereochemical structures of molecular ions by ''Coulomb-explosion'' techniques with fast (MeV) molecular ion beams

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent studies on the dissociation of fast (MeV) molecular ion beams in thin foils suggest a novel alternative approach to the determination of molecular ion structures. In this article we review some recent high-resolution studies on the interactions of fast molecular ion beams with solid and gaseous targets and indicate how such studies may be applied to the problem of determining molecular ion structures. The main features of the Coulomb explosion of fast-moving molecular ion projectiles and the manner in which Coulomb-explosion techniques may be applied to the problem (difficult to attack by more conventional means) of determining the stereochemical structures of molecular ions has been described in this paper. Examples have been given of early experiments designed to elicit structure information. The techniques are still in their infancy, and it is to be expected that as both the technology and the analysis are refined, the method will make valuable contributions to the determination of molecular ion structures

  17. Q-mode curve resolution of UV-vis spectra for structural transformation studies of anthocyanins in acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Paulo Henrique [Laboratorio de Quimiometria em Ciencias Naturais, Departamento de Quimica, Universidade Estadual de Londrina, Caixa Postal 6001, CEP 86051-970 Londrina, Parana (Brazil); Scarminio, Ieda Spacino [Laboratorio de Quimiometria em Ciencias Naturais, Departamento de Quimica, Universidade Estadual de Londrina, Caixa Postal 6001, CEP 86051-970 Londrina, Parana (Brazil)]. E-mail: ieda@qui.uel.br

    2007-01-30

    Chemometric analysis of ultraviolet-visible (UV-vis) spectra for pH values 1.0, 3.3, 5.3, and 6.9 was used to investigate the kinetics and the structural transformations of anthocyanins in extracts of calyces of hibiscus flowers of the Hibiscus acetosella Welw. ex Finicius for the first time. Six different species were detected: the quinoidal base (A), the flavylium cation (AH{sup +}), the pseudobase or carbinol pseudobase (B), cis-chalcone (C{sub C}), trans-chalcone (C{sub t}), and ionized cis-chalcone (C{sub C}{sup -}). Four equilibrium constant values were calculated using relative concentrations, hydration, pK{sub h}=2.60+/-0.01, tautomeric, K{sub T}=0.14+/-0.01, acid-base, pK{sub a}=4.24+/-0.04, and ionization of the cis-chalcone, pK{sub C{sub C}}=8.74+/-1.5x10{sup -2}. The calculated protonation rate of the tautomers is K{sub H{sup +}}=0.08+/-7.6x10{sup -3}. These constants are in excellent agreement with those measured previously in salt form. From a kinetic viewpoint, the situation encountered is interesting since the reported investigation is limited to visible light absorption in acid medium. These models have not been reported in the literature.

  18. Q-mode curve resolution of UV-vis spectra for structural transformation studies of anthocyanins in acidic solutions

    International Nuclear Information System (INIS)

    Marco, Paulo Henrique; Scarminio, Ieda Spacino

    2007-01-01

    Chemometric analysis of ultraviolet-visible (UV-vis) spectra for pH values 1.0, 3.3, 5.3, and 6.9 was used to investigate the kinetics and the structural transformations of anthocyanins in extracts of calyces of hibiscus flowers of the Hibiscus acetosella Welw. ex Finicius for the first time. Six different species were detected: the quinoidal base (A), the flavylium cation (AH + ), the pseudobase or carbinol pseudobase (B), cis-chalcone (C C ), trans-chalcone (C t ), and ionized cis-chalcone (C C - ). Four equilibrium constant values were calculated using relative concentrations, hydration, pK h =2.60+/-0.01, tautomeric, K T =0.14+/-0.01, acid-base, pK a =4.24+/-0.04, and ionization of the cis-chalcone, pK C C =8.74+/-1.5x10 -2 . The calculated protonation rate of the tautomers is K H + =0.08+/-7.6x10 -3 . These constants are in excellent agreement with those measured previously in salt form. From a kinetic viewpoint, the situation encountered is interesting since the reported investigation is limited to visible light absorption in acid medium. These models have not been reported in the literature

  19. The infrared spectra and structure of acetylsalicylic acid (aspirin) and its oxyanion: an ab initio force field treatment

    Science.gov (United States)

    Binev, I. G.; Stamboliyska, B. A.; Binev, Y. I.

    1996-05-01

    The structures of acetylsalicylic acid (aspirin) (I) and its oxyanion (II) have been studied by means of infrared spectra and ab initio 3-21 G force field calculations. The 3100-1100 cm -1 region bands of both the aspirin molecule and its oxyanion have been assigned. The theoretical infrared data for the free aspirin anion are in good agreement with the experimental data for aspirin alkali-metal salts in dimethyl sulfoxide- d6. The theoretical geometrical parameters for the isolated aspirin molecule are close to the literature X-ray diffraction data for its dimer in the solid state, except for those of the carboxy group, which participates directly in hydrogen bond formation. The changes in both the spectral and geometrical parameters, caused by the conversion of the aspirin molecule into the anion, are essential, but they are localized mainly within the carboxy group and the adjacent C-Ph bond. This is also true for the changes in the corresponding bond indices and electronic charges.

  20. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  1. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure.

    Science.gov (United States)

    Salisbury, Joseph P; Liu, Qian; Agar, Jeffrey N

    2014-12-11

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com . Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX

  2. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  3. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. SCC-TB, DFT/B3LYP, MP2, AM1, PM3 and RHF study of ethylene oxide and propylene oxide structures, VA and VCD spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Frimand, Kenneth

    2002-01-01

    -binding method for equilibrium structures, VA and VCD spectra of ethylene oxide and propylene oxide in the gas-phase. Comparison to conventional methods AM1, PM3, MP2, RHF and DFT/B3LYP is carried out. We report results over a wider range of frequencies than previous work. In particular, we find indications...

  5. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    Science.gov (United States)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  6. Molecular structure of tetramethylgermane from gas electron diffraction

    Science.gov (United States)

    Csákvári, Éva; Rozsondai, Béla; Hargittai, István

    1991-05-01

    The molecular structure of Ge(CH 3) 4 has been determined from gas-phase electron diffraction augmented by a normal coordinate analysis. Assuming tetrahedral symmetry for the germanium bond configuration, the following structural parameters are found: rg(GeC) = 1.958 ± 0.004 Å, rg(CH) = 1.111 ± 0.003 Å and ∠(GeCH) = 110.7 ± 0.2° ( R=4.0%). The methyl torsional barrier V 0 is estimated to be 1.3 kJ mol -1 on the basis of an effective angle of torsion 23.0 ± 1.5°, from the staggered form, yielded directly by the analysis. The GeC bond length of Ge(CH 3) 4 is the same, within experimental error, as that of Ge(C 6H 5) 4 and is in agreement with the prediction of a modified Schomaker-Stevenson relationship.

  7. Molecular structure-adsorption study on current textile dyes.

    Science.gov (United States)

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models.

  8. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  9. Retinal structure, function, and molecular pathologic features in gyrate atrophy.

    Science.gov (United States)

    Sergouniotis, Panagiotis I; Davidson, Alice E; Lenassi, Eva; Devery, Sophie R; Moore, Anthony T; Webster, Andrew R

    2012-03-01

    To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Retrospective case series. Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron-exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed. OAT mutation status and resultant clinical, structural, and functional characteristics. Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient. Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease

  10. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  11. X-ray diffraction, neutron diffraction and analysis of molecular structures

    International Nuclear Information System (INIS)

    Fontecilla-Camps, J.C.

    1997-01-01

    The only method that is capable to show the atomic structure of most of macromolecules is the X ray diffraction; neutron diffraction is mostly used for the localization of hydrogen atoms, too light to be detected by X ray diffraction. With the growing number of known structures, the molecular crystallographic study may combine the molecular replacement technique and the co-crystallization method, or use the new Laue method, and leads to the functional and topological analysis of biological molecular structures

  12. Molecular structure of human aortic valve by μSR- FTIR microscopy

    Science.gov (United States)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very

  13. Light-operated machines based on threaded molecular structures.

    Science.gov (United States)

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  14. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study

    Science.gov (United States)

    Sebastian, S.; Sundaraganesan, N.; Manoharan, S.

    2009-10-01

    Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.

  15. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation.

    Science.gov (United States)

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun; Mao, Chuanbin

    2014-08-27

    Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a β-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating

  16. Nanometer patterning of water by tetraanionic ferrocyanide stabilized in aqueous nanodrops? ?Electronic supplementary information (ESI) available: Complete citation for ref. 6, 43, 52 and 54, expanded region of nESI spectra in Fig. 1, comparison of individual radial distribution functions and atomic coordinates for the lowest energy Fe(CN)6 4?(H2O)160 structure along the molecular dynamics trajectory illustrated in Fig. 7. See DOI: 10.1039/c6sc03722d Click here for additional data file.

    OpenAIRE

    DiTucci, Matthew J.; Williams, Evan R.

    2016-01-01

    Formation of the small, highly charged tetraanion ferrocyanide, Fe(CN)6 4?, stabilized in aqueous nanodrops is reported. Ion?water interactions inside these nanodrops are probed using blackbody infrared radiative dissociation, infrared photodissociation (IRPD) spectroscopy, and molecular modeling in order to determine how water molecules stabilize this highly charged anion and the extent to which the tetraanion patterns the hydrogen-bonding network of water at long distance. Fe(CN)6 4?(H2O)38...

  17. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  18. Photodriven hydrogen evolution by molecular catalysts using Al2O3-protected perylene-3,4-dicarboximide on NiO electrodes† †Electronic supplementary information (ESI) available: Experimental details; additional electrochemical and photoelectrochemical characterization, UV-Vis spectra, and fsTA results; quantification of evolved hydrogen; and DFT-computed ground state structure of PMI diester. See DOI: 10.1039/c6sc02477g Click here for additional data file.

    Science.gov (United States)

    Kamire, Rebecca J.; Majewski, Marek B.; Hoffeditz, William L.; Phelan, Brian T.; Farha, Omar K.; Hupp, Joseph T.

    2017-01-01

    The design of efficient hydrogen-evolving photocathodes for dye-sensitized photoelectrochemical cells (DSPECs) requires the incorporation of molecular light absorbing chromophores that are capable of delivering reducing equivalents to molecular proton reduction catalysts at rates exceeding those of charge recombination events. Here, we report the functionalization and kinetic analysis of a nanostructured NiO electrode with a modified perylene-3,4-dicarboximide chromophore (PMI) that is stabilized against degradation by atomic layer deposition (ALD) of thick insulating Al2O3 layers. Following photoinduced charge injection into NiO in high yield, films with Al2O3 layers demonstrate longer charge separated lifetimes as characterized via femtosecond transient absorption spectroscopy and photoelectrochemical techniques. The photoelectrochemical behavior of the electrodes in the presence of Co(ii) and Ni(ii) molecular proton reduction catalysts is examined, revealing reduction of both catalysts. Under prolonged irradiation, evolved H2 is directly observed by gas chromatography supporting the applicability of PMI embedded in Al2O3 as a photocathode architecture in DSPECs. PMID:28616134

  19. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  20. Modeling Carbon and Hydrocarbon Molecular Structures in EZTB

    Science.gov (United States)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that models the electronic and mechanical aspects of hydrocarbon molecules and carbon molecular structures on the basis of first principles has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure, which is summarized briefly in the immediately preceding article. Of particular interest, this module can model carbon crystals and nanotubes characterized by various coordinates and containing defects, without need to adjust parameters of the physical model. The module has been used to study the changes in electronic properties of carbon nanotubes, caused by bending of the nanotubes, for potential utility as the basis of a nonvolatile, electriccharge- free memory devices. For example, in one application of the module, it was found that an initially 50-nmlong carbon, (10,10)-chirality nanotube, which is a metallic conductor when straight, becomes a semiconductor with an energy gap of .3 meV when bent to a lateral displacement of 4 nm at the middle.

  1. Molecular beam epitaxial growth of graphene and ridge-structure networks of graphene

    International Nuclear Information System (INIS)

    Maeda, Fumihiko; Hibino, Hiroki

    2011-01-01

    By gas-source molecular beam epitaxy (MBE) using cracked ethanol, we grew graphene at substrate temperatures between 600 and 915 °C on graphene formed on SiC(0 0 0 1) by thermal decomposition. To investigate the substrate temperature dependence of graphene growth we analysed the MBE-grown graphene by Raman spectroscopy and in situ x-ray photoelectron spectroscopy (XPS) and observed it by atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (TEM). Analyses using the G-band peak and the peak intensity ratio between D- and G-band peaks in the Raman spectra revealed that growth at higher temperatures improved the crystallinity and increased the domain size. Although the growth rate decreased at higher temperatures, as revealed by XPS, these results indicated that growth at a higher temperature is effective in obtaining graphene of higher quality. Furthermore, the AFM and TEM observations revealed a network of fin-like ridge structures of graphene sticking out from the surface. The presence of these 'graphene nanofins' indicated that two-dimensional islands of graphene are surrounded by the nanofins, and the island size was estimated to be 67 nm using the average distance between the nanofins.

  2. Molecular structure investigation and tautomerism aspects of (E)-3 ...

    Indian Academy of Sciences (India)

    calculations. The effect of the intermolecular N-H—. O H-bonding interactions on the calculated geometric parameters has been tested. The electronic spectra were assigned with the aid of the TD-DFT calculations. 2. Experimental. 2.1 Synthesis and spectral investigations. A mixture of indolin-2-one 1 (1.5 mmol, 200 mg), ...

  3. Molecular structure and conformation of N-2-[3'-(methoxysalicylideneimino)benzyl]-3″-methoxysalicylideneimine

    Science.gov (United States)

    Dey, D. K.; Dey, S. P.; Elmali, A.; Elerman, Y.

    2001-05-01

    The Schiff base, N-2-[3'-(methoxysalicylideneimino)benzyl]-3″-methoxysalicylidene-imine, 1,2-C 6H 4[NCHC 6H 3(OMe-3')OH-2']CH 2NCHC 6H 3(OMe-3″)OH-2″, has been prepared by the reaction of 2-amino-1-benzylamine and 3-methoxysalicylaldehyde ( o-vanillin) in ethanol. The molecular structure has been confirmed by single crystal X-ray crystallography. The crystal is in the monoclinic space group P2 1/ n with a=16.179(5), b=6.715(5), c=18.780(6) Å, β=100.56(3)°, Dcalc=1.293 mg cm -3, V=2006(2) Å 3 and R=0.0357 for 3929 independent reflections. The 1H and 13C NMR spectra in CDCl 3 solution indicate the retention of solid state structure in solution. The title compound is not planar. Intramolecular hydrogen bonds occur between O(1) and N(1) [2.614(2) Å] and between O(2) and N(2) [2.585(2) Å] atoms, the hydrogen atom essentially being bonded to the oxygen atom. Minimum energy conformations from AM1 were calculated as a function of five torsion angles θ1 (C6-C7-N1-C8), θ2 (C14-N2-C15-C16), θ3 (C9-C8-N1-C7), θ4 (C13-C14-N2-C15) and θ5 (C10-C9-C8-N1), varied every 5°. The optimized geometry of the crystal structure corresponding to the non-planar conformation is the most stable conformation in all calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded hydrogen-hydrogen repulsions.

  4. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  5. MOLECULAR STRUCTURE OF AMYOTROPHIC LATERAL SCLEROSIS IN RUSSIAN POPULATION

    Directory of Open Access Journals (Sweden)

    N. Yu. Abramycheva

    2016-01-01

    Full Text Available Materials and methods. 285 Russian patients with amyotrophic lateral sclerosis (ALS including 260 patients with a sporadic form and 25 with a familial form were examined for mutations in SOD1, C9orf72, TARDBP,  ANG and other genes and the presence of associations among polymorphic sites in ATXN2 (polyCAG and VEGF (-2578С/А genes.Molecular genetic analysis was performed using direct sequencing, fragment analysis and real-time polymerase chain reaction. On the last stage, rare ALS candidate genes were evaluated using a next generation sequencing (NGS panel.Results. Total rate of the identified mutations in the examined ALS cohort was 9.5 %. The most frequently observed defects were mutations in the SOD1 (24.0 % in familial ALS and 4.6 % in sporadic ALS and C9orf72 (pathological hexanucleotide repeat expansion was identified in 1.8 % cases of ALS, all sporadic genes. The TARDBP gene didn’t contain any mutations, though in the ALS group deletion c.715-126delG located in intron 5 of the TARDBP gene was significantly over-represented – 38.0 % vs. 26.6 % (χ2 = 13.17; р = 0.002. Mutations in the ANG gene were identified in 1.05 % of ALS patients (all cases were sporadic. In 1 (0.35 % sporadic case a G1082A mutation in the DCTN1 gene was identified. The examined group significantly more frequently carried a risk allele of the ATXN2 gene with an “intermediate” (28–33  number of CAG repeats – 5.0 % vs. 1.7 % in the control group (χ2 = 3.89; р = 0.0486. In Russian ALS patients, an association between the disease and the presence of a risk А-allele and homozygote genotype А/А of -2578С/А polymorphism in the VEGF gene was identified (χ2 = 7.14; р = 0.008 and χ2 = 13.46; р = 0.001 for the rates in the ALS population and in the control population, respectively, which is confirmed by the odds ratio.Conclusion. In the current article, molecular structure of ALS in the Russian population was examined, rates of individual genetic forms

  6. Binary Molecular Complexes and the Nature of Molecular Association

    African Journals Online (AJOL)

    Asurvey is presented of the results of some ab initio calculations of the properties of a variety of binary molecular complexes. The properties include the molecular structures, the interaction energies and the vibrational spectra. The interaction energies have been correlated with some physical properties of the interacting ...

  7. Syntheses, spectroscopic properties and molecular structure of silver phytate complexes - IR, UV-VIS studies and DFT calculations

    Science.gov (United States)

    Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.

    2018-03-01

    Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.

  8. Splitting rules for the 2nd hierarchy structure of the electronic spectra of 2D FC(n) quasicrystals

    Science.gov (United States)

    Li, Feng; Yang, Xiangbo

    2004-06-01

    On the basis of our former work and by means of the decomposition-decimation method, we study the splitting rules for the second hierarchy of the electronic energy spectra for two-dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths. It is found that every line of the sub-spectra for n x n and ( n + 1) x ( n + 1) clusters of FC(n) (n ≥ 2) splits according to the type Y‘( n-1)-2-1 and type Y n-2-1 respectively. The one for n x ( n + 1) clusters of FC(n) consists of three sub-subbands when n le 2, and five sub-subbranches when n ge 3. The general formulae of the number of energy levels for the spectra of the second hierarchy are obtained. The analytical results are confirmed by numerical simulations.

  9. Infrared and Raman scattering spectra of layered structured Ga{sub 3}InSe{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, M., E-mail: misik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Korkmaz, F. [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey)

    2013-03-01

    The infrared reflectivity and transmittance and Raman scattering in Ga{sub 3}InSe{sub 4} layered crystals were investigated in the frequency ranges of 100–400, 400–4000 and 25–500 cm{sup −1}. The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes.

  10. FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene.

    Science.gov (United States)

    Govindarajan, M; Periandy, S; Carthigayen, K

    2012-11-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4,000 cm(-1) and 50-4,000 cm(-1), respectively, for the title molecules. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartee Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The influences of bromine atom and methyl group on the geometry of benzene and its normal modes of vibrations have also been discussed. The results of the calculations were applied to simulated spectra of the title compounds, which show excellent agreement with observed spectra. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs.

    Science.gov (United States)

    Zhang, Meng; Chen, Ying; Nie, Lin; Jin, Xiaofei; Fu, Chunhua; Yu, Longjiang

    2017-07-15

    Taxus spp. are ancient gymnosperms that produce a unique secondary metabolite, namely, taxol, an anticancer drug. JAZ proteins are key regulators of the JA signaling pathway, which control taxol biosynthesis. However, the JAZ proteins of Taxus spp. are poorly studied. In this work, nine JAZ genes from Taxus chinensis were identified using our previous transcriptome data and named as TcJAZ1-TcJAZ9. Of these nine TcJAZ proteins, eight contain Jas and TIFY domains, and the Jas domain of TcJAZ6 is incomplete. Most TcJAZs and PsJAZs are not related to AtJAZs and OsJAZs. Phylogenetic analysis divided all JAZ proteins from Arabidopsis thaliana, Oryza sativa, Picea sitchensis, and T. chinensis into eight subgroups; gymnosperms JAZs were classified into subgroups V-VIII, and angiosperm JAZs were categorized into subgroups I-V. Three motifs of subgroups VI-VIII were identified in gymnosperm JAZs, indicating that gymnosperm JAZ proteins exhibit a different evolutionary process from those of angiosperms. The expression patterns of nine TcJAZs showed that TcJAZ2/3/8 was a key regulator, indicating their important roles in T. chinensis. Results revealed that gymnosperm JAZs differ from angiosperm JAZs in terms of molecular structure. Three novel conserved motifs were found in TcJAZs and PsJAZs. This study provides a basis for research on JA regulatory system in Taxus spp. and for elucidating the significance of JA signaling pathway to land plants. Copyright © 2017. Published by Elsevier B.V.

  12. An Insight towards Conceptual Understanding: Looking into the Molecular Structures of Compounds

    Science.gov (United States)

    Uyulgan, Melis Arzu; Akkuzu, Nalan

    2016-01-01

    The subject of molecular structures is one of the most important and complex subject in chemistry which a majority of the undergraduate students have difficulties to understand its concepts and characteristics correctly. To comprehend the molecular structures and their characteristics the students need to understand related subjects such as Lewis…

  13. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV and NBO analysis of 2-chlorobenzonitrile by density functional method.

    Science.gov (United States)

    Krishnan, Akhil R; Saleem, H; Subashchandrabose, S; Sundaraganesan, N; Sebastain, S

    2011-02-01

    In this work, we will report a combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV spectral analysis of 2-chlorobenzonitrile (2-ClBN). The FT-IR solid phase (4000-400 cm(-1)), and FT-Raman spectra (3500-50 cm(-1)) of 2-ClBN was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of 2-ClBN in the ground state have been calculated by using the density functional methods (BLYP, B3LYP) with 6-31G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* anti bonding orbitals and E2 energies confirms the occurrence of ICT (Intra molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Finally calculated results were applied to simulated Infrared and Raman spectra of the title compound which show good agreement with observed spectra. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. International Bulletin on Atomic and Molecular Data for Fusion. No. 28

    International Nuclear Information System (INIS)

    Hughes, J.G.

    1985-03-01

    The bulletin presents a selected bibliography (462 literature pieces) on atomic and molecular data relevant to fusion research and technology. It also gives a list of indexed papers, separately on structure and spectra, atomic and molecular collisions, and surface effects

  15. International Bulletin on Atomic and Molecular Data for Fusion. No. 31

    International Nuclear Information System (INIS)

    Hughes, J.G.

    1985-12-01

    This bulletin presents a selected bibliography (363 literature pieces) on atomic and molecular data for fusion. It also gives a list of indexed papers on structure and spectra, atomic and molecular collisions, and surface interactions

  16. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang

    2017-08-05

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HED N/OM ), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  18. Design energy spectra for Turkey

    OpenAIRE

    López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo

    2012-01-01

    This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...

  19. ESR spectra of organic molecules in triplet state; studies on the structure, internal interaction and the influence of environment

    International Nuclear Information System (INIS)

    Kemp, T.

    1980-01-01

    The origins, features and interpretation of triplet state e.s.r. spectra are described. Examples chosen for discussion include carbenes, nitrenes and excited polyacenes. Newly discovered triplet-state substituted aryl cations are described, the D - parameters of which give information as to mechanism of π-stabilization of these unusual species. (author)

  20. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Crystal structure and optical spectra of LiLa9(SiO4)6O2 crystals activated with Er3+

    International Nuclear Information System (INIS)

    Bettinelli, Marco; Speghini, Adolfo; Falcomer, Daniele; Cavalli, Enrico; Calestani, Gianluca; Quintanilla, Marta; Cantelar, Eugenio; Cusso, Fernando

    2008-01-01

    LiLa 9 (SiO 4 ) 6 O 2 (LLS) crystals activated with Er 3+ have been grown by the flux growth method. Their apatite structure has been characterized by single-crystal X-ray diffraction. The absorption and emission spectra have been measured in the visible and NIR regions. They are affected by a significant inhomogeneous broadening making these crystals interesting active media for tunable solid-state laser operation

  2. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  4. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Molecular evolution, intracellular organization, and the quinary structure of proteins.

    OpenAIRE

    McConkey, E H

    1982-01-01

    High-resolution two-dimensional polyacrylamide gel electrophoresis shows that at least half of 370 denatured polypeptides from hamster cells and human cells are indistinguishable in terms of isoelectric points and molecular weights. Molecular evolution may have been more conservative for this set of proteins than sequence studies on soluble proteins have implied. This may be a consequence of complexities of intracellular organization and the numerous macromolecular interactions in which most ...

  6. Strategies for Interpreting Two Dimensional Microwave Spectra

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; Crabtree, Kyle N.; Buchanan, Zachary

    2017-06-01

    Microwave spectroscopy can uniquely identify molecules because their rotational energy levels are sensitive to the three principal moments of inertia. However, a priori predictions of a molecule's structure have traditionally been required to enable efficient assignment of the rotational spectrum. Recently, automated microwave double resonance spectroscopy (AMDOR) has been employed to rapidly generate two dimensional spectra based on transitions that share a common rotational level, which may enable automated extraction of rotational constants without any prior estimates of molecular structure. Algorithms used to date for AMDOR have relied on making several initial assumptions about the nature of a subset of the linked transitions, followed by testing possible assignments by "brute force." In this talk, we will discuss new strategies for interpreting AMDOR spectra, using eugenol as a test case, as well as prospects for library-free, automated identification of the molecules in a volatile mixture.

  7. Experimental FTIR and FT-Raman and theoretical studies on the molecular structures of monomer and dimer of 3-thiopheneacrylic acid

    Science.gov (United States)

    Issaoui, N.; Ghalla, H.; Brandán, Silvia Antonia; Bardak, F.; Flakus, H. T.; Atac, A.; Oujia, B.

    2017-05-01

    This work presents an experimental and theoretical investigation on the properties of 3-thiopheneacrylic acid (3TAA) by using the FT-Raman and FT-IR spectra in the solid state. The structural, electronic, topological and vibrational properties of 3TAA were theoretically studied by using the hybrid B3LYP method with the 6-311++G (d,p) basis set. The complete assignments of the bands observed in both spectra were performed taking into account the presence of both monomer and dimer species of the acid. Two bands observed at 1682 and 1625 cm-1 attributed to the Cdbnd C and Cdbnd O stretching modes, respectively support the presence of the dimeric species in the solid phase. The percentages of intermolecular interactions are analyzed by Fingerprint plots of Hirshfeld surface. The natural bond orbital (NBO), atoms in molecules (AIM), frontier molecular orbitals (FMOs) and molecular electrostatic potential surface (MEPs) calculations were employed to determine the structural properties while the chemical selectivity or reactivity sites were revealed by using the Fukui functions. The GIAO and time-dependent density functional theory (TD-DFT) methods were used to predict the 1H and 13C NMR and electronic spectra of the acid. The diagrams of the density of state of that acid have been also presented. Finally, reasonable correlations between experimental and theoretical vibrational spectra were found. Effect of positioning and orientation of the acrylic group on the inhibitor characteristics on human MAOB enzyme of stable conformers of 3TAA is investigated in comparison with that of 3-2TAA and four selective inhibitors via molecular docking.

  8. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  9. Electronic structure and photoemission spectra of thin (GaAs).sub.n./sub. (AlAs).sub.n./sub. superlattices

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Strasser, T.; Schattke, W.

    507-510, - (2002), s. 160-164 ISSN 0039-6028 R&D Projects: GA AV ČR IAA1010108 Institutional research plan: CEZ:AV0Z1010914 Keywords : electron density * excitation spectra calculations * Green's function methods * angle resolved photoemission * photoelectron emission * Gallium arsenide * low index single crystal surfaces * superlattices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.140, year: 2002

  10. Matrix infrared spectra and electronic structure calculations of the first actinide borylene: FB=ThF(2).

    Science.gov (United States)

    Wang, Xuefeng; Roos, Björn O; Andrews, Lester

    2010-03-14

    Laser-ablated Th atoms react with BF(3) during condensation in excess argon at 6 K to form the first actinide borylene (FB=ThF(2)) and actinide-boron multiple bond. Three new product absorptions in the B-F and Th-F stretching regions of matrix infrared spectra are assigned to FB=ThF(2) from comparison to theoretically predicted vibrational frequencies.

  11. The IR spectra, hydrogen bonding and conformations of aliphatic and aromatic epoxy carbamates

    Science.gov (United States)

    Furer, V. L.

    1999-12-01

    The IR spectra of hexamethylene-bis (methyl) glycidyl carbamate, toluene-2,4-bis (methyl) glycidyl carbamate in the crystalline state and in the melt were studied. The absorption curves for the most stable molecular conformations were compared with experimental IR spectra. The IR spectra of toluene-2,4-bis (methyl) glycidyl carbamate and methyl- N-methyl carbamate clusters were calculated. The spectral features of the different molecular structures were revealed. The results obtained can be used for the analysis of the chemical and physical transformations in polyurethanes.

  12. Vibrational spectra and structure of icosahedral anion of monocarba-closo-dodecaborane [CB11H12]- and its nido-derivative: [CB10H13]-

    International Nuclear Information System (INIS)

    Kononova, E.G.; Bukalov, S.S.; Lejtes, L.A.; Lysenko, K.A.; Ol'shevskaya, V.A.

    2003-01-01

    Raman and IR spectra of cesium salts of monocarborane anions [closo-CB 11 H 12 ] - and [nido-CB 10 H 13 ] - were recorded, assignment of frequencies being provided. Quantum-chemical calculation of geometry of the closo-polyhedrons [B 12 H 12 ] 2- and [CB 11 H 12 ] - along with that of frequencies and forms of normal vibrations of the latter was made. Comparison of structural and spectral characteristics in the series of isoelectronic closo-polyhedrons [B 12 H 12 ] 2- , [CB 11 H 12 ] - and p-C 2 B 10 H 12 , as well as those of the closo- and nido structures, was made [ru

  13. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking.

    Science.gov (United States)

    Sixto-López, Yudibeth; Bello, Martiniano; Correa-Basurto, José

    2018-03-06

    Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K + ) in both sites (HDAC1 k ), a second with K + only at site 1 (HDAC1 ks1 ), a third with K + only at site 2 (HDAC1 ks2 ) and a fourth with no K + (HDAC1 wk ). We found that the presence or absence of K + not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.

  14. Theoretical, ab initio and DFT, study of the structure and vibrational analysis of Raman, IR and INS spectra of (CH{sub 3}){sub 3}SiNCO

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Liencres, M.P. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain)], E-mail: liencres@ujaen.es; Navarro, A. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Ben Altabef, A. [Instituto de Quimica Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman, San Lorenzo 456, 4000 S.M. de Tucuman (Argentina); Lopez-Gonzalez, J.J. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Fernandez-Gomez, M. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Kearley, G.J. [Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-11-08

    The molecular geometry for trimethylsilylisocyanate ((CH{sub 3}){sub 3}SiNCO) has been calculated at MP2 and DFT/B3LYP and DFT/B3PW91 methods, and using the 6-31G*, 6-311G**, 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The equilibrium structure of the molecule, linear or bent as concerns the -SiNCO moiety, was found to rely on the method employed. The potential energy surface of -SiNC bending has been investigated by quantum mechanical ab initio calculations at MPn (n = 2-4) and QCISD(T) levels of theory with the cc-pVTZ basis set. This large amplitude bending motion (the {upsilon} {sub 24} mode) was determined to be very anharmonic, with a low barrier to linearity of the SiNCO skeleton of {approx}4-25 cm{sup -1}. New vapour and liquid IR, liquid Raman spectra and, for first time, INS spectrum have been recorded, and a complete vibrational assignment has been performed. INS data have allowed to assign two modes at 674 cm{sup -1} and 141 cm{sup -1} which, so far, have been considered as silent, i.e. A{sub 2}, since previous authors have used a frame of C {sub 3v} symmetry for this system. The intermolecular interactions show to have little effect on the torsional region (below 250 cm{sup -1} in INS spectrum) and the isolated-molecule approximation works well in that region. A normal coordinate analysis has been carried out by scaling the force fields calculated at MP2/6-311++G** and B3LYP/cc-pVDZ levels of theory using the scaled quantum mechanical force field (SQMFF) methodology. In order to get the best possible agreement between calculated and observed vibrational wavenumbers, the scale factors were refined by least squares yielding a final r.m.s. of {approx}7 cm{sup -1}.

  15. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  16. Infrared spectra of CF(2)=CHD and CF(2)=CD(2): scaled quantum-chemical force fields and an equilibrium structure for 1,1-difluoroethylene.

    Science.gov (United States)

    McKean, Donald C; Law, Mark M; Groner, Peter; Conrad, Andrew R; Tubergen, Michael J; Feller, David; Moore, Michael C; Craig, Norman C

    2010-09-02

    Infrared (IR) spectra in the gas phase are reported for CF(2)=CHD and CF(2)=CD(2) in the region 350-4000 cm(-1). Ab initio calculations of an harmonic force-field and anharmonicity constants have been made with an MP2/aug-cc-pVTZ model. These enable a number of Fermi resonances in each species to be analyzed and a complete set of "observed" harmonic frequencies to be derived. The latter are combined with similar data for CF(2)=CH(2) in a scaling of the model harmonic force field to both anharmonic and harmonic frequencies. Inspection of the scale factors reveals minor defects of the model, evident in the out-of-plane wagging modes and in the CF stretch/CF stretch interaction force constant. Fermi resonance treatments involved in all isotopomers studied are compatible with the overall force-field refinement results. The treatment leaves a small anomaly in the (13)C shift on nu(1). Improved microwave spectra are reported for five isotopic species, and a semiexperimental equilibrium structure for F(2)C=CH(2) is determined and compared favorably with the structure obtained from new high-level ab initio calculations. Centrifugal distortion constants are predicted for the five isotopic species, and those for F(2)C=CH(2) are compared with values fit to microwave spectra.

  17. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...

  18. Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II.

    Science.gov (United States)

    Li, Xichen; Siegbahn, Per E M; Ryde, Ulf

    2015-03-31

    Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2-S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.

  19. Modeling of IR spectra for nerve agent-sorbent binding

    Science.gov (United States)

    Papantonakis, M. R.; Roberts, C. A.; Shabaev, A.; Kim, Y.; McGill, R. A.; Kendziora, C. A.; Furstenberg, R.; Lambrakos, S. G.

    2017-08-01

    An inverse analysis of experimentally measured infrared absorption spectra for the custom sorbent SiFA4H, nerve agent precursor and simulant DMMP, and intermolecularly bonded structure SiFA4H+DMMP is presented. These structures and their associated infrared spectra provide general understanding of the process whereby an analyte chemical may be detected using infrared spectral analysis. The inverse analysis presented provides estimates of permittivity functions, which when combined with the Clausius-Mossotti relation, can predict molecular polarizabilities associated with SiFA4H-SiFA4H and SiFA4H-DMMP interactions. Molecular polarizabilities deduced from measured absorption coefficients are modeled using molecular dynamics simulations.

  20. Structure, modified scaled quantum mechanical force field and a priori prediction of vibrational spectra and their assignment and exponential scaling of frequencies of triphenylene

    International Nuclear Information System (INIS)

    Bandyopadhyay, Indrajit

    2003-01-01

    The structure, force field and vibrational spectra of triphenylene are studied by B3LYP/6-31G(5d) level of theory. The results are compared to those of the related system, phenanthrene. The scale factors in non-redundant local coordinates obtained after fitting the DFT frequencies to the experimental numbers of phenanthrene-d 0 and -d 10 are transferred to predict the spectra and assignment of triphenylene for in-plane modes. The frequencies based on scaling methodology due to Lee et al. are also obtained. These frequencies are compared with the predicted numbers based on scale factors from phenanthrene. Probable assignment for out-of-plane modes is proposed based on simple scaling of Scott and Random (scale factor 0.9614) as well as by scaling methodology by Lee et al